»

© ® N o o

CONTENTS

Chapters Page No.
SECTION-A
1. Introducltion 3-26
Overview of System Analysis and Design - 27-48
SECTION-B e
Preliminary Investigation 51-60
Feasibility Study 61-74
SECTION-C
Requirement Determination and Specification 77-106
Process Modeling 107-130
Logic Modeling 131-160
Designing Forms and Reports 151-174
Designing Interfaces and Dialogues _ 175-204
10.Designing Databases | 205-240
| SECTION-D
11. System Development - 243-272
12.Implementation 273-294
13.Maintenance and Review 295-312

SYLLABUS

SYSTEM ANALYSIS AND DESIGN

1 i
4o

SECTION A
L. Introduction o
Concepts of a system, examples of systems; types of systems-open and closed, static and
dynamic with examples.
2. Overview of System Analysis and Design
System development life cycle, brief introduction to analysis, design, implementation and
testing and maintenance. '

- SECTION B
3. Preliminary Investigation
Project selection, scope definition and preliminary investigation.

4. Feasibilty Study

Technical and economic and operational feasibility, cost and benefit analysis. /

SECTION C
5. Requirement Specification and Analysis
Fact finding techniques, data flow diagrams, data dictionaries, decision trees and tables.
6. Detailed Design .
Module Specification, file design, database design.

. SECTION D
7. Testing and Quality Assurance
- Maintenance, unit and integration testing techniques, design objectives, quality factors such as
reliability correctness etc. ,) .
8. User Education and Training ' '
Issues in user education and training, method of educating and training the user.

'SECTIONA

1. Introduction
2. Overview of System Analysis and Design

CHAPTER

1

INTRODUCTION

LEARNING OBJECTIVES .

1.1 Introduction

1.2 System and its Parts

13 Concepts of a System

1.4 Types of Systems
1.4.1 Physical or Abstract Systems
1.4.2 Open or Closed Systems
1.4.3 Man-made [nformation Systems

1.5 Organizations, Managers and Information
1.5.1 ODepartments
1.56.2 Management Levels
1.5.3 Types of Information

16 Computer-based Information Systems
1.6.1 Transaction Processing Systems (TPSs)
1.6.2 Management Information Systems (MiSs)
1.6.3 Decision Support Systems (DSSs)

1.6.4 Executive Support Systems (ESSs)
1.6.5 Office Automation and Expert Systems (CASs and ESs)

1.1 INTRODUCTION

The term ‘system’ is derived from the Greek word ‘system’ (to combine), which
means an organized relationship among functioning units or components. A system
exists because it is designed to achieve one or more objectives. A system is an
orderly arrangement of its components. The components of a system have structure
and order. The organization determines the flow of control, communication and
the chain of commands.

There are many system concepts which play an important role in understanding
the system. The flow of information in an organization is very vital. There are
various departments in an organization, depending on the services or products
they provide to us. With each department there are three traditional levels of
management—top, middle and lower. For making the proper decisions—the different
levels of managers require the right kind of information at right time. Information
system is a system that provides information to people in an organization. There
are various types of computer-based information systems, which serve different
levels of management.

Introduction

NOTES

Self-Instructional Material 3

Systern Analysis and Design

NOTES

4 Self-Instructional Material

1.2 SYSTEM AND ITS PARTS

A system is an interrelated set of components with an identifiable boundary working
together for some purpose. A system has nine characteristics (see Figure 1.1).

(i) Components
(i} Interrelated components
(iii} A boundary
(iv) A purpose
(v) An environment
(vi) Interfaces
(vit) Input
(viii) Output
(ix) Constraints

e . .
Interfaces L Interrelationship —/

Fig. 1.1 A general illustration of a system.

A system is made up of components. A component is either an irreducible part
or an aggregate of parts, also known as a subsystem. The simple concept of a
component is very powerful. For example, just as with an automobile or a stereo
system with proper design, we can repair or upgrade the system by changing
individual components without having to make changes throughout the entire
system. The components are interrelated; that is, the function of one component
is somehow tied to the functions of the other compenents. For example, the
work of one component, such as producing a daily report of customer orders
received, may not progress successfully until the work of another component is
finished, such as sorting customer orders by date of their receipt.

A system has a boundary within which all of its components are contained and
that establishes the limits of a system, separating the system from other systems.
Components within the boundary of a system can be changed, whereas things
outside the boundary cannot be changed. All of the components work together to
achieve some overall purpose for the larger system: the system’s main reason
for existing. :

A system exists within an environment, which comprises of everything outside the
system’s boundary. For example, we might consider the environment of a state
university to include the legislature, prospective students, foundations and funding
agencies, and the news media. Usually the system interacts with its environment,
exchanging, in the case of an information system, data and information. The points
at which the system meets its environment are known as interfaces, and there
are also interfaces between subsystems. An example of subsystem interface is the
clutch subsystem, which acts as the point of interaction between the engine and
transmission subsystems of a car, Special characteristics of interfaces are given
below:

Interface Functions
Because an interface exists at the point where a system meets its environment,
the interface has several special, important functions. An interface provides

* Security, protecting the system from undesirable elements that may want
to infiltrate it :

* Filtering unwanted data, both the elements leaving the system and entering
it

* Coding and decoding incoming and outgoing messages

‘s Detecting the correcting errors in its interaction with the environment

¢ Buffering, providing a layer of slack between the system and its environment,
so that the system and its environment can work on different cycles and
at different speeds ‘

* Summarizing raw data and transforming them into the level of detail and

format required throughout the system (for an input interface) or in the-

environment (for an output interface)

Because interface functions are critical in communication between system components
or a system and its environment, interfaces receive much attention in the design

of information systems.

Tt is the design of good interfaces that allows different systems to work together
without being too dependent on each other.

A system must face constraints in its functioning because there are limits (in
terms of capacity, speed, or capabilities) to what it can do and how it can achieve
its purpose within its environment. Some of these constraints are imposed inside
the system (e.g., a limited number of staff available), whereas others are imposed
by the environment (e.g., due dates or regulations imposed by government or
some other agency). A system takes input from its environment in order to
function, Mammals, for example, take in food, oxygen, and water from the environment
as input. Finally, a system returns output to its environment as a result to its
functioning and thus achieves its purpose.

Now you are familiar with the definition of a system and its nine important
characteristics let us take an example of a system and use it to illustrate the
definition and each system characteristic. Consider a system that is familiar to
you: a fast-food restaurant (see Figure 1.2).

How is a fast-food restaurant a system ? Let us take a look at the fictional Roop
Chand restaurant in New Delhi, India. First, it has components, or subsystems.
The physical subsystems are: kitchen, dining room, counter, storage, and office. As
you might expect the subsystems are interrelated and work together to prepare

Introduction

NOTES

Self-Instructional Material 5

System Analysis and Design

NOTES

6 Self-]nst;uctional Material

Environment: customers, food distributors, banks, health department, etc.

!
)
F
]
|
I
|
| Storage Office
|
|
I
|
I v Qutputs:
p . prepared
Kitchen gm":r? food,
00 trash,
' etc.
L}
1
: L 4
! Counter —_—
:
)
I
Boundary -

——» represents an interrelationship

Fig. 1.2 A fast-food restaurant as a system.

food and deliver it to customers, one purpose for the restaurant’s existence. Food
is delivered daily, kept in storage, prepared in the kitchen, sold at the counter, and
often eaten in the dining room. The boundary is represented by its physical walls,
and the primary purpose for the restaurant’s existence is to make a profit for its
owners, Aman and Vansh Dixit. The restaurant’s environment consists of those
external elements that interact with it, such as customers (many of whom come
from nearby Delhi University), the local labor supply, food distributors (much of
the produce is grown locally), banks, and neighborhood fast-food competitors. It
has one interface at the counter, where customers place orders, and another at the
back door, where food and supplies are delivered. Still another interface is the
telephone managers use regularly to talk with bankers and food distributors. The
restaurant faces several constraints. It is designed for the easy and cost-effective
preparation of certain popular foods, such as hamburgers and coffees, which
constrains the restaurant in the foods it may offer for sale. Its size and its location
in the university neighborhood constrain how much money it can make on any
given day. The MCD Health Department also imposes constraints, such as rules

.governing food storage. Inputs include, but are not limited to, ingredients for the

burgers and other food as well as cash and labor. Qutputs include, but are not
limited to, prepared food, bank deposits, and trash.

1.3 CONCEPTS OF A SYSTEM

Once we have recognized something as a system and identified the system’s characteristics,
how do we understand the system? Further, what principles or concepts about
systems help the design of information systems? A key aspect of a system is the
system’s relationship with its environment. Some systems, called open systems,
interact freely with their environments, taking in input and returning output. As
the environment changes, an open system must adapt to the changes or suffer the

consequences. A closed system does not interact with the environment; changes
in the environment and adaptability are not issues for a closed system. However,
all business information systems are open, and in order to understand a system
and its relationships to other information systems, to the organization, and to the
larger environment, you must always think of information systems as open and
constantly interacting with the environment.

There are many other important systems concepts with which systems analysts
(the key individuals in the systems development process) need to become familiar:

* Decomposition * Modularity
* Coupling - ¢ Cohesion

Decomposition deals with being able to break down a system into its components.
These components may themselves be systems (subsystems) and can be broken
_ down into their components as well. How does decomposition aid understanding
of a system? Decomposition results in smaller and less complex pieces that are
easier to understand than larger, complex pieces. Decomposing a system also
helps us to focus on one particular part of a system, making it easier to think
of how to modify that one part independently of the entire system.

Decomposition aids a systems analyst and other systems development project
team members by _
* Breaking a system into smaller, more manageable, and understandable
subsystems
* Facilitating the focusing of attention on one area (subsystem) at a time
without interference from other parts

* Allowing attention to concentrate on the part of the system pertinent to
a particular audience, without confusing people with details irrelevant to
their interests

* Permitting different parts of the system to be built at independent times
and/or by different person.

After Decomposition .
CD Player System Signal Signal
CD —»| Reading » Amplifying
Subsystem Subsystem
—» Music v
g . Signal Signal
CcD . Cor!trol —») Control »| Conversion |—» Music
Controf settings Subsystem Subsystem
settings ¥ ysten

Fig. 1.3 An example of decomposition.

Figure 1.3 shows the decomposition of a portable compact disc {CD) player. At the
highest level of abstraction, this system simply accepts CDs and settings of the
volume and tone controls as input and produces music as output. Decomposing
the system inte subsystems provides the system’s inner workings: There are
separate systems for reading the digital signals from the CDs, for amplifying the
signals, for turning the signals into sound waves, and for controlling the volume
and tone of the sound. Breaking the subsystems down into their components

Introduction

NOTES

Self-instructional Material 7

System Analysis and Design

NOTES

& Self-Instructional Material

would provide even more about the inner workings of the system and greatly
enhance our understanding of how the overall works.

Modularity, a direct result of decomposition, means dividing a system up into chunks
ar modules of a relatively uniform size. Modules can represent a system simply, making
it not only easier to understand, but also easier to redesign and rebuild.

Coupling is the extent to which subsystems are dependent on each other. Subsystems
should be as independent as possible. If one subsystem fails and other subsystems
are highly dependent on it, the others will either fail themseives_or have problems
functioning. After looking at Figure 1.3, we would say the components of a portable
CD player are tightly coupled. The amplifier and the unit that reads the CD signals
are wired together in the same container, and the boundaries between these two
sﬁbsystems may be difficult to draw clearly. If one subsystem fails, the entire CD
player must be sent off for repair. In a home stereo system, the components are
loosely coupled because the subsystems, such as the speakers, the amplifier, the
receiver, and the CD player, are all physically separate and function independently.
For example, if the amplifier in a home stereo system fails, only the amplifier
needs to be repaired.

Finally, cohesion is the extent to which a subsystem performs a single function.
In biological systems, subsystems tend to be well differentiated, and thus very
cohesive. In human made systems, subsystems are not always as cohesive as they
should be.

One final key systems concept with which you should be familiar is the difference
between logical and physical systems. Any description of a system is abstract
because the definition is not the system itself. When we talk about logical and
physical systems, we are actually talking about logical and physical system descriptions.

A logical system description gives the purpose and function of the system
without tying the description to any specific physical implementation. For example,
in developing a logical description of the portable CD player, we describe the basic
components of the player (signal reader, amplifier, speakers, controls) and their
relations to each other, focusing on the function of playing CDs using a self-
contained, portable unit. We do not specify whether the earphone jack contains
aluminium or gold, where we could buy the laser that reads the CDs, or how much
the jack or the laser cost to produce.

One the other hand, the physical system description is a-material depiction of
the system; a central concern of which is building the system. A physical description
of the portable CD player would provide details on the coenstruction of each subunit,
such as the design of the laser, the composition of the earphones, and whether the
controls feature digital readouts. A systems analyst should deal with function (logical
system description) before form (physical system description), just as an architect
does for the analysis and design of buildings before actual construction.

1.4 TYPES OF SYSTEMS

The frame of reference within which one views a system is related to the use of
the systems approach for analysis. Systems have been classified in different ways.
Common classifications are:

1. Physical or abstract,
2. Open or closed, and

3. “Man-made” information systems.

1.4.1 Physical or Abstract systems

Physical systems are tangible entities that may be static or dynamic in operation.
For example, the physical parts of the computer center are the offices, desks, and
chairs that facilitate operation of the computer. They can be seen and counted;
they are static. In contrast, a programmed computer is a dynamic system. Data,

programs, cutput, and applications change as the user’s demands or the priority r

of the information requested changes.

Abstract systems are conceptual or nonphysical entities. They may be as straightforward
as formulas of relationships among sets of variables or models—the abstract
conceptualization of physical situations. A model is a representation of a real or a
planned system. The use of models makes it easier for the analyst to visualize
relationships in the system under study. The objective is to point out the significant
elements and the key interrelationships of a complex system.

System Models

In no field are models used more widely and with greater variety than in systems
analysis. The analyst begins by creating a model of the reality (facts, relationships,
procedures, etc.) with which the system is concerned. Every computer system deals
with the real world, a problem area, or a reality outside itself. For example, a
telephone switching system is made up of subscribers, telephone handsets, dialing,
conference calls, and the like. The analyst begins by modeling this reality before
considering the functions that the system is to perform.

Various business system models are used to show the benefits of abstracting
complex systems to model form. The major models discussed here are schematic,
flow, static, and dynamic system models.

Schematic Models

A schematic model is a two-dimensional chart depicting system elements and their
linkages. Fugure 1.4 shows the major elements of a personnel information system

together with material and information flow.
Book keeping
Department

3
Forming notices » Checking a‘c balance
.. 9 Payroll Q ft inf i
* External « Labor distribution VE:GI’B information
A " : reports AT & + Transter notices s
environmen ! «Frings benetits * Salary adjustements * Salary adjustments * Signature verification
: reports « Tex withholding data * Prometion notices
H * Safety/security Teler
: . . information 1
: 2eppéirément payrol [{ |« Hours worked department
s P Human resources >
S repors [M department ¢ Tt
* Absence reports depanment
Inquiries « Biographical information T « Job requisitions
- ¢ EEQ update « Vecation schedule
* Wage and aslary reports * Accident reports | | 1nstlglér|[‘1ent
s : depariment
H .
« ERISA « Performance evaluation
Commercial
Report forms, Evaluation form, efc. — loan
department

-— Information flow
... Meterial flow
— Information feedback

Fig. 1.4 Personnel information flow in a banking environment.

Introduction

NOTES

Self-Instructional Material 9

System Analysis and Design

NOTES

10 Self-Instructionc! Material

Flow System Models

A flow system model shows the flow of the material, energy, and information that
hold the system together. There is an orderly flow of logic in such models. A widely
known example is PERT (Program Evaluation and Review Technique). It is used
to abstract a realworld system in model form, manipulate specific values to determine
the critcal path, interpret the relationships, and relay them back as a control. The
probability of completion within a time period is considered in connection with
time, resources, and performance specifications (See Figure 1.5).

Fig. 1.5 A CPM chart lshowing flow system model.

Static System Models

This type of model exhibits one pair of relationships such as activity-time or cost-
quantity. The Gantt chart, for example gives a static picture of an activity-time
relationship. In Figure 1.6 planned activities (stamping, sanding, etc.} are plotted
in relation to time. The date column has light lines that indicate the amount of
time it takes to complete a given activity. The heavy line represents the comulative
time schedule for each activity. The stamping department for example, is scheduled
to start working on order number 25 Wednesday morning and complete the job by
the same evening. One day is also scheduled for order number 28, two days for
order number 22, and two days (August 10-11) for order number 29. The total of
six days is represented by the heavy line opposite the stamping department. The
broken line indicates that the department is two days behind schedule. The arrowhead
indicates the data when the chart is to be in effect.

Gantt Chart

Name of | Number of | Capacity
department] workers | per weeky, August 5|6 12

Stamping 75 4500 25 [28] |22 29

Sanding 10 800 21 25

Assembly 60 3600 19 20
13 114
Painting 8 480 [

Fig. 1.6 Gantt chart-An example.

Dynamic .System Models

Business organizations are dynamic systems. A dynamic model approximates the
type of organization or applications that analysts deal with. It depicts an ongoing,

. constantly changing system. As mentioned earlier, it consists of (1) inputs that enter -
the system, (2) the processor through which transformation takes place, (3) the

program(s) required for processing, and (4) the output(s) that result from processing.

1.4.2 Open or Closed Systems

Another classification of systems is based on their degreé of independence An open
system has many interfaces with its environment. It permits interaétion across its
boundary; it receives inputs from and delivers outputs to the outside. An information
system falls into this category, since it must adapt to the changing demands of the
user. In contrast, a closed system is isolated from environmental influences. In
reality, a completely closed system is rare. In systems analysis, organizations,
applications, and computers are invariably open, dynamic systems influenced by
their environment.

A focus on the characteristics of an open system is particularly timely in the light
of present-day business concerns with computer fraud, invasion of privacy, security
controls, and ethics in computing. Whereas the technical aspects of systems analysis
deal with internal routines within the user’s application area, systems’ analysis as
an open system lends to expand the scope of analysis to relationships between the
user area and other users and to environmental factors that must be considered
before a new system is finally approved. Furthermore, being open to suggestions
implies that the analyst has to be flexible and the system being designed has to
be responsive to the changing needs of the user and the environment.

Five important characteristics of open systems can be identified. These are given
below: '

1. Input from Outside

Open systems are self-adjusting and self-regulating. When functioning properly, an
open system reaches a steady state or equilibrium. In a retail firm, for example,
a steady state exists when goods are purchased and sold without being either out
of stock or over-stocked. An increase in the cost of goods forces a comparable
increase in prices or ‘decrease in operating costs. This response gives the firm its
‘steady state. '

2. Entropy

All dynamic systems tend to run down over time, resulting in entropy or loss of
energy. Open dystems resist entropy by seeking new inputs or modifying the
processes to return to a steady state. In our example/no reaction to increase in
cost of merchandise makes the business unprofitable which could force it into
insolvency—a state of disorganization.

3. Process, Output and Cycles

Open systems produce useful output and operate in cycles, following a continuocus
flow path.

4. Differentiation . , /
/ .
Open systems have a tendency toward an increasing specialization of functions and

a greater differentiation of their components. In business, the roles of people and

/

Introduction

NOTES

Self-Instructional Material 11.

System Analysis and Design

NOTES

12 Self-Instructional Material

machines tend toward greater specialization and greater interaction. This characteristic
offers a compelling reason for the increasing value of the concept of systems in the
systems, analyst’s thinking.

5. Equifinality

The term implies that goals are achieved through differing courses of action and
a variety of paths. In most systems, there is more of a consensus on goals than
on paths to reach the goals.

Understanding system characteristics helps analysts to identify their role and
relate their activities to the attainment of the firm’s objectives as they undertake
a system project. Analysts are themselves part of the organization. They have
opportunities to adapt the organization to changes through computerized applications
so that the system does not “sun down”. A key to this process is information
feedback from the prime user of the new system as well as from top management,

1.4.3 Man-Made Information Systems

An information system is an open system that allows inputs and facilitates interaction
with the user. These are discussed in detail later on in this unit.

Introduction

STUDENT ACTIVITY 1.1

1. What is a system ? What are its parts ? Explain.

2. Describe the following:
7) Open systems (it) Closed Systems

Self-Instructional Material 13

System Analysis and Design

1.5 ORGANIZATIONS, MANAGERS AND
INFORMATICN '

At the heart of an organization is information and how it is used. To understand
how to bring about change in an organization, we need to understand how organizations
and their managers work—how they need, organize, and use information.

The flow of Information within an Organization. Take any sizable organization

" you are familiar with. Its main purpose is to perform a service or deliver a

L

. 1
14 Self-Instructional Material

product. If it is nonprofit, for example, it may deliver service of educating students
about AIDS or product of food for famine victims. If it is profit-oriented, it may,
for example, sell the service of fixing computers or the product of computers
themselves. '

Information—whether computer-based or not-has to flow within an organization in
a way that will help managers, and the organization, achieve their goals. To this
end, organizations are often structured horizontally and vertically—horizontally to
reflect functions and vertically to reflect management levels.

1.5.1 Departments

Depending on the services or products they provide, most organization have departments
that perform five functions:

(2} Research and Development (R & D)
(iz) Production
(fii) Marketing
(iv) Accounting and Finance
() Human Resources (Personnel)

() Research and development. The research and development (R & D)
department does two things:

(1) It conducts basic research, relating discoveries to the organization’s
existing or new products.

(2) 1t does product development and tests and modifies new products or
services created by researchers.

Special software programs are available to aid in these functions.

() Production. The production department produces the product or provides
the service. In a manufacturing company, it takes the raw materials and
has people or machinery turn them into finished goods. In many cases, this
department uses CAD/CAM software and workstations, as well as robotics.
In another type of company, this department might manage the purchasing,
handle the inventories, and control the flow of goods and services,

(i) Marketing. The marketing department looks after advertising, promotion,
and sales. The people in this department plan, price, advertise, promote,
package, and distribute the services or goods to customers or clients. The
sales representatives may use laptop computers, cellphones, wireless e-
mail, and faxes in their work while in their fields.

(iv) Accohnting and finance. The accounting and finance department handles
all. financial matters. It handles cash management, pays bills and taxes,
issues paychecks, records payments, makes investments, and compiles financial
statements and reports. It also produces financial budgets and forecasts

(v)

financial performance after receiving information from other departments
at certain time intervals.

Human resources. The human resources, or personnel, department finds
and hires people and administers sick leave and retirement matters. It is
also concerned with compensation levels, professional development employee
relations, and government regulations.

1.5.2 Management Levels

Within each of the five departments discussed above there are three traditional
levels of management—top, middle, and lower. These levels are reflected in the
organization chart shown in Figure 1.7. An organization chart is a schematic
drawing showing the hierarchy of formal relationships among an organization's employees.
Managers on each of the three levels have different levels of responsibility and are
therefore required to make different kinds of decisions. (See Figure-l.?i.

Top managers. The chief executive officer (CEO} or president is the very
top manager. However, for our purposes, “top management” refers to the
vice presidents, one of whom heads each department. Typical titles found
at the top management level are treasurer; director, controller (chief accounting
officer), and senior partner.

Top managers are concerned with long-range, or strategie, planning
and decisions. Strategic decisions are complex decisions rarely based on
predetermined routine procedures; they involve the subjective judgment of
the decision maker. For example, strategic decigsions might relate to how

_growth should be financed and what new markets should be tackled first.

Determining the company’s 10-year goals, evaluating future financial resources,
and formulating a response to competitors’ actions are also strategic decisions.

An AT & T vice president of marketing might have to make strategic
decisions about promotional campaigns to sell a new cable-modem service.
The top manager who runs an electronics store might have t6 make strategic
decisions about stocking a new line of personal digital assistants (PDAs)

Middle managers. Some example of middle managers are plant manager,
division manager, sales manager, branch manager, and director of personnel.
Middle-level managers make tactical decisions to implement the strategic
goals of the organization. A tactical decision is made without a base of
clearly defined informational procedures; it may require detailed analysis
and computations. An example might be deciding how many units of a
specific product (PDAs, say) should be kept in inventory. Another is whether
or not to purchase a larger computer system.

The director of sales, who reports to the vice president of marketing for AT
& T, sets sales targets for district sales managers throughout the country.
They in turn feed him or her weekly and monthly sales reports.

Supervisory managers. An example of a supervisory manager is a warehouse
manager in charge of inventory restocking. Supervisory managers make
operational decisions—predictable decisions that can be made by following
well-defined sets of routine procedures. These managers focus principally
on supervising nonmanagement employees, monitoring day-to-day events,
and taking corrective action where necessary.

Determining not to restock inventory is an operation decision. (The guideline
on when to restock may be determined at the level above.) A district sales
manager for AT & T would monitor the promised sales and orders for cable

Introduction

NOTES

Self-Instructional Material 15

10LRI0Y pouoNINISUTfIes 91

&
7
?
Chief Executive Officer
T —— T
Chiet Executlve Officer) (CEO)
— o m— — 5 ; - Responsibie for
b B Vice Pres. [Strategic planni '
N vico Pres. Vice Pres! eg ng
; ! ' ‘) Top management:
. , i 2nd Finance v unstructured decisions
. —!-!L_!-pr—l T n - Responsible for
s . Wl Dircctor of ! tactical planning
. H BN Director of I Diroctor of _
| Persomj;::lf , inance il IE Accounting) ‘) Middle management:
Lr oo L " —y semistructured
e
I'BA'ddla management : decisions
[Y Responsible for
PO v —— o b i el operational
f Manager ot i Manager of [Manager planning
[Accounts i Accounts | of . Lower management:
. L Recelvable I Payabin] Reports structured decisions
lLower mwnagement - : '

. Nonmanagement employees

Fig. 1.7 An organization chart, and management levels and responsibilities.

uSisa7 pun §13oUYy waSLQ

- -3

modems coming in from sales representatives. When sales begin to drop off,
the supervisor would need to take immediate action.

1.5.3 Types of Information

To make the proper decisions—strategic, tactical, _gperatiqnal——the different levels
of managers need the right kind of information: structured, semistructured, and
unstructured.

In general, all information to support intelligent decision making at all three
levels must be correct—that is, accurate. It must alse be complete, including all
relevant data, yet concise, including only relevant data. It must be cost effective,
meaning efficiently obtained, yet understandable. It' must be current, meaning
timely, yet also time sensitive, based on historical, current, or future information
needs. This shows that information has three distinct properties as given below:

@ Level of summarization

(@) Degree of accuracy

(i) Timeliness
These properties will be different for structured and unstructured information.
Whether structured or unstructured information is more appropriate depends on
the level of management and the type of decision making required. Structured
information is detailed, current, not subjective, concerned with past events, records
a narrow range of facts, and covers an organization’s internal activities. Unstructured
information is the opposite. Unstructured information is summarized, less current,
highly subjective, concerned with future events, records a broad range of facts,

and covers activities outside as well as inside an organization. Semistructured
information includes some structured information and some unstructured information.

As we have covered some basic concepts about how organizations are structured
and what kinds of information are required at different levels of management, we
need to examine what types of management information systems provide the
information.

1.6 COMPUTER-BASED INFORMATION SYSTEMS

The main purpose of a computer-based information system is to provide managers
(and various categories of emplloyees) with the appropriate kind of information to
help them make decisions. There are six types of computer-based information
systems which serve different levels of management. (See Figure 1.8).

¢ TFor lower managers., Transaction processing systems (TPSs)

¢ For middle managers. Management information systems (MISs) and
decision support systems (DSSs)

* For top managers. Executive support systems (ESSs)

¢ For all levels, including nonmanagement. Office automation systems
(OASs) and expert systems (ESs)

Let us describe these.

Introduction

NOTES

Seif-Instructional Material 17

System Analysis and Design 1.8.1 Transaction Processing Systems (TPSs)

NOTES

18 Self-Instructional Material

In most organizations, particularly business organizations, most of what goes on
consists largely of transactions. A transaction is a recorded e¢vent having to do with
routine business activities. This includes everything concerning the product or
service in which the organization is involved: production, distribution, sales, orders.
It algo includes materials purchased, employees hired, taxes paid etc. These days
in most organizations, the bulk of such transactions are recorded in a computer-
based information system. These systems tend to have clearly defined inputs and
outputs, and there is an emphasis on efficiency and accuracy. Transaction processing
systems record data but do little in the way of converting data into information.

Sees and Pm@

Inputs Outputs
50Me summarized reports, m {iexite, on-demand reporis
s0e processed transaction m mon to maeke dedislons about
dsata, other Intemal data plus . unstructurad problems:
axternat data L= passible effacts of strikes,
- . . fsing interest rates, etc.
Accwntrng Reaqm;h and
prdl finance davetoproant
Hunsn raeourcay !
Top management
Sales ano Marketi~g Production summartzed
b » '-l structured
transaction data, Accourting tnforemetion Resaarch snd # mﬂ:fw
other Internal data ang tnance systom (MNE) doveiopman production
’ schedutes, otc
Human resources
Middle management
Sales anc
Production processed
Markoing transactions:
' stion w Ter Lt ! bills,
ranse = hecks
* Accourting ~ : Revaarch and payc '
gata and finance - m = cevalopment orders, etc.
:.u' M. & T .
’ HUMen resources
Lower management
Employees *
Expart systam Offics Avtomation System {TAS)
(ary lovei)

Fig. 1.8 Illustration of six information systems for three levels of management.

A transaction processing system (TPS) is a computer-based information system
that keeps track of the transactions needed to conduct business. Some features of
a TPS are given below:

* Input and output. The inputs to the system are transaction data: bills,

orders, inventory levels etc. The output consists of processed transactions:
bills, paychecks etc.

* For lower managers, Because the TPS deals with day-to-day matters, it
is principally of use to supervisory managers. That is, the TPS helps in
making tactical decisions. Such systems are not usually helpful to .middle
or top managers in an organization. .. o

* Produces detail reports. A manager at this level typically will receive
information in the form of detail reports. A detail report contains specific
information about routine activities. For example, the information needed
to decide whether to restock inventory.

* One TPS for each department. Each department or functional area of
an organization—research and development, production, marketing, accounting
and finance, and human resources—usually has its own TPS. For example,
the accounting and finance TPS handles order pracessing, accounts receivable,
inventory and purchasing, accounts payable, order processing, and payroll.

« Basis for MIS and DSS. The database of transactions stored in a TPS
provides the basis for management information systems and decision support
systems, as described next.

1.6.2 Management Information Systems (MISs)

A management information system (MIS) is a computer-based information system
that uses data recorded by TPS as input into programs that produce routine reports
as output.

Feature of an MIS are given below:

+ Input and output. Inputs consist of processed transaction data, such as
bills, orders, and paychecks, plus other internal data. Outputs consist of

summarized, structured reports: budget summaries, production schedules -

etc.

s For middle managers. An MIS is intended principally to assist middle
managers—specifically to help them with tactical decisions. It helps them
to spot trends and get an overview of current business activities.

* Draws from all departments. The MIS draws from -all five departments
or functional areas, not just cne.

* Produces several kinds of reports. Managers at this level usually receive
information in the form of several kinds of reports: summary, exception,
periodic, demand. :

Summary reports show totals and trends. For example, a report showing total
sales by office, by product, and by salesperson, as well as total overall sales.

Exception reports show out-of-the-ordinary data. For example, an inventory report
listing only those items of which fewer than 20 are in stock.

Periodic reports are produced on a regular schedule. Such daily, weekly, monthly,
quarterly, or annual reports may have sales figures, income statements, or balance
_ sheets. They are usually produced on paper, such as computer printouts.

Demand reports produce information in response to an unscheduled demand. A
director of finance might order a demand credit-background report on an unknown
customer who wants to place a large order. Demand reports are often produced
on a terminal or microcomputer screen, rather than on paper.

Introduction

NOTES

Self-Instructional Material 19

System Analysis and Design

NOTES

20 Self-Instructional Material

1.6.3 - Decision Support Systems (DSSs)

A decision support system (DSS) is a computer-based information system that
provides o flexible tool for analysis and helps managers focus on the future.
Whereas a TPS records data and an MIS summarizes data, a DSS analyzes data.
To reach the DSS level of sophistication in information technology, an organization
must have established TPS and MIS systems first. Some features of a DSS are
given below :

+ Inputs and outputs. Inputs include internal data—such as summarized
reports'and processed transaction data—and also data that is external to
the organization. External data may be produced by trade associations,
marketing research firms, the Indian Bureau of the Census, and other
government agencies. '

The outputs are demand reports on which a top manager can make
‘decisions about unstructured problems. ’

¢ Mainly for middle managers. A DSS is intended principally to assist
middle managers in making tactical decisions. Questions addressed by
the DSS might be, for exampie, whether interest rates will rise or whether
there will be a strike in an important materials-supplying industry.

* Produces analytic models. The key attribute of a DSS is that it uses
models. A model is a mathematical representation of a real system. The
models use a DSS database, which draws on the TPS and MIS files, as well
as external data such as stock reports, government reports, and national
and international news. The system is accessed using the DSS software.

The model allows the manager to do a simulation—play a “what-if’ game—to
reach decisions. Thus, the manager can simulate an aspect of the organization’s
environment in order to decide how to react to a change in conditions affecting -
it. By changing the hypothetical inputs to the model, the manager can see how
the model’s outputs are affected by doing so.

Many DSSs are developed to support the types of decisions faced by managers in
specific industries, such as airlines or real estate. Curious how airlines decide
how many seats to sell on a flight when so many passengers are n¢-shows?
Wonder how owners of those big apartment complexes set rents and lease terms?
Investors in commercial real estate use a DSS called RealPlan to forecast property
values up to 40 years into the future, based on income, expense, and cash-flow
projections. Ever speculate about how insurance carriers set different rates.

. Many companies use DSSs called geographic information systems (GISs), such as

Maplnfo and Atlas GIS, which integrate geographic databases with other business
data and display maps.

1.6.4 Executive Support Systems (ESSs)

An executive support system (ESS) is an easy-to-use DSS made especially for
top managers; it specifically supports strategic decision making. An ESS is also
known as executive information system (EIS). It draws on data not only from
systems internal to the organization but also from those outside, such as news
services or market-research databases. (See Figure 1.9).

An ESS might allow senior executives to call up predefined reports from their
personal computers, whether desktops or laptops. They might, for instance, call up
sales figures in many forms-—by region, by week, by anticipated year, by projected
increases. The ESS includes capabilities for analyzing data and doing “what-if”
scenarios. ESSs also have the capability to browse through summarized information
on all aspects of the organization and then zero in on (“drill down” to) detailed
areas the manager believes require attention.

ESS DBMS
software software ~RR—- -
internat |
operationg |
databases
Corfmunications
softwara

. Special
management
databases

Fig. 1.9 Ilustrating components of an ESS

1.6.5 Office Automation and Expert Systems

TCPs, MiSs, DSSs, ESSs—the alphabet soup of information systems discussed so
far—are designed for managers of various levels. There exist two types of information
systems that are intended for workers of all levels, including those who are not
managers: office automation systems and expert systems.

» Office automation systems. Office automation systems (OASs) combine
various technologies to reduce the manual labor required in operating and
efficient office environment. Used throughout all levels of an organization,
OAS technologies include fax, voice mail, e-mail, scheduling software, word
processing, and desktop publishing, among others. (See Figure 1.10).

Offico
Automatlon
Systems

1 T -]

“Electronic Electronic Electronic Image Office
Pubilishing Communications Collsborntion | Processing Management
Systams Systems . Systems Systems Systems
« Word processing « Elsctronic mail « Elactronic meating + Electronic document + Electronic office
- Copying systems * Voice mall systems management accessories
+ Desktops publishing + Desktop * Collabarative + Other Image * Electronic
vitleoconierencing work systems processing scheduling
+ Teleconferencing = Prgsentation graphics « Task
+ Tetecommuting * Multimedia systems management

Fig. 1.10 Office automation systems (The backbone is a network linking these technologies).

The backbone of an OAS is a network—LAN, intranet, extranet—that connects
everything. All office functions—dictation, typing, filing, copying, fax, microfilm

Introduction

NOTES

Self-Instructional Material 21

System Analysis and Design and records management, telephone calls and switchboard operations—are candidates
for integration into the network.

* Expert systems. An expert system, or knowledge-based system, is o set of
interactive computer programs that helps users solve problems that would
otherwise require the assistance of a human expert. Expert systems are
created on the basis of knowledge collected on specific topics from human
specialists, and they imitate the reasoning process of a human being. Remember
that expert systems have emerged from the field of artificial intelligence,
the branch of computer science that is devoted to the creation of computer
systems that simulate human reasoning and sensation.

NOTES

Expert systems are used by both management and nonmanagement personnel to
solve specific problems, such as how to reduce production costs, improve workers’
productivity, or reduce environmental impact. Because of their giant appetite for
memory, expert systems are usually run on large computers, although some microcomputer
expert systems also exist. For example, Negotiator Pro for IBM and Macintosh
computers helps executives plan effective negotiations by examining the personality
types of the other parties and recommending negotiating strategies.

In this unit we have seen how managers work within an organization and what
their information needs are, we can look.at how changes can be made to keep up
with the new demands. A very powerful tool for this purpose is systems analysis
and design which will be discussed in chapter 2.

22 Self-Instructional Material

Introduction

STUDENT ACTIVITY 1.2

1, What is the difference between structured and unstructured information ?

2. What is an expert system, and what can it be used for ?

Self-Instructional Material 23

System Analysis and Design

NOTES

24 Self-Instm;tional Material

SUMMARY

System is an interrelated set of components with an identifiable boundary
working together for some purpose.

Component is an irreducible part or aggregation of parts that make up a
system, also known as a subsystem.

Interrelated components means dependence of one subsystem on one or
more subsystems\.

Boundary is the line that marks the inside and outside of a system and
that sets off the system from its environment.

Purpose means the overall goal or function of a system.

Environment represents everything external to a system that interacts
with the system.

Interface represents point of contact where a system meets its environment
or where subsystems meet each other.

Constraint is the limit to what a system can accomplish.

Input is whatever a system takes from its environment in order to fulfill
its purpose.

Output is whatever a system returns to its environment in order to fulfill
its purpose.

Open system is a system that interacts freely with its environment, taking
input and returning output.

Closed system is a system that is cut off from its environment and does
not interact with it.

Decomposition is the process of breaking down a system into smaller and
less complex pieces that are easier to understand.

Modularity means dividing a system up into chunks or modules of a relatively
uniform size.

Coupling is the extent to which a subsystems depend on each other.
Cohesion is the extent to which a system or a subsjstem performs a single
function.

Logical system description is the description of a system that focuses on
the system’s function and purpose without regard to how the system will be
physically implemented.

Physical system description is the description of a system that focuses
on how the system will be materially constructed.

Depending on the services or products they provide, most organizations
have departments that perform five functions: research and development (R
& D), production, marketing, accounting and finance, human resources (personnel).

Top managers also called strategic managers are concerned with long-
range planning and strategic decision require information that is unstructured.
Middle-level managers implement the goals of the organization. They
require information that is both structured and unstructured.
Supervisory managers implement the operational decisions.

Structured information is the detailed, current information concerned
with post events; it records a narrow range of facts and covers an organization’s
internal activities. '

Unstructured information is the summarized, less current information
concerned with future events; it records a broad range of facts and covers

Semistructured information is the information that does not necessarily
result from clearly defined, routine procedures.

Transaction Processing System (TPS) is the computer-based information
system that keeps track of the transactions needed to conduct business.

Management Information System (MIS} is the computer-based information
system that derives data from all departments of an organization and produces
summary, exception, periodic, and on-demand reports of the organization’s
performance. ‘

Decision Support System (DSS) is the computer-based information system
that helps managers with nonroutine decision-making tasks.

Executive Support System (ESS) is also called an executive information
system. It is made especially for top managers that specifically supports
strategic decision making.

Office Automation System (QAS) is the computer-based information system
that combines various technologies to reduce the manual labor needed to
operate an office efficiently; used at all levels of an organization.

Expert System is also called knowl}adge—based system. It is a set of computer
programs that perform a task at the level of a human expert.

TEST YOURSELF

Answer the following questions:

1. Give an example of a system around you and identify its characteristics.

Describe Decomposition, Coupling and Cohesion. What are the purposes?

Describe the function and activities of manager(s) of an information system
department.

Describe Office Automation and Exper‘t Systems.

5. Explain the following system concepts:

(i) Decomposition {(zz) Modularity

(iti) Coupling ({v) Cohesion

What is the difference between a logical system description and physical
system description ?

What are the departments, tasks and levels -of managers in an organization,
and what type of decisions do they make ?

8. What does an organization chart show ?

9. What are the six computers-based information systems and what are their

10.

11.

purposes ?

Describe the following terms in brief:

(z) Detail report ({{) Summary report
(#iz) Exception repori (iv) Periodic report
(v) Demand report

State True or False:

{({) A system is a collection of related components that interact to perform
a task in order to accomplish a goal.

(if) Environment represents everything internal to a system that interacts
with the system.

Introduction

NOTES

Self-Instructiona! Material 25

. System Annlysis ond Design -

NQOTES

26 Self-Instructional Material

(i)
(iv)

(v}
(vi)

(vit)

(viii)

Open system is a system that is cut off from its environment and does .
not interact with it.

Physical system description is the description of a system that focuses
on how the system will be materially constructed.

An information system is an open system that allows inputs and facilitates
interaction with the user.

'Managerial levels donot determine the kind of information needed to

solve a problem.

The key element of MIS is the data base—ideally,” a nonredundant
collection of interrelated data items that are processed through application
programs, .

Expert systems are used by both management and nonmanagement
personnel to solve specific problems.

12. Fill in the blanks:

@

(i)

{{ii)

(v)

{v)

{vi)

(vii)

{(viii)

................... i8 an irreducible part of aggregation of parts that make
up a system, also known as a subsystem. L

................... represents ‘point of contact where a system meets its
environment or where subsystems meet each other.

................... is a system that interacts freely with its environment,
taking input and returning cutput.

................... is the description of a system that focuses on the system’s
function and purpose without regard to how the system will be physically
implemented.

................... also called strategic managers are concerned with long-
range planning and strategic decisions.

................... implement the operational decisions.

A ... 18 a recorded event having to do with routine business
activities.

Expert system is also called

- ANSWERS

Test Yourself
11, State True or False:

(@)

(¢id)

(v)

{vii)

12. Fill
(@)

(iit)

W}

(vii)

True (ii) False

False (iv) True

True (vi) False

True (viti) True

in the blanks:

Component (i) Interface

Open system (v} Logical system description
Top managers (vi) Supervisory managers

transaction (viii) knowledge based system

Ouverview of System
C H A P T E R Analysis and Design

2

OVERVIEW OF SYSTEM ANALYSIS
AND DESIGN

NOTES

LEARNING OBJECTIVES

. 2.1 Introduction
22 System Development Life Cycle
2.2.1 Preliminary Investigation
2.2.2 Systems Analysis -
2.2.3 Systems Design
2.2.4 Systems Development
2.2.5 Systems Implementation
2.2.6 Systems Maintenance
2.3 System Documentation Considerations
2.3.1 Principles of System Documentation
2.3.2 Types of Documentation and their Impartance
2.3.3 Enforcing Documentation in an Organization
24 Life Cycle Models
2.5 Different Approaches to Improving Development
2.51 Prototyping
2.52 CASE Tools

2.1 INTRODUCTION

A system is defined as a collection of related components that interact to perform
a task in order to accomplish a goal. A system may not work very well, but it’
is nevertheless a system. The point of systems analysis and design is to ascertain
how a system works and then take steps to make it better.

An organization’s computer-based information system consists of hardware, software,
people, procedures, and data, as well as communications setups. These work
together to provide people with information for running the organization.

An organization may feel the need for a system due to a variety of reasons. Some
examples are :

» A single individual who believes that somethigg badly needs changing is
all it takes to get the project rolling.

* An employee may influence a supervisor. . -

e A customer or supplier may get the attention of someone in higher

management. St
' I : "
Self-Instructivnal Material 27

Svystem Analvsis and Design

NOTES

28 Selfitnetructional Material

* Top management may decide independently to take a look at a system
that loocks inefficient.

* A steering committee may be formed to decide which of many possible
projects should be worked on.

Three types of participants are there in the project as given below:

¢ Users. The system under consideration should elways be developed in
consultation with users, whether floor sweepers, research scientists, or
customers. Indeed, if user involvement in analysis and design is inadequate;
the system may fail for lack of acceptance.

¢ Management. Managers within the organization should alse be consulted
about the system.

* Technical staff. Membkers of the company’s information systems (IS)
department, consisting of systems analysts and programmers, need to be
involved. For one thing, they may have to exccute the project. Even if
they do not, they will have to work with ocutside IS pcople contracted to
do the job.

Complex projects will require one or several systems analysts. A systems
analyst is an information specialist who performs systems analysis,
design, and implementation. The analyst’s job is to study the information
and communications needs of an organization and determine what changes are
required to deliver better information to people who need it. “Better” information
means information that is surnmarized in the acronym “CART"—complete, accurate,
relevant, and timely. The systems analyst achieves this goal through the problem-
solving method of systems analysis and design.

2.2 SYSTEM DEVELOPMENT LIFE CYCLE

Systems analysis and design is a six-phase problem-solving procedure for examining
an information system and improving it. The six phases make up what is known
as the systems development life cycle. The systems development life cycle (SDLC)
is the step-by-step process that many organizations follow during systems analysis
and design.

e~ —cm

1. Preliminary
, Investigation
L

e e 7
6. Systems | 2. Systams -
maintenance i analysis

1 5. Sysiems
| implementation

3. Systems .
design

4. Systems
devetopnwlt

Fig. 2.1 The systems development life cycle {(SDLC).

Whether applied to a very big company or a three-person engineering business, the
six phases in systems analysis and design are as shown in Figure 2.1. Phases often
overlap, and a new one may start before thé old one is finished. After the first four
phases, management must decide whether to proceed to the next phase. User
input and review is a critical part of each phase.

2.2.1 Preliminary Investigation

The objective of Phase 1, preliminary investigation, is to conduct a preliminary
analysis, propose alternative solutions, describe costs and benefits, and submit a
preliminary plan with recommendations. These steps are given below:

(®)

(if)

(i)

(iv)

Conduct preliminary analysis. It includes stating the objectives, defining
nature and scope of the problem.

Propose alternative solutions: leave system alone, make it more efficient, or
build a new system.

Describe costs and benefits of each solution.

Submit a preliminary plan with recommendations.

Let us explain these in detail:

Conduct the preliminary analysis. In this step, you need to find out
what the organization’s objectives are and the nature and scope of the
problem under consideration. Even if a problem pertains only to a small
segment of the organization, you cannot study it in isolation. You need to
find out what the objectives of the organization itself are. Then you need
to see how the problem being studied fits in with them.

Propose alternative solutions. In delving into the organization’s objectives
and the specific problem, you may have already discovered some solutions.
Other possible solutions can come from interviewing people inside the organization,
clients or customers affected by it, suppliers and consultants. You can also
study what competitors are doing now a days. With this data, you then
have three choices. You can leave the system as is, improve it, or develop
a new system.)

Describe the costs and benefits. Whichever of the three alternatives is
chosen, it will have costs and benefits. In this step, you need to indicate
what these are. Costs may depend on benefits, which may offer savings. A
broad spectrum of benefits may be derived. A process may be speeded up,
streamlined through elimination of unnecessary steps, or combined with
other processes. Input errors or redundant output may be reduced. Systems
and subsystems may be better integrated. Users may be happier with the
system. Customers’ or suppliers’ interactions with the system may be more
satisfactory. Security may be improved. Costs may be cut.

Submit a preliminary plan. Now you need to wrap up all yoﬁr findings
in a written report. The readers of this report will be the executives who
are in a position to decide in which direction to proceed— make no changes,

change a little, or change a lot—and how much money to allow the project. |

You should describe the potential solutions, costs, and benefits and mention
your recommendations. '

Overview of System
Analysis and Design

NOTES

" SelfJastructional Material 29

\
o,

System Analysis and Design

NOTES

30 Self-Instructional Material

2.2.2 System Analysis

The objective of Phase 2, system analysis, is to gather deta, analyze the data,
and write a report. In this second phase of the SDLC, you will follow the course
that management has indicated after having read your Phase 1 feasibility report.
We are assuming that they have ordered you to perform Phase 2—to do a careful
analysis or study of the existing system in order to understand how the new
system you proposed would differ. This analysis will also consider how people’s
positions and tasks will have to charige if the new system is put into effect. The
steps are given below:

(f) Gather data, using tools of written documents, interviews, questionnaires,
and observations.

(i} Analyze the data, using modelling tools: grid charts, decision tables, data
flow diagrams, systems flow charts, connectivity diagrams.

(&) Write a report.
Let us explain these in detail:

» Gather data. In gathering data, you will review written documents, interview
employees and managers, develop questionnaires, and observe people and
processes at their place of work.

¢ Analyze the data. Once the data has been gathered, you need to come to
grips with it and analyze it. Many analytical tools, or modelling tools, are
available. Modelling tools enable a systems analyst to present graphic, or
pictorial, representations of a system. An example of a modelling tool is a
data flow diagram (DFD), which graphically shows the flow of data
through a system—that is, the essential processes of a system, along with
inpute, outputs and files. (See Figure 2.2).

== — Data — =
: flow 5
DATA : c DATA.
SOURCE J—P| Process 27— [pegrivation j

) - Y

Data
flow 2

"D1| DATASTORE 1 p2 | DATASTORE 2]

Explanation of standard data flow diagram symbols used

i Name or EN;une [ﬁle.far;;zlor IFileNémeJ .or Nam;

Terminator Symbols (entity name) Data Store Symbol Process Symbol Data Flow Symbol

(person or organization outside the {inputs and outputs)
sysiem boundaries)

Fig. 2.2 Data ﬂ;w diagram.
* Write a report. After completion of the analysis, you need to document
this phase. This report to management should have three parts:
It should explain how the existing system works.
It should explain the problems with the existing system.

It sheuld describe the requirements for the new system and make
recommendations on what to do next.

At this stage, not a lot of money will have been spent on the systems analysis
and design project. If the costs of going forward appear prohibitive, this is a good
time for the managers reading the report te call a halt. Otherwise, you will be
asked to go ahead to Phase 3.

2.2.3

System Design

The objective, of Phase 3, systems design is to do a preliminary design and

then a

@)

(i2)

(it}
In this
then a

Let us

detail design, and write a report. The steps are given below:

Do a preliminary design, using CASE (Computer-Aided Software Engineering)
tools, prototyping tonls, and project management soffware, among others.
Do a detail design, defining requirements for output, input, storage, and
processing and system controls and backup.

Write o report.

third phase of the SDLC, you will essentially create a “rough draft” and
“detail draft” of the proposed information system.

explain the above mentioned steps in detail:

Do a preliminary design. A preliminary design describes the general
functional capabilities of a proposed information system. It reviews the
system requirements and then considers major components of the system
under consideration. Usunally several alternative systems (called candidates)
are considered, and the costs and the benefits of each are evaluated.

Some tools that may be used in the design are CASE tools and project
management software.

CASE (Computer-Aided Software Engineering) tools are programs that
automate various activities of the SDLC in several phases. This technology

is intended to speed up the process of developing systems and to improve -

the quality of the resulting systems. These tools, which are also known
as automated design tools, may be used at other stages of the SDLC as
well. Some examples of such programs are Excelerator, Iconix, System

. Architect, and Powerbuilder.

Prototyping refers to using workstations, CASE tools, and other software
applications to build working models of system components, so that they
can be quickly tested and evalunted. Thus, a prototype is a limited working
system developed to test out design concepts, A prototype, which may be
constructed in just a few days, allows users to find out immediately how
a change in the system might benefit them. For example, a systems
analyst might develop a menu. as a possible screen display, which users
could try out. The menu can then be redesigned or fine-tuned, if necessary.

Praject management software consists of programs used to plan, schedule,
and control the people, costs, and resources required to complete a project
on time.

Do a detail design: A detail design describes how a proposed information
system will deliver the general capabilities described in the preliminary
design. The detail design, usually considers the following parts of the
system in this order:

outpuf requirements
input requirements

storage requirements

Querview of System
Analysis and Design

NOTES

Setf-Instructional Materiai 31

[}

Svstem Analysis and Design

NOTES

82 Self-Instructional Material

processing requirements, and
system control and back up.

* Write a report. All the work of the preliminary and detail designs will end
up in a large, detailed report. When you hand over this report to senior management,
you will probably also make some sort of presentation or speech.

2.24 System Development o

In Phase 4, systems development, the systems analyst or others in the organization
develop or acquire the software, acquire the hardware, and then test the system.
The steps are given below :

(1) Acquire software.
(@) Acquire hardware.
(zii) Test the system.

Depending on the size of the project, this phase will probably involve the organization
in spending substantial sums of money. It could also involve spending a lot of time.
However, at the end you should have a workable system.

Let us explain the above mentioned steps in detail:

* Develop or acquire the software. During the design stage the systems
analyst may have had to address what is called the “make-or-buy” decision,
but that decision certainly cannot be avoided at this stage. In the make-
or-buy decision, you decide whether you have to create a program—
have it custom-written—or buy it, meaning simply purchase an existing
software package. Sometimes programmers decide they can buy an existing
program and modify it rather than write it from scratch. .

If you decide to create a new program, then the question is whether to use
the organization’s own staff programmers or to hire outside contract programmers
(outsource it). Whichever way you go, the task could take many months.

* Acquire hardware. Once the software has been chosen, the hardware to
run it must be acquired or upgraded. It's possible your new system will
not require any new hardware. It’s also possible that the new hardware
will cost a huge amount and involve many items: microcomputers, mainframes,
monitors, modems, and many other devices. The organization may find
it’s better to lease rather than to buy some equipment, especially since,
as we know (Moore’s law), chip capability has traditionally doubled every
18 months,

* Test the system. With the software and hardware acquired, you can now
start testing the system. Testing is usually done in two stages: unit testing,
then system testing.

In unit testing, the performance of individual parts is examined, using test (made-
up, or sample) data. If the program is written as a collaborative effort by multiple
programmers, each part of the program is tested separately.

In system testing, the parts are linked together, and test data is used to see if the
parts work together. At this point, actual organization data may be used to test the
system. The system is also tested with erroneous and massive amounts of data to
see if the system can be made to fail (“crash”).

At the

end of this long process, the organizétion will have a workable information

system, one ready for the implementation phase.

2.2.5

Systems Implementation

Whether the new information system involves a few handheld computers, an elaborate
telecommunications network, or expensive mainframes, the fifth phase will involve
some close coordination in order to make the system not just workable but successful.
Phase 5, svstems implementation, consists of converting the hardware, software,
and files to the new system and training the users. The steps are given below:

@

(i)
i}
Let us

Convert hardware, software, and files through one of four types of conversions:
direct, parallel, phased, or pilot.

Compile final documentation.
Train the users.
explain the above mentioned steps in detail:

Convert to the new system. Conversion, the process of transition from
an old information system to a new one, requires converting hardware,
software, and files. There are foar strategies for handling conversion: direct,
parallel, phased, and pilot.

Direct Implementation means that the user simply stops using the old

- system and starts using the new one. The risk of this method should be

evident: What if the new system doesn’t work ? If the old system has truly
been discontinued, there is nothing to fall back on.

Parallel implementation means that the old and new systems are operated
side by side until the new system has shown it is reliable, at which time
the old system is discontinued. Obviously there are benefits in taking this
cautious approach. If the new system fails, the organization can switch
back to the old one. The difficulty with this method is the expense of
paying for the equipment and people to keep two systems working at the
same time.

Phased implementation means that parts of the new system are phased
in separately—either at different times (parallel) or ail at once in groups
{direct).

Pilot implementation means that the entire system is tried out but only
by some users. Once the reliability has been proved, the system is implemented
with the rest of the intended users. The pilot approach still has its risks,
since all of the users of a particular group are taken off the old system.
However, the risks are confined to a small part of the organization.

Compile final documentation. Documentation of a system consists of
written description of system’s specification, its design, code, operating procedures
ete. It is quite useful to users and maintenance programmers. Documentation
can be broadly classified into two types:

Documentation for users—it describes how to use the system.
Documentation for Maintenance Programmers—it is also called technical
documentation and used for system modification at some later stages. Documentation
of a system must start with the system definition. It is very difficult to think
about the documentation in the end.

Train the users. Various tools are available to familiarize users with a
new system—from documentation (instruction manuals) to videotapes to

Overview of System
Analysis and Design

NOTES

Self-Instructional Maoteread 33

System Analysis and Design

NOTES

34 Self-Instructional Material

live classes to one-on-one, side-by-side teacher-student training. Sometimes
training is done by the organization’s own staffers, at other times it is
contracted out.

2.2.6 Systems Maintenance

Phase 6, systems maintenance, adjusts and improves the system by having system
audits and periodic evaluations and by making changes based on new conditions.

The sixth phase is io keep the system running through system audits and periodic
evaluations.

Even with the conversion zccomplished and the users trained, the system would
not just run itself. There is a sixth—and never-ending—phase in which the information
system must be monitored to ensure that it is successful. Maintenance includes
not only keeping the machinery running but also updating and upgrading the
system to keep pace with new products, services, customers, government regulations,
and other requirements.

So we can conelude that “the better the systern maintenance, the best the user
satisfaction”.

2.3 SYSTEM DOCUMENTATION CONSIDERATIONS

2.3.1 Principles of System Documentation

An often overlooked and underrated part of a system is its documentation. Documentation
is an integral part of the various phases of the life cycle and is produced as part
of the phase. Unfortunately, many system persons see documentation as a formality
to be performed at the end of the stage rather than work to be done as an integral
part of a stage. This results in ineffective, poorly written and incomplete documentation,
which is not usable.

Decumentation is a major means of communication. It is the means of communication,
which survives over time after the analyst has left the project and the team has
disbanded—the documentation is what remains. It is through the documents that
users learn about the system and they need to refer to the documents to use the
system. Documentation forms a written record for the work; it establishes design
and performance criteria for the project phases.

Care needs to be taken to create good and effective documentation.

Documentation should be created as part of the process and not written after the
fact. Documentation is the product of all phases. It should be a working by-product
throughout the life cycle. The tendency to “postdocument” (document after the
fact) should be avoided.

All documentation should follow certain standards which are prescribed out for the
project or the organization.

Documentation should be reviewed and approved for release. It should be available
to all authorized persons who may need to refer to it. Ohsolete documents should
not be in circulation to avoid confusion.

The procedure to be used to request for change in documentation, to evaluate and
process such changes, to review changes made and to release the modified documents .
should be clearly laid, Unauthorized persons should not be able to change documentation.
All changes made to the documents and the reasons why they were made should

- be noted as part of the documents.

Standa_rd used to create documents typically address the following :
¢ Title page and documents id, alongwith other identifiers like project name
s Versions control information
¢ Names of author, reviewer, approver -

* Date of release

e Version number

¢ Change control history

. _Table of contents, figures and tables

¢+ Scope of the documents

* Expected reader profile

» Definitions and acronyms

e Other documents to refer to ‘(specific references)
* Overview/introduction

. Summaryfconclusiohs as executive summary, if relevant
¢ Main body of the documents

¢ Supporting appendices.

The style used should ensure that each art of the documents can be referred to
(has some identifier). The language should be

* Tuned to the reader profile
* (Clear

» Concise

¢ Comprehensive

* (Courteous

* Precise

* Simple

s Flowing properly

* Easy to read and understand
¢ Maintaining continuity.

Documents should include all necessary illustrations and tables. References should
be provided for the ease of the user. The style should be consistent.

The headings, style and general appearance should be consistent. The hierarchy
of the documents should be clear to the reader.

Technical editors are sometimes used to ensure that the documents are
well written.)
Typically, organizations have standards for each type of documents. For example,
the organization may have a standard for requirements specification which give
each of the topics to be addressed and the order in which they are to be put in
the documents. These standards are derived using industry standard organizations
based on quality models previous experiences and the opinions of senior staff in
the organization.

2.3.2 Types of Documéntation and their Importance

Documentation is created at each phase of a prgject. The major types of documentation
and their importance are tabulated in Table 2.1.

Ouverview of Sysiem
Analysis and Design

NOTES

Self-Instructional Materia{ 35

System Analysis and Design Documents that form inputs to the development process but are not created arc

NOTES

36 Self-Instructional Material

not covered here.

Table 2.1 Major Types of Documentation and their Importance

Document

Importance

Project request/Information Service
Request/ Information System Request

[nitiates the project and sets the first
“scope” of the required system.

Project Directive

Typically created at the end of Initial
Investigation; Gives clear statement of
problem; Forms the basis of further work on
the system.

Feasibility Report

Prepared as part of the feasibility study, it
gives the details of the study, the options
considered; It helps the management decide
whether to go ahead with a system organization
or not.

System Requirement speciﬁcationsi’
Requirement Analysis/Analysis Report

Created during analysis, this provides the
user as well as the designer with a “what”
of the system forms the basis for obtaining
user feedback and approval. The approved
specification forms the input for the design
phase.

System Selection Plan/Technology
Requirements

Created during feasibility study phase and
medified during analysis phase; Specifies the
hardware and software to be acquired for
the system to be developed and to be run;
forms the basis for the acquisition process.

Performance Specifications

Created during analysis phase as part of
the System Requirement Specifications and
sometimes as a separate document; Specifies
the Performance Specifications of the system
and forms an important input for design
and testing activities.

Design Specifications

Documents the high level and detailed level
design. Forms the basis for the actual
development, for example, the module
specifications are used to write the programs
and the data design to construct the database/
file structure. .

System Specifications

Sometimes created at the end of the design
phase as a consolidated document containing
requirements, system selection and design.

Test Specifications and Plans

Specifies the testing approach, and the actual
tests to be performed, forms a basis for
performing the tests, both at development
time and when the system is under
maintenance.

User Manual

Created in the development phase to tell
the operators how the system is to be used.
A friendly and easy to use manual makes
using the system easier and more practical
for the user.

Operations Manual Jreated in the development phase to tell
the operator how to operale the system.
Operators may not know much about the
system and this needs to be comprehensive
enough to take care of both normal operations
and error conditions.

Querviews of System
Analysis and Design

Project Records Records created while working on the project
' and using the system like

. Review reports
. Test logs
. Change requests

» Evaluation reports, etc.

Often, plan documents get ignored as they are used mainly within the team.
However, they are also important documents for a project to function properly.
Examples of major plan documents and their uses are tabulated in Table 2.2 given
below :

Table 2.2 Major Plan Documents and their Uses

Plan Description

Project Plan/ Quality Plan Used to plan the use of resources, schedules,
controls ete. for executing a project with time,
cost and quality. Includes reviews and audits
required. Needs to be regularly referred to
and updated by the project manager as the
situation changes. Also used by the
management to review the project.

Configuration Management Plan Used to ensure the development’s configuration
management procedures are defined and used.
Sets out what is needed to ensure version
control and related configuration management
1ssues.

Test Plan Approach ‘ Sets out the overall test plan strategy which
is then used to detail further into specific
test specifications, plans and test packs.

Maintenance plan The approach to maintenance activities and
change control and the related resource
requirements and reporting procedures are
spelt out in this-it is used to handle the
maintenance activities.

2.3.3 Enforcing Documentation Discipline in-an Organization

As mentioned earlier, unfortunately, documentation is usually done after the fact.
In fact, some teams actually have a “documentation phase” after the rest of the
work is over, in which the documents are generated.

The discipline of documentation has to be enforced in an organization.

To ensure that the culture of documentation is an integral part of the system
team’s work habit, it is necessary that documentation be considered an integral
part of work. This implies that:

Setf-Instructional Material 37

System Analysis and Design

38 Self-Instructional Material

* Budgets should include documentation effort.
* Procedures are set up to create, review documents.
* Management does not say “as time is running short, just create the system.
We will create the document later”.
To reinforce the integral aspect of documentation, “completion” of an activity
should include completion of the associated document. For example,
¢ A phase should not be considered complete unless the documentation is
complete.
* A program should not be considered complete unless it has required comment
lines.
* A unit test activity should not be considered complete unless the test
packs and records are correctly available.
Also, the next phase should not be started unless a phase is “complete” including
the documentation.
Documentation completion (of the required quality) should be 6ne of the aspects
considered while evaluating work. ' '
To make documentation happen, the task of documenting should be made easy.
To enable persons document easily and properly organization should have in place
standards which let the staff know how the document should be written. This
ensures that good quality documents are created easily. N
Training in technical writing and workshops help system persons write better. A
technical editor may also be used to provide a more professional look.
Tools should be available to simplify the task. Proper word processors and drawing
tools, with appropriately set up templates help in making the task easier and
reducing the resistance.

. . Overview of System
Analysis and Design

STUDENT ACTIVITY 2.1

1. What are the six phases of the System Development Life Cycle (SDLC) ?

2. What is documentation ? Explain.

Self-Instructional Material 39

System Analysis and Design

NOTES

40 Seif-Instructional Material

2.4 LIFE CYCLE MODELS

Different organizations and authors have not agreed on a single SDLC. Let us
consider different models for it. '

The Traditional Waterfall SDLC

There are several criticisms of the ‘traditiondl life cycle approach to systems
development. One criticism relates to the way. the life cycle is organized. To
better understand these criticisms, it is best to see the form in which the life
cycle has traditionally been portrayed, the so-called waterfall (See Figure 2.3).
Note how the flow of the project begins in the preliminary investigation phase
and from there runs “downhill” to each subsequent phase, just like a stream that
runs off a cliff. Although the original developer of the waterfall model, W. W.
Royce, called for feedback between phases in the waterfall, this feedback came to
be ignored in implementation. It became too tempting to ignore the need for
feedback and to treat each phase as complete unto itself, never to be revisited

once finished.
Preliminary
investigation

Analysis

~

Design

Development w

implementation

Mainienanoel

Fig:. 2.3 A traditional waterfall SDLC,

Traditionally, one phase ended and another began once a milestone had been
reached. The milestone usually took the form of some deliverable or prespecified
output from the phase. For example, the design deliverable is the set of detailed
physical design specifications. Once the milestone had been reached and the new
phase initiated, it became difficult to go back. Even though business conditions
continued to change during of locking users into requirements that had been
previously determined, even though those requirements might have changed.

Yet another criticism of the traditional waterfall SDLC is that the role of system
users or customers was narrowly defined. User roles were often delegated to the
requirements determination or analysis phases of the project, where it was assumed
that all of the requirements could be specified in advance. Such an assumption,
coupled with limited user involvement, reinforced the tendency of the waterfall

model to lock in requirements too early, even after business conditions had
changed.

In addition, under the traditional waterfall approach, nebulous and intangible
processes such as analysis and design are given hard and fast dates for completion,
and success is overwhelmingly measured by whether those dates are met. The
focus on milestone deadlines, instead of on obtaining and interpreting feedback
from the development process, leads to too little focus on doing good analysis and
design. The focus on deadlines results in systems that do not match users’ needs
and that require extensive maintenance, unnecessarily increasing development
costs. Finding and fixing a software problem after the delivery of the system is
‘often 100 times more expensive than finding and fixing it during analysis and
design. The result of focusing on deadlines rather than on good practice is unnecessary
rework and maintenance effort, both of which are expensive. According to some
estimates, maintenance costs account for 40 to 70 percent of systems development
costs. Given these problems,, people working in systems development began to
look for better ways to conduct systems analysis and design.

Evolutionary Model SDLC

Some people consider the life cycle to be a spiral, in which we constantly cycle
through the phases at different levels of detail as shown in Figure 2.4.

The spiral model of the life cycle incorporates the elements of risk also. It has
four major activities which are represented in the four quadrants as it works
towards a completed system. The four activities are:

¢ Planning
s Risk analysis
¢ Engineering

¢ Customer evaluation

Planning » Risk analysis

Go/No Go

\‘ T decision

Towards
completion

Evaluation by customer = Engineering

Fig. 2.4 The spiral model.

However conceived, the systems development life cycle used in an organization -

is an orderly set of activities conducted and planned for each development project.
Software is the most obvious end product of the life cycle; other essential outputs

Overview of System
Analysis and Design

NOTES

Self-Instructional Material 41

System Anealysis and Design

NOTES

42 Self-Instructional Material

include documentation about the system and how it was developed, as well as
training for users.

Every medium to large corporation and every custom software producer will have
its own specific life cycle or systems development methodology in place. For example,
Merrill Lynch’s development methodology as given below:

¢ Gather requirements from end users.
+ Start with high-ievel design work.

* Create a plan for testing the software.
* Build and test a pr(IJtutype application.
¢ Begin major development work.

Even if a particular methodology does not look like a cycle, as the one given above,
you will probably discover that many of the SDLC steps are performed and SDLC
techniques and tools are used. Learning about systems analysis and design from
the life cycle approach will serve you well no matter which systems development
methodology you use.

2.5 DIFFERENT APPROACHES TO IMPROVING
DEVELOPMENT

In the continuing effort to improve the systems analysis and design process, several
different approaches have been developed. We will describe some important approaches
here. Attempts to make systems development less of an art and more of a science
are usually referred to as systems engineering or software engineering. As the
names indicate, rigorous engineering techniques have been applied to systems
development. Although the application of some engineering processes to software
development, such as the strict waterfall SDLC approach, have been criticized, one
very influential practice successfully borrowed from engineering is called prototypmg
We will discuss prototyping first, and then CASE tools.

2.5.1 Prototyping

Designing and building a scaled-down but functional version of a desired system is
known as prototyping. A prototype can be built with any computer language or
development tool, but special prototyping tools have been developed to simplify the
process. A prototype can be developed with visual development tools; with the
query, screen, and report design tools of a database management system; and with
CASE tools.

Using prototyping as a development technique (See Figure 2.5); the analyst works
with users to determine the initial or basic requirements for the system. The
analyst then quickly builds a prototype. When the prototype is completed, the
users work with it and tell the analyst what they like and do not like about it. The
analyst uses this feedback to improve the prototype and takes the new version
back to the users. This interactive process continues until the users are relatively
satisfied with what they have seen. Two key advantages of the prototyping technique
are the large extent to which prototyping involves the user in analysi- and design
and its ability to capture requirements‘in concrete, rather than vert 1l or abstract,

from. In addition to being used as a stand-alone process, prototyping may also be
used to augment the SDLC. For example, a prototype of the final system may be
developed early in analysis to help the analysts identify what users want. Then
the final system is developed based on the specifications of the prototype.

l Initial

Identify Requirements

Problem I

Convert to
QOperational
System

New Requirements

' Problems - -
¥mplement and P Revise ard Enhance
. Use Prototype Prototype
Next Version

Fig. 2.6 The prototyping methodology.

If Prototype
Inefficient

2.5.2 CASE Tools

Other efforts to improve the systems development process have taken advantage
of the benefits offered by computing techuology itself. The result has been the
creation and fairly widespread use of computer-aided software engineering, or
CASE, tools. CASE tools have been developed for internal use and for sale by
several leading firms, including Oracle (Designer), Computer Associates (Advantage
Gen), and IBM (Rational Rose).

CASE tools are built around a central repository for system descriptions and
specifications, including information about data names, format, uses, and locations.
The idea of a central repository of information about a project is not new—the
manual form of such a repository is called project dictionary or workbook. The
difference ia that CASE tools automate the repository for easier updating and
consistency. CASE tools also include diagramming tools for data flow diagrams and

other graphical aids, screen and report design tools, and other special-purpose |

tools. CASE helps programmers and analysts do their jobs more efficiently and
more effectively by automating routine tasks. In some organizations, CASE has
been extremely successful, whereas in others it has not.

Overview of System
_Analysis and Design

NOTES

Self-Instructional Material 43

System Anualysis and Design

'STUDENT ACTIVITY 2.2

1. What are the various criticisms to traditional waterfall SLDC ? Explain.

2. What is JAD ? How does is help group members ?

44 Seff-lnstmctiona‘! Material

SUMMARY

A system is defined as a collection of related components that interact to
perform a -task in order to accomplish a goal.

System analysis and design is a six-phase problem-solving procedure for
examining an information system and improving it.

The System Development Life Cycle (SDLC) is the step-by-step process
that many organizations follow during systems analysis and design.

The purpose of preliminary investigation is to conduct a preliminary
analysis, propose alternative solutions, describe costs and benefits and submit
a preliminary plan with recommendations.

Data Flow Diagram (DFD) is a modelling tool that graphically shows the
flow of data through a system.

The purpose of systems design is to do a preliminary design and then. a
detail design, and write a report. .
Systems design is one of the most crucial phases of a SDLC.

Prototyping involves building a model or experimental version of all or
part of a system so that it can be quickly tested and evaluated.

In systems development, the hardware and software for the new system
are acquired and tested.

Systems implementétion consists of converting the hardware, software,
and files to the new system and training the users.

System maintenance consists of keeping the system working by having
system audits and periodic evaluations. o

Documentation is an integral part of the various phases of the life cycle
and is produced as part of the phase.

The spiral model of life cycle also incorporates the elements of risk also.

Prototyping is an iterative process of systems devélopment in which requirements
are converted to a working system that is continually revised through close
collaboration between an analyst and users.

Computer-aided Software Engineering (CASE) tools are software tools
that provide automated support for some portion of the systems development
process. : . !

TEST YOURSELF

Answer the following questions:

1.
2.

List different phases in the SDLC.

Is it necessary to follow gystems analysis and design methodologies when
building an information system ? Why not just build the system in any
random manner ? What would happen ?

3. What are the variations in SDLC model ? Explain. .

4; Describe the |various types of participants in any types oflprojlect.

5. What is prototyping ? What. are its advantages ? Howl'cl_ﬂ'ri a prototype be

developed ?

Querview of System
Analysis and Design

NOTES

Self-Instructional Materia{ 45

SECTIONB

3. Preliminary Investigation
4, Feasibility Study '

CHAPTEHR

3

PRELIMINARY INVESTIGATION

. - LEARNING OB]JECTIVES

3.1 Introduction

3.2 Performing Initial Investigation .-
3.2.1 Problem Definition and Project Initiation
3.2.2 Data and Fact Gathering Techniques
3.2.3 Fact Analysis
3.2.4 Concluding the Initial Investigation

3.1 INTRODUCTION

A system is made to solve a problem. The process therefore has to start with recognition
of the need. This step is called problem definition. In this phase the key question
to be answered is “what is the problem that the system has to solve?”

This phase involves initial investigation and survey and should result in a clear
statement of the scope and objectives of the system (See Fig. 3.1). It should give
a clear idea of what is expected from the system in terms of performance criteria.

initial Investigation

1. Preliminary

Fig. 3.1 The SDLC with preliminarjr investigation phase highlighted.

investigation
6. Systems 2. Systems
maintenance analysis
5. Systems 3. Systems
implementation design
4. Systems
development

Preliminary Investigation

- NOTES

Self-Instructional Material 51

System Analysis and Design

NOTES

52 Self-Instructional Material

3.2 PERFORMING INITIAL INVESTIGATION

The first step in the system development life cycle requires the identification of
a need. This is a user’s request to change, improve, or enhance an existing
system. Because there is likely to be a stream of such requests, standard procedures
must be established to deal with them. The initial investigation is one way of
handling this. The objective is'to determine whether the request is valid and
feasible before a recommendation is reached to do nothing, improve or modify
the existing system, or build a new one.

3.2.1 Problem Definition and Project Initiation

Initial investigation starts with the definitions of the problem. The problem has
to be clearly stated.

The user’s request form (See Figure 3.2) specifies the following:

REQUEST FORM
INFORMATION SERVICE
Job Title . Nature of Request To be completed no
job date later than :
PP .‘New
...... Revision dd mm YY. dd mm Yy
Job Objective (s) :
Expected Berefits
Output Specifications Input Specifications

Document title
Quantity

Report titles
Quantity

No. of pages/ report
No. of copies/report
Frequency daily

weekly

Frequency daily
weekly
Remarks
Document title
Quantity No. of page/report
) No. of copies/ report
Freguency daily
weekly other

Remarks
Report title
Quantity No. of pages/repart
No. of copies/ report
Frequency daily
weekly other

Remarks

Remarks

Requester—Please Fill out

Name of Requester Signature: Title: Dept./Div. Phone :
(please print)
Approved by Signature: Title: Dept./ Div. Phone :
{please prinit)
For MiS Dept. Only :
Status — accept.
Job No ' — return with comments
’ — reject

Acceptance authorized by : Title: Phone: Remarks::

Fig. 3.2 User’s request form—An outline.

1. User-assigned title of work requested.

2. Nature of work requested (problem definition).

Date request to be submitted.
Date job should be completed.
Job objective(s)—purpose of job requested.

Expected benefits to be derived from proposed change.

NS ok w

Input/output description—quantity (number of copies or pages) and frequency
(daily, weekly, etc.) of inputs and outputs of proposed change.

Requester’s signature, title, department and phone number.

Signature, title, department, and phone number of person approving the
regquest.

The user request identifies the need for change and authorises the initial investigation.
It may undergo. several modifications before it becomes a written commitment.
Once the request is approved, the following activities are carried out: background
investigation, fact-finding and analysis, and presentation of results—called project
proposal. The proposal, when approved, initiates a detailed user-oriented specification
of system. performance and analysis of the feasibility of the candidate system. A
feasibility study focuses on identifying and evaluating alternative candidate systems
with a2 recommendation of the best system for the job. This chapter deals with the
initial investigation. Chapter 4 discusses the feasibility study.

The user or the system analyst may identify the need for a candidate system or
for enhancements in the existing system.

Often problems come into focus after a joint meeting between the user and the
analyst. In either case, the user initiates an investigation by filling out a request
form for information. The request provides for statements of objective and expected
benefits.

The problem definition should clearly given:
* The objective
* The results which the user wants to achieve with the system.
The problem must-not be confused with the solution.
For example the following is not a problem:
“We need a computerized database of cusiomers.”

This statement given no idea of what are the objectives of the system or what
results a user wants. The problem in this case could have been any of the following:

We need to be able to generate a mailing list of all our old customers based on
selection criteria like products purchased from us, city, income etc.

or

Our MD (Managing Director) needs to be able to claim, that we use computers at
the next industry meeting to enhance out corporate.

or

We need to be able to effectively follow up pending payments as we have too many
outstanding.) '

The problem should be separate from the symptoms and the causes and the solutions.

An analyst may start off with a statement like “the line in front of the teller is too
long” and find the problem which could be related to excessive processing time or
a badly laid out building or a clerk who always comes in late.

The analyst needs to be alert and inquiring to define the actual problem and not
get misled at this initial stage by possible solutions.

Preliminary Investigation

NOTES

Self-Instructional Material 53

System Analysis and Design

NOTES

54 Self-Instructional Material

Stating the problems is the initial step of the project. Once the problem is defined,
the project is initiated and the planning moves to the next step, where some
background analysis is performed.

3.2.2 Data and Fact Gathering Techniqués

Overview

Fact-finding is an important step for the analyst, based on which the analyst gains
an understanding of the existing system and its problem, and of the requirement
from the new system. There are a number of fact finding tools, which the analyst
uses for this; these are discussed in the following sub-section. The analyst chooses
the tools he considers suitable and uses them to gather all the required information,
which is then analyzed.

Study Existing Docum:ents and Records

Many systems and organizations have some type of documents and records already
available, Examples of such documents are:

* Input form .

* Existing system user manuals, and other system documentation

¢ System review/audit '

* Correspondence, for example, problem logs, request for enhancements
e Brochures ' '

* Reports from the system

* Data file procedure manuals.

Study of available documentation is a fast and person-independent way of fact
gathering. The analyst can study these document comfortably and use these to
prepare further questions for the rest of the fact gathering exercise.

Interviews

Personal interviews are a direct method of obtaining information from people. By
this the analyst learns about the existing system, problems and expectations.

During an interview the analyst and the person being interviewed are meeting

- face to face. This gives the analyst a flexible opportunity to learn various pertinent

facts. As the interviewer is facing the interviewee, he can observe the reaction of
the interviewee and see how the person being asked a question is responding to
it. This gives the interviewer an idea of the reliability of the information being
gathered. It also gives the interviewer chance to ask more questions along with
some promising line, which may not have been thought of earlier.

Questionnaires

A questionnaire seeks information from persons in a written form and in a prescribe
format against a set of questions. Questionnaires are good for gathering specific
information where the questions can be structured in advance and uniformly for
a number of persons.

Questionnaires are useful as they are a quick means of gathering information and
analyzing it together. They are particularly useful if the respondents are scattered
geographically or there is nc,time to hold interviews.

Questions could be: i

* Structured—here the respondent has to select from possible options and
the range of answers is limited.

» Unstructured—asking the respondent’s opining and letting the respondent
answer freely. Such questions are open-ended. '

Examples of structured questions are where the answer could be:
* Yes/no type
» Selected from specified multiple choice
* Selections on a ranking scale
* Selections of a rating
* Fill in the blank.

Structured questions need more analysis and may or may not give the type of
information sought. Alse, analyzing them may introduce analyst bias. They may
however give better insights into the problems as they are open ended and
exploratory. Often, they need follow up in the form of interviews.

Group Communication

When information is required from face-to-face sessions, but there is not enough
time to conduct personal interviews, meetings can be held. Here, since there are
many persons present, more types of ideas can be discussed in a short time. Also,
the comments of one person may prompt other persons to contribute facts they
may have otherwise forgotten.

Conducting a group session is a skilled matter as there are problems like:

¢ The group may be dominated by some persons and others, who may
otherwise have something to contribute, may be shy and not speak up.

¢ Problems with seniors may not be voiced because of seniors being present.

* * The situation could lead to a verbal fight between persons which may
need moderation. _

» Internal politics of an organization may determine what is said and what
is left unsaid, thus resulting in a false picture.

s There may be situations where may persons talk simultanecusly and are
agitated and the comments they make may not be heard or get recorded.

Presentations

At tifnes, the analyst may hold a presentation presenting his understanding of
the system and problems etc. Such a presentation would typically involve showing
slides and talking to a group of users whose response is sought. The persons
attending the presentation have an opportunity to respond and confirm of affect
the analyst’s understanding.

Presentations are useful in situations where the users are passive or too busy to
actively explain things. Here, an analyst may use study of existing records and
questionnaires etc., to put together a presentation.

3.2.3 Fact Analysis

Data gathered by analyst has to be organized and evaluated to draw conclusions.
Various means used to document and analyze the data gathered include:

* Flow charts
*» DFDs

Preliminary Investigatibn

NOTES

Self-Instructione! Materia! 55

ngstem Analysis and Design

NOTES

68 Self-Instructional Material

* Decision tables
* Structure charts.
Analysis is done using techniques like data elements:
¢ Input-output
¢ Recurring data

¢ Reports usage.

3.2.4 Concluding the Initial Investigation

By this stage, the analyst has a thorough knowledge of the system as part of the
initial investigation. The initial investigation culminates with a system proposal or
a project request.

Work on the initial investigation was initiated with a system request or an information
system request which gave the system objectives, bene its expected, output
descriptions, input descriptions. This document is mod*ﬁed as a result of the
initial investigation,; even the objectives may be modified and refined. The benefits
and the input and output descriptions are expanded. The| requirements for the
feasibility study resources are also included. '

The modified system request is presented by the analyst and is reviewed by the
user. Review comments of the user are then incorporated to generate a final
document.

Preliminary Investigation

STUDENT ACTIVITY 3.1

1. How system planning is important for any system?

2. Write a short note on fact analysis.

Self-Instructional Materiaf &7

System Analysis and Design

SUMMARY

¢ Planning information systems has become increasingly important because
information is a vital resource and company asset, more and more funds
are committed to information systems, and system development is a serious
business for computers that incorporate data bases and networking.

NOTES

* Planning for information systems has a time horizon and a focus dimension.
The time horizon dimension specifies the time range of the plan, whereas
the focus dimension relates whether the primary concern is strategic, managerial,
or operational.

* The initial investigation has the objective of determining the validity of the
user’s request for a candidate system and whether a feasibility study should
be conducted. The objectives of the problem posed by the user must be
understood within the framework of the organization’s MIS plan.

¢ Determining user requirements is not easy. System requirements change,
the articulation of requirements is difficult, and heavy user involvement
and motivation are uncertain. Problems with the user/analyst interface add
further difficulties to the procedure,

* There are three strategies for eliciting information regarding the user’s
requirements: asking questions, obtaining information from the present
system, and prototyping. The asking strategy assumes a stable 'system
where the user is well informéd about information requirements. In contrast,
the prototyping strategy is appropriate for high-uncertainty information
requirements determination.

* Fact-finding is the first step in the initial investigation. It includes a review
of written documents, on-site observations, interviews, and questionnaires.
The next step is fact analysis, which evaluates the elements related to the
inputs and outputs of a given system. Data flow diagrams and other charts
are prepared during this stage.

* Personal interviews are a direct method of obtaining information from
people. ;

* Questionnaires are useful as they are a quick means of gathering information
and analyzing it together.

s The data flow diagram (DFD) shows the flow of data, the processes, and the
areas where they are stored. It is a commonly used structured tool for
displaying the logical aspects of the system under study. Decision tables are
used as a supplement when complex decision logic cannot be represented
clearly in a DFD.

¢ The outcome of the initial investigation is to determine whether an alternative
system is feasible. The proposal details the findings of the investigation.
Approval of the document initiates a feasibility study which leads to the
selection of the best candidate system.

TEST YOURSELF

Answer the following questions:

1. What important information does the user’s request form-provide? Why is
it so important in the initial investigation? Explain in detail.

68 Self-Instructional Material

O o W N

Why is it difficult to determine user requirements? Illustrate.

Why it is so critical to manage system development? Explain.

What are the different fact gathering techhiques? Discuss.

By giving suitable examples describe each type of fact gathering technique.

State True of False:

(i) System selection means selecting the various hardware, software and
services.* "

(fi) Questionnaires are useful for gathering information and analysing it
together.)

(Zif) Since the current system is studied in feasibility study, it does not

- need to be studied in later phases. '

(iv) Data and fact gathering techniques include interviews and questionnaires.

Fill in the blanks: ‘
(i) Initial investigation starts with the of the problem.

(i) The user request identifies the need for change and authorises the
(¢it) The user initiates an investigation by filling out a for
information.

(iv) Personal interviews are a direct method of obtaining
from people.

Test Yourself

ANSWERS
6. State True of False:
() True (i) True
(iif) False v} True
7. Fill in the blanks: ' _
(t) definitions (z) 1initial investigation
(iir) request form ' . (fv) information

Preliminary Investigation

NOTES

Seif-[nstructional\Materiai 59

CHAPTER

4

FEASIBILITY STUDY

LEARNING OBJ)ECTIVES

4.1 Introduction
4.2 Assessing Project Feasibility
4.2.1 Assessing Economic Feasibility
422 Assessing Technicat Feasibility
4.2.3 Assessing Operational Feasibility
4.24 Assessing Schedule Feasibility
425 Assessing Legal and Contractual Feasibility
4.2.6 "Assessing Political Feasibility
4.3 Feasibility' Report

4,1 INTRODUCTION

During the first phase of the systems development life cycle, preliminary investigation,
two primary activities are performed. The first project identification and
selection, focuses on the activities during which the need for a new or enhanced
system is recognized. This activity does not deal with a specific project but
rather identifies the portfolio of projects to be undertaken by the organization.
Thus, project identification and selection is often thought of as a “preproject”
step in the SDLC. This recognition of potential projects may come as part of a
larger preliminary investigation process, information systems preliminary investigation,
or from requests from managers and business units.

Regardless of how a project is identified and selected, the next step is to conduct
a more detailed assessment during project identification and selection. This
assessment does not focus on how the proposed system will operate but rather
on understanding the scope of a proposed project and its feasibility of completion
given the available resources. It is crucial that organizations understand whether
resources should be devoted to a project; otherwise very expensive mistakes can
be made. Preliminary investigation is where projects are accepted for development,
rejected, or redirected. This is also where a systems analyst plays a major role
in the systems development process. Numerous techniques for assessing project
feasibility are described in this chapter.

4.2 ASSESSING PROJECT FEASIBILITY

All projects are feasible given unlimited resources and infinite time. Unfortunately,

most projects must be developed within tight budgetary (i.e., financial} and time’

Feasibility Study

NOTES

Self-lns\t;-ucrianal Material 61

System Analysis and Design

NOTES

62 Self-Instructional Material

constraints. It means that assessing project feasibility is a required activity for
all information systems projects and is a potentially large undertaking. It requires
that a system analyst should evaluate a wide range of factors. Typically, some of
these factors will be more important than others for some projects and relatively
unimportant for others. Although the specifies of a given project will dictate
which factors are important, most feasibility factors are represented by the categories
given below :

+

* Economic

» Technical

* Operational

* Schedule

* Legal and contractual
¢ Political

Together, the culmination of these feasibility analyses forms the business case
that justifies the expenditure of resources on the project. Let us examine the
various feasibility issues.

4.2.1 Assessing Economic]Feasibility

The purpose of assessing economic !feasibility is to identify the financial benefits
and costs associated with the development project. Economic feasibility is often
referred to as cost-benefit analysis. During preliminary investigation, it will
be impossible to precisely define all benefits and costs related to a particular
project. Yet, it is important that the analyst should spend adequate time identifying
and quantifying these items or it will be impossible to conduct an adequate
economic analysis and make meaningful comparisons between rival projects.
Here, we will describe typical benefits and costs resulting from the development
of an information system. Useful worksheets can also be provided for recording
costs and benefits. Additionally, several common techniques for making cost-
benefit calculations are presented. These worksheets and techniques are used
after each SDLC phase as the project is reviewed in order to decide whether to
continue, redirect, or kill (abandon) a project.

Determining Project Benefits

An information system can provide many benefits to an organization. For example,
a new or renovated information system can automate monotonous jobs; and
reduce errors; provide innovative services to customers and suppliers; and improve
organizational efficiency, speed, flexibility, and morale. In general, the benefits
can be viewed as being both tangible and intangible. Tangible benefits refer to
items that c4n be measured in rupees and with certainty. Examples of tangible
benefits might include reduced personnél expenses, lower transaction costs, or
higher profit margins. It is important to note that not all tangible benefits can
be easily quantified. For example, a tangible benefit that allows a company to
perform a task in 50 percent of the time may be difficult to quantity in terrs
of hard rupee savings. Most tangible benefits wili fit within the following categories:

* Cost reduction and avoidance

¢+ Error reduction

* Increased flexibility

* Increased speed of activity

. I;nprovement of management planning and control

* QOpening new_markets and increasing sales opportunities.

Intangible benefits refer to items that cannot be easily measured in rupees or with
certainty. Intangible benefits may have direct organizational benefits, such as
the improvement of employees morale, or they may have broader societal implications,
such as the reduction of waste creation or resource consumption. Potential tangible
benefits may have to be considered intangible during preliminary investigation
because an analyst may not be able to quantify them in rupees or with certainty
at this stage in the life cycle. During later stages, such intangibles can become
tangible benefits as he/she better understands the ramifications of the system he/
she is designing. In this case, the BPP (Baseline Project Plan—A major outcome
and deliverable from the preliminary investigation phase that contains the best
estimate of a project’s scope, benefits, costs, risks and resource requirements} is
updated and the business case revised to justify continuation of the project to the
next phase. Table 4.1 provides numerous intangible benefits often associated with
the development of an information system. Actual benefits will vary from system
to system. After determining project benefits, project costs must be identified.

Table 4.1 Intangible Benefits from the Development of an Information System

* Competitive necessity

¢ More timely information

* Improved organizational planning

* Increased organizational flexibility

« Promotion -of organizational learning and understanding
* Availability of new, better, or more information

¢ Ability to investigate more alternatives

¢ Faster decision making

e Information processing efficiency

¢ Improved asset utilization

* Improved resource control

¢ Increased accuracy in clerical opérations

» Improved work process that can improve employee morale

* DPositive impacts on society.

Determining Project Costs

Similar to benefits, an information system can have both tangible and intangible
costs. Tangible costs refer to items that an analyst can easily measure in rupees
and with certainty. From an IS development perspective, tangible costs include
items such as hardware costs, labour costs, and operational costs including employee
training and building renovations. Alternatively, intangible costs are those items
that an analyst cannot easily measure in terms of rupees or with certainty. Intangible
costs can include loss of customer goodwill, employee morale, or operational inefficiency.
Table 4.2 provides a summary of common costs associated with the development
and operation of an information system.

Feasibility Study

NOTES

Self-Instructional Material 63

System Analysis and Design Table 4.2 Possible Information Systems Costs

Types of Costs . Examples N

Procurement Consulting costs

Equipment purchase or lease
NOTES e plrchase
Equipment instailation costs

Site preparation and modifications
Capital costs

Management and staff time

Start-up ' Operating system software
Communications equipment installation
Start-up personnel

Personnel searches and hiring activities
Distruption to the rest of the organization

Management to direct start-up activity

Project-related Application software

Software modifications to fit local systems
Personnel, overhead, from in-house development
Training users in application use

Collecting and analyzing data

Preparing documentation

Managing development

Operating System maintenance costs (hardware, software,
and facilities)

Rental of space and equipment
Asset depreciation

Management, operation, and planning personnel

Predicting the costs associated with the development of an information system is
an inexact science. IS researchers, however, have identified several guidelines for
improving the cost-estimating process (See Table 4.3).

Table 4.3 Guidelines for Better Cost Estimating

* Assign the initial estimating task to the final developers.

* Delay finalizing the initial estimate until the end of a thorough study. -
* Anticipate and control user changes. |

¢ Monitor the progress of the proposed project.

* Evaluate proposed project progress by using independent auditors.

* Use the estimate to evaluate project personnel.

* Study the cost estimate carefully before approving it.

* Rely on documented facts, standards, and simple arithmetic formulas
rather than guessing, intuition, personal memory, and complex formulas,
move as in other tables.

* Do not rely on cost-estimating software for an accurate estimate.

64 Self-Instructional Material

Both underestimating and overestimating costs are problems an analyst must

avoid. Underestimation results in cost overruns, whereas overestimation results
in unnecessary allocation of resources that might be better utilized.

‘Besides tangible and intangible costs, an analyst can distinguish IS-related development
costs as either one-time or recurring {the same is true for benefits although we
do not discuss this difference for benefits). One-time costs refer to those associated
with project initiation and development and the start-up of the system. These
costs typically encompass activities such as systems development, new hardware
and software purchases, user training, site preparation, and data or system conversion.
When conducting an economic cost-benefit analysis, a worksheet should be created
for capturing these expenses. For very large projects, one-time costs may be
staged over one or more years. In these cases, a separate, one-time cost worksheet
should be created for each year. This separation will make it easier to perform
present value calculations (described later). Recurring costs refer to those costs
resulting from the ongoing evolutmn and use of the system. Examples of these
costs typically include :

+ Application software maintenance

s Incremental data sforage expenses

* [Incremental communications

s New software and hardware leases

» Supplies and other expenses (e.g., paper, forms, data center personnel).

Both one-time and recurring costs can consist of items that are fixed or variable
in nature. Fixed costs refer to costs that are billed or incurred at a regular
interval and usually at a fixed rate (a facility lease payment). Variable costs 1efer
to items that vary in relation to usage (long-distance phone charges).

Because the development and useful life of a system may span several years, the
benefits and costs must be normalized into present-day values in order to perform
meaningful cost-benefit comparisons. In the next section, we will describe the
‘relationship between time and money.

The Time Value of Money

Most techniques used to determine economiic feasibility encompass the concept of |

the time value of money (TVM). TVM refers to the concept of comparing present
cash outlays to future expected returns. As previously discussed, the development
of an information system has both one-time and recurring costs. Furthermore,
benefits from systems development will likely occur sometime in the future.
Because many projects may be competing for the same investment rupees and
may have different useful life expectancies, all costs and benefits must be viewed
in relation to their present value when comparing investment options.

A simple formula can be used when finding out the present value of the payments:

PVn = Y X !
(+)"

Here, PV_ is the present value of Y rupees n years from now when i is the

discount rate (the rate at which money can be borrowed or invested is called the
cost of capital, and is called the discount rate for TVM calculations).

To calculate the net present value (NPV) of the payments, mmply add the present
values calculated using the above formula, i.e.,

NPV = PV, + PV, + ... + PV

Feasibility Study

NOTES

Self-Instructional Material 85

System Analysis and’ Design

-NOTES

66 Selﬂlnst‘ructiona! Material

Given that we know the relationship between time and money,‘the next step in
performing the economic analysis is to create a summary worksheet reflecting the
present values of all benefits and costs as well as all pertinent analysis.

One important analysis is the break-even analysis. The objective of the break-even
analysis is to discover at what point (if ever) benefits equal costs (i.e., when break-
even occurs). A simple formula can be used to determine the break-even point
{units) :

Total fixed cost

(Unit sales price — Unit variable cost)
The break-even ratio can be derived as follows :

Yearly NPV Cash Flow — Overall NPV Cash Flow
Yearly NPV Cash Flow

Break-Even Point (Units) =

Break-Even Ratic =

Here, NPV is the Net Present Value.

There are many techniques that can be used to compute a project’s economic
feasibility. Because most information systems have a useful life of more than 1
year and will provide benefits and incur expenses for more than 1 year, most
techniques for analyzing economic feasibility employ the concept of the TVM (time
value of money). Some of these cost-benefit analysis techniques are quite simple,
whereas others are more sophisticated. Table 4.4 describes three commonly used
techniques for conducting economic feasibility analysis :

Table 4.4 Commonly Used Economic Cost-Benefit Analysis Techniques

Analysis Technique . Description

Net Present Value (NPV) NPV uses a discount rate determined from

- the organization’s cost of capital to establish
the present value of a project. The discount
rate is used to determine the present value
of both cash receipts and outlays.

Return on Investment (ROI} ROI is the ratio of the net cash receipts of
) the project divided by the cash outlays of
the project. Trade-off analysis can be made
among projects competing for investment
by comparing their representative ROI ratios.

. Break-Even Analysis (BEA) BEA finds the amount of time required for
the cumulative cash.flow from a project to
equal its initial and ongoing investment.

A gsystems project, to be approved for continuation, may not have to achieve
breakeven or have an ROI above some organizational threshold as estimated during
preliminary investigation. Because an analyst may not be able to quantify many
benefits or costs at this point in a project, such financial hurdles for a project may
be unattainable. In this case, simply doing as thorough an economic analysis as
possible, including producing a long list of intangibles, may be sufficient for the
project to progress. One other option is to run the economic analysis on a computer
using pessimistic, optimistic, and expected benefit and cost estimates during preliminary
investigation. This range of possible outcomes, along with the list of intangible
benefits and the support of the requesting business unit, will often be enough to
allow the project to continue to the analysis phase. An analyst must, however, be .
as precise as he/she can with the economic analysis, especially when investment

capital is scarce. In this case, it may be necessary to conduct some typical analysis
phase activities during preliminary investigation in order to clearly identify inefficiencies
and shortcomings with the existing systeni and to explain how a new system will
overcome these problems. Thus, building the economic case for a systems project
is an open-ended activity; how much analysis is needed depends on the particular
project; stakeholders, and business conditions. Also, conducting, economic feasibility
analyses for new types of information systems is often very difficult.

4.2.2 Asséssing Technical Feasibility

The purpose of assessing technical feasibility is to gain an understanding of the
. organization’s ability to construct the proposed system. This analysis should include
an assessment of the development group’s understanding of the possible target
hardware, software, and operating environments to be used as well as system size,
complexity, and the group’s experience with similar systems. Here, we will discuss
a framework that can be used for assessing the technical feasibility of a project in
_which a level of project risk can be determined after answering a few fundamental
questions.

It is important to note that all projects have risk and that risk is not necessarily
something to avoid. Yet it is also true that, because organizations typically expect
a greater return on their investment for riskier projects, understanding the sources
and types of technical risks proves to be a valuable tool when a project is assessed.
. Also, risks need to be managed in order to be minimized; an analyst should,
therefore, identify potential risks as early as possible in a project. The potential
consequences of not assessing and managing risks can include the following :

* Failure to attain expected benefits from the project

» Inaccurate project cost estimates

* Inaccurate project duration estimates

* Failure to achieve adequate system performance levels

» Failure to adequately integrate the new system with ex1st1ng hardware,
software, or organizational procedures.

An analyst can manage risk on a prgject by changing the project plan to avoid
risky factors, assigning project team members to carefully manage the risky aspects,
and setting up monitoring methods to determine whether or not potential risk is,
in fact, materializing. '

The amount of technical risk associated with a given project is contingent on four
primary factors: project size, project structure, the development group’s
experience with the application and technology area, and the user group’s
experience with systems development projects and the application area.
Aspects of each of these risk areas are summarized in Table 4.5.

Table 4.5 Project Risk Assessment Factors

Risk Factor Examples

Project Size - Number of members on the project team
Project duration time .

Number of organizational departments involved
in project

Size of programming effort (e.g., hours, function
points)

Feusibility Study

NOTES

Self-Instructional Material 67

System Analysis and Design

NOTES

Project Structure New system or renovation of existing systemf{s)

Organizational, procedural, structural, or personnel
changes resulting from system

User perceptions and willingness to participate
in effort

Management commitment to system

Amount of user information in system development
effort

Development Group Familiarity with target hardware, software

development environment, tools, and operating
system

Fami]iarity with proposed application area

Familiarity with building similar systems of similar
size

68 Self-Instructional Material

User Group Familiarify with information systems development

process:
Familiarity with proposed application area

Familiarity with using similar systems

Using these factors for conducting a technical risk management, four general rules
emerge as given below :

1.

Large projects are riskier than smell projects. Project size, of course, relates
to the relative project size with which the development group typically
works. A “small” project for one development group may be relatively “large”
for another. The types of factors that influence project size are listed in
Table 4.5.

A system in which the requirements are easily obtained and highly structured
will be less risky than one in which requirements are messy, ill structured,
ill defined, or subject to the judgement of an individual. For example, the
development of a payroll system has requirements that may be easy to
obtain due to legal reporting requirements and standard accounting procedures.
On the other hand, the development of an executive support system would
need to be customized to the particular executive decision style and critical
success - factors of the organization, thus making its development more
risky (See Table 4.5).

The development of a system employing commonly used or standard technology
will be less risky than one employing novel or nonstandard technology. A
project has a greater likelihood of experiencing unforeseen technical problems
when the development group lacks knowledge related to some aspect of the
technology environment. A less risky approach is to use standard development
tools and hardware environments. It is not uncommon for experienced
system developers to talk of the difficulty of using leading-edge (or in their
words, bleeding-edge) technology (See Table 4.5).

A Project is less risky when the user group is familiar with the systems
development process and application area than if unfamiliar. Successful IS
projects require active involvement and cooperation between the user and
development groups. Users familiar with the application area and the systems
development process are more likely to understand the need for their
involvement and how this involvement can influence the success of the
project (See Table 4.5).

A project with high risk may still be conducted. Many organizations look at risk
as a portfolio issues. Considering all projects, it is okay to have a reasonable
percentage of high-, medium-, and low-risk projects. Given that some high-risk
projects will get into trouble, an organization cannot afford to have too many of
these. Having too many low-risk projects may not be aggressive enough to make
major breakthroughs in innovative uses of systems. Each organization must decide
on its acceptable mix of projects of varying risk.

There are numerous other issues which can influence the success of the project.
These nonfinancial and nontechnical issues are described ahead.

4.2.3 - Assessing Operational Feasibility

There are other forms of feasibility that an analyst may need to consider when
formulating the business case for a system during preliminary investigation. One
relates to examining the likelihood that the project will attain its desired objectives,
is called operational feasibility. Its purpose is to gain an understanding of the
degree to which the proposed system will likely solve the business problems or
take advantage of the opportunities outlined in the System Service Request or
project identification study. For a project motivated from information systems
planning, operational feasibility includes justifying the proiect on the basis of being
consistent with or necessary for accomplishing the information systems plan. In
fact, the business case for any project can be enhanced by showing a link to the
business or information systems plan. An analyst’s assessment of operational feasibility
should also include an analysis of how the proposed system will affect organizational
structures and procedures. Systems that have substantial and widespread impact
on an organization’s structure or procedures are typically riskier projects to undertake.
Thus, it is important to have a clear understanding of how an information system
will fit into the current day-to-day operations of the organization.

4.2.4 Assessing Schedule Feasibility

A feasibility concern that relates to project duration is referred to as assessing
schedule feasibility. The purpose of assessing scheduale feasibility for a systerus
analyst is to gain an understanding of the likelihood that all potential time frames
and completion date schedules can be met and that meeting these dates will be
sufficient for dealing with the requirements of the organization. For example, a
system may have to be operational by a government-imposed deadline, by a particular
point in the business cycle (such as the beginning of the season when new products
are introduced), or at least by the time a competitor is expected to introduce a
similar system. Further, detailed activities may only be feasible if resources are
available when called for in the schedule. For example, the schedule should not
call for system testing during rushed business periods or for key project meetings
during annual vacation or holiday periods. The schedule of activities produced
during preliminary investigation will be very precise and detailed for the analysis
phase. The estimated activities and associated times for activities after the analysis
phase are typically not as detailed (e.g., it will take 2 weeks to program the payroll
report module} but are rather at the life-cycle-phase level (e.g., it will take 6
weeks for physical design, 4 months for programming, and so on). This means that
assessing schedule feasibility during project initiation and planning is more of a
“rough-cut” analysis of whether the system can be completed within the constraints
of the business opportunity or the desires of the users. While assessing schedule
feasibility, an analyst should also evaluate scheduling trade-offs. For example,
factors such as project team size, availability of key personnel, subcontracting or

Feasibility Study

NOTES

Self-Instructional Material 69

System Analysis and Design

NOTES

70 Self-Instructional Material

outsourcing activities, and changes in development enw'irénmenté may all be considered
as having a possible impact on the eventual schedule. As with all forms of feasibility,
schedule feasibility will be reassessed after each phase when an analyst can specify
with greater certainty the details of each step for the next phase.

4.2.5 Assessing Legal and Contractual Feasibility

It is a feasibility concern that rclates to assessing legal and contractual feasibility
issues. In this area, an analyst need to gain an understanding of any potential
legal ramifications due to the construction of the system. Possible considerations
might include copyright or nondisclosure infringements, labour laws, antitrust
legislation {which might limit the creation of systems to share data with other
organizations), foreign trade regulations (e.g., some countries limit access to employee
data by foreign corporations), and financial reporting standards as well as current
or pending contractual obligations. Contractual obligations may involve ownership
of software used in joint ventures, license agreements for use of hardwa\re or
software, nondisclosure agreements with partners, or elements of a labour agreement
(e.g., a union agreement may preclude certain compensation or work-monitoring
capabilities a user may want in a system). A common situation is that development
of a new application system for use on new computers may require new or expanded,
and more costly, system software licenses. Typically, legal and contractual feasibility
is a greater consideration if an organization has historically i1sed an outside organization
for specific systems or services that it now is considering handling itself. In this
case, ownership of program source code by another party may make it difficult to
extend an existing system or link a new system with an existing purchased system.

4.2.6 Assessing Political Feasibility

A final feasibility concern focuses on assessing political feasibility in which an
analyst attempts to gain an understanding of how key stakeholders within the
organization view the proposed system. Because an information system may affect
the distribution of information within the organization, and thus the distribution
of power, the construction of an information system can have political ramifications.
Those stakeholders not supporting the project may take steps to block, disrupt, or
change the intended focus of the project.

In summary, depending upon the given situation, numerous feasibility issues must
be considered when planning a project. This analysis should consider economic,
technical, operational, schedule, legal, contractual, and political issues related to
the project. In addition to these considerations, project selection by an organization
may be influenced by issues beyond those discussed here. For example, projects
may be selected for construction despite high project costs and high technical risk
if the system is viewed as a strategic necessity; that is, the organization views the
project as being critical to the organization’s survival. Alternatively, projects may
be selected because they are deemed to require few resources and have little risk.
Projects may also be selected due to the power or persuasiveness of the manager
proposing the system. This means that project selection may be influenced by

" factors beyond those discussed here and beyond items that can be analyzed. Understanding

the reality that projects may be selected based on factors beyond analysis, the role
of a systems analyst is to provide a thorough examination of the items that can
be assessed. The analysis will ensure that a project review committee has as much
information as possible when making project approval decisions.

4.3 FEASIBILITY REPORT

It is the final report of feasibility study about the findings and conclusions of the
study. It should be possible to review the report and take a decision on the project
based on it.

For the convenience of the reader the report usually includes an executive summary,
which gives the salient points and the conclusions of the report.

The report has to contain the clear scope of the system. It should give the description
of both the existing system and the proposed system. The alternatives considered
and how they were evaluated should also be given.

The report may also contain details on the methods used for the study and the
persons contacted, correspondence, and other similar things.

The report contains the following : ‘
* Title page with the name of the project and the customer. .

e Version information-version number, name of author, approver, reviewer,
etc. ' .

* Table of contents.
¢ Scope and system boundaries.
¢ Background of the system. |
* Problem statement along with

¢ Current system description

¢+ Proposed system description

o Description of how the proposed system will solve the problem
¢ Executive summary.

+ Cost/benefit statement—detailed cost benefit quantification and workings.
Alternative systems considered and evaluated are given here along with
the basic for evaluation and the conclusion.

» Implementation schedule for implementing the proposed system include
resource requirements and overall project plan and schedule.

* Hardware configuration.

* Appendices with details to supplement the report.

Feasibility Study

NOTES

Self-Instructional Material 71

System Analysis and Design

STUDENT ACTIVITY 4.1

1. List and discuss different types of project feasibility factors. Which factor is most important ? Why?

2. Write a short note on feasibility report.

72 Self-fnsrmct;onaf Material

Feasibility Study

SUMMARY

» All projects are feasible given unlimited resources and infinite time.

* Economic feasibility is a process of identifying the financial benefits and

costs associated with a development project. NOTES

¢ Tangible benefit is a benefit derived from the creation of an information
system that can be measured in rupees and with certainty.

« Intangible benefit is a benefit derived from the creation of an information
_system that cannot be easily measured in rupees or with certainty.

* Tangible cost is a cost associated with an information system that can be
measured in rupees and with certainty.

+ Intangible cost is a cost associated with an information system that cannot
be measured in terms of rupees or with certainty.

* One-time cost is a cost associated with project start-up and development
or system start-up. '

» Recurring cost is a cost resulting from the ongoing evolution and use of
a4 system. '

+ Discount rate is the rate of return used to compute the present value of
future cash flow. .

*» Present value is the current value of a future cash flow.

» Technical feasibility is a process of assessing the development organization’s
ability to construct a proposed system.

» Operational feasibility is the process of assessing the degree to which a
proposed system solves business problems or takes advantage of business
opportunities.

« Schedule feasibility is the process of assessing the degree to which the

potential time frame and completion dates for all major activities within a
project meet organizational deadlines and constraints for affecting change.

e Legal and contractual feasibility is the process of" assessing potentiall
legal and contractual ramifications due to the construction of a system.

« Political feasibility is the process of evaluating how key stake-holders
" within the organization view the proposed system.

TEST YOURSELF

Answer the following questions :

1. “Many feasibility studies produce disillusions to users and analysts.” Do you
agree ? Why ? Explain.

2. How important is a project team in feasibility analysis ? Is it mandatory in
every study ? What are the -expectations ? |

3. Cﬁntrast the following terms :
Economic feasibility, legal feasibility, operational feasibility, political feasibility,
schedule feasibility

4, What are the common methods for performing economic cost-benefit analysis?
What are the inputs and outcomes of each method ?

Self-Instructional Material 73

System Analysis and Design

NOTES

74 Self-Instructional Material

5. State True or False :

()

(iz)

(iii)

()

Economic feasibility is a process of identifying the financial benefits
and costs associated with a development project.

Intangible benefit is a benefit derived from the creation of an information
system that can be measured in rupees and with certainty.

-Operational feasibility is the process of accessing the degree i'.:olwh:ich

a proposed’ system solves business problems or takes advantage of
business opportunities.

Legal and contractual feasibility is the process of evaluating how key
stakeholders within the organization view the proposed system.

6. Fill in the blanks :

@)

(@)

(i)

{(iv)

' “ .
................... is a benefit derived from the creation of an information

system that cannot be easily measured in rupees or with certainty.
A cost resulting from the ongoing evolution and use of a system is
known as
................... -is a process of assessing the development organization’s
ability te construct a proposed system.

. .. is the process of assessing the degree to which the potentlal
tlme frame and completion dates for all major activities within a project
meet organizational deadlines and constraints for affecting change.

ANSWERS

Test Yourself
5. State True or False :

@

(¢ii)

6. Fill in the blanks

No
(i)

True (i) False

True _ (iv) False

Intangible benefit (if} recurring cost
Technical feasibility (fv) Schedule feasibility

© ® N o o

SECTIONC

Requirement Determination and Specification
Process Modeling

Logic Modeling _

Designing Form and Reports

. Designing Interfaces and Dialogues
10.

Désigning Databases

CHAPTER

5

REQUIREMENT DETERMINATION
AND SPECIFICATION

. LEARNING OBJECTIVES

- 51 introduction
52 Performing Fiiequirements Determination
5.2.1 The Process of Determining Requirements
5.2.2 Deliverables and Cutcomes
5.3 Traditional Metheds for Determining Requirements
5.3.1 Interviewing and Listening
5.3.2 Choosing Interview Questions
5.3.3 Interview Guidelines
5.3.4 Interview Groups
§.3.5 Nominal Group Technique
5.3.6 Directly Observing Users ,
5.3.7 Analyzing Procedures and other Documents
54 Contemporary Methods for Dete_rn;lining System Requirements
5.4.1 Joint Application Design
5.4.2 Participating in a JAD
5.4.3 CASE Tools During JAD
5.4.4 Supporting JAD with Group Support Systems
545 Using Prototyping During Requirements Determination
5.5 Radical Methods for Determining System Requirements
5.5.1 Identifying Processes to Reengineer
55.2 Disruptive Technologies

5.1 INTRODUCTION

System analysis is the part of the systems development life cycle in which an
analyst determines how the current information system functions and access
what users would like to see in a new system. Analysis has two sub phases:
. requirements determination and requirements structuring.

In this unit, you will learn about determining system requirements and specification.
Techniques used in requirements determination have evolved over time to become

Requirement Determination
and Specification

NOTES

Self-Instructional Matertal 77

System Analysis and Design

NOTES

_.I. u /(.
78 Self-Instructional Material

more structured and increasingly rely on computer support. We will first study

- the more traditional requirements determination methods, including interviewing,

observing users in their work environment, and collecting procedures
and other written documents. We will then discuss more current methods for
collecting system requirements. The first of these methods is Joint Application
Design (JAD). Next, you will read about how analysts rely more and more on
information systems to help them perform analysis. As you will see, group support
systems have been used to support systems analysis, especially as part of the
JAD process. CASE tools, are also very useful in requirements determination.
You will learn how prototyping has become a key tool for some reguirements
determination efforts. Finally, you will learn how requirements analysis continues
to be an important part of systems analysis and design, whether the approach
involves business process redesign or new Agile techniques such as constant user
involvement or usage-centered design, or focuses on developing Internet applications.

5.2 PERFORMING REQUIREMENTS
DETERMINATION

As mentioned earlier and shown in Figure 5.1, there are two subphases to
systems analysis: requirements determination and requirements structuring.
We will address these as separate steps, but an analyst should consider the steps
as parallel and iterative. For example, as he/she determines some aspects of the
current and desired system(s), he/she begins to structure these requirements or
build prototypes to show users how a system might behave, Inconsistencies and
deficiencies discevered through structuring and prototyping lead him/her to explore
further the operation of current system(s) and the future requirements of the
organization. Eventually his/her ideas and discoveries converge on a thorough
and accurate depiction of current operations and what the requirements are for
the new system. As an analyst thinks about beginning the analysis phase, he/she
is probably wondering what exactly is involved in requirements determination.
We discuss this process in the next section.

1. Preliminary
investigation

6. Systems
maintenance

2. System
analysis

Requirements Structuring

J
5. Systems ‘ 3. System
implementation design

4. Systems
development

Fig. 5.1 The SDLC with analysis phase highlighted

5.2.1 The Process of Determining Requirements

*Once management has granted permission to start development of a new system
(this was done at the end of the project identification and selection phase of the
SDLC) and a project is initiated and planned an analyst begins determining what the
new system should do. During requirements determination, he/she and other analysts
gather information on what the system should do from as many sources as possible:
from users of the current system; from observing users; and from reports,
forms and procedures. All of the system requirements are carefully documented
and made ready for structuring.

In many ways, gathering system requirements resembles conducting any
investigation. Have you read any of the Sheriock Holmes or similar mystery
stories? Do you like solving puzzles? From these experiences, we can detect some
similar characteristics for a good systems analyst during the requirements determination
subphase. These characteristics are given below:

* Impertinence. An analyst should question everything. He/she needs to
ask such questions as:

Are all transactions processed the same way?
Could anyone be charged something other than the standard price?

Might we someday want to allow and encourage employees to work for
more than one department?

e Impartiality. An analyst’s role is to find the best solution to a business
problem or opportunity. It is not, for example, to find a way to justify
the purchase of new hardware or to insist on incorporating what users
think they wantinto the new system requirements. He/she must consider
issue’s raised by all parties and try to find the best organizational solution.

* Relax constraints. Assume that anything is possible and eliminate the
infeasible. For example, do not accept this statement: “We have always
dope it that way, so we have to continue the practice.” Traditions are
different from rules and-policies. Traditions probably started for a good
reason but, as the organization and its environment change, they may turn
into habits rather than sensible procedures.

» Attention to details. Every fact must fit with every other fact. One element
out of place means that even the best system will fail at some stage. For
example, an imprecise definition of who a customer is may mean that an
analyst purges customer data when a customer has no active orders, yet
these past customers may be vital contacts for future sales,

» Reframing. Analysis is, in part, a creative process. An analyst must
challenge himself/herself to look at the organization in new ways. He/she
must consider how each user views his or her requirements. An analyst
must be careful not to jump to the following conclusion: “I worked on a
system like that once—this new system must work the same way as the
one I built earlier.

5.2.2 Deliverables and Outcomes

The primary deliverables from requirements determination are the various forms
of information gathered during the determination process: franscripis of interviews;

Requirement Determination
and Specification

NOTES

>

Self-Instructional Material 79

System Analysis und Design

NOTES

80 Self-Instructional Material

notes from observation and analysis of documents; sets of forms, reports, job
descriptions, and other documents; and computer-generated output such as system
prototypes. In short, anything that the analysis team collects as part of determining
system requirements is included in the deliverables resulting from this subphase
of the systems development life cycle. Examples of some specific information that
might be gathered during requirements determinaiion are given below :

1. Information collected from conversations with or observations of
users. It includes interview transcripts, notes from observation, meeting
minutes. ’

2. Existing written information. It includes business mission and strategy
statements, sample business forms and reports and computer displays,
procedure manuals, job descriptions, training manuals, flowcharts and
documentation of existing systems, consultant reports.

3. Computer-based information. It includes results from Joint Application
Design sessions, transcripts or files from group support system sessions,
CASE repository contents and reports of existing systems, and displays
and reports from system prototypes. :

These deliverables contain the information an analyst needs for systems analysis
within the scope of the system he/she is developing. In addition, he/she needs to
understand the following components of an organization :

* The business objectives that drive what and how work is done
* The information people require to do their jobs

* The data (definition, volume, size, etc.) handled within the organization to
support the jobs

* When, how, and by whom or what the data are moved, transformed, and
stored

* The sequence and other dependencies among different data-handling activities
* The rules governing how data are handled and processed

* Policies and guidelines that describe the nature of the business and the
market and environment in which it operates

* Key events affecting data values and when these events occur.

As should be obvious, such a large amount of inf(;rmation must be organized in
order to be useful. This is the purpose of the next subphase—requirements
structuring. o

From just this subphase of analysis, you have probably already realized that the
amount of information to be gathered could be huge, especially if the scope of the
system under development is broad. The time required to collect and structure a
great deal of information can be extensive and, because it involves so much human
effort, quite expensive. Too much analysis is not productive, and the term analysis
paralysis has been coined to describe a systems development project that
has become bogged down in an abundance of analysis work. Because of the
dangers of excessive analysis, today’s systems analysts focus more on the system
to be developed than on the current system. The techniques JAD and prototyping,
were developed to keep the analysis effort at a minimum yet still effective. Newer
techniques have also been developed to keep requirements determination fast and
flexible, including continual user involvement, usage centered design, and the
Planning Game from eXtreme Programming. Traditional fact gathering techniques
are discussed next.

Requirement Determination

5.3 TRADITIONAL METHODS FOR and Specification
DETERMINING REQUIREMENTS

At the core of systems analysis is the collection of information. At the outset, an
analyst must collect information about the information systems that are currently NOTES
being used and how users would like to improve the current systems and organizational
operations with new or replacement information systems. One of the best ways
to get this information is to talk to the people who are directly or indirectly
involved in the different parts of the organizations affected by the possible system
changes: users, managers, funders, etc. Another way to find out about the current
system is to gather copies of documentation relevant to current systems and
business processes. In this unit, we will discuss about various ways to get information
directly from stakeholders: interviews, group interviews, the Nominal Group
Technique, and direct observation. We will discuss about collecting documentation
on the current system and organizational operation in the form of written procedures,
forms, reports and other hard copy. These traditional methods of collectmg system
requirements are given below:

+ Individually interview people informed about the operation and issues of
the current system and future systems requirements.

» Interview groups of people with diverse needs to find synergies and contrasts
among system needs.

e Observe workers at selected times to see how data are handled and what
information people require to do their jobs

¢ Study business documents to discover reported issues, policies, rules, and
directions as well as concrete examples of the use of data and information
in the organization.

5.3.1 Inter'w}iewing and Listening

Interviewing is one of the primary ways analysts gather information about an
information systems project. Early in a project, an analyst may spend a large
amount of time interviewing people about their work, the information they use
to do it, and the types of information processing that might supplement their
work. Other stakeholders are interviewed to understand organizational direction,
policies, expectations managers have on the units they supervise, and other
nonroutine aspects of organizational ogperations. .
During interviewing an analyst will gather facts, opinions, and speculation and
observe body language emotions and other signs of what people want and how
they assess current systems.
There are many ways to effectively interview someone, and no one method is
necessarily better than another. Some guidelines an analyst should keep in mind
when he/she interviews are given below :
Plan the Interview

¢ Prepare interviewee : appointment, priming questions

* Prepare checkhst agenda, and questions
Listen carefully and take notes (tape-record if permltted)
Review notes within 48 hours of interview

Be neutral

Seek diverse views

Self-Instructional Materiql 81

System Analysis and Design

NOTES

82 Self-Instructional Material

Let us discuss the above mentioned guidelines in detail :

First, an analyst should prepare thoroughly before the interview. Set up an appointment
at a time and for a duration convenient for the interviewee. The general nature
of the interview should be explained to the interviewee well in advance. He/she
may ask the interviewee to think about specific questions or issues or to review
certain decumentation to prepare for the interview. An analyst should spend some
time thinking about what he/she needs to find out and write down his/her questions.
An analyst should not assume that he/she can anticipate all possible questions. An
analyst wants the interview to be natural, and, to some degree, he/she wants to
spontaneously direct the interview as he/she discovers what expertise the interviewee
brings to the session.

An analyst should prepare an interview guide or checklist so that he/she knows in
which sequence he/she intends to ask his’her questions and how much time he/she
wants to spend in each area of the interview. The checklist might have some
probing questions to ask as follow-up if he/she receives certain anticipated responses.
He/she can, to some degree integrate his/her interview guide with the notes he/
she takes during the interview, as illustrated in a sample guide in Figure 5.2. This
same guide can serve as an outline for a summary of what he/she discovers during
an interview,

The first page of the sample interview guide contains a general outline of the
interview. Besides basic information on who is being interviewed and when, an
analyst lists major objectives for the interview. These objectives typically cover the
most important data he/she needs to collect, a list of issues on which he/she needs
to seek agreement (¢.g., content for certain system reports), and which areas he/
she needs to explore, not necessarily with specific questions. He/she also includes
reminder note’s to himself/herself on key information abnut the interviewee (e.g.,
job history, known positions taken on issues, and role with current system). This
information helps him/her to be personal, shows that he/she considers the interviewee
to be important, and may assist him/her in interpreting some answers. Also included
is an agenda for the interview with approximate time limits for different sections
of the interview. An analyst may not follow the time limits strictly, but the schedule
helps him/her cover all areas during the time the interviewee is available. Space
is also allotted for general observations that do not fit under specific questions and
for notes taken during the interview about topics skipped or issues raised that
could not be resolved.

Interview Outline

Interviewee: Interviewer:
Name of person being interviewed Name of person taking interview
Location/Medium: Appointment Date:
Office, conference room, mobile number Start Time,
or fand line phone number End Time:
Ohbjectives: Reminders:
What data to collect Background/expetience of interviewse
On whaf to gain agreement Known opinions of interviewee

What areas toc explore

Agenda: ' : Approximate Time;
Introducticn 1. minute
Background on Project 2. minutes

Overview of Interview AN

Topics to Be Covered 1 mfntit/é
Permission to Tape-Record
Topic 1 Questions 4 minutes
Topic 2 Questions 6 minutes
Summary of Major Points 2 minutes
Questions from Interviewee 5 minutes
Closing 1 minute i

Geanera! Observations:

interviewes seemed busy-probably need to call in a few days for follow-up questions since he/
she gave only short answers. PC was turned off-probably not & regutar PC user

Unresolved Issues, Topics not Covered:

He/She needs to look up sales figures from 2006. He/she raised the issue of how fo handle
returned goods, but we did not have time fo discuss.

interviewes: Dats:

Questions: - Notes:

When to ask question, if conditional

Question: 1 " Answer .
Have you used the cument sales tracking Yes, | ask for a report on my product
system? If so, how often? line weekly
Qbservations

Seemed anxious-may be overestimating
usage frequency.
it yes, go fo Question 2

Question. 2 . Answer
What do you like Ieast about the system? Sales are shown in units, not rupees.
Observations

Systemn can show sales in rupees, but
user does not known about this

Fig. 5.2 Illustration of typical interview guide

On subsequent pages an analyst lists specific questions; the sample form in
Figure 5.2 includes space for taking notes on these guestions. Because unanticipated
information arises, he/she will not strictly follow the guide in sequence. He/she
can, however, check off the questions he/she has asked and write reminders to
himself/herself to return to or skip certain questions as the dynamics of the
interview unfold. '

5.3.2 Choosing Interview Questions

An analyst needs to decide what mix and sequence of open-ended and closed ended
questions he/she will use. Open-ended questions are generally used to probe for
information for which he/she cannot anticipate all possible responses or for which
he/she does not know the precise question to ask. The person being interviewed
"is encouraged to talk about whatever interests him or her within the general
bounds of the question. An example is, “What would you say is the best thing about
the information system you currently use to do your job?” or “List the four most
frequently used menu options.” An analyst must react quickly to answers and
determine whether or not any follow-up questions are needed for clarification or

Requirement Determination
and Specification

NOTES

Seif-Instructiona! Material 83

System Analysis and Design

NOTES

84 Self-Instructional Material

elaboration. Sometimes body language will suggest that a user has given an incomplete
answer or is reluctant to divulge some information; a follow-up question might
provide additional insight. One advantage of open-ended questions in an interview
is that previously unknown information can surface. An analyst can then continue
exploring along unexpected lines of inquiry to reveal even more new information.
Open-ended questions also often put the interviewees at ease because they are able
to respond in their own words using their own structure; open-ended guestions
give interviewees more of a sense of involvement and control in the interview. A
major disadvantage of open-ended questions is the length of time it can take for
the guestions to be answered. In addition, open-ended questions can be difficult to
summarize,

Closed-ended questions have a range of answers from which the interviewce
may choose. For example:

Which of the following would you say is the one best thing about the :nformatwn
system you currently use to do your job {select only one):

(@) Having easy access to all of the data you require

(b) The system’s response time
(¢) The ability to access the system from remote locations

Closed-ended questions work well when the major answers to questions are well
known. Another plus is that interviews based on closed-ended questions do not
necessarily require a large time commitment—more topics can be covered. An
analyst can see body language and hear voice tone, which can aid in interpreting
the interviewee’s responses. Closed-ended questions can also be an easy way to
begin an interview and to determine which line of open-ended questions to pursue.
An analyst can include an “other” option to encourage the interviewee to add
unanticipated responses. A major disadvantage of closed-ended questions is that
useful information that does not quite fit into the defined answers may be overlooked
as the respondent tries to make a choice instead of providing his or her best

‘answer.

Closed-ended questions, like objective questions on an éxamination, can follow
several forms, including the choices given below :

* True or false.
* Multiple choice (with only one response or selecting all relevant choices).

* Rating a response or idea on some scale, say from bad to good or strongly
agree to strongly disagree. Each point on the scale should have a clear and
consistent meaning to each person, and there is usually a neutral point in
the middle of the scale.

* Ranking items in their order of importance.

5.3.3 Interview Guidelines
The major guidelines for taking an interview are given below :

1. With either open or closed-ended guestions, do not phrase a question in a
way that implies a right or wrong answer. The respondent must feel that
he or she can state his or her true opinion and perspective and that his or
her idea will be considered equally with those of others. Questions such as
“Should the system continue to provide the ability to override the default
value, even though most users now do not like the feature?” should be
avoided because such wording predefines a socially acceptable answer.

2. One of the important things to remember about interviews is to listen very
carefully to what is being said. Take careful notes or, if possible, record the
interview on a tape recorder {be sure to take permission first!). The answers
may have extremely important information for the project. Also, this may
be the only chance an analyst has to get information from this particular
person. If an analyst runs out of time and still needs to get information
from the person he/she is talking to, ask to schedule a follow-up interview.

3. Once the interview is over, an analyst should go back to his/her office and
type up his/her notes within 48 hours. If he/she recorded the interview,
use the recording to verify the material in his/her notes. After 48 hours,
the analyst’s memory of the interview will fade quickly. As hesshe types
and organize his/her notes, he/she should write down any additional questions
that might arise from lapses in his/her notes or from-ambiguous information.
Separate facts from his/her opinions and interpretations. Prepare a list of
unclear points that need clarification. Call the person he/she interviewed
and get answers to these new questions. Use the phone call as an opportunity
to verify the accuracy of his/her notes. He/she may also want to send a
written copy of his/her notes to the person he/she interviewed so the
person can check the analysts notes for accuracy. Finally, the analyst
must make sure he/she thanks the person for his er her time spent. An
analyst may need to talk to his/her respondent again. If the interviewee
will be a user of his/her system or is involved in some other way in the
system’s success, he/she wants to leave a good impression.

4, The analyst should be careful during the interview not to set expectations
about the new or replacement system unless he/she is that sure these
features will be part of the delivered system. Let the interviewee know
that there are many steps to the project and the perspectives of many
people need to be considered, along with what is technically possible. Let
respondents know that their ideas will be carefully considered, but that due
to the iterative nature of the systems development process, it is premature
to say now exactly what the ultimate system will or will not do.

5. Seek a variety of perspectives from the interviews. Find out what potential
users of the system, users of other systems that might be affected by
changes, managers and superiors, information systems staff who have experience
with the current system, and others think the current problems and opportunities
are and what new information services might better serve the organization.
An analysts wants to understand all possible perspectives so that in a later
approval step he/she will have information on which to base a recommendation
or design decision that all stakeholders can accept.

5.3.4 Interviewing Groups

One drawback to using interviews to collect systems requirements is the need for
the analyst to reconcile apparent contradictions in the information collected. A
series of interviews may turn up inconsistent information about the current system
or its replacement. An analyst must work through all of these inconsistencies to
figure out what the most accurate representation of current and future systems
might be. Such a process reguires several follow-up phone calls and additional
interviews, Catching important people in their offices is often difficult and frustrating,
and scheduling new interviews may become very time-consuming. In addition, new
interviews may reveal new questions that in turn require additional interviews
with those interviewed earlier. Clearly, gathering information about an information

Requirement Determination
and Specification

NOTES

Self-Instructional Material 85

System Analysis and Design

NOTES

86 Self-Instructional Material

system through a series of individual interviews and follow-up calls is not an
efficient process.

One more option available to an analyst is the group interview. In a group interview,
he/she interviews several key people at once. To make sure all of the important
information is collected, he/she may conduct the interview with one or more
analysts. In the case of multiple interviewers, one analyst may ask questions while
another takes notes, or different analysts might concentrate on different kinds of
information. For example, one analyst may listen for data requirements while
another notes the timing and triggering of key events. The number of interviewees
involved in the process may range from two to however many you think can be
comfortably accommodated.

A group interview has a few advantages.
These are given below:

1. It is a much more effective use of an analyst’s time than a series of
interviews with individuals (although the time commitment of the interviewees
may be more of a concern).

2. Interviewing several people together allows them to hear the opinions of
other key people and gives them the opportunity to agree or disagree with
their peers.

Synergies also often occur. For example, the comments of one person might cause
another person to say, “ That reminds me of ” or “I didn’t know that was a problem.”
An analysts can benefit from such a discussion as it helps him/her identify issues
on which there is general agreement and areas where views diverge widely.

The primary disadvantage of a group interview is the difficulty in scheduling it.
The more people who are involved, the more difficult it will be finding a convenient
time and place for everyone. Modern technology : such as videoconferences and
videophones can minimize the geographical dispersion factors that make scheduling
meetings so difficult. Group interviews are at the core of the Joint Application
Design process, which will be discussed later on in this unit. A specific technique
for working with groups, Nominal Group Technique, is discussed next.

5.3.5 Nominal Group Technique

Various techniques have been developed over the years to improve the process of
working with groups. One of the more popular techniques for generating ideas
among group members is called Nominal Group Technique (NGT). NGT is
exactly what the name indicates—the individuals working together to solve a
problem are a group in name only, or nominally. Group members may be gathered
in the same room for NGT, but they all work alone for a period of time. Typically,
group members make a written list of their ideas. At the end of the idea generation
time, group members pool their individual ideas under the guidance of a trained
facilitator. Pooling usually involves having the facilitator ask each person in turn
for an idea that has not been presented before. As the person reads the idea aloud,
someone else writes down the idea on a blackboard or flip chart. After all of the
ideas have been introduced, the facilitator will then ask for the group to openly
discuss each idea, primarily for clarification.

Once all of the ideas are understood by all of the participants in the group, the
facilitator will try to reduce the number of ideas the group will carry forward for
additional consideration. There are many ways to reduce the number of ideas. The
facilitator may ask participants to choose only a subset of ideas that they believe
are important. Then the facilitator will go around the room, asking each person

to read aloud an idea that is important te him or her that has not yet been
identified by someone else. Or the facilitator may work with the group to identify
and either eliminate or combine ideas that are very similar to others. At some
point, the facilitator and the group end up with a tractable set of ideas, which can
be further prioritized.

In a requirements determination context, the ideas being sought in an NGT exercise

would typically apply to problems with the existing system or ideas for new features

in the system being developed. The end result would be a list of either problems
or features that group members themselves had generated and prioritized. There
should be a high level of ownership of such a list, at least for the group that took
part in the NGT exercise.

There is some evidence to support the use of NGT to help focus and refine the
work of a group in that the number and quality of ideas that result from an NGT
may be higher than what would normally be obtained from an unfacilitated group
meeting. An NGT exercise could be used to complement the work done in a typical
group interview or as part of a Joint Application Design effort, described in more
detail later on in this unit.

5.3.6 Directly Observing Users

All the methods of collecting information that we have discussed so far involve
getting people to recall and convey information they have about an organizational
area and the information systems that support these processes. People, however,
are not always very reliable informants, even when they try to be reliable and tell
what they think is the truth. As odd as it may sound, people often do not have a
completely accurate appreciation of what they do or how they do it. This is especially
true concerning infrequent events, issues from the past, or issues for which people
have considerable passion. Because people cannot always be trusted to reliably
interpret and report their own actions, an analyst can supplement and corroborate
what people tell him/her by watching what they do or by obtaining relatively
objective measures of how people behave in work situations.

For example, one possible view of how a hypothetical manager does her job is that
a manager carefully plans her activities, works long and consistently on solving
problems, and controls the pace of her work. A manager might tell an analyst that
is how she spends her day. When Mintzberg observed how managers work, however,
he found that a manager’s day is actually punctuated by many, many interruptions.
Managers work in a fragmented manner, focusing on a problem or on a communication
for only a short time before they are interrupted by phone calls or visits from their
subordinates and other managers. An information system designed to fit the work
environment described by our hypothetical manager would not effectively support
the actual work environment in which that manager finds herself.

As another example, consider the difference between what another employee might
tell the analyst about how much he/she uses e-mail and how much e-mail use the
analyst might discover through more objective means. An employee might tell the
analyst he/she is swamped with e-mail messages and that he/she spends a significant
proportion of his/her time responding to e-mail messages. However, if the analyst
was able to check electronic mail records, he/she might find that this employee
receives only four e-mail messages per day on average, the employee that the
most messages the employee has ever received during one 8-hour period is ten.
In this case, the analyst was were able to obtain an accurate behavioral measure
of how much e-mail this employee copes with without having to watch the employee
read his/her e-mail.

Reguirement Determination
and Specification

NOTES

Self-Instructional Material 87

System Analysis and Design

NOTES

88 Self-Instructional Material

The intent behind obtaining system records and direct observation is the same,
however, and that is to cbtain more firsthand and objective measures of employee
interaction with information systems. In some cases, behavioral measures will be
a more accurate reflection of reality than what employees themselves believe, In
other cases, the behavioral information will substantiate what employees have told
the analyst directly. Although observation and obtaining objective measures are
desirable ways to collect pertinent information, such methods are not always
possible in real organizational settings. Thus, these methods are not totally unbiased,
just as no other one dat~-gathering method is unbiased.

For example, observation can cause people to change their normatl operating behavior.
Employees who know they are being observed may be nervous and make more
mistakes than normal, may be careful to follow exact procedures they do not
typically follow, and may work faster or slower than normal. Moreover, because
observation typically cannot be continuous, an analyst receives only a snapshot
image of the person or task he/she observes, which may not include important
events or activities. Because observation is very time consuming, the analyst will
not only observe for a limited time, but also a limited number of people and a
limited number of sites. Again, observation yields only a small segment of data
from a possibly vast variety of data sources. Exactly which people or sites to
observe is a difficult selection problem. An analyst want to pick both typical and
atypical people and sites, and observes during normal and abnormal conditions and
times to receive the richest possible data from observation.

5.3.7 Analyzing Procedures and Other Documents

As mentioned earlier, asking questions of the people who use a system every day
or who have an interest in a system is an effective way to gather information
about current and future systems (systems to be developed). Observing current
system users is a more direct way of seeing how an existing system operates, but
even this method provides limited exposure to all aspects of current cperations.
These methods of determining system requirements can be enhanced by examining
system and organizational documentation to discover more details about current
systems and the organization these systems support.

Although we discuss here several important types of documents that are useful in
understanding possible future system requirements, our discussion does not exhaust
all possibilities. An analyst should attempt to find all written documents about the
organizational areas relevant to the systems under redesign. Besides the few specific
documents we discuss, organizational mission statements, business plans, organization
charts, business policy manuals, job descriptions, internal and external correspondence,
and reports from prior organizational studies can all provide valuable insight.

What can the analysis of documents tell an analyst about the requirements for a
new system? In documents he/she can find information about the following :

* Problems with existing systems (e.g., missing information or redundant
steps)

* Opportunities to meet new needs if only certain information or information
processing were available (e.g., analysis of sales based on customer type.)

* Organizational direction that can affect information system requirements
(e.g., trying to link customers and suppliers more closely to the organization).

* Titles and names of key persons who have an interest in relevant existing
systems {e.g., the name of a sales manager who led a study of buying
behavior of key customers)

LN

* Values of the organization or persons who can help determine priorities for
different capabilities desired by different users (e.g., maintaining market
share even if it means lower short-term profits)

s Special information processing circumstances that occur irregularly that
may not be identified by any other requirements determination technique
(e.g., special handling needed for a few very large-volume customers and
which requires use of customized customer ordering procedures)

* The reason why current systems are designed as they are, which can
suggest features left out of current software, which may now be feasible
and more desirable (e.g., data about a customer’s purchase of competitors
products were not available when the current system was designed; these
data are now available from many sources)

* Data, rules for processing data, and principles by which the organization
operates that must be enforced by the information system (e.g., each customer
is assigned exactly one sales department staff member as a primary contact
if the customer has any questions).

One type of useful document is a written work procedure for an individual or a
work group. The procedure describes how a particular job or task is performed,
including data and information that are used and created in the process of performing
the job. For example, the procedure shown in Figure 5.3 includes the data (list of
features and advantages, drawings, inventor name, and witness names) that are
required to prepare an invention disclosure. It also indicates that besides the
inventor, the vice president for research and department head and dean must
review the material, and that a witness is required for any filing of an invention
disclosure. These insights clearly affect what data must be kept, to whom information
must be sent, and the rules that govern valid forms.

Procedures are not trouble-free, sources of information, however. Sometimes an
analyst’s analysis of several written procedures will reveal a duplication of effort
in two or more jobs. He/she should call such duplication to the attention of management
as an issue to be resolved before system design can proceed. That is, it may be
necessary to redesign the organization before the redesign of an information system
can achieve its full benefits. Another problem he/she may find with a procedure
occurs when the procedure is missing. Again, it is not an analyst’s job to create
a document for a missing procedure—that is up to management. A third and
common problem with a written procedure happens when the procedure is out of
date. An analyst may realize the procedure is out of date when he/she interviews
the person responsible for performing the task described in the procedure. Once
again, the decision to rewrite the procedure so that it matches reality is made by
management, but he/she may make suggestions based upon his/her understanding
of the organization. A fourth problem often encountered with written procedures
is that ‘the formal procedures may contradict information he/she collected from
interviews and observation about how the organization operates and what information
is required. As in the other cases, resolution rests with management.

GUIDE FOR PREPARATION OF INVENTION DISCLOSURE
{See Faculty and Staff Manuais for detailed Patent Policy and routing procedures.}
1. DISCLOSE ONLY ONE INVENTION PER FORM.
2. PREPARE COMPLETE DISCLOSURE.

The disclosure of your invention is adequate for patent purposes ONLY if it helps.a person
skitlled in the art to understand the invention.

3. CONSIDER THE FOLLOWING IN PREPARING A COMPLETE DISCLOSURE:

Requirement Determination
and Specification

NOTES

Self-Instructional Material 89

System Analysis and Design

NOTES

"(a) Al essential elements of the invention, their refationship to one another, and their
' mode of operation.

(b) Equivalents that can be substituted for any elements.

{¢) List of features believed to be new.

() Advantages this invention has over the earlier art.

(8) Whether the invention has been built and/or tested.
4. PROVIDE APPROPRIATE ADDITIONAL MATERIAL.

Drawings and descriptive material should be provided as required to clarify the disclosure.
Each page of this material must be signed and dated by each inventor and properly
witnessed. A copy of any current and/or planned publication relating to the invention
should be included.

5. INDICATE PRIOR KNOWLEDGE AND INFORMATION

Pertinent publications, patents or previous devices, and related research or engingering
activities should be identified.

6. HAVE DISCLOSURE WITNESSED.

Persens other than coinventors should serve as witnesses and should sign each sheet
of the disclosure only after reading and understanding the disclosure.

7. FORWARD ORIGINAL PLUS ONE COPY (two copies if supported by grant/contract} TQ
VICE PRESIDENT FOR RESEARCH VIA DEPARTMENT HEAD AND DEAN.

90 Self-Instructional Material

Fig. 5.3 Example of a procedure

All of these above mentioned problems illustrate the difference between formal
systems and informal systems. Formal systems are systems recognized by the
official documentation of the organization; informal systems are the way in which
the organization actually works. Informal systems develop because of inadequacies .
of formal procedures, individual work habits and preferences, resistance to control,
and other factors. It is important to understand both formal and informal systems
because each provides insight into information reguirements and what wiil be
needed to convert from present to future information services.

A second type of document useful to systems analysts is a business form (see
Figure 5.4). Forms are used for all types of business functions, from recording an
order acknowledging the payment of a bill to indicating what goods have been
shipped. Forms are important for understanding a system because they explicitly
indicate what data flow in or out of a system and which are necessary for the
system to function. In the sample invoice form in Figure 5.4, we have locations
for data such as the name of the customer, the customer’s sold to and ship to
addresses, data (item number, quantity, etc.) about each line item on the invoice,
and calculated data such as tax, freight, and totals.

The form provides us crucial information about the nature of the organization.
For example, the company can ship and bill to different addresses; customers can
have discounts applied; and the freight expense is charged to the customer. A
printed form may correspond to a computer display that the system will generate
for someone to enter and maintain data or to display data to online users. Forms
are most useful to an analyst when they contain actual organizational data, because
this allows him/her to determine the characteristics of the data that are actually
used by the application. The ways in which people use forms change over time, and
data that were required when a form was designed may no longer be required. An
analyst can use the systems analysis techniques to help him/her determine which
data are no longer needed.

Requirement Determination
and Specification

Involce

Bl o
@ SOLUTIONS, IND

NOTES

Balance due

Fig. 5.4 A blank invoice form

A third type of useful document is a report generated by current systems. As the
primary output for some types of systems, a report enables you to work backwards
from the information on the report to the data that must have been necessary to
generate them. Figure 5.5 presents an example of a typical financial report. This
report shows the financial highlights for a corporation for two consecutive years.
The report shows the information in tabular formats. You would analyze such
reports to determine which data need to be captured over what time period and
what manipulation of these raw data would be nccessary to produce each field on
the report. [o

Self-Instructional Moterial 81

System Analysis and Design

NOTES

Condensed Consolidated Balance Sheets
VANSH MULTINATIONAL COMPANIES'

December 31 2005 2006)

(in crores)

Assets
Current assets: -

Cash and cash equivalents Rs. 1,037 Rs.1,079
Short-term investments, at fair value 1,182 715
Trade accounts receivable, net) 593 1,302
[nventories) 725 1,040
Deferred income taxes and other current assets 570 498
Total current assets 4,107 4,634
Investments 778 650
Plant ang equipment, net 5,097 ° : 4,679
Goodwill and other intangible assets, net . 2,289 7,340
Other assets 522 223
Total assets Rs. 12,793 Rs. 17,526

Llabilities and shareholders’ equity
Current liabilties:

Loans payable Rs. 477 Rs. 128
Accounts payable 441 855
Other accrued liabilities . 1,076 966
Total current liabilities ’ 1,994 1,849
Long-term debt 4,461 3,966
Other liabilities ' 798 830
Minority interest in subsidiary companies 119 139
Convertible preferred stock 7 .]
Common shareholders’ equity 5,414 10,633
Total liabilities and shareholders’ equity Rs. 12,783 Rs. 17,526

See accompanying noles to condensed statements.

92 Self-Instructional Material

Fig. 5.5 An example of a'report: An accounting balance sheet

If the current system is computer based, a fourth set of useful documents are
those-that describe the current information systéms—how they were designed and
how they work. There are a lot of different types of documents that fit this
description, everything from flowcharts to data dictionaries and CASE tool reports
to user manuals. An analyst who has access to such documents is lucky; many
information systems developed in-house lack complete documentation (unless a
CASE tool has been used).

Analysis of organizational documents and observation, along with interviewing, are
the methods most often used for gathering system requirements. Table 5.1 summarizes
the comparative features of observation and analysis of organizational decuments.

Table 5.1 Comparison of Observation and Document Analysis

Characteristic

Observation

Document Analysis

Information Richness
Time Needed
Expense

Chance for Follow-up
and Probing

Confidentiality

Involvement of
Subject

Potential Audience

High (many channels)
Can be extensive
Can be high

Good: probing and clarifi-
cation questions can be
asked during or after
observation

Observee is known to
interviewer; observee
may change behaviour
when observed

Interviewees may or may

not be involved and com-

mitted depending on
whether they know if
they are being observed

Limited numbers and
limited time (snapshot)
of each

Low (passive) and old
Low to moderate
Low to moderate

Limited: probing possible only
if original author is available

/ .

Depends on nature of document;
does not change simply by
being read

None, no clear commitment

Potentially biased by which
documents were kept or
because. document not
created for this purpose

Requirement Determination
and Specificution

NOTES

Self-instructional Ma;r.;}?af 93

System Analysis and Desigr -

STUDENT ACTIVITY 5.1

1. What is systems analysis? What is its main purpose? What are its main activities?

2. List all possible deliverables and outcomes of requirements determination. How can a systems analyst
use’ these outcomes?

84 Self-Instructionel Material '

5.4 CONTEMPORARY METHODS FOR
. DETERMINING SYSTEM REQUIREMENTS

Even though we called interviews, observation, and document analysis traditional -

methods for determining a system’s requirements, all of these methods are still
very much used by analysts to collect important information. Today, however,
there are additional techniques to collect information about the current system,
the organizational area requesting the new system, and what the new system
should be like. In this section, you will learn about several contemporary information-
gathering techniques for analysis: Joint Application Design (JAD), group support
system, CASE tools, and prototyping. As we said earlier, these techniques can
support effective informaticn collection and structuring while reducing the amount
of time required for analysis. The contemporary methods for collecting system
requirement are given below:

* Bringing together in a Joint Application Design (JAD) session users, sponsors,
analysts, and others to discuss and review system requirements.

¢ Using group support systems to facilitate the sharing of ideas and voicing
of opinions about system requirements.

* Using CASE tools to analyze current systems to discover requirements to
meet changing business conditions. '

 Tteratively developing system profotypes that refine the understanding of
system requirements in concrete terms by showing working versions of
system features.

5.4.1 Joint Application Design

Joint Application Design or JAD started in the late 1970s at IBM and that since
then the practice of JAD has spread throughout many companies and industries.
The main idea behind JAD is to bring together the key users, managers, and
systems analysts involved in the analysis of a current system. In that respect, JAD
is similar to a group interview; a JAD, however, follows a particular structure of
roles and agenda that is quite different from a group interview during which
analysts control the sequence of questions answered hy users. The primary purpose
of using JAD in the analysis phase is to collect systems requirements simuitaneously
from the key people involved with the system. The result is an intense and
structured, but highly effective, process. As with a group interview, having all the
key people together in one place at one time allows analysts to see where there
are areas of agreement and where there are conflicts. Meeting with all of these
important people for over a week of intense sessions allows an analyst the opportunity
to resolve conflicts, or at least to understand why a conflict may not be simple to
resolve.

JAD sessions are usually conducted at a location other than the place where the
people involved normally work. The idea behind such a practice is to keep participants
away from as many distractions as possible so that they can concentrate on systems
analysis. JAD sessions are time-consuming processes and guite expensive.

The typical participants in a JAD are given below:

* JAD session leader. The JAD session leader organizes and runs the JAD.
This person has been trained in group management and facilitation as well
as in systems analysis. The JAD leader sets the agenda and sees that it is
met. The JAD leader remains neutral on issues and does not contribute ideas

Requirement Determination

and Specification

NOTES

Self-Instructional M.aterial 95

System Analysis and Design

NOTES

96 Self-Instructional Material

or opinions but rather concentrates on keeping the group on the agenda,
resolving conflicts and disagreements, and soliciting 4ll ideas.

* Users. The key users of the system under consideration are very vital
participants in a JAD. They are the only ones who have a clear understanding
of what it means to use the system on a daily basis.

* Managers. Managers of the work groups who use the system in question
provide insight into new organizational directions, motivations for and
organizational impacts of systems, and support for requirements determined
during the JAD.

* Sponsor. As a major undertaking due to its expense, a JAD must be
sponsored by someone at a relatively high level in the company. If the
sponsor attends any sessions, it is usually only at the very beginning or the
end. ' :

¢ Systems analysts. Members of the systems analysis team attend the JAD
although their actual participation may be limited. Analysts are there to
learn from users and managers, not to run or dominate the process.

¢ Secribe. The scribe takes notes during the JAD sessions. It is usually done
on a personal computer or laptop. Notes may be taken using a word processor,
or notes and diagrams may be entered directly into a CASE tool.

¢ IS staff. Besides systems analysts, other IS staff, such as programmers,
database analysts, IS planners, and data centre personnel, may attend to
learn from the discussion and possibly to contribute their ideas on the technical
feasibility of proposed ideas or on technical limitations of current systems.

JAD sessions are usually held in special-purpose rooms. These rooms are well equipped

-with white boards, audiovisual tools, flip charts, network connectivity, computers

and peripherals. The end result of a JAD session is a set of documents having details
of the working of the current system related to the study of a replacement system
or detailed information. on what is desired of the replacement system. ‘

54.2 Participating in a JAD

JAD is a structured group process. Typically, JADs are held off-site to avoid disturbance
or, interruption. In the JAD session, broadly the following matters are discussed
and documented : '

* General overview of the current system and major problems associated
with it

¢ Analysis of current system screens

* Analysis of reports

The session leader briefs the agenda. The corporate sponsor talks about the organizational
unit and current system related to the systems analysis study and the importance
of upgirading the. Current system to meet changing business conditions. The senior
analyst presents on key problems with the current system that have already been
identified. After presentation, the users and managers discuss about the pros and
cons of the current system among themselves. The session leader facilitates these
discussions and tries to help in identifying root problems and its reasons. The
design of original system, and its intents are also discussed with the help of system

analysts. Various issues that cannot be resolved during the JAD or issues that
require additional information are immediately noted on the flip chart paper and
answered subsequently during that session or rather JAD gessions. Analysts present
and discuss on forms and report design, answer gquestions form users and managers,
and take notes on what is being said. After each meeting, the analysis team meets
informally to discuss the proceedings of the meeting and consclidates what they
have learned. When a JAD is over, the session leader prepares a report that
documents the findings in the JAD and that is circulated among users and analysts.

5.4.3 CASE Tools During JAD

The CASE tools most useful to systems analysis during a JAD are those referred
to as upper CASE, as they apply most directly to activities occurring early in the
systems development life cycle. Upper CASE tools usually include planning tools,
diagramming tools, and prototyping tools, such as computer form and report generators.
For requirements determination and structuring, the most useful CASE tools are
for diagramming and for form and report generation. The more interaction analysts
have with users during this phase, the more useful this set of tools is. The analyst
can use diagramming and prototyping tools to give graphic form to system requirements,
show the tools to users, and make changes based on the users’ reactions. The
same tools are very valuable for requirements structuring as well. Using common
CASE tools during requirements determination and structuring makes the transition
between these two subphases easier and reduces the total time spent. In structuring,
CASE tools that analyze requirements information for correctness, completeness,
and consistency are also useful. Finally, for alternative generation and selection,

diagramming and prototyping tools are key to presenting users with graphic illustrations
of what the alternative systems will look like. Such a practice provides users and

analysts with better information to select the most desirable alternative system.

Some observers advocate using CASE tools during JADs. Running a CASE ‘tool
during a JAD enables analysts to enter system models directly into a CASE tool,
providing consistency and reliability in the joint model-building process. The CASE
tool captures system requirements in a more flexible and useful way than can a
seribe or an analysis team making notes. Further, the CASE tool can be used to
project menu display, and report designs, so users can directly observe old and new
designs and evaluate their usefulness for the analysis team.

5.4.4 Supporting JAD with Group Support: Systems

Even though CASE tools can greatly augment a JAD, the group interaction process
is typically not well supported by computing. Other than CASE tools, most of the
computer use at a JAD is by one person, the scribe taking notes. Because JAD is a
structured group process, JAD can benefit from the same computer-based support
that can be applied to any group process. Group support systems (GSS) can be used
to support group meetings. Here we will discuss how JAD can benefit from GSS use.

One disadvantage to a JAD session is that it suffers from many of the same
problems as any group meeting. For example, the more people there are in a
group, the less time there is for all of them to speak and state their views. Even
if you assumed that they all spoke for an equal amount of time, no one would have
much time to talk in a l-hour meeting for ten people (only 6 minutes each!). The

Reguirement Determination
and Specification

NOTES

Self-Instructionel Material 97

System Analysis and Design

NOTES

98 Self-Instructional Material

assumption about speaking equally points out a second problem with meetings—
one or a few people always dominate the discussion. On the other hand, some
people will say absolutely nothing. Whatever outcome the meeting produces tends
to be tilted toward those who spoke the most during the meeting, and others may
not be fully committed to the conclusions reached. A third problem with group
meetings is that some people are afraid to speak out for fear they will be criticized.
A fourth problem is that most people are not willing to criticize or challenge their
bosses in a meeting, even if what the boss is saying is wrong.

JADs suffer from all of these same problems. The result is that important views
often are not aired. Such an outcome is unfortunate because the design of the new

* gystem could be adversely impacted and the system may have to be reworked at

great expense when those important views finally become known.

GSSs have been designed specifically to help alleviate some of the problems with
group meetings. In order to provide everyone in the meeting with the same chance
to contribute, group members type their comments into computers rather than
speak them. The GSS is set up so that all members of the group can see what
every other member has been typing. In the l-hour meeting for ten people mentioned
earlier, all ten can contribute for the full hour, instead of just for 6 minutes, using
a GS8S. If everyone in the meeting is typing, not talking, and everyone has the
same chance to contribute, then the chances of domination of the mesting by any
one individual are greatly reduced. Also, comments typed into a GSS can be .
anonymous. Anonymity helps those who fear criticism because only the comment,
and not the person can be criticized, because no one knows who typed what.
Anonymity also provides the ability to criticize your boss.

Supporting a JAD with a GSS has many potential benefits. Using a GSS, a JAD
session leader is more likely to obtain contributions from everyone, rather than
from just a few. Important ideas are less likely to be missed. Similarly, poor ideas
are more likely to be criticized. A study comparing traditional JAD to JAD supported
with GSS found that using a GSS did lead to certain enhancements in the JAD
process. Among the findings were that GSS-supported JADs tended to be more
time-efficient than traditional JAD and participation was more equal because there
was less domination by certain individuals than in traditional JAD. The study also
found that introducing a GSS into a JAD session had other, less desirable, effects.
GSS-supported JADs tended to be less structured, and it was more difficult to
identify and resolve conflicts when a GSS was used, due in part to the anonymity
of interaction. Supporting a JAD with GSS, then, does seem to provide some
benefits by altering how the group works together. Yet a reduction in the JAD
leader’s ability to resolve conflicts could be a problem, especially since JAD was
designed to help uncover and resolve conflicts.

5.4.5 Using Prototyping During Requirements Determination

Prototyping is an iterative process involving analysts and users whereby a rudimentary
version of an information system is built and rebuilt according to user feedback.
In can replace the systems development life cycle or augment it. What we are
interested in here is how prototyping can dugment the requirements determination
Process.

In order to gather an initial basic set of requirements, an analyst will still have
to interview users and collect documentation. Prototyping, however, will enable

him/her to quickly convert basic requirements into a working, though limited,
version of the desired information system. The prototype will then be viewed and
tested by the user. Typically, seeing verbal descriptions of requirements converted
into a physical system will prompt the user to modify existing requirements and
generate new ones. For example, in the initial interviews, a user might have said
that he/she wanted all relevant utility billing information on a single computer
display form, such as the client’s name and address, the service record, and payment
history. Once the same user sees how crowded and confusing such a design would
be in the prototype, he/she might change his/her mind and instead ask for the
information to be organized on several screens, but with easy transitions from one
screen to another. He/she might also be reminded of some important requirements
(data, calculations, etc.) that had not surfaced during the initial interviews.

The analyst would then redesign the prototype to incorporate the suggested changes.
Once modified, users would again view and test the prototype. And, once again, the
analyst would incorporate their suggestions for change. Through such an iterative
process, the chances are good that he/she will be able to better capture a system’s
requirements. The goal with using prototyping to support requirements determination
is to develop concrete specifications for the ultimate system, not to build the
ultimate system from prototyping.
Prototyping is possible with several fourth-generation languages (4GLs) and with
CASE tools, as pointed out in the earlier section on CASE tools and analysis in this
unit. As we saw there, an analyst can use CASE tools as part of a JAD to provide
a type of limited prototyping with a group of users.
Prototyping is most useful for requirements determination when:
o User requirements are not clear or well understood, which is often the
case for totally new systems or systems that support decision making.
o One or a few users and other stakeholders are involved with the system.
¢ Possible designs are complex and require concrete form to fully evaluate.
e Communication problems have existed in the past between users and analysts

and both parties want to be sure that system requirements are as specific
as possible.

+ Tools (such as form and report generators) and data are readily available
to rapidly build working systems.

Prototyping also has some drawbacks as a tool for requirements determination.
These are given below :

* A tendency to avoid creating formal documentation of system requirements,
which can then make’' the system more difficult to develop into a fully
working system.

* Prototypes can become very idiosyncratic (person’s particular way of thinking)
to the initial user and difficult to diffuse or adapt to other potential users.

» Prototypes are often built as stand alone systems, thus ignoring issues of
sharing data and interactions with other existing systems, as well as issues
with scaling up (i.e., increasing) applications.

¢ Checks in the SDLC are bypassed so that some more subtle, but still '

important, system requirements might be forgotten (e.g., security, some
data entry controls, or standardization of data across systems).

Requirement Determination
and Specification

NOTES

Self-.l-nstructionat Material 99

System Analysis and Ijesign

NOTES

100 Self-Instructional Material

5.5 RADICAL METHODS FOR DETERMINING
SYSTEM REQUIREMENTS

Whether traditional or contemporary, the methods for determining system requirements
that you have read about in this unit apply to any requirements determination
effort, regardless of its motivation. But most of what you have learned has traditionally
been applied to systems development projects that involve automating existing
processes. Analysts use system requirements determination to understand current
problems and opportunities, as well as to determine what is needed and desired in
future systems. Typically, the current way of doing things has a large impact on
the new system. In some organizations, though, management is looking for new
ways to perform current tasks. These new ways may be radically different from
how things are done now, but the payoffs may be enormous: Fewer people may be
required to do the same work, relationships with customers may improve dramatically,
and processes may become much more efficient and effective, all of which can
result in increased profits. The overall process by which current methods are
replaced with radically new methods is generally referred to as business process
reengineering or BPR. Although the term BPR is usually associated with a
management fad that occurred in the 1990s, businesses remain vitally interested
in business processes and how to improve them. Even if the term business process
reengineering may seem dated to some, process orientation remains a lasting
legacy of the BPR movement.

To better understand BPR, consider the following analogy. Suppose you are a
successful Indian cricketer who has tuned your game to fit the style of grounds
and weather in India. You have learned how to control the flight of the ball on slow
pitches. When you come to Australia or West Indies you discover that the fast
pitches are not suited to your style of the game. You need to reengineer your
whole approach. If you are good enough, you may survive, but without reengineering,
you will never win matches for your team.

Just as the competitiveness of cricket forces good players to adapt their games to
changing conditions, the competitiveness of our global economy has driven most
companies into a mode of continuously improving the quality of their products and
services. Organizations realize that creatively using information technologies can
yield significant improvements in most business processes. The idea behind- BPR
is not just to improve each business process, but, in a systems modeling sense, to
reorganize the complete flow of data in major sections of an organization o eliminate
unnecessary steps, achieve synergies among previously separate steps, and become
more responsive to future changes. Companies such as IBM, Procter & Gamble,
Wal-Mart, and Ford are actively pursuing BPR efforts and have had great success.
Yet, many other companies have found difficulty in applying BPR principles. Nonetheless,
BPR concepts are actively applied in both corporate strategic planning and information
systems planning as a way to radically irﬁprove business processes.

BPR advocates suggest that radical increases in the guality of business processes
can be achieved through creative application of information technologies. BPR
advocates also suggest that radical improvement cannot be achieved by tweaking
(i.e., pinching and twisting sharply) existing processes but rather by using a clean
shest of paper and asking, “If we were a new organization, how would we accomplish

this activity?” Changing the way work is performed also changes the way information
is shared and stored, which means that the results of maﬁy BPR efforts are the
development of information system maintenance requests or requests for system
replacement. It is likely that an analyst will encounter or has encountered BPR
initiatives in him/her own organization.

5.5.1 Identifying Processes to Reengineer

A first step in any BPR effort relates to understanding what processes to change.
To do this, an analyst must first understand which processes represent the key
business processes for the organization. Key business processes are the structured
set of measurable activities designed to produce a specific output for a particular
customer or market. The important aspect of this definition is that key processes
are focused on some type of organizational outcome, such as the creation of a
product or the delivery of a service. Key business processes are also customer
focused. In other words, key business processes would include all activities used
to design, build, deliver, support, and service a particular product for a particular
customer. BPR efforts, therefore, first try to understand those activities that are
part of the organization’s key business processes and then change the sequence
and structure of activities to achieve radical improvements in speed, quality, and
customer satisfaction. The same techniques an analyst learned to use for systems
requirements determination can be used to discover and understand key business
processes. Interviewing key individuals, observing activities, reading and studying
organization documents, and conducting JADs can all be used to find and fathom
(understand or comprehend fully} key business processes.

After identifying key business processes, the next step is to identify specific activities
that can be radically improved through re-engineering. Hammer and Champy, the
two people most identified with the term BPR, suggest that three questions be
asked to identify activities for radical change. These questions are given below :

1. How important is the activity to delivering an outcome?
2. How feasible is changing the activity?
3. How dysfunctional is the activity?

The answers to these questions provide guidance for selecting which activities to
change. Those activities deemed important, changeable, yet dysfunctional, are
primary candidates. To identify dysfunctional activities, they suggest an analyst
looks for activities where there are excessive information exchanges between
individuals, where information is redundantly recorded or needs to be rekeyed,
where there are excessive inventory buffers or inspections, and where there is a
lot of rework or complexity. Many of the tools and techniques for modelling data,
processes, events, and logic within the IS development process are also being
applied to model business processes within BPR efforts. So, the skills of a systems
analyst are often central to many BPR efforts.

5.5.2 Disruptive Technologies

Once key business processes and activities have been identified, information technologies
must be applied to radically improve business processes. To do this, Hammer and
Champy suggest that organizations think “inductively” about information technology.
Induction is the process of reasoning from the specific to the general, which means

Requirement Determination
and Specification

NOTES

Self-Instructional Material 101

System .Analysis and Design

NOTES

that managers must learn the power of new technologies and think of innovative
ways to alter the way work is done. This is contrary to deductive thinking where
problems are first identified and solutions are then formulated.

Hammer and Champy suggest that managers especially consider disruptive technologies
when applying deductive thinking. Disruptive technologies are those that enable
the breaking of long-held business rules that inhibit organizations from making
radical business changes. For example, Saturn is using production schedule databases
and electronic data interchange (EDI) to work with its suppliers as if they and
Saturn were one company. Suppliers do not wait until Saturn sends them a purchase
order for more parts but simply monitor inventory levels and automatically send
shipments as needed. Table 5.2 shows several long-held business rules and beliefs
that constrain organizations from making radical process improvements. For example,
the first.rule suggests that information can only appear in one place at a time.
However, the advent of distributed databases and pervasive wireless networking
have “disrupted” this long-held business belief.

Table 5.2 Long-Held Organizational Rules That are Being Eliminated
Through Disruptive Technologies

Rule

Disruptive Technology

Information can appear in only one
place at a time.

Only experts can perform complex
work.

Businesses must choose between

Managers must make all decisions.

Field personnel need offices where
they can receive, store, retrieve,
and transmit information.

The best contact with a potential
buyer is personal contact.

You have to find out where things
are.

Plans get revised periodically.

centralization and decentralization.

Distributed databases allow the sharing
of information.

Expert systems can aid nonexperts.

Advanced telecommunications networks
can support dynamic organizational
structures.

Decision-support tools can aid non-
managers.

Wireless data communication and portable
computers provide a “virtual” office
for workers.

Interactive communication technologies
allow complex messaging capabilities.

Automatic identification and tracking
technology knows where things are.

High-performance computing can provide
real-time updating.

102 Self-Instructional Material

In this section, we discussed how BPR is increasingly being used to identify ways
to adapt existing information systems to changing organizational information needs
and processes. It was our intent to provide a brief introduction to this topic,

_because the specific tools and techniques for performing BPR are still evolving.

Requirement Determination
and Specification

STUDENT ACTIVITY 5.2

1. What are the contemporary methods of information gathering techniques? Explain.

2. What is JAD? What are its merits and limitations?

Self-Instructional Material 103 -

System Analysis and Design

NOTES

104 Self-Instructional Material

- SUMMARY

* Open-ended questions are the questions in interviews that have no prespecified
answers. ’

* Closed-ended questions are the questions in interviews that ask those
responding to choose from among a set of specified responses.

¢ Nominal Group Technique (NGT) is a facilitated process that sdpports
idea generation by groups. At the beginning of the process, group members
work alone to generate ideas, which are then pooled under the gﬁidahce of
a trained facilitator. I I

* Formal Sysiem is the official way a system works as described in organizational
documentation. '

* Informal System is the way a system actually works.

TEST YOURSELF

Answer the following questions:
1. Why is an interview plan important ?
2. What is the difference between closed and open-ended questions ?

3. What is prototyping? Explain how prototyping helps in determining information
systems requirement. In what situations prototyping is most suitable and
ugefu] for requirements determination? What are the limitations. of this
method ?

4. List common traditional methods of collecting information system requirements.
Compare and contrast different methods. What are the limitations of methods?
Which one you think is the best method?

5. Compare and contrast group interview process with individual interview.
6. How formal systems differ from informal systems in an organizal.tiuri? Explain,

7. What are CASE Tools? How can CASE tools be used to support requirements
determination?

8. What is BPR? How system requirements are determined is BPR? Explain.
9. State True or False: -

(f) System analysis is the part of the SDLC in which you determine how
the current information system functions and access what users would
like to see in a new system.

(if) Interviewing is not one of the primary ways analysts gather information
about an information systems project.

(i) With either open or closed-ended questions, do phrase a question in a
way that implies a right or wrong answer,

(iv) The form provides us crucial information about the nature of the organization.

(v) The primary purpose of using JAD in the analysis phase is to collect
systems requirements simultaneously from the key people involved
with the system.

(vi) JAD sessions are usually conducted at the same place’ where the people
involved normally work.)

(vif) Prototyping can not replace the SDLC or augment it. Requirement Determination
and Specification

(viit) The overall process by which current methods are replaced with radically
new methods is generally referred to as business process reengineering
or BPR.

10. Fill in the blanks: ' NOTES

'

(i} System analysis has two subphases,c......... and requirements
structuring.)

(@) In many ways, gathering system requirements resembles conducting

(iii) One of the more popular techniques for geﬁerating ideas among group
members is called

Giv) systems are systems recognized by the official documentation

of the organization.

(v} The primary purpose of using in the analysis phase is to
collect systems requirements simuitaneously from the key people involved
with the system.

(Vi) ...cccooeeeeennn.. 18 an iteratlive process.involving analysts and users whereby
a rudimentary version of an information system is built and rebuilt
according to user feedback.

€717 RO are the -structured set of measurable activities designed
to produce a specific output for a particular customer or market.

(viii) The planning game has three phases: exploration commitment and

ANSWERS ‘

Test Yourself
9. State True or False:

(i) True (ii) False

(éii) False (Gv) True

(v} True (vi) Faise
(vii) False (vit) True

10. Fill in the blanks:

- (i) requirements determination . (i) investigation
(iii) Nominal Group Technique (NGT) (iv) Formal

(v) JAD (vi) Prototyping
(vii) Key business processes (viii) steering

Seff-Instructionel Material 105

CHAPTER

6

PROCESS MODELING

'LEARNING OBJECTIVES

8.1 Introduction
6.2 Process Modeling
6.2.1 Modeling a System’'s Process for Structured Analysis
' 6.2.2 Deliverables and Outcomes
6.3 Data Flow Diagrammind Mechanics
6.3.1 Definitions and Symbols
6.3.2 Developing DFDs: An Example
6.3.3 Rules of Data Flow Diagramming
6.3.4 Decomposition of DFDs
6.3.5 Balancing DFDs
6.4 Types of DFDs
6.5 Using Data Flow Diagramming in the Analysis Process

L 6.5.1 Guidelines for Drawing DFDs

6.1 INTRODUCTION

In the last unit, you learned of various methods that systems analysts use to
collect the information necessary to determine information systems requirements.
In this Unit, we will focus on one tool that is used to coherently represent the
information gathered as part of requirements determination—data flow diagrams.
Data flow diagrams (DFDs) help to model how data flow through an information
system, the relationships among the data flows, and how data come to be stored
at specific locations. DFDs also show the processes that change or transform
data. Because DFDs concentrate on the movement of data between processes,
these diagrams are known as process models.

As the name indicates, a data flow diagram is a graphical tool that allows
systems analysts (and users, for that matter) to depict the flow of data in an

information system. The system can be physical or logical, manual or computer

based. In this unit, you will learn how to draw and revise data flow diagrams.
We present the basic symbols used in such diagrams, and a set of rule§ that
govern how these diagrams are drawn. You will also-learn about what to do and
what not to do when drawing data flow diagrarhs related. to data flow diagrams
are also given: balancing and decomposition. In addition, you will learn the

Process Modeling

NOTES

Self-Instrudtional Material 107

System Analysis and Design

NOTES

differences between four different types of data flow diagrams: current physical,
current logical, new logical, and new physical. Toward the end of the chapter, we
present the use data flow diagrams as part of the analysis of an information
system and as a tool for supporting business process reengineering. Even though
the focus of this chapter is on data flow diagrams, we will also introduce you to
use cases and use case diagrams. Use cases are a different way to model the
functionality of a business process that facilitates the development of information
systems to support that process. Although common in object-oriented systems
analysis and design, use case modeling can also be used along with more traditional
methods for modeling business processes.

.

6.2 PROCESS MODELING

Process modeling involves graphically representing the functions or processes,
that capture, manipulate, store, and distribute data hetween a system and its
environment and between components within a system. A common form of a
process model is a data flow diagram (DFD). Over the years, several different
tools have been developed for process modeling. In this unit, we focus on data
flow diagrams, the traditional process modeling technique of structured analysis
and design and one of the techniques most frequently used today for process
modeling. We also introduce you to use case diagrams and use case modeling.

6.2.1 Modeling a System’s Process for Structured Analysis

As Figure 6.1 shows, the analysis phase of the systems development life cycle
has two subphases: requirements determination and requirements structuring.
The analysis team enters the requirements, structuring phase with an abundance
of information gathered during the requirements determination phase. During
requirements structuring, an analysts and the other team members must organize
the information into a meaningful representation of the information system
that currently exists and of the requirements desired in a replacement system.
In addition to modeling the processing elements of an information system and

'how data are transformed in the system, an analyst must also model the processing

logic and the timing of events in the system and the structure of data within

1. Preliminary
investigation

k=7 Requirements Determination

= Requirements Structuring

2. System
analysis

6. Systems

maintenance

)
5. Systems 3. Systemn
implementation design

1
. 4. Systems T
development a AR

' .
1(3.*,7I Self-Instructional Material

Fig. 6.1 SDLC with the analysis phase highlighted. -

the system. For traditional structured analysis, a process model is only one of
three major complementary views of an information system. Together, process,
logic and timing, and data models provide a thorough specification of an
information system and, with the proper supporting tools, also provide the basis
for the automatic generation of many working information system components.

6.2.2 Deliverables and Qutcomes

In structured analysis, the primary deliverables from process modeling are a set
of coherent, interrelated data flow diagrams. The deliverables that result when
data flow diagrams are used to study and document a system’s processes are given
as follows: r
1. Context Data Flow Diagram (DFD). A content diagram shows the scope
of the system, indicating which elements are inside and which are outside
the system. '

2. DFDs of Current Physical System (adequate detail only). Data flow
diagrams of the current physical system specify which people and technologies
are used in which processes to move and transform data, accepting inputs
and producing outputs. These diagrams are developed with sufficient detail
to understand the current system and to eventually determine how to
convert the current system into its replacement.

3. DFDs of current logical system Technology-independent, or 10g1cal data
flow diagrams of the current system show what data processing functions

are performed by the current information system.

4. DFDs of new logical system. The data movement, or flow, structure, and
functional requirements of the new system are represented in logical data
flow diagrams.

5. Thorough description of each DFD component. Entries for all of the
objects included in all of the diagrams are included in the project dictionary
or CASE repository. i

This logical progression of deliverables allows an analyst to understand the existing
system. He/she can then abstract this system into its essential elements to show
how the new system should meet the information processing requirements identified
during requirements determination. Remember, the deliverables of process modeling
are simply stating what an analyst learned during requirements determination; in
later steps in the systems development life cycle, an analyst and other project
team members will make decisions on exactly hAow the new system will deliver
these new requirements in specific manual and automated functions. Because
requirements determination and structuring are often parallel steps, data flow
diagrams that evolve from the more general to the more detailed as current and
replacement systems are better understood.

Even though data flow diagrams remain popular tools for process modeling and can
significantly increase software development productivity, data flowl diagrams are
not used in all systems deve]opment methodologies. Some orgamzatlons -have developed
their own diagrams to model processes. Other organizations rely 'on proctess modeling
tools in CASE tool sets. Some methodologies, such as RAD 'and- obJect -oriented
an'glysis and design methodologies, do not model processes Iseparat‘ély'at all.

Data liow diagrai‘r}f's provide notation as well as illustrate important concepts about

Process Modeling

NOTES

’ Se-l-f-'blts.tructional Material 109

System Analysis and Design

NOTES

\

/S
/
110 Self-Instructional Material

the movement of data between manual and automated steps and offer a way to
depict work flow in an organization. Data flow diagrams continue to be beneficial
to information systems professionals as tools-for both analysis and communication.

6.3 DATA FLOW DIAGRAMMING MECHANICS

Data flow diagrams are versatile diagramming tools. With only four symbols, you
can use data flow diagrams to represent both physical and logical information
systems. Data flow diagrams (DFDs) are not as good as flowcharts for depicting
the details of physical systems; on the other hand, flowcharts are not very useful
for depicting purely logical information flows. In fact, flowcharting has been criticized
by proponents of structured analysis and design because it is too physically oriented.
Flowcharting symbols primarily represent physical computing equipment, such as
terminals and permanent storage. One continual criticism of system flowcharts
has been that overreliance on such charts tends to result in premature physical
system design. Consistent with the incremental commitment philosophy of the

SDLC, an analyst should wait to make technology choices and to decide on physical

characteristics of an information system until he/she is sure that all functional
requirements are correct and accepted by users and other stakeholders.

DFDs do not share this problem of premature physical design because they do not
rely on any symbols to represent specific physical computing equipment. They are
also easier to use than flowchart because they involve only four different symbols.

6.3.1 Definitions and Symbols

There are two different standard sets of data flow diagram symbols (see
Figure 6.2); each set consists of four symbols that represent the same things:
data flows, data stores, processes, and sources/sinks (or external entities).
The set of symbols we will use in this book was devised by Gane and Sarson
(1979). The other standard set was developed by DeMarco (1979) and Yourdon
(Yourdon and Constantine, 1979).

Process

Data store !’i

Source/sink

— Data flow L —
DeMarco and Yourdon Gane and Sarson
symbols symbols

Fig. 6.2 Tlustration of two different standard sets of DFD symbols.

A data flow can be best understood as data in moticn, moving from one place in
a system to another. A data flow could represent data on a customer order form
or a payroll check. A data flow could also represent the results of a query to a
database, the contents of a printed report, or data on a data entry computer
display form. A data flow is data that move together. Thus, a data flow can be
composed of many individual pieces of data that are generated at the same time
and that flow together to common destinations. A data store is data at rest. A
data store may represent one of many different. physical locations for data, for
example, a file folder, one or more computer-based file(s), or a notebook. To
understand data movement and handling in a system, it is not important to
understand the system’s physical configuration. A data store might contain data
about customers, students, customer orders, or supplier invoices. A process is
the work or actions performed on data so that they are transformed, stored, or
distributed. When modeling the data processing of a system, it does not matter
whether a process is performed manually or by a computer. Finally, a- source/
sink is the origin and/or destination of the data. Sources/sinks are sometimes
referred to as external entities because they are outside the system. Once processed,
data or information leave the system and go to some other place. Because sources
and sinks are outside the system we are studying, many of the characteristics of
sources and sinks are of no interest to us. In particular, we do not consider the
following:

¢ Interactions that occur between sources and sinks

e What a source or sink does with information or how it operates (i.e.. a
source or sink is a “black box™)

¢+ How to control or redesign a source or sink because, from the perspective
of the system we are studying, the data a sink receives and often what
data a source provides are fixed

+« How to provide sources and sinks direct access to stored data, because,
as external agents, they cannot directly access or manipulate data stored
within the system; that is, processes within the system must receive or
distribute data between the system and its environment.

The symbols for each set of DFD conventions are presented in Figure 6.2. In both
conventions, a data flow is depicted as an arrow. The arrow is labeled with a
meaningful name for the data in motion; for example, Customer Order, Sales
Receipt, or Paycheck. The name represents the aggregation of all the individual
elements of data moving as part of one packet, that is, all the data moving
together at the same time. A square is used in both conventions for sources/sinks
and has a name that states what the external agent is, such as customer, Teller,
EPA Office, or Inventory Control System. The Gane and Sarson symbol for a
process is a rectangle with rounded corners; it is a circle for DeMarco and
Yourdon. The Gane and Sarson rounded rectangle has a line drawn through the
top. The upper portion is used to indicate the number of the process. Inside the
lower portion is a name for the process, such as Generate Paycheck, Calculate
Overtime Pay, or Compute Grade Point Average. The Gane and Sarson symbol for
a data store is a rectangle that is missing its right vertical side. At the left end
is a small box used to number the data store, and inside the main part of the
rectangle is a meaningful label for the data store, such as Student File, or
Transcripts. The DeMarco and Yourdon data store symbol consists of two parallel

Process Modeling

NOTES

Self-Instructional Material 111

System Analysis and Design

NOTES

112 Self-Instructional Material

lines, which may be depicted horizontally or vertically.

As mention earlier, sources/sinks are a}ways outside the information system and
define the boundaries of the system. Data must originate outside a system from
one or more sources, and the system must produce information to one or more
sinks (these are principles of open systems, and almost every information system
is an olﬁen system). If any data processing takes place inside the source/sink, it is
of no interest, because this p”rocessing takes place outside of the system we are
diagramming. A source/sink might consist of the following:

* Another organization or organization unit that sends data to or receives
information from the system you are analyzing (e.g., a supplier or an
academic department—in either case, the organization is external to the
system you are studying)

* A person inside or outside the business unit supported by the system you
are analyzing who interacts with the system (e.g., a customer or loan
officer)

¢ Anocther information system with which the system you are analyzing exchanges
information

Many times students who are just learning how to use DFDs will become confused
as to whether something is a source/sink or a process within a system. This
dilemma occurs most often when the data flows in a system cross office or departmental
boundaries so that some processing occurs in one office and the processed data are
moved to another office where additional processing occurs. Students are tempted
to identify the second office as a source/sink to emphasize the fact that the data have
been moved from one physical location to another (Figure 6.3a). However, we are
not concerned with where the data are physically located. We are more interested
in how they are moving through the system and how they are being processed. It
the processing of data in the other office may be automated by your system or the
handling of data there may be subject to redesign, then you should represent the
second office as one or more processes rather than as a source/sink (Figure 6.3b).

CUSTOMER
1\
Payment
Receipt
Make
[PaymentDatg | ot
A ing | Payment Data Deposit
De ent [
7 < .
Deposit Data BANK l
Credit Data CUSTOMER
MASTER

{a) An Impreperly drawn DFD showing a process as a source/sink,

CUSTOMER

Payment Data
_—

D j t
eposit Data SANK

{b) A DFD showing proper use of a process.

l CUSTOMER
MASTER

Fig. 6.3 Differences between source/sink and processes.

6.3.2 Developing DFDs: An Example

To illustrate how DFDs are used to model the logic of data flows in information
systems, we will present and work through an example. Consider Roop Chand
restaurant, a fictional restaurant in New Delhi, India, owned by Aman and Vansh
Dixit. Some are convinced that its hamburgers are the best in New Delhi, maybe
even in northern India. Many people, especially Delhi University students and
faculty, frequently eat at Roop Chand restaurant. The restaurant uses an information
system that takes customer orders, sends the orders to the kitchen, monitors the
goods sold and inventory, and generates reports for management.

The information system is shown as a data flow diagram in Figure 6.4. The
highest-level view of this system, shown in the figure, is known as context diagram.
Notice that this context diagram has only one process, no data stores, four data
flows, and three sources/sinks. The single process, labeled 0, represents the entire
system; all context diagrams have only one process, labeled 0. The sources/sinks
represent the environmental boundaries of the system.

CUSTOMER ' KITCHEN ‘

v /_—i\’ﬂ ;o ¥

Customer Order

Y

Foed Food Order
Ordering
System

N/

Management
Reports

Receipt

r

RESTAURANT
MANAGER

Fig. 6.4 Context diagram of Roop Chand restaurant’s food ordering system.

Because the data stores of the system are conceptually inside the one process, data
stores do not appear on a context diagram.

Process Modeling

NOTES

Sef,i"—lnstmcti-anal Material 113

System Analysis and Design

NOTES

114 Self-Instructional Material

The systems analyst must determine which processes are represented by the
single process in the context diagram. As you can see in Figure 6.5, we have
identified four separate processes. The main processes represent the major functions
of the system, and these major functions correspond to actions such as the following:

1. Capturing data from different sources (e.g., Process 1.0)

2. Maintaining data stores (e.g., Processes 2.0 and 3.0)

3. Producing and distributing data to different sinks (e.g., Process 4.0)

4. High-level descriptions of data transformation operations {e.g., Process 1.0).
These major functions often correspond to the activities on the main system menu.

We see that the system begins with an order from a customer, as was the case with
the context diagram. In the first process, labeled 1.0, we see that the customer
order 18 processed. The result is four streams, or flows, of data:

1. the food order is transmitted to the kitchen,

2. the customer order is transformed into a list of goods sold,
3. the customer order is transformed into inventory data, and
4

the process generates a receipt for the customer.

CUSTOMER KITCHEN
Customer Order =
¥| Receive and Food Order
. Transform
Receipt Customer

Food Order

| Goods Inventory
~ Sold Data Update
Goods Sold > Inventory
File File

_/

Formatted
Goods Sold Data

Formatted
Inventory Data

Goods Sold
Fite

Inventory
File

-+

Baily Inventory
Depletion Amounts

”
¢ —

Baily Goods Sotd
Amounts

tManagerment

Reports | RESTAURANT
MANAGER

Management
Reports

h

Fig. 6.5 Level-0 DFD of Roop Chand restaurant’s food ordering system.

Notice that the sources/sinks are the same in the context diagram and in this
diagram: the customer, the kitchen, and the restaurant’s manager. This diagram
is called a level-0 diagram because it represents the primary individual processes
in the system at the highest possible level. Each process has a number that ends
in .0 (corresponding to the level number of the DFD).

Two of the data flows generated by the first process, Receive and Transform
Customer Food Order, go to external entities, so we no longer have to worry about
them. We are not concerned about what happens outside of our system. Let’s trace
the flow of the data represented in the other two data flows. First, the data labeled
Goods Sold go to Process 2.0, Update Goods Sold File. The output for this process
is labeled Formatted Goods Sold Data. This output updates a data store labeled
Goods Sold File. If the customer order was for two cheeseburgers, one order of
fries, and a large soft drink, each of these categories of goods sold in the data store
would be incremented appropriately. The Daily Goods Sold Amounts are then used
as input to Process 4.0, Produce Management Reports. Similarly, the remaining
data flow generated by Process 1.0, Inventory Data, serves as input for Process
3.0, Update Inventory File. This process updates the Inventory File data store,
based on the inventory that would have been used to create the customer order.
For example, an order of two cheeseburgers would mean that Hoosier Burger now
has two fewer hamburger patties, two fewer burger buns, and four fewer slices of
American cheese. The Daily Inventory Depletion Amounts are then used as input
to Process 4. The data flow leaving Process 4.0, Management Reports, goes to the
sink Restaurant Manager.

Figure 6.5 illustrates many important concepts about information movement. Consider
the data flow Inventory Data moving from Process 1.0 to Process 3.0. We know
from this ‘diagram that Process 1.0 produces this data flow and that Process 3.0
receives it. However, we do not know the timing of when this data flow is produced,
how frequently it is produced, or what volume of data is sent. Thus, this DFD
hides many physical characteristics of the system it describes. We do know, however,
that this data flow is needed by Process 3.0 and that Process 1.0 provides these
needed data.

Also implied by the Inventory Data data flow is that whenever Process 1.0 produces
this flow, Process 3.0 must be ready to accept it. Thus, Processes 1.0 and 3.0 are
coupled with each other. In contrast, consider the link between Process 2.0 and
Process 4.0. The output from Process 2.0, Formatted Goods Sold Data, is placed
in a data store and, later, when Process 4.0 needs such data, it reads Daily Goods
Sold Amounts from this data store. In this case, Processes 2.0 and 4.0 are decoupled
by placing a buffer, a data store, between them, Now, each of these processes can
work at their own pace, and Process 4.0 does not have to be ready to accept input
at any time. Further, the Goods Sold File becomes a data resource that other
processes could potentially draw upon for data. '

6.3.3 Rules of Data Flow Diagramming

There is a set of rules that you must follow when drawing data flow diagrams.
Unlike system flowcharts, these rules allow you (or a CASE tool) to evaluate
DFDs for correctness. The rules for DFDs are given in Table 6.1.

Table 6.1 Rules of Data Flow Diagramming

Process:

A No process can have only outputs. It is making data from nothing (a miracle). If
an object has only outputs, then it must be a source.

B. No process can have only inputs (a black hole). If an object has only inputs, then
it must be a sink.

C. A process has a verb phrase label. J

Process Modeling

NOTES’

Self-Instructional Material 115

System Analysis and Desi
ystem Anatysis and Design | py 4o Store:

D. Data cannot move directly from one data store to another data store. Data must
be moved by a process.

E. Data cannot move directly from an outside source to a data store. Data must be
NOTES moved by a process that receives data from the source and places the data into
the data store.

F. Data cannot move directly to an outside sink from a data store. Data must be
moved by a process,

G. A data store has a noun phrase label.

Source/Sink:

H. Data cannot move directly from a source to a sink. It must be moved by a process
if the data are of any concern to our system, Otherwise, the data flow is not shown
on the DFD.

1. A sourcefsink has a noun phrase label.
Data Flow:

J. A data flow has only one direction of flow between symbols. It may flow in beth
directions between a process and a data store to show a read before an update.
The latter is usually indicated, however, by two separate arrows since these
happen at different times.

K A fork in a data flow means that exactly the same data goes from a common
location to two or more different processes, data stores, or sources/sinks (this
usually indicates different copies of the same data going to different locations).

L. A join in a data flow means that exactly the same data come from any of two or
more different processes, data stores, or sources/sinks to a common location,

M. A data flow cannot go directly back to the same process it leaves. There must be
at least one other process that handles the data flow, produces some other data
flow, and returns the original data flow to the beginning process.

N. A data flow to a data store means update (delete or change).
0. A data flow from a data store means retrieve or use.

P. A data flow has a noun phrase label. More than one data flow noun phrase can
appear on a single arrow as long as all of the flows on the same arrow move
together as one package.

Figure 6.6 illustrates incorrect ways to draw DFDs and the corresponding correct
application of the rules. The rules that prescribe naming conventions (rules C, G,
I, and P) and those that explain how to interpret data flows in and out of data stores
(rules N and O) are not illustrated in Figure 6.6.

In addition to the rules given earlier two DFD guidelines that often apply are
given below: '

1. The inpuis to a process are different from the outputs of that process. The
reason is that processes, because they have a purpose, typically transform
inputs into outputs, rather than simply pass the data through without
some manipulation. What may happen is that the same input goes in and
out of a process but the process also produces other new data flows that
are the result of manipulating the inputs.

116 Seif-Instructional Materia!

Process Modeling

Rule Incorrect Way : Correct Way
A.
NOTES
B.
D.
E.
F.
AN
+
H R
Vd
LENY

Fig. 6.6 Incorrect and correct ways to draw DFDs.

Objects on a DFD have unique names. Every process has a unique name.
There is no reason for two processes to have the same name. To keep a
DFD uncluttered, however, you may repeat data stores and sources/sinks.
When two arrows have the same data flow name, you must be careful that
these flows are exactly the same. It is easy to reuse the same data flow
name when two packets of data are almost the same, but not identical. A

Self-Instructional Material 117

System Analysis and Design

NOTES

118 Self-Instructional Malerial

“data flow name represents a specific set of data, and another data flow that
has even one more or one less piece of data must be given a different,
unigue name. '

6.3.4 Decomposition of DFDs

In the earlier example of Roop Chand restaurant’s food ordering system, we started
with a high-level context diagram. Upon thinking more about the system, we saw
that the larger system consisted of four processes. The act of going from a single
system to four component processes is called (functional} decomposition. Functional
decomposition is an iterative process of breaking the description or perspective
of a system down into finer and finer detail. This process creates a set of hierarchically
related charts in which one process on a given chart is explained in greater detail
on another chart. For the Roop Chand restaurant system, we broke down, or
decomposed, the larger system into four processes. Each resulting process (or -
subsystem) is also a candidate for decomposition. Each process may consist of several
subprocesses. Each subprocess may also be broken down into smaller units. Decomposition
continues until you have reached the point at which no subprocess can logically be
broken down any further. The lowest level of a DFD is called a primitive DFD,

Let’s continue with Roop Chand restaurant’s food ordering system to see how a
level-0 DFD can be further decomposed. The first process in Figure 6.5, called
Receive and Transform Customer Food Order, transforms a customer’s verbal food
order (e.g., “Give me two cheeseburgers, one small order of fries, and one regular
orange soda.”) into four different outputs. Process 1.0 is a good candidate process for
decomposition. Think about all of the different tasks that Process 1.0 has to perform:

1. receive a customer order,

2. transform the entered order into a form meaningful for the kitchen’s system,
3. transform the order into a printed receipt for the customer,

4. transform the order into goods sold data, and -

5. transform the order into inventory data.

At least five logically separate functions can occur in Process 1.0. We can represent
the decomposition of Process 1.0 as another DFD, as shown in Figure 6.7.

Customer == Customer
Order Receive Order | Transform Food Order .
Customer Order to v
Order Kitchen
\) \ Format } e
Fe AN, &
=~ Inventory
Customer Order Data

» Generate [——»

Customer Order Invento

Customer Order il ry

Decrements
‘r ...

Goods Sold Data

Generate Generate >
Customer Goods Sold
Aeceipt -Increments

Fig. 6.7 Level-1 diagram showing the decomposition of process 1.0, from the level-0
diagram for Roop Chand restaurant’s food ordering system.

Note that each of the five processes in Figure 6.7 is labeled as a subprocess of
Process 1.0: Process 1.1, Process 1.2, and so on. Also note that, just as with the
other data flow diagrams we have looked at, each of the processes and data flows
is named. You will also notice that no sources or sinks are represented. Although
you may include sources and sinks, the context and level-0 diagrams show the
sources and sinks. The data flow diagram in Figure 6.7 is known as level-1 diagram.
It we should decide to decompose Processes 2.0, 3.0, or 4.0 in a similar manner,
the DFDs we would create would alse be level-1 diagrams. In general, a level-n
diagram is a DFD that is generated from n nested decompositions from a level-
0 diagram,

Processes 2.0 and 3.0 perform similar functions in that they both use data input
to update data stores. Because updating a data store is a singular logical function,
neither of these processes needs to be decomposed further. We can, however,
decompose Process 4.0, Produce Management Reports, into at least three subprocesses:
Access Goods Sold and Inventory Data, Aggregate Goods Seold and Inventory Data,
and Prepare Management Reports. The decomposition of Process 4.0 is shown in
the level-1 diagram of Figure 6.8 .

Each level-1, -2, or -n DFD represents one process on a level-n-1 DFD; each DFD
should be on a separate page. As a rule of thumb, no DFD should have more than
about seven processes, because too many processes will make the diagram too
crowded and difficult to understand.

To continue with the decomposition of Roop Chand restaurant’s food ordering
system, we examine each of the subprocesses identified in the two level-1 diagrams
we have produced, one for Process 1.0 and one for Process 4.0. Should we decide
that any of these subprocesses should be further decomposed, we should create a
level-2 diagram showing that decomposition. For example, if we decided that Process
4.3 in Figure 6.8 should be further decomposed, we would create a diagram that
looks something like Figure 6.9. Again, notice how the subprocesses are labeled.

Daily Inventory
Depletion Amounts

Daily Goods f—e== 1 Inventory Data
Seld Amounts —

Access
I Goods Sold | Goods Sold Data

and Inventory

\ Data /

Aggregate
Goods Sold
and inventory
Data

h 4

Aggregated Data

Management .
Repors f
ammm——

Prepare
management I
Reports / :

]

Fig. 6.8 Level-1 diagram showing the decomposition of Process 4.0 from the level-0
diagram for Roop Chand restaurant’s food ordering system.

Process Modeling

NOTES

Self-Instructional Material 119

System Analysis and Design

NOTES

120 Self-Instructional Material

Aggregated Data Formatted Data . Management Reports
—_— Format Print —_
Management Management
Reports Reports

Fig. 6.9 Level-2 diagram showing the decomposition of Process 4.3 from the level-1
diagram for process 4.0 for Roop Chand restaurant’s food ordering system.

Just as the labels for processes must follow numbering rules for clear communication,
process names should also be clear yet concige. Typically, process names begin
with an action verb, such as Receive, Calculate, Transform, Generate, or Produce,
Pracess names often are the same as the verbs used in many computer programming
languages. Example process names include Merge, Sort, Read, Write, and Print.
Process names should capture the essential action of the process in just a few
words, yet be descriptive enough of the process’s action so that anyone reading the
name gets a good idea of what the process does. Many times, students just learning
DFDs will use the names of people who perform the process or the department in
which the process is performed as the process name. This practice is not very
useful, because we are more interested in the action the process represents than
the person performing it or the place where it occurs.

6.3.5 Balancing DFDs

When you decompose a DFD from one level to the next, there is a conservation
principle at work. You must conserve inputs and outputs to a process at the next
level of decomposition. In other words, Process 1.0, which appears in a level-0
diagram, must have the same inputs and outputs when decomposed into a level-
1 diagram. This conservation of inputs and outputs is called balancing.

Let’s look at an example of halancing a set of DFDs. Look back at Figure 6.4. This,
is the context diagram for Roop Chand restaurant’s food ordering system. Notice
that there is one input to the system, the customer order, which originates with
the customer. Notice also that there are three outputs: the customer receipt, the
food order intended for the kitchen, and management reports. Now look at Figure
6.5. This is the level-0 diagram for the food ordering system. Remember that all

_data stores and flows to or from them are internal to the system. Notice that the

same single input to the system and the same three outputs represented in the
context diagram also appear at level 0. Further, no new inputs to or outputs from
the system have been introduced. Therefore, we can say that the context diagram
and level-0 DFDs are balanced.

Now look at Figure 6.7, where Process 1.0 from the level-Q DFD has been decomposed.
As we have seen before, Process 1.0 has one input and four outputs. The single
input and multiple outputs all appear on the level-1 diagram in Figure 6.7. No new
inputs or outputs have been added. Compare Process 4.0 in Figure 6.5 with its
decomposition in Figure 6.8. You see the same conservation of inputs and outputs.

Figure 6.10 shows one example of what an unbalanced DFD could look like. The
context diagram shows one input to the system, A, and one output, B. Yet, in the
level-0 diagram, there is an additional input, C, and flows A and C come from

different sources. These two DFDs are not balanced. If an input appears on a level-
0 diagram, it must also appear on the context diagram. What happened with this
example? Perhaps, when drawing the level-0 DFD), the analyst realized that the
system also needed C in order to compute B. A and C were both drawn in the level-
0 DFD, but the analyst forgot to update the context diagram. When making corrections,
the analyst should also include “SOURCE ONE” and “SOURCE TWO” on the context
diagram. It is very important to keep DFDs balanced from the context diagram all
the way through each level of diagram you create.

A data flow consisting of several subflows on a level-n diagram can be split apart
on a level-n + 1 diagram for a process that accepts this composite data flow as
input, For example, consider the partial DFDs from Roop Chand restaurent illustrated
in Figure 6.11. In Figure 6.11(a), we see that a composite, or package, data flow,
Payment and Coupon, is input to the process. That is, the payment and coupon
always flow together and are input to the process at the same time. In Figure
6.11(b), the process is decomposed (sometimes referred to as exploded or nested)
into two subprocesses, and each subprocess receives one of the components of the
composite data flow from the higher-level DFD. These diagrams are still balanced
because exactly the same data are included in each diagram.

SOURCE

SINK

SOURCE A
ONE

Formatted C
Formatted A

SINK

SOURCE C
TWO

(&) Level-0 diagram
Fig. 6.10 An unbalanced set of DFDs.

Payment and Coupon

(a) Composite data flow

Process Modeling

NOTES

Self-Instructional Material 121

System Analysis and Design

NOTES

122 Seif-Instructional Material

The principle of balancing and the goal of keeping a DFD as simple as possible
leads to four additional, advanced rules for drawing DFDs. These advanced rules
are summarized in Table 6.2. Rule Q covers the situation illustrated in Figure
6.11. Rule R covers a conservation principle about process inputs and outputs. Rule
S addresses one exception to balancing. Rule T tells you how you can minimize

Payment
—_—

Coupon

{(b) Disaggregated data flows
Fig. 6.11 Example of data flow splitting.

clutter on a DFD.

Table 6.2 Advanced Rules Governing Data Flow Diagramming

Q.

A composite data flow on one level can be split inte component data flows
at the next level, but no new data can be added and all data in the
composite must be accounted for in one or more subflows.

The inputs to a process must be sufficient to produce the cutputs (including
data placed in data stores) from the process. Thus, all outputs can be
produced, and all data in inputs move somewhere: to another process or
to a data store outside the process or onto a more detailed DFD showing
a decomposition of that process.

At the lowest level of DFDs, new data flows may be added to represent
data that are transmitted under exceptional conditions: these data flows
typically represent error messages (e.g., “Customer not known; do you
want to create a new customer”?) or confirmation notices (e.g., “Do you
want to delete this record™?).

To avoid having data flow lines cross each other, you may repeat data
stores or sources/sinks on a DFD. Use an additional symbol, like a double
line on the middle vertical line of a data store symbol or a diagonal line
in a corner of a sink/source square, to indicate a repeated symbol.

-

Process Modeling

STUDENT ACTIVITY 6.1

1. What is the purpose of process modeling? What are the inputs to and deliverables from process
modeling in structured analysis. '

2. What is a data flow diagram? What characteristics and functions of data in information systems are
modeled by DFD? Why do systems analysts use DFDs?

Self-Instructional Material 123

System Anoalysis end Design

NOTES

124 Self-Instructional Material

6.4 TYPES OF DFDs

Four different types of data flow diagrams are used in the systems development
Process : '

(1) Current physical
(2) * Current logical
(3) New logical, and
(4) New physical
When structured analysis and design was first introduced in the late 1970s, it was

argued that system analysts should prepare all four types of DFDs in the order
given above.

(1) Current physieal. In a current physical DFD, process labels include the
names of people or their positions or the names of computer systems that
might provide some of the overall system’s processing. That is, the label
includes an identification of the “techmnology” used to process the data.
Similarly, data flows and data stores are often labeled with the names of
the actual physical media on which data flow or in which data are stored,
such as file folders, computer files, business forms, or computer tapes.

(2) Current logical. For the current logical model, the physical aspects of the

' system are removed as much as possible so that the current system is

reduced to its essence, to the data and the processes that transform them,
regardless of the system’s actual physical form.

(3) New logical. The new logical model would be exactly like the current
logical model if the user were completely happy with the functionality of
the current system but had-problems with how it was implemented. Typically,
though, the new logical model will differ from the current logical model by
having additional functions. In addition, obsolete functions will have been
removed and inefficient flows reorganized.

.{4) New physical. The DFDs for the new physical system represent the physical
implementation of the new system. The DFDs for the new physical system will
reflect the analyst’s decision about which system functions, including those
added in the new logical model, will be automated and which will be manual.

Experts used to recommend that all four levels of DFDs be constructed based on
the following three assumptions.

(©) Analysts knew little about the user’s business and needed to develop a
detailed current physical DFD in order to understand the user’s business,

() Users were not able to work with a new logical DFD right away.
(zii) Little work is needed to turn current logical DFDs into new logical DFDs.

The above three assumptions proved to be correct but overloocked a greater danger.
Analysts tended to devote a great deal of time to creating and refining a detailed
set of DFDs for the current physical system, most of which was thrown away in
the transition of the current logicél DFDs.

6.5 USING DATA FLOW DIAGRAMMING IN THE
ANALYSIS PROCESS

Learning the mechanisms of drawing DFDs is important, because DFDs have
proven to be essential tools for the structured analysis process. In addition to
drawing mechanically correct DFDs, there are some other important issues related
to process modeling which are of prime concern for an analyst. These issues
include : whether the DFDs are complete and consistent across all levels, how you
can use DFDs as a useful tool for systems analysis.

6.5.1 Guidelines for Drawing DFDs

We have already studied the simple mechanics of drawing diagrams and making
sure that the rules listed in Tables 6.1 and 6.2 are followed. Let us consider some
additional guidelines as given below: ‘

(1) Completeness

2) Consistency

(3) Timing considerations

(4) 'The iterative nature of drawing DFDs, and
(5) Primitive DFDs

1. Completeness -

The concept of DFD completeness refers to whether you have in your DFDs all of
the components necessary for the system you are modeling. If your DFD has data
flows that do not lead anywhere or data stores, processes, or external entities that
are not connected to anything else, your DFD is not complete. Most CASE tools
have built-in facilities that you can run to help you determine if your DFD is
incomplete. When you draw many DFDs for a system, it is not uncommon to make
errors. CASE tool analysis functions or walk through with other analysts can help
you identify such problems.

2. Consistency

The concept of DFD consistency refers to whether or not the depiction of the

system shown at one level of a nested set of DFDs is compatible with the depictions

of the system shown at other levels. A gross violation of consistency would be a
level-1 diagram with no level-0 diagram. Another example of inconsistency would
be a data flow that appears on a higher-level DFD but not on lower levels (also
a violation of balancing). Yet another example of inconsistency is a data flow
attached to one object on a lower-level diagram but also attached to another object
at a higher level; for example, a data flow named Payment, which serves as input
to Process 1 on a level-0 DFD, appears as input to Process 2.1 on a level-1 diagram
for Process 2.

CASE tools also have analysis facilities that you can use to detect such inconsistencies
across nested data flow diagrams. For example, when you draw a DFD using a
CASE tool, most tools will automatrcally place the inflows and outﬂows of a process
on the DFD you create when you inform the tool te decompbse that process. In’

Process Modeling

NOTES

Self-Instruction «f Material 125

System Anclysis and Design

NOTES

126 -Selif-fnstruc'tionai Material

manipulating the lower-level diagram, you could accidentally delete or change a
data flow that would cause the diagrams to be out of balance; thus, a consistency-
check facility with a CASE tool is quite helpful.

3. Timing

You fﬁay have noticed in some of the DFD examples presented in this Unit that
DFDs do not do a very good job of representing time. On a given DFD, there is
no indication of whether a data flow occurs constantly in real time, once per week,
or once per year. There is also no indication of when a system would run. For
example, many large transaction-based systems may run several large, computing-
intensive jobs in batch mode at night, when demands on the computer system are
lighter. A DFD has no way of indicating such overnight batch processing. When you
draw DFDs, then, draw them ag if the system you are modeling has never started
and will never stop.

4. Iterative Development

The first DFD you draw will rarely capture perfectly the system you are modeling.
You should count on drawing the same diagram over and over again, in an iterative
fashion. With each attempt, you will come closer to a good approximation of the
system or aspect of the system you are modeling. Iterative DFD development
recognizes that reﬁuirements determination and requirements structuring are interacting,
not sequential, subphases of the analysis phase of the SDLC.

One rule of thumb is that it should take you about three vevisions for each DFD
you draw. Fortunately, CASE tools make revising drawings a lot easier than it
would be if you had to draw each revision with a pencil and a template.

5. Primitive DFDs

One of the more difficult decisions you need to make when drawing DFDs is when
to stop decomposing processes. One rule is to stop drawing when you have reached
the lowest logical level, however, it is not always easy to know what the lowest
logical level is. Other more concrete rules for when to stop decomposing are given
below :

* When you have reduced each process to a single decision or calculation or
to a single database operation, such as retrieve, update, create, delete, or
read.

¢ When each data store represents data about a single entity, such as a
customer, employee, product, or order.

. When the system user does not care to see any more detail or when the
systems analysts have documented sufficient detail to do subsequent systems
development tasks.

¢ When every data flow does not need to be split further to show that
different data are handled in different ways. '

¢ When you believe that you have shown each business form or transaction,
computer online display, and report as a single data flow (this often means,
for example, that each gystem display and report title corresponds to the
name of an individual 't‘ilata flow).
b

¢ When you believe there is a separate process for each choice on all lowest-
level menu options for the system.

Obviously, the iteration guideline discussed earlier and the various feedback loops
in the SDLC (See figure 6.1} suggest that when you think you have met the rules
for stopping, you may later discover nuances to the system that require you to
further decompose a set of DFDs.

By the time you stop decomposing a DFD, it may be quite detailed. Seemingly
simple actions, such as generating an invoice, may pull information from several
entities and may also return different results depending on the specific situation.
For example, the final form of an invoice may be based on the type of customer
{which would determine such things as discount rate), where the customer lives
(which would determine such things as sales tax), and how the goods are shipped
(which would determine such things as the shipping and handling charges). At
the lowest-level DFD, called a primitive DFD, all of these conditions would
have to be met. Given the amount of detail called for in a primitive DFD,
perhaps you can see why many experts believe analysts should not spend their
time completely diagramming the current physical information system because
much of the detail will be discarded when the current logical DFD is created.

Using the guidelines presented in this section will help you to create DFDs that
are more than just mechanically correct. Your data flow diagrams will also be
robust and accurate representations of the information system you are modeling.
Primitive DFDs also facilitate consistency checks with the documentation produced
from other requirements structuring technigues and also makes it easy for you to
transition to system design steps. Having mastered the skills of drawing good
DFDs, you can now use them to support the analysis process.

Process Modeling

NOTES

Self-Instructional Material 127

System Analysis and Design

STUDENT ACTIVITY 6.2

1. What are the differences between new logical and new physical DFDs ?

2. How can DFDs be used as systems analysis tools ?

128 Self-Instructional Material

SUMMARY

Data flow diagram is a picture of the movement of data between external
entities and. the processes and data stores within a system.

A data store is data at rest, which may take the form of many different
physical representations. '

Process is the work or actions performed on data so that they are transformed,
stored, or distributed.

Context diagram is an overview of an organizational system that shows

the system boundary, external entities that interact with the system, and

the major information flows between the entities and the system.

Functional decomposition is an iterative process of breaking the description
of a system down inte finer and finer detail, which creates a set of charts
in which one process on a given chart is explained in greater detail on
another chart.

DFD completeness is the extent to which all necessary components of a
data flow diagram have been included and fully described.

DFD consistency is the extent to which information contained on one
level of a set of nested data flow diagrams is also included on other levels.

Primitive DFD is the lowest level of decomposition for a data flow diagram.

Gap analysis is the procegs of discovering discrepancies between two or
more sets of data flow diagrams or discrepancies within a single DFD.

TEST YOURSELF

Answer the following questions:

1.

List down the various tools for modeling processes of an information system.

2. Give examples of unbalanced set of DFDs.

Explain the rules for drawing good DFDs. What are the don’ts that need to
be followed while drawing DFDs?

What is decomposition? What is balancing? How can you determine if DFDs
are not balanced? What would be the consequences if we use DFDs that are
not balanced?

5. Compare data flow diagrams with context diagrams with an example.

What are the different types of DFDs used in the system development
process 7 List.

What are the primary differences between current physical and current
logical DFDs ?
State True or False:

(i) Duota flow diagram is a picture of the movement of data between external
entities and the processes that data stores within a system.

(if) A data store is data not at rest.

(iti) Level-0 diagram is a data flow diagram that represents a system’s
major processes, data flows, and data stores at a high level of detail.

(iv) Balancing is the conservation of inputs and outputs to a DFD process
when that process is decomposed to a lower level.

Process Modeling

NOTES

Self-Instructional Material 129

System Analysis and Design (v) Four different types of DFDs that are used in systems development
process are : current physical, current logical, new logical and new
physical.

(vi) DFD consistency is the extent to which information contained on one
level of a set of nested DFDs 'is-also included on other levels.
9. Fill in the blanks: '

€5 RO involves graphically representing the functions or process,
that capture, manipulate, store, and distribute data between a system
and its environment and between components within a system.

> NOTES

(€13 20 - WA is the work or actions performed on data se that they
are transformed, stored, or distributed.

@) .. ceweenseees 18 an overview of an organizational system that shows
the system boundaries, external entities that interact with the system,
and the major information flows between the entities and the system.

(€173 NUROOOORPN is an iterative process of breaking the description of a
system down into finer and finer detail, which creates a set of charts
in which one process on a given chart is explained in greater detail
on another chart.

) s is the extent to which all necessary components of a

DFD have been included and fully described.

(Vi) .vceieriieenee.. 18 the process of discovering discrepancies between two
or more sets of DFDs or discrepancies within a single DFD.

(vif)ccvvveeneee.. DFD g the lowest level of decomposition for a data flow
*diagram

7771 TP is the extent tc which information contained on one
ievel of a set of nested data flow diagrams is also included on other
levels.

ANSWERS

Test Yourself
8. State True or False:

(#) True (i) False

(i) True ' (iv) True

(v) True (vi) True

9. Fill 'in the blanks:

(i) Process modeling {{i) process

(iif} Context diagram (fv) Functional decomposition
(v) DFD completeness - (vi) Gap analysis

(vii) Primitive I (viii) DFD consistency

130 Self-Instructionat Material

CHAPTEHR

7

LOGIC MODELING

- " LEARNING OBJECTIVES

7.4 Introduction
7.2 Logic Modeling

7.2.1 Modeling a System's Logic

7.2.2 Deliverables and Outcomes
7.3 Data Dictionaries - '
7.4 Logic Modeling Using Structured English
7.5 Logic Modeling Using Decision Tables
7.6 Logic Modeling Using Decision Tre'es

7.7 Deciding Among Structured English, Decision Tables, and Decision
Trees

7.1 INTRODUCTION

In chapter 6, you learned how the processes that convert data to information are
key parts of information systems. As good as data flow diagrams (DFDs) are for
identifying processes, they are not very good at showing the logic inside the
processes. The processes on the primitive-level DFDs do not show even the most
fundamental processing steps. Just what accurs within a process? How are the
input data converted into output information? Because DFDs are not really
designed to show the detailed logic of processes, you must model process logic
using other techniques. In this vnit, you will learn technigues for modeling
process decision logic.

First of all, you will be introduced to Structured English, a modified version
of English language that is useful for representing the logic in information
system processes. You can use Structured English to represent all three of the
fundamental statements necessary for structured programming: sequence, selection
(choice) and repetition (iteration or loop) given in Figure 7.1,

In the sequence control structure, one program statement follows another in
logical order.

The selection control structure—also known as an IF-THEN-ELSE structure—

represents a choice. It offers two paths to follow when a decision must be made .

by a program.

Logic Maodeling

NOTES

Self-Instructional Material 131

System Analysis and Dész’gn

'

Is
| Statement False test
NOTES l condition
?
Statement]
ELSE THEN
l {statement) {statement)
Statement

'

()

{o)

Fig. 7.1 (¢) Sequence control structure. (&) Selection control structure (IF-THEN-ELSE).

Case,

Case 1 Case 2 Case 3 Casen

Statement 1 Statement 2 Statement 3 Statement n

'

Fig. 7.1 (c) Variation on selection: the case control structure.

A variation on the usual selection control structure is the case control structure.
This offers more than a single yes-or-no decision. The case structure allows
several alternatives, or “cases”, to be presented.

Loop
statement Loop

DO UNTIL
{test condition)

DO WHILE
(test condition)

False

DO UNTIL DO WHILE

182 Seif-Instructional Material Fig. 7.1 (&) Iteration control structures: DO UNTIL and DO WHILE.

In the repetition (iteration or loop) contro! structure, a statement may be repeated
as long as a certain condition remains true.

Second, you will learn about decision tables. Decision tables allow you to represent
a set of conditions and the actions that follow from them in a tabular format. When
there are several conditions and several possible actions that can oceur, decision
tables can help you keep track of the possibilities in a clear and concise way.

Third, you will learn how to model the logic of choice statements using decision
trees. Decision trees model the same elements as a decision table, but in a more
graphical manner.

Finally after reviewing these three technigues, you will learn when to use Structured
English, decision tables, and decision trees. This unit presents criteria you can use
to choose among these three logic modeling techniques.

7.2 LOGIC MODELING

In unit-6, you learned how the requirements for an information system are collected.
Systems analysts structure the requirements information into data flow diagrams
that model the flow of data into and through the information system. Data flow
diagrams, though versatile and powerful techniques, are not adequate for modeling
all of the complexity of an information system. Although decomposition allows you
. to represent a data flow diagram’s processes at finer and finer levels of detail, the
process names themselves cannot adequately represent what a process does and
how it does it. For that reason, you must represent the logic contained in the
process symbols on DFDs with other modeling techniques.

Logic modeling involves representing the internal structure and functionality
of the processes represented on data flow diagrams. These processes appear
on DFDs as little more than black boxes; we cannot tell from their names or CASE
repository descriptions precisely what they do and how they do it. Yet the structure
and functionality of a system’s processes are a key element of any information
system. Processes must be clearly described before they can be translated into a
programming language. In this unit, we will focus on techniques you can use
during the analysis phase to model the logic within processes; that is, data-to-
information transformations and decisions. In the analysis phase, logic modeling
will be complete and reasonably detailed, but it will also be generic in that it will
not reflect the structure or syntax of a particular programming language. You will
focus on more precise, language-based logic modeling in the design phase of the
system development life cycle.

7.2.1 Modeling a System’s Logic

The two subphases of systems analysis are requirements determination and
requirements structuring (Figure 7.2). Modeling a system’s logic is part of
requirements structuring, just as was representing the system with data flow
diagrams. Here, our focus is on the processes pictured on the data flow diagrams
and the logic contained within each process. You can also use logic modeling to
indicate when processes on a DFD occur (e.g., when a process extracts a certain
data flow from a given data store). Just as we use Iogic modeling to represent the
logic contained in a data flow diagram’s processes, we will use data modeling to
represent the contents and structure of a data flow diagram’s data flows and data
stores.

Logic Modeling

NOTES

Self-Instructional Material 133

System Analysis and Design

NOTES

1. Preliminary -
investigation
=z
6. Systems 2. System " EZ=5 Reguirements Determination
maintenance analysis | ‘*:—‘__‘:3_2‘ Requirements Structuring
5. Systems 3. System
* implementation design
4, Systems

development

134 Self-Instructional Material

Fig. 7.2 SDLC with the analysis phase highlighted.

7.2.2 Deliverables and Qutcomes

In structured analysis, the primary deliverables from logic modeling are structured
descriptions and diagrams that outline the logic contained within each DFD process
as well as diagrams that show the temporal dimension of the system—when
processes or events occur and how these events change the state of the system.

The deliverables that result from documenting the logic of a system’s processes
are given in Table 7.1.

Table 7.1 Deliverables for Logic Modeling

Where appropriate, each pracess on the lowest (primitive) level data flow diagrams
will be represented with one or more of the following :

* Structured English representation of process logic
» Decision table representation

_* Decision tree representation

State-transition diagram or table
¢ Sequence diagram

* Activity diagram

Note that the analyst decides if a process requires more than one representation
of its logic. Deliverables can also take the form of new entries into the project
dictionary or CASE repository. These entries may update process descriptions or,
if possible, store the new diagrams from logic and event-response modeling along
with associated repository entries.

Creating diagrams and descriptions of process logic is not an end in itself. Rather,
these diagrams and descriptions are created ultimately to serve as part of an
unambiguous and thorough explanation of the system’s specifications. These specifications
are used to explain the system requirements to developers, whether people or
automated code generators. Users, analysts, and programmers use logic diagrams
and descriptions throughout analysis to incrementally specify a shared understanding

of requirements, without regard for programming languages or development
environments. Such diagrams may be discussed during JAD sessions or project
review meeting. Alternatively, system prototypes generated from such diagrams
may be reviewed, and requested changes to a prototype will be implemented by
changing logic diagrams and generating a new prototype from a CASE tool or
other code generator. '

As we have seen with other tools and techniques used in systems analysis, there
are many ways to model logic in addition to the ones we focus on in this chapter.
Structured English, decision tables, and decision trees are all methods of logic
modeling that originated in the structured analysis approach. Yet they are not
the only logic modeling techniques that originated in structured analysis. There
are at least six different major approaches to structured systems development,
each with its own particular tools and techniques. The object-oriented analysis
and design, features three tools for logic modeling—state transition diagrams
sequence diagrams, and activity diagrams. All three techniques are taken from
the Unified Modeling Language approach to object-oriented systems analysis and
design. You can study state transition, sequence, and activity diagrams in order
to determine how they might fit in your analysis toolkit.

7.3 DATA DICTIONARIES

A data dictionary is a structured repository which contains information about the
data in the system. It gives the contents of each data flow and data store in a
structured way. It is an alphabetic arrangement of this information. There will
be as many different kinds of entries as there are models and descriptions of the
system. Figure 7.3, for example, shows a typical set of entries in a data (project)
dictionary. :

DFD

E-R Data Store Data Flow Process
Diagram Descriptions Descriptions Descriptions

N

A d

Data Structure
Descriptions

W

h 4

Data Element
Descriptions

Fig. 7.3 Data (project) dictionary components.

To describe the data contents and document it, all the pieces 'of data are studied.
The data is decomposed into the smallest meaningful units possible. The smallest

Logic Modeling

NOTES

Self-Instructional Material 135

System Analysis and Design

NOTES

186 Seif-Instructione! Material

unit of data that cannot be meaningfully decomposed any further is a data element.
A group of data which is handled as a unit is a data structure. A data structure may
contain a data element, or many data elements, and even other data structures.

A data dictionary also defines date flow and data stores. Data flows are data
structures in motion while data stores are data structures at rest-A data store is
a location where data structures are temporarily located. The three levels that
make up the hierarchy of data are illustrated in Figure 7.4.

Data Element Smallest unit of data
Y
Data Structure Group of data elements
A 4
L 4 v
Data Flow Data Store Group of data structures

Fig. 7.4 Logical data description hierarchy.

In a data dictionary, each data element, data structure, data flow and data store
of a system are described.
In constructing a data dictionary, the systems analyst considers many points.
These are given below:

({} Each data flow in the DFD has one data dictionary entry.

(@) Definitions must be readily accessible by name.

(i} There should be no redundancy in the data definition.

(tv) The procedure for writing definitions should be precise.

Advantages of Data Dictionary

A data dictionary has many advantages. These are given below: -

(z) The most obvious advantage is documentation; it is a valuable reference in
any organization. '

(@) Itimproves analyst/user communication by establishing consistent definitions
of various elements, terms, and procedures. During implementation, it
serves as a common base against which programmers who are working on
the system compare their data descriptions.

(#i) Control information maintained for each data element is cross-referenced
in the data dictionary. For example, programs that use a given data element
are cross-referenced in a data dictionary, which makes it easy to identify
them and make any necessary changes.

(iv) It is an important step in building a data base. Most DBMS (data base
management systems) have a data dictionary as a standard feature.

Disadvantages of Data Dictionary

A data dictionary may be used at high or low levels of analysis, but it does not
provide functional details, and it is not acceptable to many non-technical users.

7.4 LOGIC MODELING USING STRUCTURED
ENGLISH

You must understand more than just the flow of data into, through, and out of an
information system. You must also understand what each identified process does
and how it accomplishes its task. Starting with the processes depicted in the
various sets of data flow diagrams the analysis team have produced, they must
now begin to study and document the logic of each process. Structured English is
one method used to illustrate process logic.

Structured English is a modified form of English that is used to specify the
contents of process boxes in a DFD. It differs from regular English in that it uses
a subset of English vocabulary to express information system process procedures.
The same action verbs we listed in chapter-6 for naming processes are also used
. in Structured English. These include verbs such as read, write, print, sort, move,
merge, add, subtract, multiply, and divide. Structured English also uses noun
phrases to describe data structures, such as patron-name and patron-address. Unl1ke
regular English, Structured English does not use adjectives or adverbs. The whole '
point of using Structured English is to represent processes in a shorthand manner
that is relatively easy for users and programmers to read and understand. Because
there is no standard version, each analyst will have his or her own particular
dialect of Structured English.

It is possible to use Structured English to represent all three processes typical of
structured programming: sequence, conditional statements, and repetition.
Sequence requires no special structure but can be represented with one sequential
statement following ancther. Conditional statements can be represented with a
structure like the following:

BEGIN IF
‘IF Quantity-in-stock is less than Minimum-order-quantity THEN
GENERATE new order
ELSE
DO nothing
'END IF

Another type of conditional statement is a case statement where there are many
different actions a program can follow, but only one is chosen. A case statement
might be represented as given below:

READ Quantity-in-stock
SELECT CASE
CASE 1 (Quantity-in-stock greater than Minimum-order-quantity)
.~ DO nothing
CASE 2 (Quantity-in-stock equals Minimum-order-quantity)
DO nothing
CASE 3 (Quantity-in-stock is less than Minimum-order-quantity)
GENERATE new order
CASE 4 (Stock out)
INITIATE emergency reorder routine
END CASE

/

Logic Maceling

NOTES

Self-Instructivnal Materie! 137

System Analysis and Design Repetition can take the form of Do-Until loops or Do-While loops. A Do-Until loop

NOTES

138 Self-Insiructional Material

might be represented as given below :
DO
READ Inventory records
BEGIN IF
IF Quantity-in-stock is less than Minimum-order-quantity THEN
GENERATE new order
ELSE
DO nothing .
END IF
UNTIL End-of-file .)
A Do-While loop might be represented as given below :
READ Inventory records '
'WHILE NOT End-of-File DO
BEGIN IF
IF Quantity-in-stock is less than Minimum-order-quantity THEN
GENERATE new order
ELSE
DO nothing
END IF
END DO

Let us look at an example of how Structured English would represent the logic of
some of the processes identified in Roop Chand restaurant’s current logical inventory
control system (See Figure 7.5).

Invoices TOCK-
SUPPLIER CSJN-HAND
F 3 F \
Inventory Inventory
Added Used
Payments Invoicesl Amounts Amounts
Added fsi invENTORY 4—2520 |
Orders -
£ 30~ inventory
_ Levels
Generate Generate [~
Payments Orders ¢ Minimum Order
] Quantities

Fig. 7.5 Current logical DFD for Roop Chand restaurant’s inventory control s;ystem.

Four processes are depicted in Figure 7.5. Update Inventory Added, Update Inventory
Used, Generate Orders, and Generate Payments. Structured English representatmns
of each process given in Figure 7.5 are shown in Figure 7.6.

Process 1.0: Update Invent.ory'Added o
DO

READ next Invoice-item-record

3

FIND matching Inventory-record
ADD Quantity-added' from Invoice-item-record to Quantity-in-stock on Inventory-record .
UNTIL End-of-file ’

Process 2.0: Update Inveﬁtory Used
DC
READ next Stock-item-record
FIND matching Inventory-record

SUBTRACT Quantity-used on Stock-item-record from Quantity-in-stock on lnventory-
record

UNTIL End-of-file

Process 3.0: Generate Orders
DO
READ next Inventory-record
BEGIN IF
If Quantity-in-stack is less than Minimum-order-quantity THEN
GENERATE Order |
END IF
UNTIL End-or-file

Process 4.0: Generate Payments
READ Today's-date
Do
SORT Invoice-records by Date
READ next Invoice-record
BEGIN IF
IF Date is 30 days or greater than Today's-date THEN
GENERATE Payments
END IF
UNTIL End-of-file

Fig. 7.6 Structured English representations of the four processes shown in figure 7.3,

Notice that in this version of Structured English, the file names air connected with
hyphens, and file names and variable names are capitalized. Terms that signify
logical comparisons, such as greater than and less than, are spelled out rather than
represented by their arithmetic symbols. Also notice how short the ' Structured
English specifications are, considering that these specifications all describe level-
0 processes. The final specifications would model the logic in the Jowest-level
DFDs only. From reading the process descriptions in Figure 7.6 it should be
obvisus to you that much more detall would be required to actually perform the

processes described. In fact, creatmg Structured English representatmns of processes |

. in Higher-level DFDs is one method you can use to help you-decide if a partlcular
DFD needs further decomposition.
: ' o

Logic Modeling

NOTES

Self-Instructionae! Material 139

System Analysis and Design

NOTES

140 Selif-Instructional Material

Notice how the format of the Structured English process description mimics the
format usually used in programming languages, especially the practice of indentation.
This is the “structured part” of Structured English. Notice also that the language
used is similar to spoken English, using verbs and noun phrases. The language is
simple enough that a user who knows nothing about computer programming can
understand the steps involved in performing the various processes, yet the structure
of the descriptions makes it easy to eventually convert the process 'descriptions
into programming language. Using Structured English also means not having to
worry about initializing {rariables, opening and closing files, or finding related
records in separate files. These more-technical details are left for later in the
design process.

* Structured English is intended to be used as a communication technique for analysts

and users. Analysts and programmers have their own communication technique
pseudocode. Whereas Structured English resembles spoken English, pseudocode
resembles a programming language.

7.5 LOGIC MODELING USING DECISION TABLES

Structured English can be used to represent the logic contained in an information
system process, but sometimes a process’s logic can become quite complex. If
several different conditions are involved, and combinations of these conditions
dictate which of several actions should be taken, then Structured English may not
be adequate for representing the logic behind such a complicated choice. It is not
that Structured English cannot represent complicated logic; rather, Structured
English becomes more difficult to understand and verify as logic becomes more
complicated. Research has shown, for example, that people become confused in
trying to interpret more than three nested IF statements. When the logic is
complicated, a diagram may be much clearer than a Structured English statement.
A decision table is a diagram of process logic where the logic is reasonably
complicated. All of the possible choices and the conditions the choices depend on
are represented in tabular form, as illustrated in the decision table in Figure. 7.7.

Conditions/ Rules
Courses of Action
1 2 3 4 5 6
Stubs Employee type
Hours worked -] <30 <30 30 30 >30 >30
Action Pay base salary ' x x x
Stubs
Calculate houry wage x x x
_Calculate overtime : x
Produce Absence Report x

Fig. 7.7 Complete decision table for payroll syqtem.cxample

The dec1smn table in Figure 7.7 models the logic of a gencnc payroll system. The
table has three parts ithe condition stubs, the action stubs and the rujes. The
condition stubs contam the: various conditions that apply to the situation the table is
modeling. In Flgure 7 7, there are two condition stubs for employee type and hours

4

worked. Employee type has two values: “S,” which stands for salaried, and “H,” which
stands for hourly. Hours worked has three values: less than 30, exactly 30, and more
than 30. The action stubs contain all the possible courses of action that result from
combining values of the condition stubs. There are four possible courses of action in
this table: Pay Base Salary, Calculate Hourly Wage, Calculate Overtime; and Produce
Absence Report. You can see that not all actions are triggered by all combinations of
conditions. Instead, specific combinations trigger specific actions. The part of the table
that links conditions to actions is the section that contains the rules.

To read the rules, start by reading the values of the conditions as specified in the
first column: Employee type is “S,” or salaried, and hours worked is less than 30.
When both of these conditions occur, the payroll system is to pay the base salary.
In the next column, the values are “H” and “<30,” meaning an hourly worker who
worked less than 30 hours. In such a situation, the payroll system calculates the
hourly wage and makes an entry in the Absence Report Rule 3 addresses the
situation when a salaried employee works exactly 30 hours. The system pays the
base salary, as was the case for rule 1. For an hourly worker who has worked
exactly 80 hours, rule 4 calculates the hourly wage. Rule 5 pays the base salary
for salaried employees who work more than 30 hours. Rule 5 has the same action
as rules 1 and 3 and governs behaviour with regard to salaried employees. The
number of hours worked does not affect the outcome for rules 1,3, or 5. For these
rules, hours worked is an indifferent condition in that its value does not affect
the action taken. Rule 6 calculates hourly pay and overtime for an hourly worlzer
who has worked more than 30 hours.

Because of the indifferent condition for rules 1, 3, and 5, we can reduce the
number of rules by condensing rules 1, 3, and 5 into one rule, as shown in Figure
7.8. The indifferent condition is represented with a dash. Whereas we started with
a decision table with six rules, we now have a snnpler table that conveys the same
information with only four rules.

Conditions! Rules
Courses of Action

1 2 3 4
Employee type S H H H
Hours worked - - <30 30 >30
Pay base salary x
Calculate hourly wage . x x x
Calculate overtime x
Produce Absence Report x

Fig. 7.8 Reduced decision table for payroll system example.
In constructing these decision tables, we have actually followed a set of basic
procedures:

1. Name the conditions and the values that each condition can assume.
Determine all of the conditions that are relevant to your problem and then
determine all of the values each condition can take. For some conditions,
the values will be sinmiply “yes” or “no” (known as a limited entry). For
others, such as the conditions in Figures 7.7 and 7 .8, the conditions may
have more values (known as an extended entry}.

-

1)

' 2. Name all possible actions that can occur. The purpose of creating

Logic Modeling

NOTES

f

£

g Seif-]nsr;'ucrf;aﬁ;:;l Material 141

System Analysis and Design

NOTES

142 Seif-Instructional Material

decision tables is to determine the proper course of action given a parficular
set of conditions.

3. List all possible rules. When you first create a decision table, you have
to create an exhaustive set of rules. Every possible combination of conditions
must be represented. It may turn out that some of the resulting rules are
redundant or make no sense, but these determinations should be made.
only after you have listed every rule so that no possibility is overlooked.
To determine the number of rules, multiply the number of values for each
condition by the number of values for every other condition. In Figure 7.7,
we have two conditions, one with two values and one with three, so we
need 2 x 3, or 6 rules. If we added a third condition with four values, we
would need 2 x 3 x 4, or 24 rules.

When creating the table, alternate the values for the first condition, as we
did in Figure 7.7 for type of employee. For the second condition, alternate
the values but repeat the first vatue for all values of the first condition,
then repeat the second-value for all values of the first condition, and so on.
You essentially follow this procedure for all subsequent conditions. Notice
how we alternated the values of hours worked in Figure 7.7. We repeated
“<30” for both values of type of employee, “S” and “H.” Then we repeated
“30,” and then “»>30.”

4. Define the actions for each rule. Now that all possible rules have been
identified, provide an action for each rule. In our example, we were able
to figure out what each action should be and whether all of the actions
made sense. If an action doesn’t make sense, you may want to create an
“impossible” row in the action stubs in the table to keep track of impossible
actions. If you can’t tell what the system ought to do in that situation,
place question marks in the action stub spaces for that particular rule.

5. Simplify the decision table. Make the decision table as simple as possible
by removing any rules with impossible actions. Consult users on the rules
where system actions aren’t clear and either decide on an action or remove
the rule. Look for patterns in the rules, especially for indifferent conditions.
We were able to reduce the number of rules in the payroll example from
six to four, but greater reductions are often possible.

7.6 LOGIC MODELING USING DECISION TREES

A decision tree is a graphical technique that depicts a decision or choice situation
as a connected series of nodes and branches. Decision trees were first devised as a
management science technique to simplify a choice where some of the needed
information is not known for certain. By relying on the probabilities of certain
events, a management scientist can use a decision tree to choose the best course
of action. Although this type of decision tree is beyond the scope of our text, we can
use modified decision trees (without the probabilities) to diagram the same sorts of
situations for which we used decision tables. Why intreduce yet another diagramming
technique to do what a decision table does? Both decision tables and decision trees
are communication tools designed to make it easier for analysts to communicate
with users. Deciding exactly which technique to use depends on various factors,
which we discuss in detall in the next section, after you have an understandmg of

\

decision trees.” . = -, Pl

\
v

As used in requirements structuring, decision trees have two main compon'ent's:
decision points, which are represented by nodes, and atctions, which are represented

by ovals. Figure 7.9 shows a generic decision tree. To read a decision tree, you
begin at the root node on the far left. Each node is numbered, and each number
corresponds to a choice; the choices are spelled out in a legend for the diagram.
Each path leaving a node corresponds to one of the options for that choice. From
each node, there are at least two paths that lead to the next step, which is either
another decision point or an action. Finally, all possible actions are listed on the
far right of the diagram in leaf nodes. Each rule is represented by tracing a series
of paths from the root node, down a path to the next node, and so on, until an
“action oval is reached.

Legend:
1. Sun up?
2. What day is it?

Saturday

Go back to sleep .

Look back at the decision tables we created for the payroll system logic (Figures
7.7 and 7.8). There are at least two ways to represent this same information as
a decision tree. The first is shown in Figure 7.10. Here, all of the choices are
limited to two outcomes, either yes or no. However, looking at how the conditions
are phrased in the decision tables, you remember that hours worked has three
values, not two. You might argue that forcing a condition with three values into
a set of conditions that has only yes or no available as values is somewhat artificial.

Fig. 7.9 Generic decision tree,

Legend:
1. Salaried? No
2. Hours worked < 307
3. Mours worked = 307

Yes

Pay hourly wage, Pay hourly wage,
- Pay hourly wage Pay base salary

Fig. 7.10 Decision tree representation of the decision logic in decision tables shown in
figures 7.7 and 7.8, with only two choices per decision point.

Logic Modeling

" NOTES

Self-Instructional Material 143

System Anglysis and Design

NOTES

144 Self-Instructional Materia!

To preserve the original logic of the decision situation, you can draw your decision
tree as depicted in Figure 7.11. Here, there are only two conditions; the first
condition has two values and the second has three values, as is true in the decision
table. .)

Legend: Salaried

1. Type of employee
2. Hours worked

Pay hourly wage; Pay hourly wage:
Pay hourly wage Absence report Pay base salary

Fig. 7.11 Decision tree representation of the decision logic in the decision tables shown
in figures 7.7 and 7.8, with multiple choices per decision point.

We have waited until now to make two important points about decision tables and
decision trees. Once you have spent some time creating logic modeling aids such
as these, be ready to refine them by drawing the diagrams again and again. As was
the case with data flow diagrams, decision tables and decision trees benefit greatly
from iteration. The second point is that you should always share your work with
other team members and users to get feedback on the mechanical and content
accuracy of your work. Other team members and users will often provide insight
into issues you might have overlooked in describing the-logic. For that reason, it
is not uncommon for the analysis team leader to schedule a walkthrough at some
point during the requirements structuring process.

7.7 DECIDING AMONG STRUCTURED ENGLISH,
DECISION TABLES, AND DECISION TREES

How do you decide whether to use Structured English, decision tables, or decision
trees when modeling process logic? On one level, the answer is to use whichever

“method you prefer and understand best. For example, some analysts and users

prefer to see the logic of a complicated decision situation laid out in tabular form,
as in a decision table; others will prefer the more graphical structure of a decision
tree. Yet the issue actually extends beyond mere preferences. Just because you are
very adept at using a hammer doesn’t mean a hammer is the best tool for all home
repairs—sometimes a screwdriver or a drill is the best tool. The same is true of
logic modeling techniques: You have to consider the task you are performing and
the purpose of the techniques in order to decide which technique is best. The

relative advantages and disadvantages of Structured English, decision tables, and
decision trees for different situations are presented in Tables 7.2 and 7.3.

Table 7.2 Criteria for Deciding Among Structured English, Decision
Tables, and Decision Trees

'_ -]
Criteria Structured English | Decision Tables | Decision Trees
Determining conditions
and actions Second Best- Third Best Best
Transforming conditions
and actions into sequence Best Third Best Best
Checking consistency and
completeness Third Best Best Best

Table 7.8 Criteria for Deciding Between Decision Tables and Decision Trees

Criteria Decision Tables Decision Trees
Portraying complex logic Best Worst
Portraying simple problems Worst) Best
Making decisions Worst Best
More compact Best Worst
Easier to manipulate Best Worst

Table 7.2 summarizes the research findings for comparisons of all three techniques.
One study summarized in the table compared Structured English with decision
tables and decision trees and analyzed the techniques for two different tasks. The
first task was determining the correct conditions and actions from a description of
the problem, much the same situation analysts face when defining conditions and
actions after an interview with a user. The study found that decision trees were
the best technique to support this process because they naturally separate conditions
and actions, making the logic of the decision rules more apparent. Even though
Structured English does not separate conditions and actions, it was considered the
second-best technique for this task. Decision tables were the worst technigue. The
_ second task was converting conditions and actions to sequential statements, similar
to what an analyst does when converting the stated conditions and actions to the
sequence of pseudocode or a programming language. Structured English was the
best technique for this task, because it is already written sequentially, but researchers
found decision trees to be just as good. Decision tables were last again.

Both decision trees and decision tables do have at least one advantage over Structured
English, however. Both decision tables and trees can be checked for completeness,
consistency, and degree of redundancy. We checked all of our examples of decision
tables for completeness when we made sure that each initial table included all
possible rules. We knew the tables were complete when we multiplied the number
of values for each condition to get the total number of possible rules. Following
the other specific steps outlined earlier in the chapter will also help you check a
decision table’s consistency and degree of redundancy. The same procedures can be
easily adopted for decision trees, However, there are no such easy means to
validate Structured English statements, giving decision tables and trees at least
one advantage over Structured English.

Logic Modeling

NOTES

Self-Instructional Material 145

System Analysis and Design

NOTES

148 Self-Instructional Material

Resgearchers have alsc compared decision tables with decision trees (Table 7.3).
The pioneers of structured analysis and design thought decision tables were best
for portraying complex logic, whereas decision trees were better for simpler problems.
Others have found decision trees to be better for guiding decision making in
practice, but decision tables have the advantage of being more compact than
decision trees and easier to manipulate. If more conditions are added to a situation,
a decision table can easily accommodate more conditions, actions, and rules. If the
table becomes too large, it can easily be divided into subtables, without the inconvenience
of using the flowchart-like tree connections used with decision trees. Creating and
maintaining complex decision tables can be made easier with the help of computer.

Logic Modeling

STUDENT ACTIVITY 7.1

1. What are the inputs to and deliverables and outcomes from logic modeling?

2. List the various techniques te model decision logic.

Self-Instructional Material 147

System Analysis and Design

NOTES

148 Self-Instructional Material

SUMMARY

Logic modeling is one of the three key activities in the requirements
structuring phase of systems analysis. :

A data dictionary is a structured repository of data about data.
Structured English is the modified form of the English Ianguage used to
specify the logic of information system processes.

Decision table is a matrix representation of the logic of a decision, which
specifies the possible conditions for the decision and the resulting actions.
Condition stubs is that part of a decision table that lists the conditions
relevant to the decision.

Action stubs is that part of a decision table that lists the actions that
result for a given set of conditions.

Rules is that part of a decision table that specifies which actions are to be
followed for a given set of conditions.

Indifferent condition in a decision table, is a condition whose value does
not affect which actions are taken for two or more rules.

Decision tree is a graphical representation of a decision situation in which
decision points (nodes) are connected together by arcs (one for each alternative
on ‘a decision) and terminate in ovals (the action that is the result of all of
the decisions made on the path leading to that oval).

TEST YOURSELF

Answer the following questions : °

1.

Which modeling is to be conducted first while designing information system:
logic modeling or process modeling ? Can you bypass process modeling and
proceed to logic modeling ? How is logic modeling related to process modeling?
Explain.

What points should be considered in constructing a data dictionary? Be
specific.

What words are used in Structured English ? What types of words are not
used in Structured English ?

Is it possible to use syntax of a programming language in logic modeling in
the analysis phase ?

Explain how logic modeling helps the subsequent steps in system analysis
and design phase. ‘

6. “A data dictionary is a structured repository of data about data”. Discuss.

7. What is structured English and how is it similar to and different from

regular English? Why is structured English popular within users and programmers?
Explain how structured English can be used to represent different types of
logic constructs of structured programming.

What is pseudocode? Why do you use pseudocode when a technigue such as
structured English is available?

What are the components of a decision table? How do you find the number
of rules a decision table must cover? Why do you need a decision table when
structured English can represent complex logic? Which technique is better?

10. Explain the structure of a decision tree.

11. Is it possible to model the logic of repetition and sequence statements of
structured programming using decision trees? Explain.

12. Sta.te True or False :

(i) Logic modeling involves representing the internal structure and functionality
of the processes represented on DFDs.

(i) It is not possible to use structured English to represent all three

processes of structured programming: sequence, conditional statements
and repitition.

(fir) A decision table is a dlagram of process logic where the logic is reasonably
complicated.

(iv) A decision tree is not a graphical technique that depicts a decision or
choice situation as a connected series of nodes and branches.

13. Fill in the blanks :

() svveeereeennon.. is a modified form of the English language used to specify
the logic of information system processes.

1671 TR is a matrix representation of the loglc of a decision, whlch
specifies the possible conditions for the decision and the resulting actions.

(6779 IO is" a graphical representation of a decision situation in
which decision situation points are connected together by arcs and
terminate in ovals.

(i) iveecvrreenen... is that part of a decision table that specifies which actions
are to be followed for a given set of c0nd1t10ns

ANSWERS

Test Yourself
12. Stafe 'lhlle or False :

@) True @) False
(iit} True . (iv) False
13. Fill in the blanks : '
(f) Structured English (if) Decision table
(zzi) Decision tree {iv) Rules ‘

Logic Modeling

NOTES

Self-Instructional Material 149

CHAPTER

8

DESIGNING FORMS AND REPORTS
8.1 Introduction
82 Designing Forms and Reports
8.2.1 The Process of Designing Forms and Reports
8.2.2 Deliverables and Outcomes
8.3 Formatting Forms and Reports
8.3.1 General Formatting Guidelines
8.3.2 Highlighting Infarmation
8.3.3 Colour versus No-colour
8.3.4 Displaying Text .
8.3.5 Designing Tables and Lists
8.3.6 Paper versus Electronic Reports
8.4 Assessing Usability

'8.4.1 Usability Success Factors
8.4.2 Measures of Usability

8.1 INTRODUCTION

In this unit, you will learn guidelines-to follow when designing forms and reports.
In general, forms are used to present or collect information on a single item,
such as an employee, product, or event. Forms can be used for both input and
output. Reports, on the other hand, are used to convey information on a collection
of items. Form and report design is a key ingredient for successful systems.
Because users often equate the quality of a system with the quality of its input
and output methods, you can see that the design process for forms and reports
is an especially important activity. And because information can be collected and
formatted in many ways, gaining an understanding of design do’s and don'ts and
the trade-offs between different formatting options is useful for all systems analysts.

In this unit, first the process of designing forms and reports is briefly described,
and guidance on the deliverables produced during this process is also provided.
Guidelines for formatting information are then provided that serve as the building
blocks for designing all forms and reports. Finally we describe methods for
assessing the usability of forms and report designs.

Designing Forms
and Reports

NOTES

Self-Instructiona! Material 151

System Analysis and Design

NOTES

152 Self-Instructional Materia!

8.2 DESIGNING FORMS AND.REPORTS

This unit focuses on system design within the systems development life cycle
(see Figure 8.1). In this unit, we describe issues related to the design of system
inputs and outputs—forms and reports. In unit 9, we focus on the design of
dialogues and interfaces, which are how users interact with systems. Due to
the highly related topics and guidelines in these two units, they form one
conceptual body of guidelines and illustrations that jointly guide the design of
all aspects of system inputs and outputs. In each of these units, your objective
is to gain an understanding of how an analyst can transform information gathered
during analysis into a coherent design. Although all system design issues are
related, topics discussed in this unit on designing forms and reports are especially

relative to those in the following unit—the design of dialogues and interfaces.

N

1. Preliminary
investigation
. | ™~
6. Systems 2. Systems
maintenance analysis
Forms and Reports
: Dialogues and Interfaces
5. Systems 3. Systems .
implementation [design Files and Dalabases
. =\ Process
N LCutputiinput
4. Systems
development

Fig. 8.1 SDLC with logical design phase highlighted

System inputs and outputs—forms and reports—were identified during requirements
structuring. The kinds of forms and reports the system will handle were established
as part of the design strategy formed at the end of the analysis phase of the
systems development process. During analysis, however, an analyst may not
have been concerned with the precise appearance of forms and reports; his/her °
concerns likely focused on which forms or reports need to exist and their contents.
An analyst may have distributed prototypes of forms and reports that emerged
during analysis as a way to confirm requirements with users. Forms and reports
are integrally rélated to various diagrams developed during requirements structuring.
For example, every input form will be associated with a data flow entering a
process on a DFD, and every output form or report will be a data flow produced
by a process on a DFD. It means that the contents of a form or report correspond
to the data elements contained in the associated data flow. Further, the data on
all forms and reports must conéist of data elements in data stores and on the E- -
R data model for the application, or must be computed from these data elements.
(In rare instances, data simply go from system input to system output without
being stored within the system.) It is common that, as an analyst designs forms
and reports, he/she will discover flaws in DFDs and E-R diagrams; these diagrams
should be updated as designs evolve:

If you are unfamiliar with computer-based information systems, it will be helpful
to clarify exactly what we mean by a form or report. A form is a business document
that contains some predefined data and often includes some areas where additional
data are to be filled in. Most forms have a stylized format and are usually not in
a simple row and column format. Examples of business forms are product order
forms, employment applications, and class registration sheets. Traditionally, forms
have been displayed on a paper medium, but today video display technology allows
us to duplicate the layout of almost any printed form, including an organizational
logo or any graphic, on a video display terminal. Forms displayed on a video
" display may be used for data display or data entry. Additional examples of forms
are an electronic spreadsheet, a computer sign-on or menu, and an ATM transaction
layout. On the Internet, form interaction is the standard method of gathering and
displaying information when consumers order products, request product information,
or query account status. '
A report is a business document that contains only predefined data; it is a passive
document used solely for reading or viewing. Examples of reports include invoices,
weekly sales summaries by region and salesperson, or a pie chart of population by
age categories (See Table 8.1).

Table 8.1 Common Types of Business Reports in Organizations

Report Name Purpose

Scheduled Reports Reports produced at predefined intervals—daily, weekly,
or monthly—to support the routine informational needs
of an organization.

Key-Indicator Reports Reports that provide a summary of critical information
on a recurring basis.

Exception Reports Reports that highlight data that are out of the normal
operating range,

Drill-Down Reports Reports that provide details behind the summary values
on a key-indieator or exception report.

An-hoc Reports Unplanned information requests in which information is
gathered to support a nonroutine decision.

We usually think of a report as printed on paper, but it may be printed to a
computer file, a visual display screcn, or some other medium such as microfilm.
Often a report has rows and columns of data, but a report may be of any format—
for example, mailing labels. Frequently, ‘the differences between a form and a
report are subtle. A report is only for reading and often contains data about multiple
unrelated records in a computer file. In contrast, a form typically contains data
from only one record or is based on one record, such as data about one customer,
one order, or one employee. The guidelines for the design of forms and reports are
very similar. '

8.2.1 The Process of Designing Forms and Reports

Designing forms and reports' is a user-focused activity that typically follows a
prototyping approach (See Figure 2.5). First, an analyst must gain an understanding
of the intended user and task objectives by collecting initial requirements during
requirements determination. During this process, several questions must be answered.
These questions attempt to answer the “who, what, when, where, and how” related
to the creation of ail forms or reports (See Table 8.2).

Désigning Forms
and Reports

NOTES

Self-Instructional Material 153

System Analysis and Design

NOTES

154 Self-Instructional Material

Table 8.2 Fundamental Questions When Desighing Forms and Reports

1. Who will use the form or report?
2. What is the purpose of the form or report?
3. When is the form or report needed and used?

4. Where does the form or report need to be delivered and used?

5. How many people need to use or view the form or report?

Gaining. an understanding of these questions is required first step in the creation
of any form or report.

. x

For example, understanding who the users are-—their skills and abilities—will
greatly enhance an 'analysts aBility to create an effective design. In other words,
are the users experienced computer users or novices? What are the educational
level, business background, and task-relevant knowledge of each user? Answers to
these questions will provide guidance for both the format and content of the
designs. Also, what is the purpose of the form or report? What task will users be
performing and what information is required to complete this task? Other questions
are -also important to consider. Where will the users be when performing this
task? Will users have access to online systems or will they be in the field? Also,
how many people will need to use this form or report? If, for example, a report
is being produced for a single user, the design requirements’and usability assessment
will be relatively simple. A design for a larger audience, however, may need to go
through a more extensive requirements collection and usability assessment process.

After collecting the initial requirements, an analyst structures and refines this
information into an initial prototype. Structuring and refining the requirements
are completed independently of the users, although he/she may need to occasionally
contact users in order to clarify some issue overlooked during analysis. Finally,
he/she asks users to review and evaluate the prototype. After reviewing the
prototype, users may accept the design or request that changes be made. If
changes are needed, the analyst will repeat the construction-evaluate-refinement
cycle until the design is accepted. Usually, several iterations of this cycle occur
during the design of a single form or report. As with any prototyping process, he/
she should make sure that these iterations occur rapidly in order to gain the
greatest benefits from this design approach.

The initial prototype may be constructed in numerous environments, in¢luding
Windows, Linux, Macintosh, or HTML. The obvious choice is to iémploy standard
development tools used within the analyst’s organization. Often, initial prototypes
are simply mock screens that are not working modules or systems. Mock screens
can be produced from a word processor, computer graphics design package, electronic
spread-sheet, or even on paper. It is important to remember that the focus of this
activity is on the design—content and layout—of forms and reports; of course, the
analyst must also consider how specific forms and reports will be implemented.
It is fortunate that tools for designing forms and reports are rapidly evolving,
making development faster and easier. In the past, inputs and cutputs of all
types were typically designed by hand on a coding or layout sheet. For example,
Figure 8.2 shows the layout of a data input form using a coding sheet.

SYSTEM
PROGRAM Customer information Entry
PROGRAMMER SHIV DATE :

1 23 485 67 8 8101112131415161718102021222232425262728293031

Cl|U|S|T|OIM|E|R IINIFIOIR|M|A|T|t|ON
CIUISITIOIMIE]IR NJUIMIBIEIR
NJA|M|E

B A S N\ IO U JURIDS P NS SR S N S SR S S S SN S S S R
O
-
<

B T L T . e L v . A B,

1t 23 45 6 7 8 910111213141516171819202122232425262728293031

Fig. 8.2 The layout of a data input form using a coding sheet

Although coding sheets are still used, their importance has diminished due to
significant changes in system operating environments and the evolution of automated
design tools, Prior to the creation of graphical operating environments, for example,
analysts designed many inputs and outputs that were 80 columns (characters) by
25 rows, the standard dimensions for mast video displays. These limits.in s¢creen
dimensions are radically different in graphical operatmg environments such as
Microsoft’s Windows or the Web, where font sizes and'screen dimensions can
change from user to user. Consequently, the creation of new tools and development
environments was needed to help analysts and programmérs (;levelop these graphical
. and flexible designs. Figure 8.3 shows an example of, frhh game data input form
as designed in Microsoft's Visual Basic NET. Nate the varr.é!:y of fonts, sizes, and
hlghhghtmg that was used. lee.n the need for rap1d 1terat1ve development When

Designing Forms
and Reports

NOTES

Self-Instructional Material 155

System Analysis and Design designing forms and reports, tools that seamlessly move prototype designs to

NOTES

156 Selflnstrizticnal Mulerial

functional systems are becoming standard in most professional development organizations.

" Customer Information Entry

Customer Information

— CUSTOMER INFORMATION

Customer Number :

Name :

Address :

City :
State :

Pin code :

BB B e e By
g

Save Help Exit

Fig. 8.3 A data input screen designed in Microsoft’s Visual Basic. NET

8.2.2 Deliverables and Qutcomes

Each SDLC phase helps an analyst to construct a system. In order to move from
phase to phase, each activity produces some type of deliverable that is used in a
later phase or activity, For example, within the preliminary investigation phase of
the SDLC, the Baseline Project Plan serves as input to many subsequent SDLC
activities. In the case of designing forms and reports, design specifications are the
major deliverables and are inputs to the system development phase. Design specifications
have three sections :

1.Narrative overview
2. Sample design
3. Testing and usability assessment

The first section of a design specification contains a general overview of the characteristics
of the target users, tasks, system, and environmental factors in which the form or
report will be used. The purpose is to explain to those who will actually develop
the final form why this form exists and how it will be used so that they can make
the appropriate implementation decisions. In this section, an analyst lists general -
information and the assumptions that helped shape the design. For example, Figure
8.4 shows an excerpt of a design specification for a Customer Account Status form
for Sheelak Ram Furniture. The first section of the specification, Figure 8.4(a),
provides a narrative overview containing the relevant information to developing
and using the form within SRF. The overview explains the tasks supported by the
form, where and when the form is used, characteristics of the people using the
form, tht? ‘technology delivering the form, and other pertinent information. For
example if the form is delivered on a visual display terminal, this section would
describe t}le capabilities of this device, such as whether it has a touch screen and
whethér colour and a mouse are avallable

{a) Narrative overview

Form: Customer Account Status

Users; Customer account representatives within corporate offices

Tasks: Assess customer account information : address, account
balance, year-to-date purchases and payments, credit limit,
discount percentage and account status

System: Novell Network, Microsoft Windows

Environment: Standard office environment

{b) Sample design
El(ol[x]

Sheelak Ram Furniture

CUSTOMER ACCOUNT STATUS
Page:

Today.
Customer Number :

Name : [

Address :

City -

State : r New Account J

Pincode :
r Print) |

liF’rior Screen ‘

r CUSTOMER INFORMATION

Help] |

| Account Details |

(ACCOUNT SNFORMATION

YTD- Purchases:

YTD-Payment:
Credit Limit: [Nextscreen |
Discount percentage: [- J
Exit

Outstanding Balance:

Status: Active

{c) Testing and usability assessment
User Rated Perceptions (average — Users):

consistency [— = consistent to — = inconsistent]:
Sufficiency [— = Sufficient to — = insufficiency]: ,
accuracy [— = accurate to — = inaccurate]: 4

’

Fig. 8.4 Design specification for the design of forms and reports

In the second section of the specification, Figure 8.4(b}, a sample design of
the form is shown. This design may be hand drawn using a ceding sheet,
although, in most instances, it is developed using standard development
tools. Using actual development tools allows the design to be more
thoroughly tested and assessed. The final section of the specification,
Figure 8.4(c), provides all testing and usability assessment information.
Procedures for assessing designs are described later on in this unit. Some
specification information may be irrelevant when designing some forms
and reports. For examples the deSIgI;i of a sunple Yesto selection form
may be so straightforward that np’ usablhty Hssessment is needed. Also,
much of the narrative overview - may 'bé unnecessary unless intended to
-jughhght s?me exception that must bé con51dered during implementation.

o

Designing Forms
and Reports

NOTES

.|.'| .

Self-Instrizctional Material 157
7 .

System Analysis and Design

STUDENT ACTIVITY 8.1

1. What types of information are generally collected while designing forms and reports in the prototyping
approach? Describe the prototyping process of designing forms and reports.

2. What are the inputs to design phase of forms and reports? What are its deliverables? Explain in brief.

158 Seif-{fgt?u'ctionai Matlerial

8.3 FORMATTING FORMS AND REPORTS

A wide variety of information can he provided to users of information systems,
ranging from text to video to audic. As technology continues to evolve, a greater
variety of data types will be used. Unfortunately, a definitive set of rules for
delivering every type of information to users has yet to be defined, and these rules
are continuously evolving along with the rapid changes in technology. Nonetheless,
a large body of human-computer interaction research has provided numercus general
guidelines for formatting information. Many of these guidelines will undoubtedly
apply to the formatting of information on yet-to-be-determined devices. Keep in
mind that the mainstay of designing usable forms and reports requires the analyst’s
active interaction with users. If this single and fundamental activity occurs, it is
likely that he/she will create effective designs.

For example, Personal Digital Assistants (PDAs) such as the Palm Pilot or Microsoft’s
Pocket PC are becoming increasingly popular. PDAs are used to manage personal
schedules, send and receive electronic mail, and browse the Web. One of the
greatest design challenges for mobile computing platforms is in the design of the
human-computer interface. The video display on a mobile device is significantly
smaller than a full-size display, and some devices do not have a colour display. For
example, surfing the Web on a PDA ig difficult because most Internet sites assume
that users will have a full-size, colour display. To address this problem, Web
browsers on most PDAs are “smart” and automatically shrink images so that the
user’s viewing experience is adequate. Alternatively, a growing number of Websites
are designed with the PDA user in mind. Such sites are designed to be viewed an
any type of display or device through the use of emerging standards such as
Cascading Style Sheets. As these and other mobile computing devices, such as ali-
in-one cellular phones, evolve and gain popularity, standard guidelines will continue
to evolve that will make the process of designing interfaces for them much less
challenging.

8.3.1 General Formatting Guidelines

Over the past several years, industry and academic researchers have investigated
how the format of information influences individual task performance and perceptions
of usability. Through this work, several guide-lines for formatting information
have emerged (See Table 8.3),

Table 8.3 General Guidelines for the Design of Forms and Reports

Meaningful Titles:

Clear and specific titles describing content and use of form or report
Revision date or code to distinguish a form or report from prior versions
Current date, which identifies when the form or report was generated

Valid date, which identifies on what date (or time) the data in the form or report were
accurate

Meaningful Information:
Only needed information should be displayed
Information should be provided in a manner that is usable without modification

Balance the Layout:

Information should be balanced on the screen or page

Designing Forms
and Reports

NOTES

A nstructional Material 159

System Analysis and Design

NOTES

160 Self-Instructional Material

Adequate spacing and margins should be used

All data and ehtry fields should be clearly labeled
Design an Easy Navigation System:

Clearly show how to move forward and backward

Clearly show where you are (e.g., page 1 of 3)

Notify user'when on the last page of a multipaged sequence . N

The guidlines given in Table 8.3, reflect some of the general truths that apply to
the formatting of most types of information.

The differences between a well-designed form or report and one that is poorly
designed will often be obvious. For example, Figure 8.5(a), shows a poorly designed
form for viewing the current account balance for a SRF customer. Figure 8.5(5)
(page 2 of 2) is a better design that incorporates several general guidelines from
Table 8.3. Sample data is not shown in Figure 8.5.

Difficult to read: information
is packed too tightly

Vague fitle

‘Shevak Lal Furniture

CUSTOMER INFORMATION

Customer No.:
Name:

Address:

City State-Pincode:
YTD-Purchase:
Credit Limit:
YTD-Payments:
Discount %: v
Purchase:

Payment:

Purchase:

‘Payment

Payment:

Purchase:

Payment:

Payment - .

Status: Active

f

|
No summary
of account activity

-

No navigaticn information

(a) Poorly designed form

The first major difference hetween the two forms has to do with the title. The title
on Figure 8.5(z) is ambiguous, whereas the title on Figure 8.5(a) clearly and
specifically describes the contents of the form. The form in Figure 8.5(%) also
includes the date on which the form was generated so that, if printed, it will be
clear-to the reader when this occurred. Figure 8.5(c) displays information that is
extraneous to the intent of the form—viewing the current account balance—and
provides information that is not in the most useful format for the user. For
example, Figure 8.5(a) provides all customer data as well as account transactions
and a summary of year-te-date purchases and payments. The form does not, however,

provide the current outstanding balance of the account; a user who desires this
information must make a manual calculation. The layout of information between
the two forms also varies in balance and information density. Gaining an understanding
of the skills of the intended system users and the tasks they will be performing
is invaluable when constructing a form or report. By following these general
guidelines, an analyst’s chances of creating effective forms and reports will be
enhanced. In the next sections, we will discuss specific guidelines for highlighting
information, using colour, displaying text, and presenting numeric tables and lists.

Easy to read:
clear, balanced layout

Clear title

[l S_he'_aia'k R_ég;n Furniture

Sheelak Ram Furniture Page : «—
Detail Customer Account Information T '
Customer Number : oda)'r’.
Name :
DATE PURCHASE PAYMENT CURRENT
BALANCE
YTD-SUMMARY .
F
Help 1 Prior Screen Exit 4+—

Summary of Clear navigation

account information

information

(6) Improved design for form

Fig. 8.5 Contrasting customer information forms

8.3.2 Highlighting Information

As display technologies continue to improve, a greater variety of methods will be
available to an analyst for highlighting information. Table 8.4 provides a list of the
most commonly used methods for highlighting information.

Table 8.4 Methods of Highlighting

Blinking and audible tones

Colour differences

Intensity differences

Size differences

Font differences

Reverse video

Boxing

Underlining

All capital letters

Offsetting the position of nonstandard information

1
|

Designing Forms
and Reports

NOTES

Self-tnstructional Material 161

System Analysis and Design Given this vast array of options, it is more important than ever to consider how

NOTES

162 Self-Instructional Material

highlighting can be used to enhance an output and not prove a distraction. In general,
highlighting should be used sparingly to draw the user to or away from certain information
and to group together related information. There are several situations when highlighting
can be a valuable technique for conveying special information:

* Notifying users of errors in data entry or processing
* Providing warnings to users regarding possible problems such as unusual
data values or an unavailable device

* Drawing attention to keywords, commands, high-priority messages, and
data that have changed gone outside normal operating ranges

Additionally, many highlighting techniques can be used singularly or in tandem,
depending upon the level of emphasis desired by the designer. Figure 8.6 illustrates
a form where several types of highlighting are used. Sample data is not shown in
Figure 8.6.

Lant 8ize, intensity I l—A'.'. capital letters _‘

D S'heela_k Ram Fumiture

Sheelak Ram Furniture - Page :
Detait Customer Account information Today :
Customer Number:
Name:
v
DATE PURCHASE PAYMENT CURRENT
: BALANCE
YTD-SUﬁnARY
4
Help Prior Screen ‘ [Exit
f Boxing J 1 Intensity differences]

Fig. 8.6 Customer account status display using various highlighting techniques

In this example, boxes clarify different categories of data, capital letters and different
fonts distinguish labels from actual data, and bolding is used to draw attention to
important data.

Much research has focused on the effects of varying highlighting techniques on
task performance and user perceptions. A general guideline resulting from this
research is that highlighting shouid be used conservatively. For example, blinking
and audible tones should only be used to highlight critical information requiring
an immediate response from the user. Once a response is made, these highlights
should be turned off. Additionally, highlighting methods should be consistently
used and selected based upon the level of importance of the emphasized information.
1t is also important to examine how a particular highlighting method appears on
all possible output devices that could be used with the system. For example, some
colour combinations may convey appropriate information on one display configuration
but wash out and reduce legibility on another.

The continued evolution of graphical operating environments such as Windows,
Macintosh, and the Web has provided designers with some standard highlighting
guidelines. However, these guidelines are often quite vague and are continuously
evolving, leaving a great deal of control in the hands of the systems developer.
Therefore, in order for organizations to realize the benefits of using standard
graphical operating environments—such as reduced user training time and interperability
among systems—an analyst must be disciplined in how he/she uses highlighting.

8.3.3 Colour Versus No-Colour

‘Colour is a powerful tool for the designer in influencing the usability of a system.
When applied appropriately, colour provides many potential benefits to forms and
reports, which are summarized in Table 8.5. As the use of colour displays became
widely available during the 1980s, a substantial amount of colour versus no-colour
research was conducted. The objective of this research was to gain a better understanding
of the effects of colour on human task performance.

The general findings from this research were that the use of colour had positive
effects on user task performance and perceptions when the user was under time
constraints for the completion of a task. Colour was also beneficial for gaining
greater understanding from a display or chart. An important conclusion from this
research was that colour was not universally better than no colour. The benefits
of colour only seem to apply if the information is first provided to the user in the
most appropriate presentation format. That is, if information is most effectively
displayed in a bar chart, colour can be used to enhance or supplement the display.
If information is displayed in an inappropriate format, colour has little or no effect
on improving understanding or task performance.

There are several problems associated with using colour, also summarized in Table 8.5.

Most of these dangers are related more to the technical capabilities of the display
and hard-copy devices than misuse. However, colour blindness is a particular user
issue that is often overlooked in the design of systems; many people all over the
world have some form of colour blindness, It is recommended that an analyst first
designs video displays for monochrome and allow colour {(or better yet, a flexible
palette of colours) to be a user-activated option. It is suggested that an analyst
limits the pumber of colours and where they are applied, using colour primarily
as a tool to assist in the highlighting and formatting of information.

Table 8.5 Benefits and Problems from Using Colour

Benefits from Using Colour :
Soothes or strikes the eye.
Accents an uninteresting display.

" Facilitates subtle discriminations in complex displays.
Emphasizes the logical organization of information.
Draws attention to warnings.

Evokes more emotional reactions.

Problems from Using Colour :

Colour pairings may wash out or cause problems for some users (e.g., colour blindness).
Resolution may degrade with different displays.

Colour fidelity may degrade on different displays.

Printing or conversion to other media may not easily translate.

Designing Forms
and Reporis

NOTES

Self-Instructional Moterial 163

System Analysis and Design

NOTES

164 Self-Instructional Material

8.3.4 Displaying Text

In business-related systems, textual output is becoming increasingly important as
text-based applications such as electronic mail, bulletin boards, and information
services are morc widely used. The display and formatting of system help screens,
which often contain lengthy textual descriptions and examples, is one example of
textual data that can benefit from following a few simple guidelines that have
emerged from past research. These guidelines are given in Table 8.6,

Table 8.6 Guidelines for Displaying Text

Case Display text in mixed uppercase and lowercase and use conventional
punctuation.

Spacing Use double spacing if space permits. If not, place a blank line
between paragraphs.

Justification Left justify text and leave a ragged-right margin.

Hyphenation Do not hyphenate words between lines.

Abbreviations Use abbrevialions and acronyms only when they arc widely
understood by users and are significantly shorter than the full
text.

The first guideline is simple: The text should be displayed using common writing
conventions such as mixed uppercase and lowercase letters and appropriate punctuation.
For large blocks of text, if space permits, text should be double spaced. However,
if the text is short, or rarely used, it may he appropriate to use single spacing and
place a blank line between each paragraph. Left justify text and use a ragged-right
margin—resecarch shows that a ragged-right margin makes it easier to find the
next line of text when reading than when text is both left and right justified.

When displaying textual information, be careful not to hyphenate words between
lines or use obscure abbreviations and acronyms. Users may not know whether
the hyphen is a significant character if it is used to continue words across lines.
Information and terminology that are not widely understood by the intended users
may significantly influence the usability of the system. Thus, abbreviations and
acronyms should be used only if they arc significantly shorter than the full text
and are commonly known by the intended system users. '

8.3.5 Designing Tables and Lists

Unlike textual information, where context and meaning are derived through reading,
the context and meaning of tables and lists are derived from the format of the
information. Consequently, the usability of information displayed in tables and
alphanumeric lists is likely to be much more heavily influenced by effective layout
than most other types of information display. As with the display of textual information,
tables and lists can also be greatly enhanced by following a few simple guidelines.
These are summarized in Table 8.7. Systems analysts should review these guidelines
and carefully apply them to ensure that their tables and lists are highly usable.

Table 8.7 General Guidelines for Displaying Tables and Lists

Use meaningful labels :

All columns and rows should have meaningful labels.

Labels should be separated from other information by using highlighting.
Redisplay labels when the data extend beyond a single screen or page.

Formatting columns, rows, and text :
Sort in a meaningful order (e.g., ascending, descending, or alphabetic).
Place a blank line between every five rows in long columns.

Similar information displayed in multiple columns should be sorted vertically
(that is, read from top to bottom, not left to right).

Columns should have at least two spaces between them.

Allow white space on printed reports for user to write notes.

Use a single typeface, except for emphasis.

Use same family of typefaces within and across displays and reports.
Avoid overly fancy fonts.

Formatting numeric, textual, and alphanumeric data :

Right justify numeric dete and align columns by decimal points or other
delimiter.

Left justify textual data. Use short line length, usually 30-40 characters
per line (this is what newspapers use, and it is easier to speed-read).

Break long sequences of alphanumeric data into small groups of three to
four characters each.

Figure 8.7 displays two versions of a form design from a Sheelak Ram Furniture
application system that displays customer year-to-date transaction information in
a table format. Sample data is not shown here. Figure 8.7(e) displays the information
without consideration of the guidelines presented in Table 8.7, and Figure 8.7(b)
(only required page is shown) displays this information after consideration of these
guidelines.

Single column
No coiumn {abels for alltypes of data

- . .
D Sheelak Ram Fumiture -

CUSTOMER INFORMATION
Customer No.: .
Name:

Address:
City-State-Pincode:
YTD-Purchase:
Credit Limit:
YTD-Payments:
Discount %:
Purchase.
Payment:
Purchase:
Payment:

Payment:
Purchase.
Payment:

Payment:

Status: . Active

4
|

| Numeric data are left justified

(a) Poorly designed form

Designing Forms
and Reports

NOTES

Self-Instructional Material 165

System- Analysis and Design

NOTES

166 Self-Instructional Material

Clear and separate column [abels
for each data type

:._Shee_lak Ram Furniture :

Sheelak Ram Furniture Page
Detail Customer Account|information Today *
Customer Number
Name:
DATE PURCHASE PAYMENT CURRENT
BALANCE
YTD-SUMMARY 4 ' 4 4
Help Prior Screen Exit

LNumeric data are right justified

(&) Improved design for form

Fig. 8.7 Contrasting the display of tables and lisis

One key distinction between these two display forms relates to labeling. The
information reported in Figure 8.7() has meaningful labels that more clearly
stand out as labels compared with the display in Figure 8.7(a). Transactions are
sorted by date, and numeric data are right justified and aligred by decimal point
in Figure 8.7(b), which helps to facilitate scanning, Adequate space is left between
columns, and blank Yines are inserted -after every five rows in Figure 8.7 to help
ease the finding and reading of information. Such spacing also provides room for
users to annotate data that cateh their attention. Use of the guidelines presented
in Table 8.7 helped the analyst to create an easy-to-read layout of the information
for the user. Most of the guidelines in Table 8.7 are rather obvious, but this and
other tables serve as a quick reference to validate that an analyst’s form and
report designs will be usable.

When an analyst designs the display of numeric information, he/she must determine
whether a table or a graph should be used. A considerable amount of research
focusing on this topic has been conducted. In general, this research has found that
tables are best when the user’s task is related to finding an individual data value
from a larger data set, whereas line and bar graphs are more appropriate for
gaining an understanding of data changes over time (See Table 8.8).

Table 8.8 Guidelines for Selecting Tables vs. Graphs

Use Tables for

Reading individual data values

Use Graphs for

Providing a quick summary of data

Detecting trends over time

Comparing points and patterns of different variables

Forecasting activities

Reporting vast amounts of information when relatively simple impressions are to be drawn

For example, if the marketing manager for furniture needed to review the actual
sales of a particular salesperson for a particular quarter, a tabular report like the
one shown in Figure 8.8 would be most careful. Sample data is not shown here.

Place meaningful Alphabetic text Usea ~ Box the table data to
labels on all is laft justified meaningful improve the appearance
columns and rows title of the tabel
]
{
Sheelak Ram Furaiture q—j .
January 10, 2007 Salespgrson Annual Summary Report, 2006 Page
v Quarterly Actual Sales
Region Salespprson SSN First Second | Third Fourth
* > 4
—
‘ B
f__l ‘—‘l 4 4
. Right justify
Superscript characters Sor:ecao;?nn;?j g‘rggg] e Long sequence of all numeric data |
can be used to alert {names are sorted alphanumeric data
reader of more dlphabetically 1s grouped into tTryr tolnl Itgl;:l:ge
' i Prle t onto a sing
detailed nformation within region) smaller segments 1o help in making
comparisons

Fig. 8.8 Tabular report illustrating numerous design guidelines

This report has been annotated to emphasize good report-design practices. The
report has both a printed date as well as a clear indication, as part of the report
title, of the period over which the data apply. There is also sufficient white space
to provide some room for users to add personal comments and observations. Often,
to provide such white space, a report must be printed in landscape, rather than
portrait, orientation. Alternatively, if the marketing manager wished to compare
the overall sales performance of each sales region, a line or bar graph would be
more appropriate (See Figure 8.9 as sample). As with other formatting considerations,
the key determination as to when an analyst should select a table or a graph is
the task being performed by the user.

Sheelak Ram Furniture
Quarterly Sales Report

Salesperson

—e— Vikas
—&— Adarsh
—&— Mandira

Sales Volume {0000Q)

First Second Third Fourth
Quarter
North Region
{a) Line graph

Designing Forms
and Reports

NOTES

Self-Instructional Materiol 167

System Analysis and Design Sheelak Ram Furniture

Quarterly Sales Report

__ 30
8
g
NOTES P
5 Salesperson
S W Vikas
:g Ml Adarsh
% m Mandira

First Second Third Fourth

North Region Quarter

(b) Bar graph

Fig. 8.9 Graphs for comparison
[

8.3.6 Paper Versus Electronic Reports

When a report is produced on paper rather than on a computer display, there are
some additional things that an analyst need to consider, For example, laser printers
(especially colour laser printers) and ink jet printers allow him/her to produce a
report that looks exaétly as it does on the display screen. Thus, when using these
types of printers, he/she can follow our general design guidelines to create a report
with high usability. However, sther types of printers are not able to closely reproduce
the display screen image onto paper. For example, many business reports are
produced using high-speed impact printers that produce characters and a limited
range of graphics by printing a fine pattern of dots. The advantages of impact
printers are that they are very fast, very reliable, and relatively inexpensive.

Their drawbacks are that they have a limited ability to produce graphics and have
a somewhat lower print quality. In other words, they are good at rapidly producing
reports that contain primarily alpha-numeric information, but they cannot exactly
replicate a screen report onto paper. Because of this, impact printers are mostly
used for producing large batches of reports, such as a batch of electricity bills for
a power company, on a wide range of paper widths and types. When designing
reports for impact printers, an analyst uses a coding sheet like that displayed in
Figure 8.2, although coding sheets for designing printer reports typically can have
up to 132 columns. Like the process for designing all forms and reports, an analyst
follows a prototyping process and carefully control the spacing of characters in
order to produce a high-quality report. However, unlike other form and report
designs, he/she may be limited in the range of formatting, text types, and highlighting
options. Nonetheless, he/she can easily produce a highly usable report of any type
if he/she carefully and creatively use the formatting options that are available.

8.4 ASSESSING USABILITY

There are many factors to consider when a system analyst designs forms and
reports. The objective for designing forms, reports, and all human-computer interactions
is usability. Usability typically refers to the three characteristics given below :

1. Speed. Can you complete a task efficiently?
2. Accuracy.. Does the output provide what you expect?
3. Satisfaction. Do you like using the output?

168 Self-Instructional Material

In other words, usability means that the designs should assist, not hinder, user
performance. Thus, usability refers to an overall evaluation of how a system
performs in supporting a particular user for a particular task. In the remainder of
this section, we describe numerous factors that influence usability and several
techniques for assessing the usability of a design.

8.4.1 Usability Success Factors

Research and practical experience have found that design consistency is the key
ingredient in designing usable systems. Consistency significantly influences users’
ability to gain proficiency when interacting with a system. Consistency means, for
example, that titles, error messages, menu options, and other design elements
appear in the same place and look the same on all forms and reports. Consistency
also means that the same form of highlighting has the same meaning each time
it is used and that the system will respond in roughly the same amount of time
each time a particular operation is performed. Other important factors found to be
important include efficiency, ease (or understandability), format, and flexibility.
Each of these usability factors, with associated guidelines, is described in more
detail in Table 8.9.

Table 8.9 General Design Guidelines for Usability of Forms and Reports

Usability Factor - Guidelines for Achievement of Usability

Consistency Consistent use of terminology, abbreviations, formatting, titles,
and navigation within and across outputs. Consistent response
lime each time a function is performed.

Efficiency Formatting should be designed with an understanding of the
task being performed and the inlended user. Text and data
should be aligned and sorted for efficient navigation and entry.
Entry of data should be avoided where possible (e.g., computing
rather than entering totals).

Ease Outputs should be self-explanatory and not require users to
remember information from prior outputs in order to complete
tasks. Labels should be extensively used, and all scales and
units of measure should be clearly indicated.

Format Information format should be consistent between entry and
display. Format should distinguish each piece of data and highlight,
not bury, important data. Special symbols, such as decimal
places, dollar signs, and +/~ signs, should be used as appropriate.

Flexibility Information should be viewed and retrieved in a manner most
convenient to the user. For example, users should be given
options for the sequence in which to enter or view data and for
use of shorteut keystrokes, and the system should remember
where the user stopped during the last use of the system.

When designing outputs, an analyst must also consider the context in which the
screens, forms, and reports will be used. As mentioned, numerous characteristics
play an important role in shaping a system’s usability. These characteristics are
related to the intended users and task being performed in addition te the technological,
social, and physical environment in which the system and outputs are used.
Table 8.10 lists several factors that influence the usability of a design. An analyst’s
role is to gain a keen awareness of these factors so that his/her chances of creating
highly usable design are increased.

Designing Forms
and Reports

NOTES

Self-Instructional Material 169

System Analysis and Design Table 8.10 Characteristics for Consideration When Designing Forms
and Keports

Characteristic Consideration for Form and Report Design

User Issues related to experience, skills, motivation, education,

NOTES and personality should be cansidered,

Task Tasks differ in amount of information that must be obtained
from or provided to the user. Task demands such as time
pressure, cost of errors, and work duration (fatigue) will
influence usability.

System The platform on which the system is constructed will influence
interaction, styles and devices. :

Environment Social issues such as the users’ status and role should be
; considered in addition to environmental concerns such as
lighting, sound, task interruptions, temperature, and hwmidity.
The ereation of usable forms and reports may necessitate
changes in the users’ physical work facilities,

8.4.2 Measures of Usability

User friendliness is a term often used; and misused, to describe system usability.
Although the term is widely used, it is too vague from a design standpoint to
provide adequate information because it means different things to different people.
Consequently, most development groups use several methods for assessing usability,
including the following considerations :

* Time to learn

* Speed of performance
* Rate of errors

* Retention over time
* Subjective.satisfaction

In assessing usability, an analyst can collect information by observation, interviews,
keystroke capturing, and questionnaires. Time to learn simply reflects how long
it takes the average system user to become proficient using the system. Equally
important is the extent to which users remember how to use inputs and outputs
over time. The manner in which the processing steps are sequenced and ‘the
selection of one set of key-strokes over others can greatly influence learning time,
the user’s task performance, and error rates. For example, the most commonly
used functions should be quickly accessed with the fewest number of steps possible
(e.g., pressing one key to save the work). Additionally, the layout of infermation
should be consistent, both within and across applications, whether the information
is delivered or a screen display or on a hard-copy report. '

170, Self-Instructional Material

Designing Forms
and Reports

STUDENT ACTIVITY 8.2

1. Write a short note of formatting forms and reports.

2. What is meant by usability and what characteristics of an interface are used to assess a system’s
usability? ;

Self-Instructional Materal 171

System Analysis and Design

NOTES

172 Self-Instructional Material

SUMMARY

» A form is a business document that contains some predefined data and may

include some areas where additional data are to be filled in. An instance of a
form is typically based on one database record.

* A report is a business document that contains only predefined data; it is a

passive document used solely for reading or viewing. A report typically
contains data from many unrelated records or transactions.

Usability refers to an overall evaluation of how a system performs in
supporting a- particular user for a particular task.

TEST YOURSELF

Answer the following questions:

1.

Explain why designs of forms and reports are key ingredients for successful
system. .

Discuss the benefits, problems,- and general design process for the use of
colour when designing system output.

Give some examples where variations in users, tasks, systems, and environmental
characteristics might impact the design of system forms and reports.

. Discuss the following:

() General formatting guidelines for forms and reports.

() Highlighting information in forms.and reports.
(iif) Benefits and problems from using colour in forms and reports.
State True or False:

({) System inputs and outputs-forms and reports-are identified during
requirements structuring.

(zr) Examples of forms are invoices, weekly sales summaries by region and
sales person, or a pie chart of population by age categories.

{iit) The tools for designing forms and reports are rapidly evolving and in
turn making development faster and easier.

(iv) The narrative overview of a design specification contains a general
overview of the characteristics of the target users, tasks, system, and
environmental factors in which the form or report will be used.

(v) Only needed information should be displayed in forms and reports.

{vi) In general, highlighting should be used separingly to draw the user {o
or away from certain information and to group together related information.

{vif) The benefits of colour only seem to apply if the information is first
provided to the user in the most appropriate presentation format.

(vifi) Usability does not refer to an overall evaluation of how a system
performs in supporting a particular user for a particular task.

6. Fill in the blanks:

(@) v is a business document that contains some predefined
data and may include some areas where additional data are to be filled
in. ’

() ieeeereren... is & business decument that contains only predefined data;

it is a passive document used only for reading or viewing.

(i)
(iv)
()
(vi)

(vii)

(viil)

Designing forms and reports is a user-focused activity that typically follows
- SOTOUUIUPRR rapproach. :

Using actual development tools allows the forms and reports design to
he more thoroughly

Benefits from usingcccce. in forms and reports is that it soothes
or strikes the eye. .

USE€cecovseenne-.. fOr reading individual data values in forms and reports,
Use .voevivicinniinnn, for providing a quick summary of data in reports.

.................... is an overall evaluation of how a system performs in
supporting a particular user for a particular task.

ANSWERS:

Test Yourself
5. State True or False:

@

(iii)

()

{vii)

True (it) False
True (tv) True
True) :) fvi} True
True (viii) False

‘6. Fill in the blanks:

(@)
(zii)
(v}

(vii)

Form ' (ii) Report

prototyping (iv) tested and assessed
colour (vi) tables

graphics (vitt} Usability

Designing Forms
and Reports

-.NOTES

Self-Instrbaemnal-Mogerial 173

. Designing Interfaces
CHAPTER : and Dialogues

9

DESIGNING INTERFACES
AND DIALOGUES

: LEARNING OBJECTIVES

9.1 Introduction
9.2 Designing [nterfaces and Dialogues
921 The Process of Designing Interfaces and Dialogues

NOTES

9.2.2 Deliverables and Outcomes
9.3 Interaction Methods and Devices
9.3.1 Methods of Interacting -
9.3.2 Hardware Options for System Interaction
9.4 Designing interfaces
9.4.1 Designing Layouts
9.4.2 Structuring Data Entry
" 9.4.3 Controlling Data Input
9.44 Providing Feedback
9.4.5 Providing Help
8.5 Designing Dialogues
9.5.1 Designing the Dialogue Sequence
9.5.2 Building Prototypes and Assessing Usability |
96 Designing Interfaces and Dialogues in Graphical Environments

9.6.1 Graphical Interface Design Issues

9.1 INTRODUCTION

In this unit, you will learn about system interface and dialogue design. Interface
design focuses on how information is provided to and captured from users; dialogue
design focuses on the sequencing of interface displays. Dialogues are analogous
to a conversation between two persons. The grammatical rules followed by each
person during a conversation are analogous to the interface. Thus, the design of
interfaces and dialogues is the process of defining the manner in which bumans
and computers exchangeé information. A good human—computer interface provides
a uniform structure for finding, viewing, and invoking the various components
of a system. This unit complements chapter 8, which provided guidelines for the
content of forms and reports. In this unit, you will learn about navigation between
forms, alternative ways for users to cause forms and reports to appear, and how

176

System Analysis and Design

NOTES

176 Self-Instructional Material

to supplement the content of forms and reports with user help and error messages,
among other topics.

We then discuss the process of designing interfaces and dialogues and deliverables
produced during this activity. It is followed by a section than describes interaction
methods and devices. Next, interface design is described. This discussion focuses
on layout design, data entry, providing feedback, and dcsigning help. We then
examine techniques for designing human—computer dialogues. Finally, we examine
the design of interfaces and dialogues within electronic commerce applications.

9.2 DESIGNING INTERFACES AND DIALOGUES

This unit focuses on design within the systems development life cycle (See Figure
9.1). In chapter 8, you learned about the design of forms and reports. As you will
see, the guidelines for designing forms and reports also apply to the design of
human-computer interfaces.

V.

\\ 1. Preliminary
/v investigation
N
6. Systems 2. Systems
maintenance analysis

Forms and Raports
Dialogues and Interfaces
Files and Databases
&= Process
NQutputinput

5. Systems
impiementation

4. Systems
development

Fig. 8.1 Systems development life cycle (SDLC) with design phase highlighted.

9.2.1 The Process of Designing Interfaces and Dialogues

Similar to designing forms and reports, the process of designing .interfaces and
dialogues is a user-focused activity. This means that an analyst follows a prototyping
methodology of iteratively collecting information, constructing a prototype, assessing
usability, and making refinements. To design usable interfaces and dialogues, he/
she must answer the same who, what, when, where, and how questions used to
guide the design of forms and reports (See Table 8.2). Thus, this process parallels
that of designing forms and reports.

9.2.2 ﬁeliverables and Qutcomes

The deliverable and outcome from system interface and dialogue design is the
creation of a design specification. This specification is also similar to the specification
produced for form and report designs—with one exception. Recall that the design
specification document discussed in chapter 8 had three sections (See Figure 8.4):

1. Narrative overview

2. Sample design

3. Testing and usability assessment
For interface and dialogue designs, one additional subsection is included: a section
outlining the dialogue sequence—the ways a user can move from one display to
another. Later in the UNIT, you will learn how to design a dialogue sequence by

using dialogue diagramming. An outline for a design specification for interfaces and
dialogues is shown in Figure 9.2.

Design Specification for Interfaces and Dialogues

. 1. Nacrative overview
(2) interface/Diaiocgue Name
(b) User Characteristics
(c) Task Characteristics
(0) System Characteristics
{e) Environmental Characteristics
2. Interface/Dialogue Designs
(a) Form/Report Designs
{b) Dialogue Sequence Disgram(s) and Narrative Description
3. Testing and Usability Assessment
(a) Testing Objectives
(0} Testing Procedures
(c) Testing Results
(/) Time te Learn
(i) Speed of Performance
(iiiy Rate of Errors
{iv) Retention over Time

(v) User Satisfaction and Other Perceptions

Fig. 9.2 Specification outline for the design of interfaces and dialogues.

9.3 INTERACTION METHODS AND DEVICES

The human-computer interface defines the ways in which users interact with an
information system. All human-computer interfaces must have an interaction style
and use some hardware device(s) for supporting this interaction. In this section, we
discuss various interaction methods and guidelines for designing usable interfaces.

9.3.1 Methods of Interacting

When designing the user interface, the most fundamental decision the systems
analysts take relates to the methods used to interact with the system. Given that
there are numerous approaches for designing the interaction, we briefly provide a
review of those most commonly used. Our review will examine the hasics of five
widely used styles :

command language,

meny,

form,

object, and

natural language.

Designing Interfaces
and Dialogues

NOTES

’ Seif-]hsm}_:ctiogzai Material 17

System Analysis and Design

NOTES

178 Self-Instructional Material

We will also describe several devices for interacting, focusing primarily on their
usability for various interaction activities.

Command Language Interaction. In command language interaction, the
user enters explicit statements to invoke operations within a system. This type,
of interaction requires system users to remember command syntax and semantics.
For example, to copy a file named BIODATA.DOC from one storage location {C:)
to another (A:) using Microsoft's disk operating system (DOS), a user would type
the following command:

COPY C:BIODATA.DOC A:BIODATA.DOC

Command language interaction places a substantial burden on the usar to remember
names, syntax, and operations. Most newer or large-scale systems no longer rely
entirely on a command language interface. Yet, command languages are good for
experienced users, for systems with a limited command set, and for rapid interaction
with the system.

A relatively simple application such as a word processor may have hundreds of
commands for such operations as saving a file, deleting words, cancelling the
current action, finding a specific piece of data, or switching between windows.
Some of the burden of assigning keys to actions has been taken off users shoulders
through the development of user interface standards such as those for the Macintash,
Microsoft Windows, or Java.

Menu Interaction. A significant amount of interface design research has stressed
the importance of a system’s ease of use and understandability. Menu interaction
is a means by which many designers have accompligshed this goal. A menu is
simply a list of options; when an option is selected by the user, a specific command
is invoked or another menu is activated. Menus have become the most widely
used interface method because the user only needs to understand simple signposts
and route options to effectively navigate through a system.

Menus can differ significantly in their design and complexity. The variation of
their design is most often related to the capabilities of the development environment,
the skills of the developer, and the size and complexity of the system. For smaller
and less complex systems with limited system options, you may use a single menu
or a linear sequence of menus. A single menu has obvious advantages over a
command language but may provide little guidance beyond invoking the command.
An example of a menu is shown in Figure 9.3.

- oy Mt v $ o o] TS T mat] % Hhesbe T G

1

|
|
|

IR TR AT R AR T RGN IR AT o T s . <Ll By S SaiT A
Fig. 8.3 Example of a menu.

For large and more complex systems, you can use menu hierarchies to provide
navigation between menus. These hierarchies can be simple tree structures or
variations wherein children menus have multiple parent menus. Some of these
hierarchies may allow multilevel traversal. Variations as to how menus are arranged
can greatly influence the usability of a system. Figure 9.4 shows a variety of ways
in which menus can be structured and traversed.

Single Menu

Linear Sequence Menu

' Mutliteve! Tree Menu
with Multiple Parents

Muitilevel Tree Meny
with Muttiple Parents and
Muitilevel Travarsal

Multilevel Tree Manu

Fig. 9.4 Various types of menu configurations,

An arc on this diagram signifies the ability to move from one menu to another.
Although more complex menu structures provide greater user flexibility, they
may also confuse users about exactly where they are in the system. Structures
with multiple parent menus also require the application to remember which path
has been followed so that users can correctly backtrack.

There are two common methods for positioning menus. With a pop-up menu
also called a dialogue box), menus are displayed near the current cursor position
so users don’t have to move the position or their eyes to view system options
Figure 9.5.

El-n-—l--hh-———-. . - - e e e - - M
Mo DR Jem powt Pyt lek Tl ghuen (e §-
LA L1 LA CEOEN A Do 3. |

T aFamEOE -7 2. 4

- .41-"-'"_“""_2'_“

——— —— e g e —————

preg v
E
[

Wi Tovemey

e
i

.....-..._.— ————
mww-ﬂrww
Mg Fad by Dovmes Fov nanue, 1,297

mu-— |’ E

@rﬁ*"ﬁ“

IIQIOII" e .

Fig. 9.6 Pop -up menu from Microsoft Word 2000,

Designing Interfaces
and Dialogues

NOTES

Self-Instructional Maoterial 179

System Analysis and Design A pop-up menu has a variety of potential uses. One is to show a list of commands

NOTES

180 Self-Ingtructional Materiol

relevant to the current cursor position (e.g., delete, clear, copy, or validate current
field). Another is to provide a list of possible values (from a look-up table) to fill
in for the current field. For example. in a customer order form, a list of current
customers could pep up next to the customer number field so the user can select
the correct customer without having to know the customer’s identifier. With a
drop-down menu, menus drop down from the top line of the display Figure 9.6.

I G yer duwt fyme Je TEM Wram (b =
0 e Onon |-.-v . WEOENS Dm0, .
o G O s EREE TR QS A.

£ D)

M RIT aa e L -

Fig. 9.6 Drop-down menu from Microsoft Word 2000.

Drop-down menus have become very popular in recent years because they provide
consistency in menu location and operation among applications and efficiently use
display space. Most advanced operating environments, such as Microsoft Windows or
the Apple Macintosh, provide a combination of both pop-up and drop-down menus.

When designing menus, there are several general rules that should be followed,
and these are summarized in Table 9.1

Table 9.1 Guidelines for Menu Design

Wording * Each menu should have a meaningful title
¢ Command verbs should clearly and specifically describe operations

¢ Menu items should be displayed in mixed uppercase and lowercase
letters and have a clear, unambiguous interpretation

Organization | * A consistent organizing principle should be used that relates to the
tasks the intended users perform; for example, related options should
be grouped together, and the same option should have the same
wording and codes cach time it appears

Length ¢ The number of menu choices should not exceed the length of the screen

* Submenus should be used to break up exceedingly long menus

Selection * Sclection and entry methods should be consistent and reflect the
size of the application and sophistication of the users

* How the user is to select each oplion and the consequences of each
option should be clear (e.g., whether another menu will appear)

Highlighting | * Highlighting should be minimized and used only to convey selected
options (e.g., a check mark) or unavailable optiens (e.g., dimmed
text)

For examples, each menu should have a meaningful title and be presented in a
meaningful manner to users. A menu option of Quit, for instance, is ambiguous—
does it mean return to the previous screen or exit the program?

Many advanced programming environments provide powerful tools for designing
menus. For example, Microsoft’'s Visual Basic NET allows you to quickly design
a menu structure for a system. '

Form Interaction. The premise of form interaction is to allow users to fill in
the blanks when working with a system. Form interaction is effective for both the
input and presentation of information. An effectively designed form includes a self-
explanatory title and field headings, has fields organized into logical groupings
with distinctive boundaries, provides default values when practical, displays data
in appropriate field lengths, and minimizes the need to scroll windows. You saw
many other design guidelines for forms in unit 8. Form interaction is the most
commonly used method for data entry and retrieval in business-based systems.
Using interactive forms, organizations can easily provide all types of information
to Web surfers.

Object-Based Interaction. The most common method for implementing object-
based interaction is through the use of icons. Ieons are graphic symbols that
look like the processing option they are meant to represent. Users select operations
by pointing to the appropriate icon with some type of pointing device. The primary
advantages to icons are that they take up little screen space and can be quickly
understood by most users. An icon may also look like a button that, when selected
or depressed, causes the system to take an action relevant to that form, such as
caucel, save, edit a record, or ask for help. For example, we have an icon-based
interface -when entering Microsoft Visual Studio.NET.

Natural Language Irteraction. One branch of artificial intelligence research
studies techniques for allowing systems to accept inputs and produce outputs in a
conventional language such as English. This method of interaction is referred to
as natural language interaction. Presently, natural language interaction is not
as viable an interaction style as the other methods presented. Current implementations
can be tedious, frustrating, and time-consuming for the user and are often built
to accept input in narrowly constrained domains (e.g., database queries). Natural
language interaction is being applied within both keyhoard and voice entry systems.

9.3.2 Hardware Options for System Interaction

In addition to the variety of methods used for interacting with a system, there is
also a growing number of hardware devices employed to support this interaction
(see Table 9.2 for a list of interaction devices along with brief descriptions of the
typical usage of each).

Table 9.2 Common Devices for Interacting with an Information System

Device Description and Primary Characteristics or Usage

Keyhoard Users push an array of small buttons that represent symbols which
: are then translated into words and commands. Keyboards are widely
understood and provide considerable flexibility for interaction,

Mouse A small plastic box that users push across a flat surface and whose
movements are translated into cursor movement on a computer
display. Buttons on the mouse tell the system when an item is
selected. A mouse works well on flat desks but may not be practical

Designing Interfaces
and Dialogues

NOTES

Self-Instructional Material 181

System Analysis and Design

NOTES

182 Seif-Instructional Material

in dirty or busy environments, such as a shop floor or check-out area
in a retail store. Newer pen-based mice provide the user with more
of the feel of a writing implement.

Joystick A small vertical lever mounted on a base that steers the cursor on
-a computer display. Provides similar functionality to a mouse,

Trackball A .sphere mounted on a fixed base that steers the cursor on a
computer display. A suitable replacement for a mouse when work
space for a mouse is not available.

Touch Screen Selections are made by touching a computer display. This works
well in dirty environments or for users with limited dexterity or
expertise.

Light Pen Selections are made by pressing a pen-like device against the screen.

A light pen works well when the user needs to have a more direct
interaction with the contents of the screen.

Graphics Tablet | Moving a pen-like device across a flat tablet steers the cursor on

- a computer display. Selections are made by pressing a button or by
pressing the pen against the tablet. This device works well for
drawing and graphical applications.

Voice Spoken words are captured and translated by the computer into text
’ and commands. This is most appropriate for users with physical
challenges or when hands need to be free to do other tasks while
interacting with the application,

The most fundamental and widely used device is the keyboard, which is the mainstay
of most computer-based applications for the entry of alphanumeric information.
Keyboards vary, from the typewriter kind of keyboards used with personal computers
to special-function keyboards on point-of-sale or shop-floor devices. The growth in
graphical user environments, however, has spurred the broader use of pointing
devices such as mice, joysticks, trackballs, and graphics tablets. The creation of
notebook and pen-based computers with trackballs, joysticks, or pens attached
directly to the computer has also brought renewed interest to the usability of
these various devices.

Research has found that each device has its strengths and weaknesses. These
strengths and weaknesses must guide your selection of the appropriate devices
to aid users in their interaction with an application. The selection of an interaction
device must be made during logical design, because different interfaces require
different devices. Table 9.3 summarizes much of the usability assessment research
by relating each device to various types of human-computer interaction problems.

Table 9.3 Summary of Interaction Device Usability Problems

Problem
Visual User | Movement Adequate Pointing
Device Blocking | Fatigue | Sealing |Durability | Feedback | Speed | Accuracy
Keybolard m) a [| Q n " O
Mouse m] a [] a] a 0
Joystick O a t O] o [|
Trackball) m] [] [] | (m] |

TouchScreen | m | ® | o | m | o | o [=

Light Pen [] |] a a a |

Graphies Tablet g o - [| o om o m|

Voice a O - w [] [}]
Key: [1 = little or no usability problems

B = potentially high usability problems for some applications
Visual Blocking = extent to which device blocks display when using
User Fatigue = Potential for fatigue over long use)
Movement Scaling = extent to which device movement translates to equivalent screen movement
Durability = lack of durability or need for maintenance {e.g., cleaning) over extended use
Adequate Feedback = extent to which device provides adequate feedback for each operation
Speed = cursor movement speed ’

Pointing Accuracy = ability to precisely direct cursor

For example, for many applications, keyboards do not give users a precise feel for
cursor movement, do not provide direct feedback on each operation, and can be a
slow way to enter data (depending on the typing skill of the user). Another means
to gain an understanding of device usability is to highlight which devices have
been found most useful for completing specific tasks. The results of this research
are summarized in Table 9.4.

Table 9.4 Summary of General Conclusions from Experimental
Comparisons of Input Devices in Relation to Specific Task Activities

Most Shortest Most
Task " Accurale Positioning Preferred

trackball, graphics touch screen, light touch screen light
tablet, mouse, pen, mouse, graphics | pen

Target Selection

joystick tablet, trackball
Text Selection mouse mouse —
Data Entry light pen light pen —_
Cursor Positioning | — light pen —
Text Correction light pen, cursor light pen light pen
keys

keyboard, touch
screen

Menu Selection touch screen —

Key:

Target Selection = m‘nving the cursor to select a figure or item

Text Selection = moving the cursor to select a block of text
Data Entry = entering information of any type into a system

Cursor Positioning = moving the cursor to a specific position

Text Correction = moving the cursor to a location to make a text correction

Menu Selection = activating a menu item
= no clear conclusion from the research

The rows of this table list common user-computer interaction tasks, and the
columns show three criteria for evaluating the usability of the different devices.
After reviewing these three tables, it should be evident that no device is perfect
and that some are more appropriate for performing some tasks than others. To
design the most effective interfaces for a given application, you should understand
the capabilities of various interaction methods and devices.

Designing Interfaces
and Diglogues -

NOTES

Self-Instructional Material 183 .

System Anclvsis end Design

STUDENT ACTIVITY 9.1

1. Describe the process of designing interfaces and dialogueé. What deliverables are produced from this
process? Are these deliverables the same for all types of system projects? Why?

2. Discuss various methods of interactiﬁg with a system. Is any method better than others? Why?

184 Self-Instructional Material

9.4 DESIGNING INTERFACES

Building on the information provided in unit 8 on the design of content for forms
and reports, here we discuss issues related to the design of interface layouts. This
discussion provides guidelines for structuring and controlling data entry fields,
providing feedback, and designing online help. Effective interface design requires
that you gain a thorough understanding of each of these cencepts.

9.4.1 Designing Layouts

To ease user training and data recording, the systems analysts should use standard
formats for computer-based forms and reports similar to those used on paper-based
forms and reports for recording or reporting information. A typical paper-based
form for reporting customers sales activity is shown in Figure 9.7 (Sample data is
not given here).

SHEELAK RAM FURNITURE
INVO 0 —F—
Date | ———-

Sales Invoice Header Information

SOLDTO:

Customer Number :

Name :
Address : -
State: _________ Pincode : .
City :
Phone :
SOLD BY .
Product D iotion Quantity Unit Total
Number escript Ordered Price Price

e
,—_/////

\

&

Total Qrder Amount

. ’ tess Discount [y ———
Authorization

Total Amount

Customer Signature . h 4 '
| Totals]
Date

Fig. 9.7 Paper-based form for reporting customer sales activity.

Designing Interfaces
and Dialogues

NOTES

Self-Instructional Material 185

System Analysis and Design This form has several general areas common to most forms as given below:

NOTES

1B6 Self-Instructional Material

+ Header information

¢ Sequence and time-related information
¢ Instruction or formatting information
* Body or data details

¢ Totals or data summary

* Authorization or signatures

* Comments

In many organizations, data are often first recorded on paper-based forms and t. en
later recorded within application systems. When designing layouts to record or
display information on paper-based forms, an analyst should try to make both as
similar as possible. Additionally, data entry displays should be consistently formatt d
across applications to speed data entry and reduce errors. Figure 9.8 shows un
equivalent computer-based form to the paper-based form shown in Figure 9.7.

-IE]_Sheélak Ram Furniture -

Customer Order Report Today :
Order Number :
~— Customer Information
Customer Number :
hgame :
Address : I
City :
State :
Pincode :
PRODUCT DESCRIPTION QUANTITY UNIT TOTAL
NUMBER ORDERED PRICE PRICE
' B
-]
TOTAL ORDER AMOUNT
% DISCOUNT
TOTAL AMOUNT DUE
He]p Print (password required) Select Customer or Exit

~ Flg 9.8 Computer-based form for reporting customer sales activity.

Another concern when designing the layout of computer-based forms is the design
of between-field navigation. Because an analyst can control the sequence for users
to move between fields, standard screen navigation should flow from left to right and
top to bottom just as when you work on paper-based forms. For example, Figure 9.9
contrasts the flow between fields on a form used to record hnsiness contacts.

‘Figure 9.9 (a) uses a consistent left-to-right, top-to-bottom flow. Figure 9.9 (b) uses Designing Interfaces
a flow that is nonintuitive. When appropriate, an analyst should also group data and Dialogues
fields into logical categories with labels describing the contents of the category.
Areas of the screen not used for data entry or commands should be inaccessible

to the user.
NOTES

EI Business Contact Cardfile

[Last ‘ First fme_____ D
| Address: '
I Address: ' D

| Country +

| Phone D -

| Fax :)

| E-mait: : :

Comments:)

{a) Proper flow between data entry fields.

E Business Contact Cardfile

| Last ' First - [M -

| Address: . D
| Country ¢\

[Phone \
| Fax D

| E-mail:

FN

Comments:

(b) Poor ﬂow hetween data entry ﬁelds I’ 7 f'

Flg 9.9 Contrastmg the nav1gat1m:(ﬂow within a data/eptry form

.'
1
A

Self-Instructional Materiol 187

System Analysis and Design

NOTES

188 Self- Instructional Materinl

When designing the navigation procedures within your system, flexibility and

" consistency are primary concerns. Users should be able to freely move forward and

backward or to any desired data entry fields. Users should be able to navigate each
form in the same way or in as similar a manner as possible. Additionally, data should
not usually be permanently saved by the system until the user makes an explicit
request to do so. This allows the user to abandon a data entry screen, back up, or
move forward without adversely impacting the contents of the permanent data.

Consistency extends to the selection of keys and commands. Each key or command
should have only one function, and this function should be consistent throughout
the entire system and across systems, if possible. Depending upon the application,
various types of functional capabilities will be required to provide smooth navigation
and data entry. Table 9.5 provides a list of the functional requirements for providing
smooth dnd easy navigation within a form.

Table 9.5 Data Entry Screen Functional Capabilities

Cursor Conirol Capabilities :

Move the cursor forward to the next data field

Move the cursor backward to the previous data field

Move the cursor to the first, last, or some other designated data field
Move the cursor forward one character in a field -

Move the cursor backlward one character in a field

Editing Capabilities : -
Delete the character to the left of the cursor
Delete the character under the cursor

Delete the whole field

Delete data from the whole form (empty the form)

Exit Capabilities :
Transmit the screen to the application program
Move to another screen/form

Confirm the saving of edits or go to another screen/form

Help Capabilities :
Get help on a data field

Get help on a full sereenfform

For example, a functional and consistent interface will provide common ways for
users to move the cursor to different places on the form, edit characters and fields,
move among form displays, and obtain help. These.functions may be provided by
keystrokes, mouse or other pointing device operations, or menu selection or button
activation. It is possible that, for a single application, all of the functional capabilities
listed in Table'9.5 may not be need.d in order to create a flexible and consistent user
interface. Yet, the capabilities that are used should be consistently applied to provide
an optimal user environment. As with other tables in units 8 and 9, Table 9.5 can

serve as a checklist for you to validate the usability of user interface designs.

9.4.2 ‘Structuring Data Entry

Several rules should be considered when structuring data entry fields on a form
{see Table 9.6).

Table 9.6 Guidelines for Structuring Data Entry Fields

Entry Never require data that are already online or that can be computed;
for example, do not enter customer data on an order form if those data
can be retrieved from the database, and do not enter extended prices
that can be computed from quantity sold and unit prices.

Defaults Always provide default values when appropriate; for example, assume
today’s date for a new sales invoice, or use the standard product price
unless overridden.

Units Make clear the type of data units requested for entry; for example,
indicate quantity in tons, dozens, pounds, etc.

Replacement Use character replacement when appropriate; for example, allow the
user ta look up the value in a table or automatically fill in the value
once the user enters enough significant characters.

Captioning Always place a caption adjacent to fields. 4‘

Format Provide formatting examples when appropriate; for example, automatically
show standard embedded symbols, decimal points, credil symbol, or
dollar sign.

Justify Automatically justify data entries; numbers should be right justified
.and aligned on decimal points, and text should be left justified.

Help " Provide context-sensitive help when appropriate; for example, provide
a hot key, such as the F1 key, that opens the help system on an entry
that is most closely related to where the cursor is on the display. i

I

The first is simple, but often violated by designers. To minimize data entry err({)rs
and user frustration, never require the user fo enter information that is alre de
available within the system or information that can be easily computed by the
system. For example, never require the user to enter the current date and time,
because each of these values can be easily retrieved from the computer system’s
internal calendar and clock. By allowing the system to do this, the user simply
confirms that the calendar and clock are working properly.

Other rules are equally important. For example, suppose that a bank customer is
repaying a loan on a fixed schedule with equal monthly payments. Each month
when a payment is sent to the bank, a clerk needs to record into a loan processing
system that the payment has been received. Within such a system, default values
for fields should he provided whenever appropriate. This means that only in the
instances where the customer pays more or less than the scheduled amount should
the clerk have to enter data into the system. In all other cases, the clerk would
simply verify that the check Is for the defanlt amount provided by the gystem and
press a single key to confirm the receipt of payment

When entering data, the user should also not be required to specify the dimensional
units of a particular value. For example, a user should not be required to specify
_ that an amount is in rupees or that a weight is in tons. Field formatting and the
data entry prompt should make clear the type’ of data being requested. In other
words, a caption describing the data to be ehtered should be adjacent to each data
field. Within this caption, it should be c}éaq to the u,ser,v?rhat type of data is being

1 rt
"

Designing Interfaces
and Dialogues

NOTES

1

Self-Instructron=! Materia{ 18¢

System Analysis and Design requested. As with the display of information, all data entered onto a form should

NOTES

}

|

i

190 Self-Instructional Mate ial

automatically justify in a standard format (e.g., date, time; money). Table 9.7
illustrates a few options appropriate for printed forms.

Table 9.7 Options for Entering Text

Options Example
Line caption Phone Number ()
Drop caption ()

Phone Number

Boxed caption Phone Number

Delimited characters CHEPLLLTL T

Phone Number

Check-off boxes Method of payment (check one.)
0 Check '

O Cash

O Credit card: Type

For data entry on video display terminals, an analyst should highlight the area in
which text is entered so that the exact number of characters per line and number
of lines are clearly shown. Systems analysts can also use check boxes or radio
buttons to allow users to choose standard textual responses. And, you can use data
entry controls to ensure that the proper type of data (alphabetic or numeric, as
required) are entered. Data entry controls are discussed in the following section,

9.4.3 Controlling Data Input

One objective of interface design is to reduce data entry errors. As data are
entered into an information system, steps must be taken to ensure that the input
is valid. A systems analyst must anticipate the types of errors users may make and
design features into the system’s interfaces to avoid, detect and correct data entry
mistakes. Several types of data errors are summarized in Table 9.8.

Table 9.8 Sources of Data Errors

Data Error Description

Appending Adding additional characters to a field

Truncating Losing characters from a field

Transcripting Entering invalid data into a field

Transposing Reversing the sequence of one or more characters in a field

In essence, data errors can occur from appending extra data onto a field, truncating
characters off a field, transcripting the wrong characters into a field, or transposing
one.or more characters within a field. Systems designers have developed numerous
tests and techniques for catching invalid data before saving or transmission, thus
improving the likeliiood'that data will be valid (See Table 9.9 for a summary of
these techniques). - Co :

T B

Table 9.9 Validation Tests and Techniques to Enhance the Validity of Data Input

Validation Test Description

Class or Composition Test to assure that data are of proper type (e.g., all
numeric, all alphabetic, alphanumeric)

Combinations Test to see if the value combinations of two or more data
fields are appropriate or make sense (e.g., does the quantity
sold make sense given the type of product?)

Expected Values Test to see if data are what is expected (e.g., match with
existing customer names, payment amount, ete.)

Missing Data Test for existence of data items in all fields of a record
(e.g., is there a quantity field on each line item of a
customer order?)

Pictures/Templates Test to assure that data conform to a standard format
(e.g., are hyphens in the right places for a student ID
number?}

Range Test to assure data are within proper range of values
(e.g., is a student’s grade point average between 0 and
4.07)

Reasonableness Test to assure data are reasonable for situation (e.g., pay
_ rate for a specific type of employee)

Self-Checking Digits Test where an extra digit is added to a numeric field in
which its value is derived using a standard formula

Size Test for too few or tao many characters (e.g., is social
security number exactly nine digits?)

Values TEst to make sure values come from set of standard

values (e.g., two-letter state codes)

These tests and techniques are often incorporated into both data entry screens and
inter-computer data transfer programs.

Practical experience has also found, that it is much easier to correct erroneous
data before they are permanently stored in a system. Online systems can notify
a user of input problems as data are being entered. When data are processed
online as events occur, it is much less likely that data validity errors will occur
and not be caught. In an online system, most problems can be easily identified and
resolved before permanently saving data to a storage device using many of the
" technigues described in Table 9.9. However, in systems where inputs are stored
and entered (or transferred) in batch, the identification and notification of errors
is more difficult. Batch processing systems can, however, reject invalid inputs and
store them in a log file for later resolution.

Most of the tests and technigques shown in Table 8.9 are w1dely used and straightforward.
Some of these tests can be handled by data management technologies, such as a
database management system (DBMS), to ensure that they are applied for all data
maintenance operations. If a DBMS cannot perform these tests, then an analyst
must design the tests into program modules. -

In addition to validating the data values entered into a system, controls must be
established to verify that all input records are correctly entered and that they are
only processed once. A common method used to enhance the validity of entering
batches of data records is to create an audit trail of the entire sequence of data
entry, processing, and storage. In such ap audit trail, the actual sequence, count,
time, source location, human operator, and so on are recorded into a separate

Designing Interfaces
and Dialogues

NOTES

Self-Instructional Material 181

System Analysis and Design

NOTES

19\2 Self-Instructional Material

transaction log in the event of a data input or processing error. If an error occurs,
corrections can be made by reviewing the contents of the Ing. Detailed logs of data
inputs are not only useful for resolving batch data entry errors and system audits,
but also serve as a powerful method for performing backup and recovery operations
in the case of a catastrophic system failure.

9.4.4 Providing Feedback

When talking with a friend, you would be concerned if he or she did not provide
you with feedback by nodding and replying to your questions and comments.
Without feedback, you would be concerned that he or she was not listening, likely
resulting in a less-than-satisfactory experience. Similariy, when designing system
interfaces, providing appropriate feedback is an easy method for making a user’s
interaction more enjoyable; not providing feedback is a sure way to frustrate and
confuse. There are three types of system feedback as given below :

1. Status information
2. Prompting cues
3. Error or warning messages

Status Information. Providing status information is a simple technique for keeping
users informed of what is going on within a system. For example, relevant status
information such as displaying the current customer name or time, placing appropriate
titles on a menu or screen, or identifying the number of screens following the
current one {e.g., Screen 1 to 3) all provide needed feedback to the user. Providing
status information during processing operations is especially important if the operation
takes longer than a second or two. For example, when opening a file you might
display “Please wait while I open the file” or, when performing a large calculation,
flash the message “Working...” to the user. Further, it is important to tell the user
that besides working, the system has accepted the user’s input and that the input
was in the correct form. Sometimes it is important to give the user a chance to
obtain more feedback. For example, a function key could toggle between showing
a “Working...” message and giving more specific information as each intermediate
step is accomplished. Providing status information will reassure users that nothing
is wrong and make them feel in command of the gystem, not vice versa.

Prompting Cues. A second feedback method is to display prompting cues. When
prompting the user for information or action, it is useful to be specific in user
request. For example, suppose a system prompted users with the following request:

ENTER THE DATA :

With such a prompt, the designer assumes that the user knows exactly what to
enter. A better design would be specific in its request, possibly providing an example,
default values, or formatting information. An improved prompting request might
be as follows:]

Enter the customer account number (123—456-7)___ - -

Errors and Warning Messages. A final method available to an analyst for providing
system feedback is using error and warning messages. Practical experience has
found that a few simple guidelines can greatly improve their usefulness. First,
messages should be specific and free of error codes and jargon. Additionally, messages
should never scold the user and should attempt to guide the user toward a resolution.
For example, a message might say “No customer record found for that Customer
ID. Please verify that digits were not transposed.” Messages should be in user, not
computer, terms. Hence, such terms as “end of file,” “disk /O error,” or “write

protected” may be too technical and not helpful for many users. Multiple messages
can be useful so that a user can get more detailed explanations if wanted or
needed. Also, error messages should appear in roughly the same format and placement
each time so that they are recognized as error messages and not as some other
information. Examples of good and bad messages are provided in Table 9.10.

Table 9.10 Examples of Poor and Improved Error Messages

Poor Error Messages ’ Improved Error Messages]
Error 56 Opening File The file name you typed was not found,
Press F2 to list valid file names.
Wrong Choice Please enter an option from the menu.
Data Entry Error . The prior entry contains a value outside

the range of acceptable values. Press F9
for list of acceptable values.

File Creation Error The file name you entered already exists.
Press F10 if you want to overwrite it. Press
F2 if yon want to save it to a new name.

|
Using these guidelines, an analyst will be able to provide useful feedback in his/her
designs. A special type of feedback is answering help requests from users. This
important topic is described next.

9.4.5 Providing Help

Designing how to provide help is one of the most important interface design
issues the systems analysts will face. When designing help, an analyst need to put
himself/herself in the user’s place. When accessing help, the user likely does not
know what to do next, does not understand what is being requested, or does not
know how the requested information needs to be formatted. A user requesting help
is much like a ship in distress sending an SOS, In Table 9.11, we provide our SOS
guidelines for the design of system help: simplicity, organize, and show,

Table 9.11 Guidelines for Designing Usable Help

Guideline Explanation

——
Simplicity Use short, simple wording, common spelling, and complete
sentences. Give users only what they need to know, with
ability to find additional information.

Organize Use lists to break information into manageable pieces.
Show Provide examples of proper use and the outcomes of
such use.

|

Our first guideline, simplicity, suggests that help messages should be short, to the
point, and use words that enable understanding. This leads to our second guideline,
organize, which means that help messages should be written so that information
can be easily absorbed by users. Practical experience has found that long paragraphs
of text are often difficult for people to understand. A better design organizes
lJengthy information in a manner that is easier for users to digest through the use
of bulleted and ordered lists. Finally, it is often useful to explicitly show users how
to perform an operation and the outcome of procedural steps.

Many commercially available systems provide extensive system help. For example,
Table 9.12 lists the range of help available in a popular electronic spreadsheet.

Designing Interfaces
and Dialogues

NOTES

Self-Instructional Materiai 183

System Analysis and Design

NOTES

184 Self-Instructional Material

Many systems are also designed so that users can vary the level of detail provided.
Help may be provided at the system level, sereen or form level, and individual field
level. The ability to provide field level help is often referred to as “context-sensitive”
help. For some applications, providing context-sensitive help for all system options
is a tremendous undertaking that is virtually a project in itself. If an analyst
decides to design an extengive help system with many levels of detail, he/she must
be sure that he/she knows exactly what the user needs help with, or his/her efforts
may confuse users more than help them. After leaving a help screen, users should
always return to where they were prior to requesting help. If an analyst follows
these simple guidelines, he/she will likely design a highly usable help system.

Table 9.12 Types of Help

Type of Help Example of Question
Help on Help How do I get help?
Help on Concepts What is a customer record?
Help on Procedures How do I update a record?
Help on Messages What does “Invalid File Name” mean?
Help on Menus What does “Graphics” mean?
Help on Function Keys What does each Function key do?
Help on Commands How do Iuse the “Cut” and “Paste” commands?
Help on Words What do “merge” and “sort” mean?

As with the construction of menus, many programming environments
provide powerful tools for designing system help. For example, Microsoft’s
HTML Help environment allows an analyst to guickly construct hypertext-
based help systems. In this environment, he/she uses a text editor to construct
help pages that can be easily linked to.other pages containing related or more
specific information. Linkages are created by embedding special characters
into the text document that make words hypertext buttons—that is, direct
linkages—to additional information. HTML Help transforms the text document
into a hypertext document. For example, Figure 9.10 shows a hypertext-based
help screen from Microsoft’s Internet Explorer.

e

31:| Getting started with
2|;| Intsrmet Explarer
With at [nternet connaction and Internst Exglorer, you cen find and view informetian
abaut anything on the Wab. Just click the tepics brlow ta get started, Yau'l find more
f ion ta halp you braws the Irternst i tha Help Contents.

.

Sute®.

i Wlu l:r.n'(cannasted to the Jrtamnyt, or you want to creace a naw connection, dhitk
i) this link.

» Setupan [ntemetconnection

AN LRI

1 Leurning about I}vilrnal Enplorer

If You're new ta the Ittaroet or ka Tedgeant Bxglorar, here's ha Ifomnston you need
Bii to gatatennsd,

A A S DAl

o u
a5y

Fig. 9.10 Hypertext-based help system from Microsoft’s Internet Explorer.

Hypertext-:based help systems hgve become the standard for most commercial
applications. This has occurred fb\r two primary reasons. First, standardizing

system help across applications eases user training. Second, hypertext allows .

users to selectively access the level of help they need, making it easier to provide
effective help for both novice and experienced users within the same system.

9.5 DESIGNING DIALOGUES

The process of designing the overall sequences that users follow to interact with
an information system is called dialogue design. A dialogue is the sequence in
which information is displayed to and obtained from a user. As the designer, the
analyst’s role is to select the most appropriate interaction methads and devices
(described earlier) and to define the conditions under which information is displayed
to and obtained from users. The dialogue design process consists of three major
steps as given below:

1. Designing the dialogue sequence

2. Building a prototype

3. Assessing usability
A few general rules that should be followed when designing a dialogue are summarized
in Table 9.13. For a dialogue to have high usability, it must be consistent in form,
function, and style. All other rules regarding dialogue design are mitigated by the
consistency guideline. For example, the effectiveness of how well errors are handled
or feedback is provided will be significantly influenced by consistency in design. If
the system does not consistently handle errors, the user will often be at a loss as
to why certain things happen. '

Table 9.13 Guidelines for the Design of Human-Computer Dialogues

Guideline Explanation

Consistency Dialogues should be consistent in sequence of actions, keystrokes,
and terminology (e.g., the same labels should be used for the same
operations on all screens, and the location of the same information
should be the same on all displays).

Shortcuts and Allow advanced users to take shortcuts using special keys {(e.g.,

Sequence CTRL-C to copy highlighted text). A natural sequence of steps
should be followed (e.g., enter first name before last name, if
appropriate).

Feedback Feedback should be provided for every user action (e.g., confirm

that a record has been added, rather than simply putting another
blank form on the screen).

Closure Dizalogues should be logically grouped and have a beginning, middle,
and end {e.g., the last in the sequence of screens should indicate
that there are no more screens).

Error Handling All errors should be detected and reported; suggestions on how to
proceed should be made (e.g., suggest why such errers occur and
what user can do to correct the error). Synonyms for certain responses
ghould be accepted (e.g., accept either “t,” “T,” or “TRUE").

Reversal Dialogues should, when possible, allow the user to reverse actions
(e.g., undo a deletion); data should not be destructed without
confirmation (e.g., display all the data for a record the user has

Designing Interfacesh
and Dialogues

NOTES

Self-Instructional Material 196

System Analysis end Design

NOTES

196 Self-Instructional Material

e e e e — e e ——— . e ——— e — — ———

’_Control Dialogues should make the user {especially an experienced user)
feel in control of the system (e.g., provide a consistent response
time at a pace acceptable to the user).

Ease It should be a simple pracess for users to enter information and
navigate between screens {e.g., provide means to move forward,
backward, and to specific screens, such as first and last).

One example of these guidelines concerns rémoving data from a database or file
(see the Reversal entry in Table 9.13). It is good practice to display the information
that will be deleted before making a permanent change to the file. For example,
if the customer service representative wanted to remove a customer from the
database, the system should ask only for the customer ID in order to retrieve the
correct customer account. Once found, and before allowing the confirmation of the
deletion, the system should display the account information. For actions making
permanent changes to system data files and when the action is not commonly
performed, many system designers use the double-confirmation technique. With
this technique, users must confirm their intention twice before being allowed to
proceed.

9.5.1 Designing the Dialogue Sequence

The analyst’s first step in dialogue design is to.define the sequence. In other
words, he/she must first gain an understanding of how users might interact with
the system. This means that he/she must have a clear understanding of user, task,
technological, and environmental characteristics when designing dialogues. Suppose
that the marketing manager at Sheelak Ram Furniture wants sales and marketing
personnel to be able to review the year-to-date transaction activity for any SRF
customer. After talking with the manager, you both agree that a typical dialogie
between a user and the Customer Information System for obtaining this information
might proceed as follows:

1. Request to view individual customer information

2. Specify the customer of interest

3. Select the year-to-date transaction summary display
4. Review customer information

5. Leave system

As a designer, once an analyst understands how a user wishes to use a system,
he/she can then transform these activities into a formal dialogue specification.

A formal method for designing and representing dialogues is dialogue diagraraming.
Dialogue diagrams have only one symbol, a box with three sections; each box
represents one display (which might be a full screen or a specific form or window)
within a dialogue (See Figure 9.11).

Unique Reference

. L —
Number of Display Top

Name or Description

- ———————— M
of Display Middle

Reference Numbers

. -
of Return Displays Bottom

Fig. 9.11 Sections of a dialogue diagramming box

The three sections of the box are used as follows : - Designing Interfaces
and Dialogues

1. Top: Contains a unique display reference number used by other displays for
referencing it. '

Middle: Contains the name or description of the display.

Bottom: Contains display reference numbers that can be accessed from the NOTES
current display.

All lines connecting the boxes within dialogue diagrams are assumed to be bi-
directional and thus do not need arrowheads to indicate direction. This means that
users are allowed to move forward and backward between adjacent displays. If an
analyst desires only unidirectional flows within a dialogue, arrowheads should be
placed on one end of the line. Within a dialogue diagram, he/she can easily represent
the sequencing of displays, the selection of one display over another, or the repeated
use of a single display (e.g., a data entry display). These three concepts—sequence,
selection, and iteration—are illustrated in Figure 9.12.

Display A
Sequence
Display B
_________ Iteration
L L l
Display C Display D Display E ~
f ' |
Selection

Fig. 9.12 Dialogue diagram illustrating sequence, selection, and repetition (iteration).

9.5.2 Building Prototypes and Assessing Usability

Building dialogue prototypes and assessing usability are often optional activities.
Some systems may be very simple and straightforward. Others may be more
complex but are extensions to existing systems where dialogue and display standards
have already been established. In either case, an analyst may not be required to
build prototypes and do a formal assessment. However, for many other systems,
it is critical that he/she builds prototype displays and then assess the dialogue; this
can pay numerous dividends later in the systems development life cycle {(e.g., it
may be easier to implement a system or train users on a system they have already
seen and used).

Building prototype displays is often a relatively easy activity if an analyst uses
graphical development environments such as Microsoft’s Visual Studio .NET or
Borland’s Enterprise Studio. Some systems development environments include
easy-to-use input and output (form, report, or window) design utilities. There are
also several tools called “prototypers” or “demo builders” that allow an analyst to
quickly design displays and show how an interface will work within a full system.

Self-Instructional Material 197

System Analysis and Design

NOTES

198 Self-Instructional Moterial

These demo systems allow users to enter data and move through displays as if
using the actual system. Such activities are not only useful for him/her to show
how an interface will look and feel, they are also useful for assessing usability and
for performing user training long before actual systems are completed. In the next
section, we extend our discussion of interface and dialogue design to consider
issues specific to graphical user interface environments.

9.6 DESIGNING INTERFACES AND DIALOGUES IN
GRAPHICAL ENVIRONMENTS

Graphical user interface (GUI) environments have become the de facto standard
for human-computer interaction. Although all of the interface and dialogue design
guidelines presented previously apply to designing GUIs, additional issues that are
unique to these environments must be considered. We briefly discuss some of
these issues in the next section. ’

9.6.1 Graphical Interface Design Issues

When designing GUISs for an operating environment such as Microsoft Windows or
the Apple Macintosh, numerous factors must be considered. Some factors are
common to all GUI environments, whereas others are gpecific to a single environment.
We will not, however, discuss the subtleties and details of any single environment.
Instead, our discussion will focus on a few general truths that experienced designers
mention as critical to the design of usable GUIs. In most discussions of GUI
programming, two rules repeatedly emerge as comprising the first step to becoming
an effef:'ctive GUI designer as given below:

1. Become an expert user of the GUI environment.
2. Understand the available resources and how they can be used.

The first step should be an obvious one. The greatest strength of designing within
a standard operating environment is that standards for the behavior of most
system operations have already been defined. For example, how cut and paste, set
up the default printer, design menus, or assign commands to functions have been
standardized both within and across applications. This allows experienced users of
one GUI-based application to easily learn a new application. Thus, in order to
design effective interfaces in such environments, an analyst must first understand
how other applications have been designed so that he/she will adopt the established
standards for “look and feel.” Failure to adopt the standard conventions in a given
environment will result in a system that will likely frustrate and confuse users.

The second rule—gaining an understanding of the available resources and how

they can be used—is a much larger undertaking. For example, within Windows
you can use menus, forms, and boxes in many ways. In fact, the flexibility with
which these resources can be used versus the established standards for how most
designers actually use these resources makes design especially challenging. For
example, an analyst has the ability to design menus using all uppercase text,
putting multiple words on the top line of the menu, and other nonstandard conventions.
Yet, the standards for menu design require that top-level menu items consist of
one word and follow a specific ordering. Numerous other standards for menu
design have also been established (See Figure 9.13 for illustrations of many of

Designing Interfaces

these standards). Failure to follow standard design conventions will likely prove and Dialogues

very confusing to users.

WA Doxumend] Mwcrozolft Woud . [_]&] x]
00 R g Juwt Fynt Tows T rdow pw =
& (0 torma TR v AP ORR S D ﬂlm.: E[ﬂi NOTES
g 8, a0 Lavous TNy EEARN ZERER O A-]
ol !E'B"lm Fl< i) U & e O- <A
l.__ . I_i‘.mu..h. T OH ST =
g - |7 Ponwrg
I uacee andPocter ey coten
i Loom.., Oobosrd
| 3 Contred Toobox -
. Dramryg | ':t
: Forms X
. Franwes I '3
N hawe r I
. 'K
- Revipworyg i
: Tathes ant Bordees ! N
~ Vi Bk 1
: ws :
- wab Took 1
. Wordhst , A0
WG] F] <] Y Em—— - - 12
Pt | Tt et R e R e)
ms:-:[:]g]nm'-uﬂ : Micrevo.. ! - - mi:B»F_ﬁ 2:0ng

Fig. 9.13 Highlighting graphical user interface design standards.

In GUls, information is requested by placing a window (or form) on the visual
display screen. Like menu design, forms can also have numerous properties that
can be mixed and matched (see Table 9.14).

Table 8.14 Common Properties of Windows and Forms in a Graphical
User Interface Environment that can be Active or Inactive

Property Explanation

Modality Requires users to resolve the request for information before proceeding
(e.g.. need to cancel or save before closing a window).

Resizable Allows users to resize a window or form {e.g., to make room to see
other windows that are also on the screen).

Movablc Allows users to move a window or form {e.g.. to allow another
window to be seen).

Maximize Allows users to expand a window or form to a full-size screen
{e.g.. to avoid distraction from other active windows or forms).

Minimize Allows users to shrink a window or form to an icon (e.g.. to get
the window out of the way while working on other active windows).

System Menu Allows a window or form to also have a system menu to directly
access system-level functions (e.g., to save or copy data).

Example, properties about a form determine whether a form is resizable or movable
after being opened. Because propertics define how users can actually work with a
form, the effective application of properties is fundamental to gaining usability.
This means that, in addition to designing the layout of a form, an analyst must

Self.Instructional Material 189

System Analysis end Design

NOTES

200 Self-Instructional Materiaf

also define the “personality” of the form with its characteristic properties. Fortunately,
numerous GUI design tools have been developed that allow analysts to “visually”
design forms and interactively engage properties. Interactive GUI design tools
have greatly facilitated the design and construction process.

In addition to the issues related to interface design, the sequencing of displays
turns out to be a bit more challenging in graphical environments. This topic is
discussed next.

Dialogue Design Issues in a Graphical Environment. When designing a dialogue,
an analyst’s goal is to establish the sequence of displays (full screens or windows)
that users will encounter when working with the system. Within many GUI environments,
this process can be a bit more challenging due to the GUI’'s ability to suspend
activities {(without resolving a request for information or exiting the application
altogether) and switch to another application or task. For example, within Microsoft
Word, the spell checker executes independently from the general word processor.
This means that you can easily jump between the spell checker and word processor
without exiting either one. Conversely, when selecting the print operation, you
must either initiate printing or abort the request before returning to the word
processor. This is an example of the concept of “modality” described in Table 9.14.
Thus, Windows-type environments allow analysts to create forms that either require
the user to resolve a request before proceeding (print example) or selectively
choose to resolve a request before proceeding (the spell checker). Creating dialogues
that allow the user to jump from application to application or from module to
module within a given application requires that the analyst carefully thinks through
the design of dialogues.

One easy way to deal with the complexity of designing advanced graphical user
interfaces is to require users to always resolve all requests for information before
proceeding. For such designs, the dialogue diagramming technique is an adequate
design tool. This, however, would make the system operate in a manner similar
to a traditional non-GUI environment where the sequencing of displays is tightly
controlled. The drawback to such an approach would be the failure to capitalize on
the task-switching capabilities of these environments. Consequently, designing dialogues
in environments where the sequence between displays cannot be predetermined
offers significant challenges to the designer. Using tocls such as dialogue diagramming
helps analysts to better manage the complexity of designing graphical interfaces.

' Designing Interfaces
’ and Dialogues

STUDENT ACTIVITY 9.2

1. Why do computer interface users take help to interact with an infermation system?

2. Write a short note on dialogue design.

Self-Instructional Material 201

" System Analysis and Design

NOTES

202 Self-Instructional Material

SUMMARY -

The process of designing interfaces and dialogues is a user-focused activity.
Interface is a method by which users interact with an information system:.

Command language interaction is a human-computer interaction method
whereby users enter explicit statements into a system to invoke operations.

Menu interaction is a human-computer interaction method in which a list
of system options is provided and a specific command is invoked by user
selection of a menu option. '

Form interaction is a highly intutive human-computer interaction method
whereby data fields are formatted in a manner similar to paper-based forms.

Object-based interaction is a human-computer interaction method in which
symbols are used to represent commands or functions.

Icons are graphical pictures that represent specific functions within a system.

Dialogue is the sequence of interaction between-a usér and a system.

TEST YOURSELF .

Answer the following questions:

1.

What type of business tasks are most suitable and also required for form-
based interaction within an information system? Explain with an illustration.

In online system, what are the various type of errors in data? What type of
techniques can be applied to validate the errors?

What is an interface? What are the basic objectives of an interface design?
How is an interface different from a dialogue?

Discuss the graphical interface design issues.

State True or False:

(i} The design of interfaces and dialogues is not the process of defining the
manner in which humans and computers exchange information.

(i) The process of designing' interfaces and dialogues is a user-focused
activity.

(fii) Interface is a method by which users interact with an information
System.

(iv) Icons are graphical pictures that represent specific functions within a
system.

(v) When designing the navigation procedures within a system, flexibility
and consistency are primary concerns.

(vi) One objective of interface design is to reduce data entry errors.

(vii) When accessing help, the user likely knows what to do next, understands
what is being requested, or knows how the requested information
needs to be formatted.

(viit) When designing a dialogué, an analyst’s goal is Lo establish the sequence
of displays that users will encounter when working with the system.

6. Fill
C)

(if)
(iit)

(fv)

(vi)

(vit)

- (witd)

in the blanks:

.................. - i3 a human-computer interaction method whereby users
enter éxplicit statements into a system to invoke operations.

The .ovviiiiiirenns from system interface and dialogue design is the.

creation of a design specification.

................... is a menu-positioning method that places a menu n€ar
the current cursor position.

The selection of an interaction device must be made duringtcoe...,
because different interfaces require different devices.

A is the sequence in which information is displayed to

.and obtained from a user.

A formal method for designing and representing dialog‘ues 1S v

‘As data are entered into an information system, steps must be taken
to ensure that the is valid.

eoivrsseaeenien, environments have become the de-facto standard for human-
computer interaction.

ANSWERS

Test Yourself
5. State True or False:

(i)

(€123

(v)
(vii)

6. Fill
()

(£it)

()

(vil}

False (if) True -
True (iv) True

True (vi) True

False , (viti) True

in the blanks:

Command language interactioﬁ (i) deliverable and outcome
Pop-up menu {iv) Logical design

dialogue ’ (vi) dialogue diagramming

input (viti) Graphical user interface (GUI)

Designing Interfaces
and Dialogues

NOTES

Self-Instructional Material 203

CHAPTEHR

DESIGNING DATABASES

'LEARNING OB]JECTIVES

10.1 ln!rocjuction
10.2 Database Design’
10.2.1 The Process of Database Design
10.2.2 Deliverables and Outcomes
- 10.3 Relational Database Model
10.3.1 Well-structured Relations
10.4 Normalization
10.4.1 Rules of normalfzaﬁon
10.4.2 Functional Dependence and Primary Keys
10.4.3 Second Normal Form
10.4.4 Third Normal Farm
10.5 Merging Relations
10.5.1 An Example of Merging Relations
10.5.2 View Integration Problems
106 Physical File and Database Design
10.7 Designing Fieids
10.7.1 Choosing Data Types
10.7.2 Confrolling Data Integrity
10.8 Designing Physical Tables .
10.8.1 Arranging Table Rows
10.8.2 Designing Controls for Files
10.9 The Role of the Data Base Administrator

10.1 INTRODUCTION

We have learned how to represent an organization’s data graphicaily using an
entity-relationship (E-R) and case diagram. In this unit, we learn guidelines for
well-structured and efficient database files and about logical and physical databasge

design. It is likely that the human interface and database design steps will« -

happen in parallel, as shown in the SDLC in Figure 10.1.

Designing Databases

NOTES

Seif-lnst}ucrimmi Material 205

System Analysis and Design

1. Preliminary
investigation

NOTES

maintenance analysis

6. Systems 2 Systems]
|]

: Forms and Reporls
' Dialogues and Interfaces
5. Systems 3. Systems)
implementation [design [Fites and Databases
RS, Process
N Output/input
4. Systems
development

-

Fig. 10.1 Systems development life cycle with design phase highlighted.

Database desig‘n has five purposes as given below :

1. Structure the data in stable structures, known as normalized tables, that
are not likely to change over time and that have minimal redundancy.

2. Develop a logical database design that reflects the actual data requirements
that exist in the forms (hard copy and computer displays) and reports of
an information system. This is why database design is often done in
parallel with the design of the human interface of an information system.

3. Develop a logical database design from which we can do physical database
design. Because most information systems today use relational database
management systems, logical database design usually uses a.relational
databasc model, which represents data in simple tables with common
columns to link related tables. ’

4. Translate a relational database model into a technical file and database
design that balances several performance factors.

8. Choose data storage technologies (such as floppy disk, CD-ROM, or optical
disk) that will efficiently, accurately, and securely process database activities.

The implementation of a database (i.e., creating and loading data into files and
databases) is done during the systems implementation phase of the systems
development life cycle. Because implementation is very technology specific, we
address implementation issues only at a general level later on. Finally we will
discuss the role of the DBA (Data Base Administrator).

10.2 DATABASE DESIGN

File and database design occurs in two steps. An analyst begins by developing a
logical database model, which describes data using a notation that corresponds
to a data organization used by a database management system. This is the
) . system software responsible for storing, retrieving, and protecting data (such as
A Microsoft Access,” Oracle, or SQL Server). The most common style for a logical
' database model is the relational database model. Once an analyst develops a
clear and precise logical database model, he/she is ready to prescribe the technical

<206 Self instructional Material

specifications for computer files and databases in which to store the data. A physical
database design provides these specifications.

An analyst ty'plically does logical and physical database design in parallel with other
systems design steps. Thus, he/she collects the detailed specifications of data necessary
for logical database design as he/she designs system inputs and outputs. Logical
database design is driven not only from the previously developed E-R data model
for the application but also from form and report layouts. He/she studies data
elements on these system inputs and outputs and identify -interrelationships among
the data. As with conceptual data modelling, the work of all systems development
team members is coordinated and shared through the project dictionary or repository.
The designs for logical databases and system inputs and outputs are then used in
physical design activities to specify to computer programmers, database administrators,
network managers, and others how to implement the new information system. Let
us deseribe the aspect of physical design most often undertaken by a systems
analyst—physical file and database design. .

10.2.1 The Process of Database Design

Figure 10.2 shows that database modeling and design activities occur in all phases
of the systems development process. In this unit, we discuss methods that help an
analyst finalize logical and physical database designs during the design phase. In
logical database design, an analysts uses a process called normalization, which is
a way to build a data model that has the properties of simplicity, nonredundancy,
and' minimal maintenance. '

In most situations, many physical database design decisions are implicit or eliminated
when an analyst selects the data management technologies to use with the application.
Let us concentrate on those decisions an analyst will make most frequently and
use Oracle to illustrate the range of physical database design parameters he/she
must manage.

» Enterprisewide data model (E-R with only entitles)
« Conceptual data model (E-R wilh only entities for specific project)

1. Preliminary
nvestigation
» Data model
evolution
6. Systems 2. Systems « Conceptual data models
maintenance analysis (E-R with attributes)
5. Systems 3 Systems
implementation design
» Database and file - » Logical data model (relational)
definitions 4. Systems and physical file and database
{DBMS-specific code) development design (file organizations)

Fig. 10.2 Relationships between data modeling and the-SDLC.

There are four key steps in logical database modeling and design as given below:

1. Develop a logical data model for each known user interface (form and
report) for the application using normalization principles.

Designing Databases

NOTES

Self-Instructional Material 207

System Analysis and Design

NOTES

208 Seif-Instructional Material

2. Combine normalized data requirements from all user interfaces into one
consolidated logical database model; this step is known as view integration.

3. Translate the conceptual E-R data model for the application, developed
without explicit consideration of specific user interfaces, into normalized
data requirements.

4. Compare the consolidated logical database design with the translated E-R
model and produce, through view integration, one final logical database
model for the application.

During physical database design, an analyst uses the results of these four key
logical datahase design steps. He/she also considers definitions of each atiribute;
descriptions of where and when data are entered, retrieved, deleted, and updated,;
expectations for response time and data integrity; and descriptions of the file and
database technologies to be used. These inputs allow him/her to make key physical
database design decisions, including the following :

+ Choosing the storage format (called data type) for each attribute from the
logical database model; the format is chosen to minimize storage space
and to maximize data quality. Data type involves choosing length, coding
scheme, number of decimal places, minimum and maximum values, and
potentially many other parameters for each attribute.

* Grouping attributes from the logical database model into physical records
(in general, this is called selecting a stored record, or data, structure).

¢ Arranging related records in secondary memory (hard disks and magnetic
tapes) so that individual records and groups of records can be stored,
retrieved, and updated rapidly (called file organization). An analyst should
also consider protecting data and recovering data after errors are found.

¢ Selecting media and structures for storing data to make access more
efficient. The choice of media affects the utility of different file organizations.
The primary structure used today to make access to data more rapid is
key indexes on unique and nonunigque keys.

In this unit, we show how to do each of these logical database design steps and
discuss factors to consider in making each physical file and database design decision.

10.2.2 Deliverables and Qutcomes

During logical database design, an analyst must account for every data element
on a system input or output—form or report—and on the E-R or class diagram.
Each data element (e.g., customer name, product description, or purchase price)
must be a piece of raw data kept in the system’s database or, in the case of a data
element on a system output, the element can be derived from data in the database.
Figure 10.3 illustrates the outcomes from the four-step logical database design
process given earlier. Figures 10.3(a) and 10.3(h) (step 1)} contain two sample
system outputs for a customer order processing system at Sheelak Ram Furniture.
A description of the associated database requirements, in the form of what we call
normalized relations, is given below each output diagram.

HIGHEST VOLUME CUSTOMER w
ENTER PRODUCT ID.: M108

START DATE: 01/01/2007

END DATE 314032007

CUSTOMER ID.: 5009

NAME: Sajavat Builder

VOLUME: 50

- /

This inquiry screen shows the customer with the largest volume of total sales for a
specified product during an indicated time peroig. :

Relations :
CUSTOMER (Customer_ID, Name)
PRODUCT (Product ID)

LINE {TEM (Order_Number, Froduct 1D, Order_Quantity)

{a) Highest-volume customer query screen

Each relation (think of a relation as a table with rows and columns) is named,
and its attributes (columns) are listed within parentheses. The primary key
attribute—that attribute whose value is unique across all occurrences of the
relation—is indicated by an underline, and an attribute of a relation that is the
primary key of another relation is indicated by a dashed underline.

T L
ot 19

T | —

) Page1 |

i g (
o1 BACKLOG SUMMARY REPORT i»

1

| 28/02/2007 E
ol @]

. - BACKLOG : T~
o PRODUCT_ID QUANTITY ‘e

! A301 0 '
ol B295 0 e

!)

lr B805 10 E
o : E_1 22 ~20 : »

\ . - '

\ - !
of M08 . 5 ' ®

: : !
ol ‘:.

This report shows the unit volume of each product that has been ordered less that
amount shipped through the specified date.

Relations :
PRODUCT (Product_iD)
LINE ITEM (Product_ID, Order_Number, Order_Quantity)
ORDER (Order_Number, Order_Date)
SHIPMENT (Product_ID, Invoice_Number, Ship_Quantity)

(5) Backlog summary report

Designing Duatabascs

NOTES

Self-Instruciionn! Material 209

System Analysis and Design Tp Figure 10.3(c) data are shown about customers, products, and the customer
orders and associated line items for products. Each of the attributes of each relation
either appears in the display or is required to link related relations. For example,
because an order is for some customer, an attribute of QRDER is the associated
Customer_ID. The data for the display in Figure 10.3(5) are more complex. A
backlogged product on an order occurs when the amount ordered (Order_Quantity)
is less than the amount shipped (Ship_Quantity) for invoices associated with an
order. The query refers to only a specified time period, s¢ the Order_Date is
needed. The INVOICE Order_Number links invoices with the associated order.

NOTES

CUSTOMER (Customer_ID, Name)
_ PRODUCT (Product_ID) _
INVOICE {!nvoice_Number, Jnvoice_Date, Order_Number)

LINE ITEM (Order_Number, Product_ID, Order_Quantity)
SHIPMENT (Product_ID, Invoice_Number, Ship_Quantity)

(c) Integrated set of relations

CUSTOMER INVOICE

~V

T

Bills
Order_Date Ship_Quantity
Order_Number ORDER U SHIPMENT >

AN

Relations :

Order_ /'/I:INE\"\‘_ LA
Product_ID
CUSTOMER (Customer_ID, Name, Address)
PRODUCT (Product_ID, Description)

ORDER (Order_Number, Customer_ID, Order_Date)

LINE ITEM {Order_Number, Product_|D, Order_Quantity)
INVOICE (Invoice_Number, Order_Number)

(d) Conceptual data model and transformed relations (Continued)

210 Self-Instructional Material

CUSTOMER {Customer_ID, Nama, Address)
PRODUCT {Product_ID, Description)

SRIPMENT (Invoice_Number, Produci_ID, Ship_Quantity)

{e) Final set of normalized relations
Fig. 10.3 Simple example of logical data modeling.

Figure 10.3(c) (step 2) shows the result of integrating these two separate sets of
normalized relations. Figure 10.3(d) (step 3) shows an E-R diagram for a customer
order pracessing application that might be developed during conceptual data modeling
along with equivalent normalized relations. Finally, Figure 10.3(e) {(step 4) shows
a set of normalized relations that would result from reconciling the logical database
designs of Figures 10.3(c} and 10.3(d). Normalized relations like those in Figure
10.3(e) are the primary deliverable from logical database design.

It is important to remember that relations do not correspond to computer files. In
physical database design, an analyst translates the relations from logical database
design into specifications for computer files. For most information systems, these
files will be tables in a relational database. These specifications are sufficient for
programmers and database analysts fo code the definitions of the database. The
coding, done during systems implementation, is written in special database definition
and processing languages, such as Structured Query Language (SQL), or by filling
in table definition forms, such as with Microsoft Access. Figure 10.4 shows a possible
definition for the SHIPMENT relation from Figure 10.3(e} using Microsoft Access.

& SHIPMENT : Table

- Descrption e
The invoke rurber 2ssigned by SRF; Format s 1199-999%9 .
_The uniqua identifier for the product odered on this involce;Format is X999
__The number of unks of tha associated Prodkuct 10 biled on this invoice

-

.. Feld Properties

e —— ——— e ——— " — —

, Field Siza 10

Tnvoice Number f

A fiald nanve can be uo to 64 chacacters

! fong, Inchading spaces. Pross F for
holp an freid nemes.,

Rocrgred Yes

Alows Zero Lenixh No .
es (Gupicates 00 |
rYes

indexed
Unicode Compression

Fig. 10.4 Definition of shipment table in Microsoft Access.

This display of the SHIPMENT table definition illustrates choices made for several
physical database design decisions,

« All three attributes from the SHIPMENT relation, and no attributes from
other relations, have been grouped together to form the fields of the SHIPMENT
table.

* The Invoice Number field has been given a data type of Text, with a
maximum length of ten characters.

Designing Databases

NOTES -

Scif-Instructional Material 211

System Analysis and Design

NOTES

212 Self-Instructional Material

* The Invoice Number field is required because it is part of the primary key
for the SHIPMENT table (the value that makes every row of the SHIPMENT
table unique is a combination of Invoice Number and Product ID).

* An index is defined {or the Invoice Number field, but because there may
be several rows in the SHIPMENT table for the same invoice (different
products on the same invoice), duplicate index values are allowed (so Invoice
Number is what we will call a secondary key).

Many other physical database design decisions were made for the SHIPMENT
table, but they are not apparent on the display in Figure 10.4. Further, this table
is only one table in the SRF Order Entry database, and other tables and structures
for this database are not illustrated in this figure.

10.3 RELATIONAL DATABASE MODEL

Many different database models are in use and are the basis for database technologies.
Although hierarchical and network models have been popular in the past, these
are not used very often today for new information systems. Object-oriented database
models are emerging, but are still not common. The vast majority of information

_systems today use the relational database model. The relational database model.

(Codd, 1970) represents data in the form of related tables, or relations. A relation
is a named, two-dimensional table of data. Each relation (or table) consists of a set
of named columns and an arbitrary number of unnamed rows. Each column in a
relation corresponds to an attribute of that relation. Each row of a relation corresponds
to a record that contains data values for an entity.

Figure 10.5 shows an example of a relation named HOTEL1. This relation contains
the following attributes describing employees: Hotel ID, Name, Type, and Manager.
This table has five sample rows, corresponding to five hotels.

HOTEL?
HOTEL_ID Name Type Manager
1000 Suman Plaza § Star Sanjay
1400 Jainson . 2 Star Beena
1100 Shiva 3 Star Chetan
1900 Hyat 5 Star . David
1500 Taj ' 3 Star Suman

Fig. 10.5 HOTEL1 relation with sample data.

You can express the structure of a relation with a shorthand notation in which the
name of the relation is followed (in parentheses) by the names of the attributes
in the relation. The identifier attribute (called the primary key of the relation) is
underlined. For example, you would express HOTEL1 as follows:

Hotell, (Hotel 1D, Name, Type, and Manager)

Not all tables are relations. Relations have several properties that distinguish
them from nonrelational tables:

1. Entries in cells are simple. An entry at the intersection of each row and
column has a single value, :

Entries in a given column are from' the same set of values.

Each row is unique. Uniqueness is guaranteed because the relation has a
nonempty primary key value.

4. The sequence of columns can be interchanged without changing the meaning
or use of the relation.

5. The rows may be interchanged or stored in any sequence.

10.3.1 Well-Structured Relations

What constitutes a well-structured relation (or table)? Intuitively, a well-structured
relation contains a minimum amount of redundancy and allows users to insert,
modify, and delete the rows in a table without errors or inconsistencies. HOTEL1
(Figure 10.5) is such a relation. Each row of the table contains data describing one
hotel, and any modification to an hotel's data (such as a change in Manager) is
confined to one row of the table.

In contrast, HOTELZ (Figure 10.6) contains data about hotels and the rooms in the
hotels. Each row in this table is unique for the combination of Hotel ID and Rooms
No, which becomes the primary key for the table. This is not a well-structured
relation, however. If you examine the sample data in the table, you notice a
_considerable amount of redundancy. For example, Hotel ID, Name, Type, and
Manager values appear in two separate rows for employees 1000, 1100 and 1500.
Consequently, if the Manager for hotel 1000 changes, we must record this fact in two
rows (or more, for some hotels).

HOTEL2
w Name Type Manager M Room_Rent
1000 Suman Plaza 5 Star Sanjay A2001 4,000
1000 Suman Plaza 5 Star Sanjay B83105 3,000
1400 Jainson 2 Star Beena - 250 2,500
1100 Shiva 3 Star Chetan . 1280 3,500
1100 Shiva 3 Star Chetan 780 1,750
1900 Hyat 5 Star David) S5001 8,000
1500 Ta) 3 Star Suman 3200 3,200

Fig. 10.6 Relation having redundancy.

HOT ROOM
HOTEL_ID Room_No Room_Rent
1000 A2001 4,000
1000 ' B3105 3,000
1400 250 2,500
1100 1280 3.500
1500 780 1,750
1900 $5001 8,000
1500 3200 3,200

Fig. 10.7 HOT ROOM relation.

" The problem with this relation is that it contains data about two entities: HOTEL
and ROOM. You will learn to use principles of normalization to divide HOTEL2
into two relations. One of the resulting relations is HOTEL1 (Figure 10.5). The
other we will call HOT ROCM, which appears with sample data in Figure 10.7. The
primary key of this relation is the combination of Hotel_ID and Room_No (we
emphasize this by underlining the column names for these attributes).

Designing Databases

NOTES

Self-Instructional Material 213

System Analysis and Design

STUDENT ACTIVITY 10.1

1. What are the purposes of databasc design?

2. List the various data models used in information systems. Which one is popular nowadays and why?

214 Self-Instructional Material

10.4 NORMALIZATION

We have presented an intuitive discussion of well-structured relations; however,
we need rules and a process for designing them. Normalization is a process for
converting complex data structures into simple, stable data structures. For example,
we used the principles of normalization to convert the HOTEL2 table with its
redundancy to HOTEL1 (Figure 10.5) and HOT ROOM (Figure 10.7).

10.4.1 Rules of Normalization

Normalization is based on well-accepted principles and rules. There are many
normalization rules, more than can be covered in this text. Besides the five properties
of relations outlined previously, there are two other frequently used rules :

1. Second normal form (2NF). Each nonprimary key attribute is ideniified by
the whole key (what we call full functional dependency). For example, in
Figure 10.7, both Hotel_ID and Room_No identify a Value of Room_Rent
because the same Hotel_ID can be associated with more than one Room_Rent
and the same for Room_No.

2. Third normal form (3NF). Nonprimary key attributes do not depend on
each other (what we call no transitive dependencies). For example, in
Figure 10.5, Name, Type, and Manager cannot be guaranteed to be unique
for one another. .

The result of normalization is that cvery nonprimary key attribute depends upon
the whole primary key and nothing but the primary key. We discuss second and
third normal form in more detail next.

10.4.2 Functional Dependence and Primary Keys

Normalization is based on the analysis of functional dependence. A functional
dependency is a particular relationship between two attributes. In a given relation,
attribute B is functionally dependent on attribute A if, for every valid value of A,
that value of A uniquely determines the value of B. The functional dependence of
B on A is represented by an arrow, as follows: A—B (e.g., Hotel ID»>Name in the
relation of Figure 10.5). Functional dependence does not imply mathematical dependence—
that the value of one attribute may be computed from the value of arother attribute;
rather, functional dependence of B on A means that there can be only one value
of B for each value of A. Thus, a given Hotel_ID value can have only one Name
value associated with it; the value of Name, however, cannot be derived from the
value of Hotel_ID. Other examples of functional dependencies from Figure 10.3(&)
are in ORDER, Order_Number—QOrder_Date, and in INVOICE,

Invoice >Number_Invoice_Date and Order_Number.

An attribute may be functionally dependent on two (or more) attributes rather
than on a single attribute, for example, consider the relation HOT ROOM (Hotel _ID,
Room_No, Room_Rent) shown in Figure 10.7. We represent the functional dependency
in this relation as follows:

Hotel_ID, Room_No—Room™_Rent. In this case, Room_Rent cannot be determined
by either Hotel_ID or Room_No alone, because Room_Rent is a characteristic of
a room of a hotel.

You should be aware that the instances (or sample data) in a relation do not prove

that a functional dependency exists. Only knowledge of the problem domain, obtained
from a thorough requirements analysis, is a reliable method for identifying a

Designing Databases

NOTES

Self-Instructional Material 215

System Analysis and Design

NOTES

216 Seif-Instructional Material

functional dependency. However, you can use sample data to demonstrate that a
functional dependency does not exist between two or more attributes. For example,
consider the sample data in the relation EXAMPLE (A, B, C, D) shown in Figure
10.8. The sample data in this relation prove that attribute B is not functionally
dependent on attribute A because A does not uniquely determine B (two rows with
the same value of A have different values of B).

EXAMPLE
A . B o D
X U X Y
® X z X
z Y Y Y
® 2 W b4

Fig. 10.8 EXAMPLE relation.

10;4.3 Second Normal Form

A relation is in second normal form (2NF) if every nonprimary key attribute is
functionally dependent on the whole primary key. Thus, no nonprimary key attribute
is functionally dependent on part, but not all, of the primary key. Second normal
form is satisfied if any one of the following conditions apply :

1. The primary key consists of only one attribute (such as the attribute Hotel _ID
in relation HGTEL1). _
No nonprimary key attributes exist in the relation.
Every nonprimary key attribute is functionally dependent on the full set of
primary key attributes.
HOTEL2 (Figure 10.6) is an example of a relation that is not in second normal
form. The shorthand notation for this relation is
HOTEL2 (Hotel_ID, Name, Type, Manager, Room_No, Room_Rent)
The functional dependencies in this relation are the following :
Hotel_ID—>Name, Type, Manager
Hotel_ID, Room_No—Room_Rent
The primary key for this relation is the composite key Hotel ID, Room_No. Therefore,
the nonprimary key attributes Name, Type, and Manager are functionally dependent

on only Hotel _ID but not on Room_No. HOTEL2 has redundancy, which results in
problems when the table is updated.

To convert a relation to second normal form, you decompose the relation into new
relations using the attributes, called determinants, that determine other attributes;
the determinants are the primary keys of these relations. HOTEL2 is decomposed
into the following two relations:

1. HOTEL (Hotel _ID, Name, Type, Manager). This relation satisfies the first
second normal form condition (sample data shown in Figure 10.5).

2. HOT ROOM (Hotel_ID, Room_No, Room_Rent). This relation satisfies second
normal form condition three (sample data shown in Figure 10.7).

10.4.4 Third Normal Form

A relstion is in third normal form (3NF) if it is in second normal form and there
are no functional dependencies between two (or more) nonprimary key attributes (a
functional dependency between nonprimary key attributes is also called a transitive

dependericy). For example, consider the relation HOTEL GUEST (Hotel_ID, Name,
Guest, Guest_Home) (sample data appear in Figure 10.9(a).

HOTEL GUEST

Hotel_{D Name Guest Guest_Homes

1000 Suman Plaza Krishan Pune

1400 Jainson Aman . Sonepat

1100 Shiva Seema Goa

1800 Hyat Muarli Dethi

1500 Taj Geeta Mumbai

{a) Relation having transitive dependency
GUEST1

Hotel_ID Name Guest GPERSON
1000 Suman Plaza Krishan Suest Gues!_Home
1400 Jdainson Aman Krishan Pune
1100 Shiva Seema Aman Sonepat
1900 Hyat Murl Seema Goa
1500 . T Geeta Murli Delhi

(b) Relation in 3NF

Fig. 160.9 Removing transitive dependenmes

The following functional dependencies exist in the HOTEL GUEST relation :
1. Hotel_ID->Name, Guest, Guest_Home (Hotel ID is the primary key)
2. Guest—>Guest_Home (Each guest has a unique home address)

Notice that HOTEL GUEST is in second normal form because the primary key
consists of a single attribute (Hotel_ID). However, Guest_Home is functionally
dependent on Guest, and Guest is functionally dependent on Hote]_ID. As a result,
there are data maintenance problems in

HOTEL GUEST.

1. A new guest (Ravina} with home address Panipat cannot be entered until
a hotel has been assigned to that guest (because a value for Hotel_ID must
be provided to insert a row in the table). :

2. If hotel number 1400 is deleted from the table, we lose the information
that Sonepat is the home address of guest Aman.

3. If home address (i.e., Guest_Home) of guest Seema is changed to Surat,
several rows must be changed to reflect that fact {two rows are shown in
Figure 10.9(a). ' '

These problems can be avoided by decomposing HOTEL GUEST into the two
relations, based on the two determinants, shown in Figure 10.9(b). These relations
are the following:

GUEST1 (Hotel_ID, Name, Guest)

Gperson (Guest, Guest_Home)

Note that Guest is the primary key in GPERSON. Guest is also a foreign key in
Guest 1. A foreign key is an attribute that appears as a nonprimary key attribute
in one relation (such as GUEST1) and as a primary key attribute (or part of a
primary key) in mother relation. You designate a foreign key by using a dashed
underline,

Designring Databases

NOTES

Seff-Instructionaf Materiat 217

System Analysis and Design

NOTES

218 Self-Instructional Material

A foreign key must satisfy referential integrity, which specifies that the value of
an attribute in one relation depends on the value of the same attribute in another
relation. Thus, in Figure 10.9(b), the value of Guest in each row of table GUEST1
is limited to only the current values of Guest in the GPERSON table. Referential
integrity is and of the most important principles of the relational model.

10.5 MERGING RELATIONS

As part of the logical database design, normalized relations likely have been created
from a number of separate E-R diagrams and various user interfaces. Some of the
relations may be redundant—they may refer to the same entities. If so, an analyst
should rrerge those relations to remove the redundaney. This section describes
merging relations, or view integration, which is the last step in logical database
design and prior to physical file and database design.

10.5.1 An Example of Merging Relations

Suppose that modeling a user interface or transforming an E-R diagram results in
the following 3NF relation :

TEXT BOOKI1 (ISBN. Title,-Price)

Modeling a second user interface might result in the following relation:

TEXT BOOK2 (ISBN. Title, Edition, Publisher_ID, Publisher Address)

Because these two relations have the same primary key (ISBN) and describe the
same entity, they should be merged into one relation. The result of merging the
relations is the following relation:

TEXT BOOK (ISBN, Title, Price, Edition, Publisher_ID, Publisher_Address).

Notice that an attribute that appears in both relations (such as Title in this
example) appears only once in the merged relation.

10.5.2 View Integration Problems

When integrating relations, an analyst must understand the meaning of the data
and be prepared to resolve any problems that may arise in the process. In this
section, we describe and illustrate four problems that arise in view integration:
synonyms, homonyms, dependencies between nonkeys, and class/subclass relationships.

Synonyms. In some situations, two or more attributes may have different names
but the same meaning, as when they describe the same characteristic of an entity.
Such attributes are called synonyms. For example, Stu_ID and Student_Number
may be synonyms. -

When merging relations that contain synonyms, an analyst should obtain, if possible,
agreement from users on a single standardized name for the attribute and eliminate
the other synonym. Another alternative is to choose a third name to replace the
synonyms. For example, consider the following relations:

TEXT BOOKI1 (Book_No, Title, Edition)

TEXT BOOK2 (Registration_No, Price, Publisher)

In this case, the analyst recognizes that both the Book_No and the Registration_No
are synonyms for a Book’s ISBN number and are identical attributes. One possible
resolution would be to standardize one of the two attribute names, such as Book_No.

Another option is to use a new attribute name, such as ISBN, to replace both
synonyms. Assuming the latter approach, merging the two relations would produce

the following result:
TEXT BOOK (ISBN. Title, Edition, Price, Publisher)

Homonyms. In other situations, a single attribute name, called a homonym, may
have more than one meaning or describe more than one characteristic. For example,
the term account might refer to a bank’s checking account; savings account, loan
account, or other type of account; therefore, accouni refers to different data,
depending on how it is used.

You should be on the lookout for homonyms when merging relations. Consider the
following example : :
CUSTOMER1 (Customer_ID, Name, Account_No)

CUSTOMER2 (Customer_ID, Name, Address, Account_No)

In discussions with users, the systems analyst may discover that the attribute

Account_No in CUSTOMERI refers to a Customer’s Savings Bank Account Number
whereas in CUSTOMERZ the same attribute refers to a Customer’s Fixed Deposit

account number. To resolve this conflict, we would probably need to create new °

attribute names and the merged relation would become
CUSTOMER (Customer_ID, Name, Address, SB_ACCNO, FD_ACCNO)
Dependencies Between Nonkeys. When two 3NF relations are merged to forin

a single relation, dependencies between nonkeys may result. For example, consider
the following two relations:

EMPLOYEE1 (EMP_NO, SB_ACCNO)

EMPLOYEE2 (EMP_NO, SALCR_BANK)

Because EMPLOYEE] and EMPLOYEE2 have the same primary key, the two
relations may be merged:

EMPLOYEE (EMP_NO, SB_ACCNO, SALCR_BANK)

However, suppose that each Savings bank account number (SB_ACCNOQ) belongs to
exactly one bank (employee’s directed single bank account for salary transfer). In
this case, SALCR_BANK is functionally dependent on SB_ACCNO :
SB_ACCNO-SALCR_BANK

If this dependency exists, then EMPLOYEE is in 2NF but not 3NF, because it
contains a functional dependency between nonkeys. The analyst can create 3NF
relations by creating two relations with SB_ACCNO as a foreign key in EMPLOYEE:

EMPLOYEE (EMP_NO, SB_ACCNO)
ACCOUNT BANK (SB_ACCNO, SALCR_BANK)

Class/Subclass. Class/subclass relationships may be hidden in user views or relations.
Suppose that we have the following two hoespital relations:

PATIENT1 (Patient_ID, Name, Address, Date_Treated)
PATIENT?2 (Patient_ID, Room_Number)

Initially, it appears that these two relations can be merged into a single PATIENT
relation. However, suppose that there are two different types of patients: inpatients
and outpatients. PATIENTI1 actually contains attributes common to all patients.
PATIENT? contains an attribute (Room_Number) that is a characteristic only of
. inpatients. In this situation, you should create class/subclass relationships for

\

" these entities:) s
PATIENT (Patient_ID. Name.Addre'ss}
INPATIENT (Patient_ID, Room_Number)

_OUTPATIENT (Patient_ID, Date_Treated)

[

Desiéning Databases

NOTES

Self-Instructional Materia{ 219

System Analysis and Design

STUDENT ACTIVITY 10.2

1. What type of relationship exists in relational data model—explicit or implicit? How is the relationship
between entities represented? Explain with an example.

2. What is referential integrity? What 1is 'its purpose? Give an example.

220 -S:gif—fnstructiandi Material

10.6 PHYSICAL FILE AND DATABASE DESIGN

Designing physical files and databases requires certain information that should
have been collected and produced during prior SDLC phases. This information
includes:

* Normalized relations, including volume estimates
¢ Definitions of each attribute

. Descriptions of where and when data are used: entered, retrieved, deleted,
and updated (including frequencies)

s Expectations or requirements for response time and data integrity

* Descriptions of the technologies used for implementing the files and database
so that the range of required decisions and choices for each is known.

Normalized relations are, of course, the result of logical database design. Statistics
_on the number of rows in each table as well as the other information listed above
may have been collected during requirements determination in systems analysis.
If not, these items need to be discovered to proceed with database design.

We take a bottom-up approach to reviewing physical file and database design.
Thus, we begin the physical design phase by addressing the design of physical
fields for each attribute in a logical data model:

10.7 DESIGNING FIELDS

A field is the smallest unit of application data recognized by system software, such
as a programming language or database management system. An attribute from a
logical database model may be represented by several fields. For example, a student
name attribute in a normalized student relation might be represented as three
fields: last name, first name, and middle initial. In general, an analyst will represent
each attribute from each normalized relation as one or more fields. The basic
decisions he/she must make in specifying each field concern the type of data (or
storage type) used to represent the field and data integrity controls for the field.

10.7.1 Choosing Data Types

A data type is a coding scheme recognized by system software for representing
organizational data. The bit pattern of the coding scheme is usually immaterial to
you, but the space to store data and the speed required to access data are of
consequence in the physical file and database design. The specific file or database
management software an analyst uses with his/her system will dictate which
choices are available to him/her. For example, Table 10.1 lists the most commonly
used data types available in Oracle 9i.

Table 10.1 Oracle 9i Data Types

Data Type Description

VARCHARZ Variable-length character data with a maximum length of 4,000 characters;
you must enter a maximum field length (e.g., VARCHAR2(30) for a field
with a maximum length of 30 characters). A value less than 30 characters
will consume only the required space. ‘

CHAR lj‘ixled-le‘ngth character data with a maximum length of 255 characters;
) default length is 1 character (e.g., CHAR(5) for a field with a fixed

——— — e e ek

Designing Databascs

NOTES

Self-Insiructional Material 221

System Analysis and Design

NOTES

222 Self-Instructional Material

length of five characters, capable of holding a value from 0 to 5 characters
long).

LONG Capable of storing up to two gigabytes of one variable-length character
data field (e.g., to hold a medical instruction or a customer comment).

NUMBER Positive and negative numbers in the range 107 to 10'%; can specify

the precision (total number of digits to the left and right of the decimal
point) and the scale (the number of digits to the right of the decimal
point) {e.g., NUMBER (5) specifies an integer field with a maximum of
5 digits and NUMBER(5, 2) specifies a field with ne more than five
digits and exactly two digits to the right of the decimal point).

DATE Any date from January 1,4712 B.C. to December 31,4712 A.D.; date
stores the century, year, month, day, hour, minute, and second.

BLOB Binary large object, capable of storing up to four gigabytes of hinary
data (e.g., a2 photograph or sound clip).

Selecting a data type balances four objectives that will vary in degree of importance,
depending on the application:

1. Minimize storage space

2. .Represent all possible values of the field

3. Improve data integrity for the field

4.. Support all data manipulations desired on the field.

An analyst wants to choose a data type for a field that minimizes space, represents

.every possible legitimate value for the associated attribute, and allows the data to

be manipulated as needed. For example, suppose a quantity sold field can be
represented by a Number data type. An analyst would select a length for this field
that would handle the maximum value, plus some room for growth of the business.
Further, the Number data type will restrict users from entering inappropriate
values (text), but it does allow negative numbers (if this is a problem, application
code or form design may be required to restrict the values tc positive ones).

Be careful — the data type must be suitable for the life of the application; otherwise,
maintenance will be required. Choose data types for future needs by anticipating
growth. Also, be careful that date arithmetic can be done so that dates can be
subtracted or time periods can be added to or subtracted from a date:

Several other capabilities of data types may be available with some database
technologies. We discuss a few of the most common of these features next: calculated
fields and coding and compression techniques.

Calculated Fields. It is common for an attribute to be mathematically related to
other data. For example, an invoice may include a total due field, which represents
the sum of the amount due on each item on the invoice. A field that can be derived
from other database fields is called a calculated (or computed or derived) field
(recall that a functional dependency between attributes does not imply a calculated
field). Some database technologies allow you to explicitly define calculated fields
along with other raw data fields. If you specify a field as calculated, you would then
usually be prompted to enter the formula for the calculation; the formula can
involve other fields from the same record and possibly fields from records in
related files. The database technology will either store the calculated value or
compute it when requested.

Coding and Compression Techniques, Some attributes have very few values
from a large range of possible values. For example, suppose in Sheelak Ram

Furniture that each product has a finish attribute, with possible values of Birch,
Walnut, Oak, and so forth. To store this attribute as Text might require 12,15, or
even 20 bytes to represent the longest finish value. Suppose that even a liberal,
estimate is that Sheelak Ram Furniture will never have more than 30 finishes.
Thus, a single alphabetic or alphanumeric character would be more than sufficient.
We not only reduce storage space but also increase integrity (by restricting input
to only a few values), which helps to achieve two of the physical file and database
design goals. Codes also have disadvantages. If used in system inputs and outputs,
they can be more difficult for users to remember, and programs must be written
to decode fields if codes will not be displayed.

10.7.2 Controlling Data Integrity

We have already explained that data typing helps control data integrity by limiting
the possible range of values for a field. There are additional physical file and

database design options an analyst might use to ensure higher-quality data. Although i

these controls can be imposed within application programs, it is better to include
these as part of the file and database definitions so that the controls are guaranteed
to be applied all the time as well as uniformly for all programs. There are four
popular data integrity control methods: default value, range control, referential
integrity, and null value control explained below:

v Default value. A default value is the value a field will assume unless an
explicit value is entered for the field. For example, the city and state of
most customers for a particular retail store will likely be the same as the
store’s city and state. Assigning a default value to a field can reduce data
entry time (the field can simply be skipped during data entry) and data
entry errors, such as typing IM instead of IN for India.

* Range control. Both numeric and alphabetic data may have a limited set of
permissible values. For example, a field for the number of product units
sold may have a lower bound of zero, and a field that represents the
month of a product sale may be limited to the values JAN, FEB, and so
forth.

» Referential integrity. As noted earlier in this UNIT, the most common
example of referential integrity is cross-referencing between relations. For
example, consider the pair of relations in Figure 10.10(e). In this case, the
values for the foreign key Customer_ID field within a customer order must
be limited to the set of Customer_ID values from the customer rel ation; we
would not want to accept an order for a nonexisting or unknown’customer.

CUSTOMER {Customer ID, Cust_Name, Cust_Address,....)

CUST_ORDER (QOrder_ID, Customer_ID, Order_Date....)

and Customer_ID may not be null because every order must be for
some existing customer

(a) Referential integrity between relations

EMPLOYEE (Employee_|D, Supervisor_ID, Empl_Name....)
and Supervisor_iD may be null because not all employees have supervisors

(b) Referential integrity within a relation

Fig. 10.10 Examples qf referential integrity field controls.

Designing Databases

NOTES

Self-Instructional Material 223

System Analysis end Design

NOTES

224 Self-Instructionet Material

Referential integrity may be useful in other instances. Consider the employee
relation example in Figure 10.10(3). In this example, the employee relation
has a field of Supervisor_ID. This field refers to the Employee_ID of the
employee’s supervisor and should have referential integrity on the Employee_1D
field within the same relation. Note in this case that because some employees
do not have supervisors, this is a weak referential integrity constraint
because the value of a Supervisor_{D field may be empty.

* Null value control.”A null value is a special field value, distinct from a
zero, blank, or any other value, that indicates that the value for the field
is missing or otherwise unknown. It is not uncommon that when it is time
to enter data—for example, 2 new customer—you might not know the
customer’s phone number. The question is whether a customer, to be valid,
must have a value for this field. The answer for this field is probably
initially no, because most data processing can continue without knowing

" the customer’s phone number. Later, a null value may not be allowed when
. you are ready to ship product to the customer. On the other hand, you
must always know a value for the Customer_ID field. Due to referential
integrity, you cannot enter any customer orders for this new customer
without knowing an existing Customer_ID value, and customer name is
essential for visual verification of correct data entry. Besides using 4 special
null value when a field is missing its value, you can also estimate the
value, produce a report indicating rows of tables with critical missing values,
or determine whether the missing value matters in computing needed
information.

10.8 DESIGNING PHYSICAL TABLES

A relational database is.a set of related tables (tables are related by foreign keys
referencing primary keys). In logical database design, an analyst grouped into a
relation those attributes that concern some unifying, normalized business concept,
such as a customer, product, or employee. In contrast, a physical table is a
named set of rows and columns that specifies the fields in each row of the table.
A physical table may or may not correspond to one relation. Whereas normalized
relations possess properties of well-structured relations, the design of a physical
table has two goals different from those of normalization: efficient use of secondary
storage and data processing speed.

The efficient use of secondary storage (disk space) relates to how data are loaded
on disks. Disks are physically divided into units (called pages) that can be read or
written in one machine operation. Space is used efficiently when the physical
length of a table row divides close to evenly into the length of the storage unit.
For many information systems, this even division is very difficult to achieve because
it depends on factors, such as operating system parameters, outside the control of
each database. Consequently, we do not discuss this factor of physical table design
in this text.

A second and often more important consideration when selecting a physical table
design is efficient data processing. Data are most efficiently processed when they
are stored close to one another in secondary memory, thus minimizing the number
of input/output (I/0) operations that must be performed. Typically, the data in one
physical table (all the rows and fields in those rows) are stored close together on
disk, Denormalization is the process of splitting or combining normalized relations
into physical tables based on affinity of use of rows and fields. Consider Figure

10.11. In Figure 10.11(a), a normalized product relation is split into separate physical
tables, each containing only engineering, accounting, or marketing product data;
the primary key must be included in each table. Note that the Description and
Color attributes are repeated in both the engineering and marketing tables because
these attributes relate to both kinds of data.

In Figure 10.11(4), a customer relation is denormalized by putting rows from
different geographic regions into separate tables. In both cases, the goal is to
create tables that contain only the data used together in programs. By placing data
used together close to one another on disk, the number of disk I/O operations
needed to retrieve all the data needed by a program is minimized.

The capability to split a table into separate sections, often called partitioning, is
possible with most relational database products. With Oracle 9i, there are three
types of table partitioning as given below :

1. Range partitioning. Partitions are defined by nonoverlapping ranges of
values for a specified attribute (so, separate tables are formed of the rows
whose specified attribute values fall in indicated ranges).

2. Hash partitioning. A table row is assigned to a partition by an algorithm
and then maps the specified attribute value to a partition.

3. Composite partitioning. Combines range and hash partitioning by first segregating
data by ranges on the designated attribute, and then within each of these
partitions it further partitions hy hashing on the designated attribute.

Each partition is stored in a separate contiguous section of disk space, which
Oracle calls a tablespace.

Denormalization can increase the chance of errors and inconsistencies that normalization
avoided. Further, denormalization optimizes certain data processing activities at
the expense of others, so if the frequencies of different processing activities change,
the benefits of denormalization may no longer exist.

Nommalized Product Relation
Product (Product_ID, Description, Drawing_Number, Weight, Colour, Unit_Cost,
Burden Rate, Price, Product_Manager)

Dencrmalized Functional Area Product Relations for Tables
Engineering:
E_Product {Product_ID, Description, Drawing_Number, Weight, Colour)
Accounting: A_Product (Product_ID, Unit_Cost, Burden_Rate)
Marketing: M_Product {Product_ID,Description, Colour, Price, Product_Manager)

(a) Denormalization by columus
Normalized Customer Table

CUSTOMER
Customer_{D Narme Region Annual_Sales
4256 Ravi Delhi 20,0000
4323 Teena Chennai : 30,0000
4455 Gautam - Mumbai 25,0000
4626 Honey Chennai 32,0000
7433 Bittu Mumbai 24,0000
7566 Mishnu Delhi 22,0000

Designing Databases

NOTES

Self-Instructional Material 225

System Analysis and Design

NOTES

226 Self-Instructional Material

Denormalized Regional Customer Tables

D_CUSTOMER
Customer_ID Name Region Annual_Sales
4256 Ravi Delhi 20,0000
7566 Vishnu Delhi 22,0000
C_CUSTOMER
Customer_ID " Name Region Annual_Sales
4323 Teena Chennai 30,0000
4626 Honey Chennai . 32,0000
'M_CUSTOMER
Cuétomer_iD Name Region Anpual_Sales
4455 Gautam . Mumbat 25,0000
7433 Bittu Mumbai 24,0000

() Denormalization by rows
Fig. 10.11 Examples of denormalization.

Various forms of denormalization, which involves combining data from several
normalized tables, can be done, but there are no hard-and-fast rules for deciding
when to denormalize data. Here are three common situations in which denormalization
across tables often makes sense {(see Figure 10.12 for illustrations):

Campus_ Application_ Appl |cétion_,
Address D Date
Submits SCHOLARSHIP
STUDENT H O+ APPLICATION Qualifications
FORM

Normalized relations:

Denormalized relation:

STUDENT (Student_ID, Campus_Address, Application_Date, Qualifications)
and Application_Date and Qualifications may be nult.

{Note:We assume Application_ID is not necessary when all fields are stored in one record, -
but this field can be included if it is required application data.)

Fig. 10.12(a) Two entities with a one-to-one relationship.

~-

1. Two entities with a one-to-one relationship. Figure 10.12(a) shows student data
with optional data from a standard scholarship application that a student may
complete. In this case, one record could be formed .with four fields from the

STUDENT and SCHOLARSHIP APPLICATION FORM normalized relations. (Note:

In this case, fields from the optional entity must have null values allowed.)

-
-

Vendor_ID
-~ PRICE ™~ L

VENDOR PH _ QUOTE .- i ITEM

-

Czr;t:g_ . Description

Normalized relations:
VENDOR {vendor_ID, Address, Contact_Name)
ITEM (Item_ID, Description)
PRICE QUOTE (Vendor_ID, ltem_ID, Price)

Denormalized relations: ’
VENDOR (Vendor_ID, Address, Contact_Name)
ITEM-QUOTE {Vendor_|D, item_ID, Description, Price)

Fig. 10.12(d) A many-to-many relationship with nonkey attributes.

2. A many-to-many relationship (associative entity) with nonkey attributes. Figure

10.12(b) shows price quotes for different items from different vendors. In this case;

fields from ITEM and PRICE QUOTE relations might be combined into one physical
table to avoid having to combine all three tables together. (Note. This may create
considerable duplication of data—in the example, the ITEM fields, such as Description,
would repeat for each price quote—and excessive updating if duplicated data change.)

3. Reference data. Figure 10.12(c) shows that several ITEMs have the same STORAGE
INSTRUCTIONS and STORAGE INSTRUCTIONS relate only to ITEMs. In this
case, the storage instruction data could be stored in the ITEM table, thus reducing
the number of tables to access but also creating redundancy and the potential for
extra data maintenance.

Where_ itern_ID
Store

STORAGE , Controlfor ;
INSTRUCTIONS |11 '\ TEM

Container_
Type

Normalized relations:
STORAGE (Instr_ID, Where_Store, Container_Type)

Denormalized relations:
"ITEM (lItem_{D, Description, Where_Store, Container_Type

Fig. 10.12{c) Reference data.

Fig. 10.12 Possible denormalization situations.

Designing Databases

NOTES

Self-Instructional Material 227

System Analysis and Design

NOTES

228 Self-Instructional Material

10.8.1 Arranging Table Rows

The result of denormalization is the definition of one or more physical files. A
computer operating system stores data in a physical file, which is a named set
of table rows stored in a contiguous section of secondary memory. A file contains
rows and columns from one or more tables, as produced from denormalization. To
the operating system {(e.g., Windows, Linux, or UNIX), each table may be one file
or the whole database may be in one file, depending on how the database technology
and database designer organize data. -

Types of files in an Organization System

File is a collection of related records. It is organized to ensure that records are
available for processing. The various types of files are given below : .

Master Files

These files contain records that are relatively permanent in nature. Records created
in master file remain there for a long time. Data of the fields on the records may
get changed but the record occurrence is active for a long period of time. Master
files are used for repeated processing. They can be further sub-classified into
reference master files and dynamic master files.

Reference master files contain highly static data — the data in the records here
does not change frequently. These are also called table files when they are directly
put in the system and no program is provided to maintain the data in them.
Examples:

e List of divisions in an organization

* Pay scales in a company

* Grades of employees

* List of subject offered by a university.

Dynamic master files hold data that is continuously changed by business transactions.
Examples: :

» Account master which has the account code, name, and latest credit and
debit balances (the balances changes w1th every financial transaction involving
that account).

* Item master which contains item code, name, and stock level (the stock
level changes every time there is an issue or receipt).

Transaction Files

Transaction files hold records describing business. These are temporary ir nature
as data-describing events have a limited useful life. For example, a store issue
transaction is of active use only till the item master has been updated for the
quantity issued. After that, the transaction can be “archived” or stored off-line-in
case it is later required for audit or some analysis. For example,

Archive Files

These are off-line files like transactions and master files that are no longer needed
to be kept online. They are required only for audit, and possibly further analysis.

Work Files

Intermediate transient files need to be created during processing for storing temporary

data. These are called work files.

Program Files

Software in a system is also in the form of files. Program files are files like
application programs and modules utility programs and other software files required
by the computer system.

Dump Files

Dump files are used to debug programs and for investigations when programs fail
under abnormal conditions. These files reflect the contents of the main memory
area allocated to a program. They hold “binary” data and need expert interpretation
to be understood.

The way the operating system arranges table rows in a file is called a file organization.
With some database technologies, the systems designer can choose from among
several organizations for a file.

If the database designer has a choice, he or she chooses a file organization for a
specific file that will provide :

1. Fast data retrieval

High throughput for processing transactions
Efficient use of storage space

Protection from failures or data loss

Minimal need for reorganization

o o s oW N

Accommodation of growth
7. Security from unauthorized use

Often these objectives conflict, and an analyst must select an organization for each
file that provides a reasonable balance among the criteria within the resources
available.

To achieve these objectives, many file organizations use a pointer. A pointer is a
field of data that can be used to locate a related field or row of data. In most cases,
a pointer contains the address of the associated data, which has no business
meaning. Pointers are used in file organizations when it is not possible to store
related data next to each other. Because this is often the case, pointers are
common. In most cases, fortunately, pointers are hidden from a programmer. Yet,
because a database designer may need to decide if and how to use pointers, we
introduce the concept here.

Literally hundreds of different file organizations and variations have been created,
but we outline the basics of three families of file organizations used in most file
management environments: sequential, indexed, and hashed. You need to understand
the particular variations of each method available in the environment for which
you are designing files.

Sequential File Organizations. In a sequential file organization, the rows in
the file are stored in sequence according to a primary key value (see Figure 10.13).
To locate a particular row, a program must normally scan the file from the beginning
until the desired row is located. A common example of a sequential file is the
alphabetic list of persons in the white pages of a phone directory (ignoring any
index that may be included with the directory). Sequential files are véry fast if you
want to process rows sequentially, but they are impractical for random row retrievals.

Designing Databases

NOTES

Self-Instructional Material 229

System Analvsis and Design

NOTES

230 Self-Instructional Material

Deleting rows can cause wasted space or the need to compress the file. Adding
rows requires rewriting the file, at least from the point of insertion. Updating a
row may also require rewriting the file, unless the file organization supports
rewriting over the updated row only. Moreover, only one sequence can be maintained
without duplicating the rows.

Start of file Amit
Bunty

Scan Devender
Fatima
Harry

‘Hemant:#

Monty
Poonam

Sunil

Fig. 10.13 Sequential File Organization.

Indexed File Organizations. In an indexed file organization, the rows are
stored either sequentially or nonsequentially, and an index is created that allows
the application software to locate individual rows (see Figure 10.14). Like a card
catalog in a library, an index is a structure that is used to determine the rows
in a file that satisfy some condition. Each entry matches a key value with one or
more rows. An index can point to unique rows (a primary key index, such as on
the Product_ID field of a product table) or to potentially more than one row. An
index that allows each entry to point to more than one record is called a secondary
key index. Secondary key indexes are important for supporting many reporting
requirements and for providing rapid ad hoc data retrieval. An example would be
an index on the Finish field of a product table.

The example in Figure 10.14, typicaf of many index structures, illustrates that
indexes can be built on top of indexes, creating a hierarchical set of indexes, and the
data are stored seguentially in many contiguous segments. For example, to find the
record with key “Hemant,” the file organization would start at the top index and
take the pointer after the entry P, which points to another index for all keys that
begin with the letters G through P in the alphabet. Then the software would follow
the pointer after the H in this index, which represents all those records with keys
that begin with the letters G through H. Eventually, the search through the indexes
either locates the desired record or indicates that no such record exists. The reason
for storing the data in many contiguous segments is to allow room for some new data
to be inserted in sequence without rearranging all the data.

The main disadvantages to indexed file organizations are the extra space required
to store the indexes and the extra time necessary to access and maintain indexes.
Usually these disadvantages are more than offset by the advantages. Because the
index is kept in sequential order, both random and sequential processing are
practical. Also, because the index is separate from the data, you can build multiple
index structures on the same data file (just as in the library where there are

multiple indexes on author, title, subject, and so forth). With multiple indexes,
software may rapidly find records that have compound conditions.

Key o F
(Hemant) | P | z |

N A

8 D F H L P R S Z
Amit Fatima Monty Sunil
Bunty : Poonam

! !

Devender Harry

Hemant

Fig. 10.14 Indexed file organization.

The decision of which indexes to create is probably the most important physical
database design task for relational database technology, such as Microsoft Access,
Oracle, DB2, and similar systems. Indexes can be created for both primary and
secondary keys. When using indexes, there is a trade-off between improved performance
for retrievals and degrading performance for inserting, deleting, and updating the
rows in a file. Thus, indexes should be used generously for databases intended
primarily to support data retrievals, such as for decision support applications.
Because they impose additional overhead, indexes should be used judiciously for
- databases that support transaction processing and other applications with heavy
updating requirements.

Some guidelines for choosing indexes for relational databases are given below :

1. Specify a unique index for the primary key of each table (file). This selection
ensures the uniqueness of primary key values and speeds retrieval based
on those values. Random retrieval based on primary key value is common
for ahswering multitable queries and for simple data maintenance tasks.

2. Specify an index for foreign keys. As in the first guideline, this speeds
processing of multitable queries.

3. Specify an index for nonkey fields that are referenced in qualification and
sorting commands for the purpose of retrieving data.

To illustrate the use of these rules, consider the following relations for Sheelak
Ram Furniture Company :

PRODUCT (Product_Number, Description, Finish, Room, Price)

Designing Databases

NOTES

Self-Instructional Material 231

System Analysis end Design

NOTES

232 Self-Instructional Material

An analyst would normally specify a unique index for each primary key: Product_Number
in PRODUCT and Order_Number in ORDER. Other indexes would be assigned
based on how the data are used. For example, suppose that there is a system
module that requires PRODUCT and PRODUCT_ORDER data for products with a
price below Rs. 20,000 ordered by Product_Number. To speed up this retrieval, an
analyst could consider specifying indexes on the following nonkey attributes:

1. Price in PRODUCT because it satisfies rule 3
2. Product_Number in ORDER because it satisfies rule 2

Because users may direct a potentially large number of different queries against
the database, especially for a system with a lot of ad hoc queries, an analyst will
probably have to be selective in specifying indexes to support the most common or
frequently used queries.

Hashed File Organizations. In a hashed file organizaticn, the location of
each row is determined using an algorithm (see Figure 10.15) that converts a
primary key value into a row address. Although there are several variations of
hashed files, in most cases the rows are located nonsequentially as dictated by the
hashing algorithm. Thus, sequential data processing is impractical. On the other
hand, retrieval of random rows is very fast. There are issues in the design of
hashing file organizations, such as how to handle two primary keys that translate

into the same address, but again, these issues are beyond the scope of this book.

Key
Monty
.| Hashing
{Hemant) * Algorithm Harry
Anii
sy P S I -
———— ['Hemant ¥, T MR
Relative Sunil
Record
Number Devender
Fatima
Poonam
Bunty

Fig. 10.15 Hashed file organization.

Summary of File Organizations. The three families of file organizations—sequential,
indexed, and hashed-—cover most of the file organizations an analyst will have at
his/her disposal as he/she designs physical files and databases. Table 10.2 summarizes
the comparative features of these file organization. An analyst can use this table
to help choose a file organization by matching the file characteristics and file
processing requirements with the features of the file organization.

Table 10.2 Comparative Features of Sequential, Indexed,
and Hashed File Organizations

File Organization

Factor Sequential Indexed Hashed

No wasted space for | Extra space may be
data, but extra space | need to allow for

Storage space No wasted space

for index addition and deletion
of records
Sequential retrieval | Very fast Moderately fast Impractical
on primary key
Random retrieval on | Impractical Moderately fast Very fast
primary key
Muitiple key retrieval | Possible, but requires | Very fast with Not possible
scanning whole file multiple indexes
Deleting rows Can create wasted If space can be dyna- | Very easy
space or require mically allocated,
reorganizing this is easy, but re-
quires maintenance
| of indexes
Adding rows Requires rewriting If space cah be dyna- | Very casy, except mul-
file mically allocated, tiple keys with same
this is easy, but re- | address require extra
quires maintenance | work
of indexes -
Updating rows Usually requires Easy, but requires Very easy

maintenance of
indexes

rewriting file

10.8.2 Designing Controls for Files

Two of the goals of physical table design mentioned earlier are protection from
failures or data loss and security from unauthorized use. These goals arc
achieved primarily by implementing controls on each file. Data integrity controls,
a primary type of control, were mentioned earlier in the unit. Two other important
types of conirols address file backup and security.
It is almost inevitable that a file will be damaged or lost, due to either software
or human errors. When a file is damaged, it must be restored to an accurate and
recasonably current condition. A file and database designer has several techniques
for file restoration, including:

* Periodically making a backup copy of a file

+ Storing a copy of each change to a file in a transaction log ¢r audit trail

« Storing a copy of each row hefore or after it is changed.
For example, a backup copy of a file and a log of rows after they were changed can
be used to reconstruct a file from a previous slate (the backup copy) to its current
values. This process would be necessary if the current file were so damaged that
it could not be used. If the current file is operational but inaccurate, then a log
of before images of rows can be used in reverse order to restore a file to an
accurate but previous condition. Then a log of the transactions can be reapplied
to the restored file to bring it up to current values. Ii is imporiant that the
information system designer make provisions for hackup. audit trail, and row
image files so that data files can be rebuilt when errors and damage occur.

3

Desigring Dalnhases

NOTES

Seif-Instructionud Muteriad 233

System Analysis and Design Ap information system designer can build data security into a file by several

NOTES

234 Self-Instructional Material

means, including:

* Coding, or encrypting, the data in the file so that they cannot be read
unless the reader knows how to decrypt the stored values.

* Requiring data file users to identify themselves by entering user names
and pass words, and then possibly allowing only certain file activities (read,
add, delete change) for selected users to selected data in the file.

* Prohibiting users from directly manipulating any data in the file, but
rather force programs and users to work with a copy (real or virtual)
of the data they need; the copy contains only the data that users or
programs are allowed to manipulate, and the original version of the
data will change only after changes to the copy are thoroughly checked
for validity.

Security procedures such as these all add overhead to an information system, so
only necessary controls should be included.

10.9 THE ROLE OF THE DATA BASE
ADMINISTRATOR

A data base is a shared resource. When two or more users are tied to a common
data base, certain difficulties in sharing are likely to occur. Perceptions regarding
data ownership, priority of access, and the like become issues that need to be
resolved when the data base is in operation. To manage the data base, companies
hire a data base administrator or DBA to protect and manage the data base on
a regular basis.

In addition to resolving user conflicts, the DBA performs maintenance and update
tasks—recovery procedures, performance evaluation, data base timing, and new
enhancement evaluation. Specifically, the DBA performs three key- functions :
managing data activities, managing the data base structure, and managing
the DBMS. Lets us discuss these in detail :

1. Managing data activities. The DBA manages data base activities by
providing standards, control procedures, and documentation to ensure each
user’s independence from other users. Standardization is extremely important
in a ceuntralization-oriented environment. Every data base record must
have a standard name, format, and unique strategy for access. Standardization,
though resisted by users, simplifies reporting and facilitates management
control.

In addition to standardization, the DBA is concerned about data access and
modification. Deciding who has authorization to modify what data is job in
itself. Locks have to be established to implement this activity. Failures and
recovery procedures are added concerns. Failures may be caused by machines,
media, communications, or users. The user must be familiar with a recovery
procedure for reinputting reports. Training users and maintaining documentation
for successful recovery are important responsibilities of the DBA.

2. Managing data base structure. This responsibility centers around the -
design of the schema and special programs for controlling redundancy,

maintaining control of change requests, implementing Ehaﬁgé;ﬁin the schema,
and maintaining user documentation. In the case of documentation, the
DBA must known what changes have been made, how they were made, and
when they were made. Data base changes must be backed by a record of
test runs and test results.

3. Managing DBMS. A third responsibility involves the central processing

unit (CPU), compiling statistics on system efficiency, including CPU times
and elapsed times of inquiries. CPU time is the amount of time the CPU
requires to process a request. Elapsed time is the actual clock time needed
to process the activities and return a result (output). Much of this time
depends on the nature of the activity, other activities that occur in the
interim, and the peak-load requirements of the system.

Other elements also affect DBMS management. The DBA investigates user performance
complaints and keeps the system’s capabilities in tune with user requirements.
Modifications may have to be made to the communication network, the operating
system, or their interfaces with the DBMS. It is the DBA’s responsibility to evaluate
changes and determine their impact on the data base environment. °

The DBA has a full-time, highly responsible job. In 'agidition to a managerial
background, the DBA needs technical knowledge to deal with data base designers.
For example, he/she needs to maintain the data dictionary and evaluate new data
base features and their implementation. The combination of technical and managerial
backgrounds make the job of the DBA unique.

Where does the DBA fit into the organization structure? There is considerable
debate about this. Two views are commonly accepted. One proposes that the DBA
should not be subordinate to a group that imposes restrictions. The second view

is that the DBA should be no more than one level above the prime user that uses -

the system most frequently. In the long run, the key to the success of the DBA
in the organization is the attitude and support of the senior MIS staff and upper
management for the DBA function. :

Designing Databases

NOTES

Self-Instructional Material 235

System Analysis and Design

STUDENT ACTIVITY 10.3

1. What is a file organization? List the types of file organizations.

2. Write a short note on the role of the Data Base Administrator.

236 Secif-Instructional Material ’ \

SUMMARY

Primary key is an attribute whose value is unique across all occurrences
of a relation. '

Relational database model is data represented as a set of related tables
or relations.

A relation is a named, two-dimensional table of data. Each relation consists
of & set of named columns and an arbitrary number of unnamed rows.

Well-structured relation (or table) is a relation that contains a minimum
amount of redundancy and allows users to insert, modify, and delete the
rows without errors or incensistencies. .

Normalization is the process of converting complex data structures into
simple, stable data structures.

Functional dependency is a particular relationship between two attributes.

Second normal form (2NF) A relation for which every nonprimary key
attribute is functionally dependent on the whole primary key.

Third normal form (3NF) A relation that is in second normal form and
that has no functional (transitive) dependencies between two {or more) nonprimary
key attributes.

Foreign key is an attribute that appears as a nonprimary key attribute in
one relation and as a primary key attribute (or part of a primary key) in
another relation. .

Referential integrity An integrity constraint specifying that the value (or
existence) of an attribute in one relation depends on the value (or existence)
of the same attribute in another relation.

Recursive foreign key is a foreign key in a relation that references the
primary key values of that same relation.

Synonyms are two different names that are used for the same attribute.
Homonym is a single attribute name that is used for two or more different
attributes. ’

A field is the smallest unit of named application data recognized by system
software.

A data type is a coding scheme recognized by system software for representing
organizational data.

Calculated (or computed or derived) field is a field that can be derived
from other database fields.

A default value is a value a field will assume unless an explicit value is
entered for that field.

A null value is a special field value, distinct from a zero, blank, or any
other value, that indicates that the value for the field is missing or otherwise
unknown. |
A physical table is a named set of rows and columns that specifies the
fields in each row of the table.

Denormalization is the process of splitting or combining normalized relations
into physical tables based on affinity of use of rows and fields.)
A physical file is a named set of tahle roﬁé.storgﬂ in a contiguous section
of secondary memory. : U - '
File organization is a technique for physically arranging the records of a
file.

Designing Databases

NOTES

Self-Instructione! Maierial 237

=

System Analysis and Design

NOTES

238 Self-instructional Mateérial |

* A pointer is a field of data that can be used to locate a related field or row

of data.

In a sequential file organization the rows in the file are stored in
sequence according to a primary key value.

In an indexed file organization the rows are stored-either sequentially
or nonsequentially, and an index is created that allows software to locate
individual rows.

An index is a table used to determine the location of rows in a file that
satisfy some condition. :

Secondary key is one or a combination of fields for which more than one
row may have the same combination of values.

In a hashed file organization the address for each row is determined
using an algorithm.

Managing the data base requires a data base administrator (DBA) whose
key functions are to manage data activities, the data base structure, and the
DBMS.

-Id addition to a managerial background, the DBA needs technical knowledge

to deal with data base designers. Important for the success of this important
job is the support of the senior MIS staff and upper management for the
overall data base function.

TEST YOURSELF

Answer the following questions: '

1.

~]

What is the role of designing databases in the analysis and design phase of an
information system? Explain.

. What are the inputs to and dehverables and outcomes from the normalization

process?

Why is deciding the type of data important in physical database design?
Explain.

. What are the factors that influence the decision to create an index on a

field?

What would be the consequences if logical data model were designed without
normalization principles? Explain.

Discuss the role of the DBA.

What are the inputs to and deliverables and outcomes form logical database
modeling? What are the steps involved in logical database design?

8. What are the properties of a relation? Is the relation different from table?

10.

11.

What is normalization? What types of functional dependencies may exist in
relations? What types of problems you may encounter if the dependencies
are not removed? Describe with an illustration.

What is a foreign key? How is-it different from a primary key? Explain how
referential integrity is maintained in relation.

Why do we merge relatjons in logical database design? While merging relations
{view integration), what type of issues do you expect? How can you avoid or
solve these problems? Explain -with an illustration.

12. What type of information-should be collected during the physwal file. and
database design prior to the SDLC phases?

13, What are the inputs to and deliverables and outcomes from physical database
design? Explain.

14. What are the factors that should be considered in selecting a file organization?

15.- State True or False:

(&)
(if)

(#it)
(iv)

)
{(vi)
(vii)

(viii)
(ix)

{x)
(x8)
(xii)

16. Fill
@

(&)
(£ii)

(iv)
(%)

(vi)

(vii)
(viii)
(ix)

{(x)

It is likely that the human interface and database design steps happen
in parallel.

Database modeling and design activities occur in all phases of the
systems development process. '

A relation is not a named, two-dimensional table of data.

The vast majority of information systems today use the relational
database model. . .
We do not need rules and a process for designing well-structured relations.
A functional dependency is a particular relationship between two attributes.

Some of the relations may be redundant, we cannot merge those relations
to remove the redundancy.

Synonyms are two different names that are used for the same attribute.

Designing physical files and databases does not require certain information
that should have been collected and produced during prior SDLC phases.

Field is not the smallest unit of named application data recognized by
gystem software.

A physical file is a named set of table rows stored in a contiguous
section of secondary memory. .

An index is a table used to determine the location of rows in a file that
satisfy some condition.
in the blanks:

The most common style for a logical database model is the
database model. :

.. is an attribute whose valie is unique across all occurrences
of a reiatwn
The -vcvvivreeianns represents data in the form of related tables, or
relations, '
In a relation, each row 1S .evervvvecrreenne

. is the process of converting complex data structures into

51mple, stable data structures.
A relation is In ... if every nonprimary key attribute is
functionally dependent on the whole primary key.

.. i3 an attribute that appears as 4 nonprimary key attribute
in one relation and as a primary key attribute (or part of a primary
key) in another relation.

. is a coding scheme recognized by system software for representmg
orgamzatlonal data,

............ is a value a field will assume unless an explicit value is
entered for that field.

The process of splitting or combining normalized relations into physical
tables based on affinity of use of rows and fields is known asou

Designing Databases

NOTES

Self-Instructional Material 239

System Analysis end Design (xi) i a file organization in which the address for each row is
: determined using an algorithm.) '

NOTES ANSWERS

Test Yourself
15. State True or False:

(i) True (i) True
{(iii) False - (tv) True
(v) False , _ (.vi) True
(vii) False . (wiit) True
{ix) False (x) False
(xi) True . (xzf) True
16. Fill in the blanks: |)
) relational (i) Primary key
" _(uz) relational database model (iv) unique
(v) Normalization (vi) second normal form (2NF)
(vif) Foreign key : (viii) Data type
(ix) Default value (xl) denormalization

(xi) Hashed file organization

240 Self-Instructional Material

SECTION D

11. System Development
412. Implementation
13. Maintenance and Review -

1.1
11.2

1.3

1.4

1.5

CHAPTEHR

11

* SYSTEM DEVELOPMENT

- LEARNING OBJECTIVES

Introduction
Systems Development

41.2.1 The Processes of Coding, Acquiring Hardware, and Testing
11.2.2 Deliverables and OQutcomes fram Coding, Acquiring Hardware and-

Testing
Where Programming Fits in the SDLC
11:3.1 Clarify the Programming Needs
11.3.2 Design the Program
11.3.3 Code ihe Program
11.3.4 Test the Program
11.3.5 Document and Maintain the Program

o,

" Acquiring Hardware

11.4.1 Hardware Suppliars

11.4.2 A Procedure for Hardware Selection
11.4.3 Financial Considerations in Selection
11.4.4 The Computer Contract

Software Application Testing

11.5.1 Seven Different Types of Tests

.11.8.2 The Testing' Process

11.5.3 Combining Coding and Testing
11.5.4 Acceptance Testing by Users

11.1 INTRODUCTION

Once the system design phase is over, next system development is begun. The
necessary hardware and software are acquired or developed and the system is
tested. The fourth-phase of the six-phase SDLC is made up of many activities.

These activities are shown in Figure 11.1.

This phase is expensive because so many peoples are involved in the process; it
is time-consuming because of a lot of work has to be completed. Regardless of
the methodology used, once coding and testing are complete the system is ready

to “go live”.

System Development

NOTES

Self-Instructional Material 243

System Analvsis and Design

NOTES

244 Self-]nstmctignai Material

1. Preliminary
investigation

2. Systems
analysis

6. Systems
maintenance

3. Systems
design

5. Systems
implementation

4. Systems
development

Codlng
Acquiring hardware
Testing

Fig. 11.1 The SDLC with the systems development phase highlighted.

If the hardware and software are available commercially, they are purchased or
leased. Although it is much cheaper to purchase commercially available software
(called off-the-shelf software), these programs do not always fit the needs of the
organization developing the system. If not, custom software must be developed
or a commercially available program must be modified by programmers in-house.
If the work is performed by outside contractors it is called outsourcing.

11.2 SYSTEMS DEVELOPMENT

The major activities we are concerned with in this unit are coding, acquiring
hardware, and testing. The purpose of these steps is to convert the physical
system specifications into working and reliable software and hardware. Coding
and testing may have already been completed by this point if Agile Methodologies
have been followed. Using a plan-driven methodology, coding and testing are
often done by other project team members besides analysts, although analysts
may do some programming. In any case, analysts are responsible for ensuring
that all of these activities are properly planned and executed.

11.2.1 The Processes of Coding, Acqulrmg Hardware, and
Testing

Coding is the process whereby the physical design specifications created by the
analysis team are turned into working computer code by the programming team.
Depending on the size and complexity of the system, coding-can be an involved,
intensive activity. Regardless of the development methodology followed, once
coding has begun, the testing process can begin and proceed in parallel. As each
program module is produced, it can be tested individually, then as part of a
larger program, and then as part of a larger system. You will learn about the
different strategies for testing later in the unit. We should emphasize that although
testing is done during development, an analyst must begin planning for testing

earlier in the project. Preliminary investigation involves determining what needs
to be tested and collecting test data. This is often done during the analysis phase
because testing requirements are related to system requirements.

11.2.2 Deliverables and Outcomes from Coding, Acquiring
Hardware, and Testing

Table 11.1 shows the deliverables from the coding, acquiring hardware, and testing
processes. Some object-oriented languages, such as Eiffel, provide for documentation
to be extracted automatically from software developed in Eiffel. Other languages,
such as Java, employ specially designed utilities, such as JavaDocs, to generate
documentation from the source code. Other languages will require more effort on
the part of the coder to establish good documentation. But even well-documented
code can be mysterious to maintenance programmers who must maintain the
system for years after the original system was written and the original programmers
have moved on to other jobs. Therefore, clear, complete documentation for all
individual modules and programs is crucial to the system’s continued smooth operation.
Increasingly, CASE tools are used to maintain the documentation needed by systems
professionals, The results of program and system testing are important deliverables
from the testing process because they document the tests as well as the test
results. For example,

What type of test was conducted?
What test data were used?
How did the system handle the test?

The answers to these questions can provide important information for system
maintenance because changes will require retesting and similar testing procedures
will be used during the maintenance process.

Table 11.1 Deliverables for Coding, Acquiring Hardware, and Testing

1. Coding

(a) Code

(b) Program documentation
2. Acquiring Hardware

(a) Acquire or Upgrade.
3. Testing

(a) Test scenarios (test plan) and test data

{b) Results of program and system testing

An analyst’s job is to ensure that all of these deliverables are produced and are
done well. An analyst may produce some of the deliverables, such as test data, user
guides, and an installation plan; for other deliverables, such as code, he/she may
only supervise or simply monitor their production or accomplishment. The extent
of his/her implementation responsibilities will vary according fo the size and standards
of the organization he/she works for, but his/her ultimate role includes ensuring
that all the implementation work leads to a system that meets the specifications
“developed in earlier project phases.

System Development

NOTES

Self-Instructional Material 245

System Analysis gnd Design

NOTES

246 Self-Instructional Material

11.3 WHERE PROGRAMMING FITS IN THE SDLC

Every type of software (pre-written software, or a customized software, or a public
domain software) has to be developed by someone before we can use it. Software
or program must be understood properly before its development and use. A program
is a list of instructions that the computer must follow in order to process data into
information. The instructions consist of statements used in a programming language,
such as C or C++. Examples are programs that do word processing, desktop.
publishing, or railway reservation.

The decision whether to buy or develop a program forms part of Phase 4 in the
systems development life cycle. Figure 11.2 illustrates this. Once the decision is
made to develop a new system, the programmer starts his/her work.

The Phase 4 of the six-phase SDLC includes a five-step procedure of its own as
shown in the bottom of Figure 11.2. These five steps constitute the problem-
solving or software development process known as programming. Programming
also known as software engineering, is @ multistep process for creating that list of
instructions (E.e., a program for the computer). -

1. Peeliminary
investigation

6. Systems
maintenance

5. Systems
implementation

2. Systems
analysis

3. Systems
design

4, Systems
development

5. Program
decumentation
and
maintenance

1. Problem
clarification

2. Program
design

4. Program
tasting

Fig. 11.2 lllustration of where programming fits in the SDLC,

The five steps are given below :
1. Clarify the problem—include needed output, input, processing requirements.
2. Design a solution—use modelling tools to chart the program.

3. Code the program—use a programming language’s syntax, or rules, to
write the program.

Test the program—get rid of any logic errors, or “bugs”, in the program
(“debug” it).

Document and maintain the program—include written instructions for
users, explanation of the program, and operating instructions.

Coding—sitting at the keyboard and typing words into a computer—is what many
people imagine programming to be. As we see, however, it is only one of the five
steps. Coding consists of translating the logic requirements into a programming
language—the letters, numbers and symbols that make up the program.

11.3.1 Clarify the Programming Neéds

The problem clarification step consists of six sub-steps—clarifying program objectives
and users, outputs, inputs and processing tasks; studying the feasibility of the
program; and documenting the analysis. Let us consider these six sub-steps.

(@)

i)

(i)

(tv)

(vi)

Clarify Objectives and Users. We solve problems all the time. A problem
might be deciding whether to take a required science course this term or
next, or selecting classes that allow us also to fit a job into our schedule.
In such cases, we are specifying our objectives. Programming works the
same way. We need to write a statement of the objectives we are trying
to accomplish—the problem we are trying to solve. If the problem is that
our company’s systems analysts have designed a new computer-based payroll
processing program and brought it to us as the programmer, we need to
clarify the programming needs.

We also need to make sure us know who the users of the program will
be. Will they be people inside the company, outside, or both ? What kind
of skills will they bring?

Clarify Desired Outputs. Make sure to understand the outputs—what
the system designers want to get out of the system—before we specify the
inputs. For example, what kind of hardcopy is wanted? What information
should the outputs include ? This step may reguire several meetings with
systems designers and users to make sure we are creating what they
want.

Clarify Desired Inputs, Once we know the kind of outputs required, we
can then think about input. What kind of input data is needed? What form
should it appear in? What is its source?

Clarify the Desired Processing. Here we make sure to understand the
processing tasks that must occur in order for input data to be processed
into output data.

Double-Check the Feasibility of Implementing the Program. Is the
kind of program we are supposed to create feasible within the present
budget ? Will it require hiring a lot more staff ? Will it take too long to
accomplish ?

Sometimes programmers decide they can buy an existing program and
modify it rather than write it from scratch.

Document the Analysis. Throughout program clarification, programmers
must document everything they do. This includes writing objective specifications
of the entire process being described.

System Developmeni

NOTES

Self-tnstructional Material 247

System Analysis and Design

NOTES

248 Self-Instructional Material

11.3.2 Design the Program

Assuming the decision is to make, or custom-write, the program, we then move
on to design the solution specified by the systems analysts. In the program design
step, the software is designed in three mini-steps. First, the program logic is
determined through a top-down approach and modularization, using a hierarchy
chart. Then it is designed in detail, either in narrative form, using pseudocode, or
graphically, using flowcharts.

Today most programmers use a design approach called structured programming.
Structured programming takes a top-down approach that breaks programs into
modular forms. It also uses standard logic tools called control structures (sequential,
selection, case and iteration).

11.3.3 Code the Program

Once the design has been developed, the actual writing of the program begins.
Writing the program is called coding. Coding is what many people think of when
they think of programming, although it is only one of the five steps. Coding
consists of translating the logic requirements from pseudocode or flowcharts into '
a programming language—the letters, numbers, and symbols that make up the
program.

(&) Select the Appropriate Programming Language. A programming language
is a set of rules that tells the ¢computer what operations to do. Examples
of well-known programming languages are C, C++, COBOL, visual Basic
and JAVA, These are called “high-level languages”. Not all languages are
appropriate for all uses. Some, for example, have strengths in mathematical
and statistical processing. Others are more appropriate for database management.
Thus, in choosing the language, we need to consider what purpose the
program is designed to serve and what languages are already being used
in our organization or in our field.

(ii) Follow the Syntax. In order fof a program to work, we have to follow the
syntax, the rules of the programming language. Programming languages
have their own grammar just as human languages do. But computers are
probably a lot less forgiving if we use these rules incorrectly.

11.3.4 Test the Program

Program testing involves running various tests and then running real-world data
to make sure the program works. Two principal activities are desk-checking and
debugging. These steps are known as alpha-testing.

(£) Perform Desk-Checking. Desk-checking is simply reading through, or
checking, the program to make sure that it’s free of errors and that the logic
works. In other words, desk-checking is like proofreading. This step could
be taken before the program is actually run on a computer.

@) Debug the Program. Once the program has been desk-checked, further
‘errors, or “bugs”, will doubtless surface. To debug means to detect, locate,
and remove all errors in a computer program. Mistakes may be syntax
errors or logical errors. Syntax errors are caused by typographical errors
and incorrect use of the programming langiage. Logic errors are caused by

(iit)

incorrect use of control structures. Programs called diagnostics exist to
check program syntax and display syntax-error messages. Diagnostic programs
thus help identify and solve problems.

Run Real-World Data. After desk-checking and debugging, the program
may run fine—in the laboratory. 'However, it needs to be tested with real
data; this is called beta testing. Indeed, it is even advisable to test the
program with bad data—data that is faulty, incomplete, or in overwhelming
quantities—to see if you can make the system crash. Many users, after all,
may be far more heavy-handed, ignorant and careless than programmers
have anticipated.

Several trials using different test data may be required before the programming
team is satisfied that the program can be released. Even then, some bugs
may persist, because there comes a point where the pursuit of errors is
uneconomical. This is one reason why many users are nervous about using
the first version (version 1.0) of a commercial software package.

11.3.5 Document and Maintain the Program

Writing the program documentation is the fifth step in programming. The resulting
documentation consists of written descriptions of what a program is and how to
use it. Documentation is not just an end-stage process of programming. It has been
(or should have been) going on throughout all programming steps. Documentation
is needed for people who will be using or be involved with the program in the

future.

Documentation should be prepared for several different kinds of readers—users,
operators and programmers.

@

(ip)

(#i1)

(iv)

Prepare User Documentation. When we buy a commercial software
package, such as a spreadsheet, we normally get a manual with it. This is
user documentation.

Prepare Operator Documentation. The people who run large computers
are called computer oﬁemtors. Because they are not always programmers,
they need to be told what to do when the program malfunctions. The
operator documentation gives them this information.

Write Programmer Documentation. Long after the original programming
team has disbanded, the program may still be in use. If, as is often the
case, a fourth of the programming staff leaves every year, after 4 years
there could be a whole new bunch of programmers who know nothing
about the software. Program documentation helps train these newcomers
and enables them to maintain the existing system.

Maintain the Program. Maintenance includes any activity designed to
keep programs in working condition, error-free, and up to date—adjustments,
replacements, repairs, measurements, tests and so on. The rapid changes
in modern organizations—in products, marketing strategies, accounting
systems, and so on—are bound to be reflected in their computer systems.
Thus, maintenance is an important matter, and documentation must be
available to help programmers make adjustments in existing systems.

System Development

NOTES

Self-Instructional Material 249

System Analysis and Design The five steps of the programming process are summarized in Table 11.2. s

Table 11.-2 Summary of the Five Programming Steps

Step Activities

- NOTES Specify program objectives and program users.

Step 1: Problem definiiion
Specify output requirements.

Specify input requirements.

Specify processing requirements.

Study feasibility of implementing program.

Document the aﬂalysis.

Lol A T A

Determine program logic through top-dow
approach and modularization, using a hierarchy
chart.

Step 2: Program design

2. -Design details using pseudocode and/or using
flowcharts, preferably on the basis of control
structures,

3. Test design with structured walk through.

Step 3: Program coding 1. Select the appropriate high-level programming
language.)

2. Code the program in that language, following

the syntax carefully.
Step 4: Program testing Desk-check the program to discover errors.

Run the program and debug it (alpha testing).

S S

Run real-world data (beta testing).

—

Step 5: Program documenta- Prepare user documentation.

tion and maintenance Write operator documentation.

Write programmer documentation,

- LN

Maintain the program.

250 Self-Instructional Material

System Development

STUDENT ACTIVITY 11.1-

1. What are the inputs to the various processes of system development phase and what are their
deliverables? What is the main purpose of this phase?

*

2. What is programming and what are the five steps in accdmplishing it?

Self-Instructional Material 251

System Analysis and Design

NOTES

P

252 Self-Instructional Material

11.4 ACQUIRING HARDWARE

A major element in developing systems is selecting compatible hardware and
software. The systems analyst has to determine what software package is best for
the candidate system and where software is not an issue, the kind of hardware and
peripherals required for the final conversion. To accomplish the job; the analyst
must be familiar with the computer industry in general, what different types of
computers can and cannot do, whether to purchase or lease a system, the vendors
and their outlets, and the selection procedure.

Hardware/Software selection starts with requirements analysis, followed by a
request for proposal and vendor evaluation. The final system selection initiates
contract negotiations. It includes purchase price, maintenance agreements, and
the amount of updating or enhancements to be available by the vendor over the
life of the system. Contract negotiations should be designed to get the best deal
for the user and protect the user’s interest in the acquired system.

11.4.1 Hardware Suppliers

A large number of vendors, throughout the world, provide a wide range of computer
products and services. The hardware suppliers group includes mainframe manufacturers,
peripheral vendors, supplies vendors, computer leasing firms, and used systems
dealers. IBM is one of the major supplier of mainframe computers. In microcomputers
i.e., PCS, IBM and Apple top the list.

Peripheral manufacturers supply tape drives, disk and diskette drives, printers,

. and other components. Vendors of supplies provide consumable supplies such as
" diskettes, and printer forms and nonconsumable supplies such as disk packs,

tape reels, tape library shelves, and fireproof vaults. Hundreds of independent
vendors are in this field. Used computer dealers buy second-hand equipment from
computer users, rebuild them, and sell them at attractive prices. Computer leasing
firms generally finance hardware and software acquisition. Leasing companies may
also under write or insure the development of a computer system.

11.4.2 A Procedure for Hardware Selection

Selecting a system is a serious and time-consuming business. Unfortunately, many
systems are still selected based on' vendor reputation only or other subjective
factors. The time spent on the selection process is a function of the applications
and whether the system is a basic microcomputer or a mainframe. In either case,
planning system selection and acquiring experienced help where necessary pay off
in the long run.

The factors to consider before the system selection are given below:
1. Define system capabilities that make sense for business. Computers have
proven valuable to business in the following areas:
(@) Cost reduction includes reduction of inventory, savings on space, and
improved ability to predict business trends.
() Cost aveoidance includes éarly detection of problems and ability to
expand operations without adding clerical help.)
{(¢) Improved service emphasizes quick availability of information 'to customers,
improved accuracy, and fast turnaround. ,.
(d) Improved profit reflects the “bottom line” of the business and its
ability to keep receivables within reason.

2. Specify the magnitude of the problem; i.e., clarify whether selection entails
a few peripherals or a major decision concerning the mainframe.

3.. Assess the competence of the in-house staff. This involves determmmg the
expertise required in areas such as telecommunications and database design.
Acquiring a computer often results in securing temporary help for conversion.
Planning for this step is extremely important. "

4. Consider hardware and software as a package. This approach ensures
compatibility. In fact, software should be considered first, because often the
use secures the hardware and then wonders what software is available for
it. Remember that software solves problems and hardware drives the software

to facilitate solutions.'

5. Develop a schedule (a time frame) for the selection process. Maintaining a
schedule helps keep the project under control.

6. Provide user indoctrination (with a particular set of beliefs). This is crucial,
especially for first-time users. Selling the system to the user staff, providing
proper training, and preparing an environment conducive to implementation
are pre-requisites for system acquisition for an organization.

Major Phases in Hardware Selection

The hardware selection process should be viewed as a project, and a project
team should be organized with management support. In larger projects the team
includes one or more user representatives, an analyst, and EDP auditor, and a
consultant. Several steps make up the selection process; some overlap due to the
dynamic nature of selection process. These are given below:

1. Requirements analysis.
System specifications.
Request for proposal (RFP).
Evaluation and validation.
Vendor selection.

Bl L L

Post-installation review.

Requirements Analysis

The first step in hardware selection is understanding the user’s requirements
within the framework of the organization’s objectives and the environment in
which the system is being installed. Consideration is given to the user’s resources
as well as to finances available.

Note: In selecting software, the user must decide whether to develop it in-
house, hire a service company or a contract programmer to create it, or simply
acquire it from a software house. The choice is logically made after the user has
clearly defined the requirements expected of the software, Therefore, requirements

analysis sets the tone for software selection.
L .

System Specifications

Failure to specify system requirements before the final selection almost always
results in a faulty acquisition. The specifications should delineate (i.e., show by
drawing or describing) the user’s requirements and allow room for bids from
various vendors. They must reflect the actual apphcatmns to be handled by the
system and include system ohjectives, flowcharts, mput—oﬁtput reqmrements file

structure, and cost. The specifications must also describe each aspect of the system -

1

clearly, consistently, and completely.

Systern Development

NOTES

Self-Instructional Material 253

System Analysis and Design

NOTES

Request for Proposal (RFP)

After the requirements analysis and system specifications have been determined,
a request for proposal (RFP) is drafted and sent to selected vendors for bidding.
Bids submitted are based on discussions with vendors. At a minimum, the RFP
should include the following:

1. Complete statement of the system specifications, programming language,
price range, terms, and time frame.

Request, for vendor’s responsibilities for conversion, training, and maintenance.
Warranties and terms of license or contractual limitations.

Request for financial statement of vendor.

NN

Size of staff available for system support.

Evaluation and Validation _ .

The evaluation phase ranks vendor proposals and determines the one best suited

. to the user’s needs. It looks into items such as price, availability, and technical

support. System validation ensures that the vendor can, in fact, match his/her
claims, especially system performance. True validation is verified by having each
system demonstrated. :

Role of the consultant. For a small firm, an analysis of competitive bids can be
confusing. For this reason, the user may wish to contract an outside consultant to
do the job. Consultants provide expertise and an objective opinion. A recent survey
found, however, that 50 percent of respondent users had unfavourable experiences
with the consultants they hired, and 25 percent said they would never hire another
consultant. With such findings, a decision to use consultants should be based on
careful selection and planning. A rule of thumb is that the larger the acquisition, the
more serious should be the consideration of using professional help.

Although the payoffs from using consulting services can be dramatic, the costs are
also high. For many small companies that are exploring system acquisition, consulting
services may be totally out of reach. '

The past decade has seen the growth of internal management consultant teams in
large organizations, as opposed to external consulting teams. Table 11.3 outlines
the cases where an external or internal consultant is appropriate.

Table 11.3 Pros and Cons of Using Consultants

254 Self-Instructional Material

External Consultant

Internal Consultant

Full-time internal consuitapt is not
needed or is beyond the budget of the
organization. :

Extra help on a project is needed for a
short time, an internal person cannot
afford the time.

The internal staff does not possess the
expertise or broad knowledge nceded
for a specific situation.

The polit:ica? nature of the pfoblem
requires an objective, neutral opinion.’

An outside opinion is desired in addition
to that of the internal consultant.

An outside consultant is too costly; internal
consultants can be much cheapef~~

A fast decision necessitates using an internal
consultant.

An external consultant often does not under-
stand the nature of the internal problem.

An internal consultant already exists who
has an objective and technical understanding. "

I .
An inside opinion is desired in addition to
that of the external consultant.

Vendor Selection

This step determines the “winner”-—the vendor with the best combination of
reputation, reliability, service record, training, delivery time, lease/finance terms,
and conversion schedule, Initially, a decision is made on which vendor to contact.
The sources available to check on vendors includé the following:

Users. _

Software houses.

Trade associations.
Universities.
Publications/journals.
Vendor software lists.
Vendor referral directories.

Published directories.

S e U

Consultants.
10. Industry contacts.

For comprehensive applications, the user routinely submits an RFP that specifies
thée performance requirements and information needed to make an evaluation.
Copies of the vendor’s annual financial statement are also requested. Once received,
each. vendor’s report is matched against the selection criteria. Those that come
the closest are invited to give a presentation of their system. The system chosen
goes through contract negotiations before implementation.. This area is covered
later in the unit.)

Post-Installation Review

Sometime after the package is installed, a system evaluation is made to determine
how closely the new system conforms to plan. System specifications and user
requirements are audited to pinpoint and correct any differences.

Performance Evaluation

Evaluating a system includes the hardware and software as a unit. Hardware
selection requires an analysis of several performance categories:

1. System availability. When will the system be available?
2, Compatibility. How compatible is the system with existing programs?

3. Cost. What is the lease or purchase price of the system? What about
maintenance and operation costs?

4. Performance. What are the capacity and throughput of the system?

5. Uptime. What is the “uptime” record of the system? What maintenance
schedule is required?

6. Support. How competent and available are the vendor’s staff to support the
system? :
7. Usability. How easy is it to program, modify, and operate the system?
For the software evaluation, the following factors are considered:
1. The programming language and its suitability to the application(s).
2. Ease of installation and training.

3. Extent of enhancements to be made prior to installation.

System Development

NOTES

Self-Instructional Material 255

System Analysis and Design

NOTES

256 Self-Instructional Material

In addition to hardware/software. evaluation, the qualit);' of the vendor’s services

should be examined. Vendor support services include the following:

1. Backup. Emergency computer backup available from vendor.

2. Conversion. Programming and installation service provided during conversion.
3. Maintenance. Adequacy and cost of hardware maintenance.
4

System development. Availability of competent analysts and programmers
for system development.

11.4.3 Financial Considerations in Selection

When the decision to go ahead with the acquisition has been made, the next
question is whether to purchase or lease. There are three methods of acquisition

1. rental directly from the manufacturer,

2. leasing through a third party or from the vendor, and
3. outright purchase.

The Rental Option

Rent is a form of lease directly by the manufacturer. The user agrees to a monthly
payment, usually for one year or less. The contract can be terminated without
penalty by a 90 day advance notice. Rental charges are based on 176 ﬁsage hours
(8 hours per day x 22 working days) per month. Additional usage means higher
total charges per month. Computer users favor renting a system for three reasons:

1. Insurance, maintenance, and other expenses are included in the rental
charge.

2. There is financial leverage for the user. With no investment in equipment,
user capital is freed for other projects. Futhermore, rental charges are tax
deductible.

3. Rental makes it easier to change to other systems, thereby reducing the
risk of technological obsolescence.

The primary drawback of a rental contract is its high cost because of the uncertainty
of rental revenues to the vendor. '

The Lease Option

A leased system is acquired through a third party or from the vendor. A third-party
purchase ranges from six months with month-to-month renewals to seven years.
Longer-running leases hdve more favourable terms but entail a higher risk as the
user is “strapped” with the system. With a short-term lease, the user’s risk is low,
but lease charges are high.

From the user’s view, leasing has several advantages as given below :

1. No financing is required. The risk of system obsolescence is shifted to the
lessor (vendor).

2. Lease charges are lower than rental charges for the same period and are
also tax deductible.

3. Leases may be written to show higher payments in early years to reflect
the decline in value of the system.

4. Leases may or may not include, maintenance or installation costs or.providing
a replacement system in an emergency.

The drawbacks of leasing are given below:

1. Unless there is a purchase option, the lessee (user) loses residual rights to
the system when the lease expires.

2. The lease period cannot be terminated without a heavy penalty.

3. In the absence of an upgrade clause, the user may not be able to exchange
. the leased system for another system. Also, if interest rates decrease, the
user is committed to lease payments at the higher rate.

4. Unlike a purchase system, a leased system does not provide tax benefits
from accelerated depreciation and interest deductions in the early years of
use. There are no cash savings in a lease arrangement.

The Purchase Option

Purchasing a computer has benefits and drawbacks. Purchasing means assuming
all the risks of ownership including taxes, insurance, and technological obsolescence.
However, the owner obtains all the services and support that are available under
the lease or rental agreement. Compared with renting or leasing, the key advantages
of purchasing are : '

1. The flexibility of modifying the system at will.

2. Lower continuing cash outlays than those for a leased system due to cash
savings from depreciation and investment tax credit. If the equipment is
held for five years or more, a credit of 10 percent-of the purchase price is
deducted from the organization’s income tax.

'3. A lower total cash outflow if the user keeps the system longer than five
years,

The major drawbacks are:

Initial high cost in relation to leasing.

£o

Insurance expense and various taxes, which are carried by the user. The
maintenance agreement is also paid for by the.user when the warranty
expires.

3. High overall risk. A poorly selected system means adapting to a “problem
child.” Selling a used computer with flaws could be a real problem.

Each acquisition method has characteristics that are both common and unique. A
choice based on these facts meets the gqualitative test only. Quantifatively, an
effective method is the net present value (NPV) approach. It allows users to
evaluate alternatives while recognizing that a rupee received today is worth more
than tomorrow’s rupee. -

The Used Computer

Under what circumstances should one consider a used computer? Computers last
between five and eight years. Most organizations outgrow their computers long
before they becomeé obsolete, however. This means that users are forced to unload
~ equipment at a loss in order to acquire new systems. Savings of 15 to 70 percent
can be realized by buying used systems, depending on the model and condition of
the system.

Availability is a major advantage to buying used computers. The demand for some
systems is so high that promised six-week deliveries can stretch up to six months.
For certain highly sought microcomputers, delivery may take as long as four
months. Used computer dealers have been known to deliver the same day.

System Development

NOTES

Seif-Instrictional Material 257

System Analysis and Design

NOTES

258 Self-Instructional Material

Sales in the used computer market are increasing every year. Independent vendors
have been successful in training operators and programmers to use the equipment.
They generally rebuild used systems after they have been acquired from the
second user.

For stand-alone systems, used computers are ideal for users with in-house expertise
who are located in an area where technical support is adequate, or who are
assured of vendor support. Although the biggest drawback to used computers is
maintenance, this is readily available from the vendor or independent service
firms. :

Used computers are acquired through dealers or end users. Most dealers are
knowledgeable about the system they sell. The best bargain, however, is buying
directly from the end user, provided there is a log that verifies the maintenance
record of the system. Checking the maintenance log will reveal how reliable the
system has been. The buyer must be sure that the seller has clear title to the
system. A qualified consultant can help.

In conclusion, there are savings from acquiring used systems, and more and more
organizations are going that route. Furthermore, it is an excellent way to extend
the useful life of the computer. :

11.4.4 The Computer Contract

After a decision has been made about the equipment or software, the final step in
system acquisition is to negotiate a contract. Unfortunately, the typical user does
not negotiate. The assumption is that a contract drafted by a reputable firm is a
standard instrument and is not subject to change. To the contrary, every contract
is negotiable to some extent. Large users often spend weeks negotiating amenities
and terms, using legal counsel or consultants.

The primary law governing contracts is the law of contracts, although contracts
can be influenced by other laws, such as the Uniform Commercial Code (UCC).
Under the law of contracts, the formation of a contract requires mutual assent
(meeting of the minds) and consideration. Performance of a contract is the fulfilling
of the duties created by it. :

The Art of Negotiation

Many users enter into contract negotiations at the mercy of the vendor, with little
preparation, Negotiating is an art. Timing is critical. Strategies must be planned
and rehearsed. The leverage enjoyed by either party can change during the course
of the negotiations. Figure 11.3 illustrates the negotiation procedure. Part A represents
the poorly prepared user, outmaneuvered completely throughout the negotiations.
Part B shows a relatively informed user, but one who has a sense of urgency. The
user’s negotiating leverage drops to nearly zero as he/she enters the contract-
negotiating phase. At this point, the vendor recognizes the user’s state of mind and
becomes less willing to negotiate in earnest. In part C, the user is following good
negotiating procedures and retains fair leverage into the negotiations.

Strategies and Tactics

Various strategies and tactics are used to control the negotiation process. A key
strategy is to control the environment. The user’s “home field advantage” allows
the user’s representative to concentrate on the negotiation process in a familiar
getting, Other strategies are the following:

1. Use the “good guy” and ‘bad guy” approach. The consultant is often perceived

as the bad guy, the user as the good guy. The consultant is the “shrewd”
negotiator, whereas the user is the compromiser. :

2. Be prepared with alternatives at all times. It is a give-and-take approach.
3. Use trade-offs. Rank less important objectives high early in the negotiations.
4. Be prepared to drop some issues. Certain issues may be better discussed in
later sessions,
100%
Lessor {vendor)
A. Deficient
Lessee (user}
Bid Award - Conclusion
100%

B. Fair \

.-—-"'—'_'_._-—-_-_-_—'_‘“—--..______
Lessor

Bid Award Conclusion
100% Lessor
__—___"________._.._-—-—-——--._._.
C. Good
/ Lessee
-‘-"N--...___‘__.______
Bid Award Conclusion

Fig. 11.8 Negotiation procedures.

Contract Checklist
A contract should spell out the following :

Vendor responsibilities and remedies in the event of nonperformance; with

1.
hardware, the results to be achieved with the system.

2. Remedies for failure to meet the delivery schedule and failure of the system
to pass the user acceptance test.

3. Implied warranties regarding system performance.
Guarantee of reliabiliﬁy in terms of uptime, mean time between failures,
and response time to repairs.

11.5 SOFTWARE APPLICATION TESTING

As mentioned earlier, in traditional plan-driven systems development projects,
analysts prepare system specifications that are passed on to programmers for
coding. Although coding takes considerable effort and skill, the practices and processes

System Development

NOTES

Self-Insrructional Materie! 258

System Analysis and Design

NOTES

260 Seif-Instructional Material

of writing code do not belong in this text. However, as software application testing
is an activity that analysts plan (beginning in the analysis phase) and sometimes
supervise, depending on organizational standards, you need to understand the
essentials of the testing process. Although this section of the text focuses on
testing from the perspective of traditional development practices, many of the
same types of tests can be used during the analyze-design-code-test cycle common
to the Agile Methodologies. Coding and testing in eXtreme Programming will be
discussed briefly toward the end of this section on testing.

Software testing begins early in the systems development life cycle, even though
many of the actual testing activities are carried out during implementation. During
analysis, you develop a master test plan. During design, you develop a unit test
plan, an integration test plan, and a system test plan. During implementation,
these various plans are put into effect and the actual testing is performed.

The purpose of these written test plans is to improve communication among all
the people involved in testing the application software. The plan specifies what
each person’s role will be during testing. The test plans also serve as checklists
you can use to determine whether all of the master test plan has been completed.
The master test plan is not just a single document, but a collection of documents.
Each of'the component documents represents a complete test plan for one part of
the system or for a particular type of test. Presenting a complete master test plan
is far beyond the scope of this bock. To give you an idea of what a master test plan
involves, we present an abbreviated table of contents of one in Table 11.4,

Table 11.4 Table of Contents of a Master Test Plan

1. Introduction
(@) Description of system to be tested
(b) Objectives of the test plan
{¢) Method of testing
(d) Supporting documents
2. Overall Plan

(@) Milestones, schedule, and locations
(b) Test materials
(i) Test plans
(ii) Test cases
(izi}) Test scenarios
(iv) Test log
- (c) Criteria for passing tests

3. Testing Requirements
(z) Hardware
(6) Software
(¢) Personnel

4. Procedure antro!

{a) Test inttiation
(b) Test execution

{c} Test failure

{d) Access/change control

{e) Document control

5. Test-Specific or Component-Specific Test Plans
{a) Objectives
(8) Software description
{¢) Method
(d Milestones, schedule, progression, and locations
{e) Requirements
(A Criteria for passing tests
(g) Resulting test materials
“(h) Execution control

() Attachments

A master test plan is a project within the overall system development project.
Because at least some of the system testing will be done by people who have not
been involved in the system development so far, the Introduction provides general
information about the system and the need for testing. The Overall Plan and
Testing Requirements sections are like a Baseline Project Plan for testing, with
a schedule of events, resource requirements, and standards of practice outlined.
Procedure Control explains how the testing is to be conducted, including how
changes to fix errors will be documented. The fifth and final section explains each
specific test necessary to validate that the system performs as expected.
Some organizations have specially trained personnel who supervise and support
testing. Testing managers are responsible for developing test plans, establishing
testing standards, integrating testing and development activities in the life cycle,
and ensuring that test plans are completed. Testing specialists help develop test
plans, create test cases and scenarios, execute the actual tests, and analyze and
report test results. '

11.5.1 Seven Different Types of Tests

Software application testing is an umbrella term that covers several types of tests.

Mosley organizes the types of tests according to whether they employ static or’

dynamic techniques and whether the test is automated or manual. Static testing
means that the code being tested is not executed. The results of running the code
are not an issue for that particular test. Dynamic testing, on the other hand,
involves execution of the code. Automated testing means the computer conducts
the test, whereas manual testing means that people complete the test. Using this
framework, we can categorize the different types of tests, as shown in Table 11\.5.

Table 11.5 A Categorization of Test Types

Manual Automated
Static Inspections . Syntax checking
Dyramic Walkthroughs Unit test
Desk checking Integration test
System test

System Development

NOTES

Self-Instructional Moterial 261

System Ancalysis and Design

NOTES

262 Self-Instructional Material

Let’s examine each type of test in turn. Inspections are formal group activities
where participants manually examine code for occurrences of well-known errors.
Syntax, grammar, and some other routine errors can be checked by automated
inspection software, so manual inspection checks are used for more subtle errors.
Each programming language lends itself to certain types of errors that programmers
make when coding, and these common errors are well-known and documented.
Code inspection participants compare the code they are examining with a checklist
of well-known errors for that particular language. Exactly what the code does is
not investigated in an inspection. It has heen estimated that code inspections
detect from 60 to 90 percent of all software defects as well as provide programmers
with feedback that enables them to avoid making the same types of errors in
future work. The inspection process can also be used for such things as design
specifications.

Unlike inspections, what the code does is an important question in a walkthrough.
Using structured walkthroughs is a very effective method of detecting errors in
code. As you know, structured walkthroughs can be used to review many systems
development deliverables, including logical and physical design specifications as
well as code. Whereas specification walkthroughs tend to be formal reviews, code
walkthroughs tend to be informal. Informality tends to make programmers less
apprehensive about walkthroughs and helps increase their frequency. Code walkthroughs
should be done frequently when the pieces of work reviewed are relatively small
and before the work is formally tested. If walkthroughs are not held until the
entire program is tested, the programmer will have already spent too much time
looking for errors that the programming team could have found much more quickly.
The programmer’s time will have been wasted, and the other members of the
team may become frustrated because they will not find as many errors as they
would have if the walkthrough had been conducted earlier. Further, the longer a
program goes without being subjected to a walkthrough, the more defensive the
programmer becomes when the code is reviewed. Although each organization that
uses walkthroughs conducts them differently, there is a basic structure that you
can follow that works well (see Figure 11.4).

Guidelines for Conducting a Code Walkthrough

1. Have the review meeting chaired by the project manager or chief
programmer, who is also responsible for scheduling the meeting,
reserving a room, setting the agenda, inviting participants, and so on.

2. The programmer presents his or her work to the reviewers. Dlscussmn
should be general during'the presentation.

3. Following the general discussion, the programmer walks through the
“code in detail, focusing on the logic of the code rather than on specific
test cases.

Reviewers ask to walk through specific test cases.

The chair resolves disagreements if the review team cannot reach
agreement among themselves and assigns duties, usualiy to the programmer,
for making specific changes.

6. A second walkthrough is then scheduled if needed.

Fig. 11.4 Steps in a typical walkthrough.

It should be stressed that the purpose of a walkthrough is to detect errors, not to

correct them. It is the programmer’s job to correct the errors uncovered in a
walkthrough. Sometimes it can be difficult for the reviewers to refrain from suggesting
ways to fix the problems they find in the code, but increased expemence with the
_ process can help change a reviewer’s behaviour.

What the code does is important in desk checking, an informal process in which
the programmer or someone else who understands the logic of the program works
through the code with a paper and pencil. The programmer executes each instructien,
using test cases that may or may not be written*down. In one sense, the reviewer
acts as the computer, mentally checking each step andg its results for the entire
set of computer instructions.

Among the list of automated testing techniques in Table 11.5, only one technique
is static—syntax checking. Syntax checking is typically done the a compiler. Errors
in syntax are uncovered but the code is not executed. For the other three automated
techniques, the code is executed.

Unit testing, sométimes called module testing, is an automated technique whereby
each module is tested alone in an attempt to discover any errors that may exist
in the module’s code. But because modules coexist and work with other modules
in programs and the system, they must also be tested together in larger groups.
Combining modules and testing them is called integration testing. Integration
testing is gradual. First you test the coordinating module (the root module in a
structure chart tree) and only one of its subordinate modules. After the first test,
you add one or two other subordinate modules from the same level. Once the
program has been tested ‘with the coordinating module and all of its immediately
subordinate modules, you add modules from the next level and then test the
program. You continue this procedure until the entire program has been tested as
a unit. System testing is a similar process, but instead of integrating modules
into programs for testing, you integrate programs into systems. System testing
follows the same incremental logic that integration testing dees. Under both integration
and system testing, not only do individual modules and programs get tested many
times, so do the interfaces between modules and programs.

Current practice calls for a top-down approach to writing and testing modules.
Under a top-dewn approach, the coordinating module is written first. Then the
modules at the next level in the structure chart are written, followed by the
modules at the next level, and so on, until all of the modules in the system are
done. Each module is tested as it is written. Because lop-level modules contain
many calls to subordinate modules, you may wonder how they can be tested if the
lower-level modules haven’t been written yet. The answer is stub testing, Stubs
are two or three lines of code written by a programmer to stand in for the missing
modules. During testing, the coordinating module calls the stub instead of the
subordinate module. The stub accepts control and then returns it to the coordinating
module.

Figure 11.5 illustrates stub and integration system testing. Stub testing is depicted
as the innermost oval. Here, the Get module (where data are input and read) is
being written and tested, but because none of its subordinate modules have been
written yet, each one is represented by a stub. In the stub testing illustrated by
Figure 11.5, Get is tested with only one stub in place, for its left-most subordinate

module. You would of course write stubs for all of the Get module’s subordinate .

modules, just as you would for the Make {where new information is calculated) and
Put (where information is output) modules. Once all of the subordinate modules
have been written and tested, you would conduct an infegration test of Get and its
subordinate madules, as represented by the second oval. As stated previously, the
focus of an integration test is on the interrelationships among modules. You would
also conduct integration tests of Make and its subordinate modules; of Put and its
subordinates; and of System and its subordinates, Get, Make, and Put. Eventually,
your integration testing would include all of the modules in the large over that
encompasses the entire program.

System Development

NOTES

Self-Instructional Material 263

System Analysis and Design

NOTES

264 Self-Instructional Material

System

Final -
integration —————p | | [
testing

Initiad
integration ———» Get ' Make Put
testing

Stub —
testing

Fig. 11.5 Compariné stub and integration testing.

System testing is more than simply expanded integration testing where you are-
testing the interfaces between programs in a system rather than testing the
interfaces between modules in a program. System testing is also intended to
demonstrate whether a system meets its objectives, This is not the same as
testing a system to determine whether it meets requirements—that is the focus
of acceptance testing, which will be discussed later. To verify that a system meets
its objectives, system testing involves using nonlive test data in a nonlive testing
environment. Nonlive means that the data and situation are artificial, developed
specifically for testing purposes, although both the data and the environment are
similar to what users would encounter in everyday system use. The system test
is typically conducted by information systems personnel and led by the project
team leader, although it can also be conducted by users under MIS guidance. The
scenarios that form the basis for system tests are prepared as part of the master
test plan. '

11.5.2 The Testing Process

Up to this point, we have talked about the master test plan and seven different
types of tests for software applications. We haven’t said very much about the
process of testing itself. There are two important things to remember about testing
information systems:

1. The purpose of testing is to confirm that the system satisfies requirements.
2. Testing must be planned.

These two points have several implications for the testing process, regardless of
the type of test being conducted. First, testing is not haphazard. You must pay
attention to many different aspects of a system, such as response time, response
to boundary data, response to no input, response to heavy volumes of input, and
so on. An analyst must rest anything (within resource constraints) that could go
wrong or be wrong with a system. At a minimum, you should test the most
frequently used parts of the system and as many other paths throughout the
system as time permits. Planning gives analysts and programmers an opportunity
to think through all the potential problem areas, list these areas, and develop
ways to test for problems. As indicated previously, one part of the master test plan
is creating a set of test cases, each of which must be carefully documented (See
Figure 11.6 for an outline of a test case description).

Sheelak Ram Furniture Company
Test Case Description

Test Case Number:
Date.

- Test Case Description:
Program Name:
Testing State:
Test Case Prepared By:

Test Administrator:
Description of Test Data:

Expected Results:

Actual Results:

Fig. 11.6 Test case description form,

A test case is a specific scenario of transactions, queries, or navigation paths that
represent a typical, critical, or abnormal use of the system. A test case should be
repeatable so that it can be rerun as new versions of the software are tested. This
is important for all code, whether written in-house, developed by a contractor, or
purchased. Test cases need to determine that new software works with other
existing software with which it must share data. Even though analysts often do not
do the testing, systems analysts, because of their intimate knowledge of applications,
often make up or find test data. The people who create the test cases should not
be the same people as those who coded and tested the system. In addition to a
description of each test case, there must also be a description of the test results,
with an emphasis on how the actual results differed from the expected results (see
Figure 11.7). This description will indicate why the results were different and
what, if anything, should be done to change the software. This description will
then suggest the need for retesting, possibly introducing new tests to discover the
source of the differences.

Sheelak Ram Furniture Company
Test Case Results

Test Case Number:
Date:

Program Name:
Module Under Test:

Explanation of difference between actual and expected cutput:

Suggestions for next steps:

Fig. 11.7 Test case results form.

System Development

NOTES

Self-Instructional Material 265

System Analysis and Design

NOTES

266 Self-fnst_mctiona! Material

One important reasoen to keep such a thorough description of test cases and results
is so that testing can be repeated for each revision of an application. Although new
versions of a system may necessitate new test data to validate new features of the
application, previous test data usually can and should be reused. Results from the
use of the test data with prior versions are compared to new versions to show that
changes have not introduced new errors and that the behavior of the system,
including response time, is no worse. A second implication for the testing process
is that test cases must include illegal and out-of-range data. The system should be
able to handle any possibility, no matter how unlikely; the only way to find out is
to test.

If the results of a test case do not compare favourably to what was expected, the
error causing the problem must be found and fixed. Programmers use a variety of
debugging tools to help locate and fix errors. A sophisticated debugging tool called
a symbolic debugger allows the program to be run online, even one instruction at
a time if the programmer desires, and allows the programmer to observe how
different areas of data are affected as the instructions are executed. This cycle of
finding problems, fixing errors, and rerunning test cases continues until no additional
problems are found. Specific testing methods have been developed for generating
test cases and guiding the test process. See Table 11.6 showing Automating Testing,
for an overview of tools to assist you in testing software.

Table 11.6 Automating Testing

Automated software testing tools can improve the quality of software
testing and reduce the time for software testing by almost 80
percent by providing the following functions:

* Allow the creation of recorded “scripts” of data entry, menu selections
and mouse clicks, and input data, which can be replayed in exact
- sequence for each test run as the software evolves.

¢ Allows the comparison of test resuits from one test run with those
from prior test cases to identify errors or to highlight the results -
of new features,

* Allows unattended, or repeated, script playing to simulate

high-volume or stress situations.

11.5.3 Combining Coding and Testing

Although coding and testing are in many ways part of the same process, it is not
uncommon in large L_andl'co;rﬂlplicated systems development environments to find
the two practices separated from each other. Big companies and big projects often
have dedicated testing staffs that develop test plans and then use the plans to test
software after it has been written. You have already seen how many different types
of testing there are, and you can deduce from that how elaborate and extensive
testing can be. As you recall, with eXtreme Programming and other Agile Methodologies,
coding and testing are intimately related parts of the same process, and the
programmers who write the code also write the tests. The general idea is that code
is tested soon after it is written. If the code passes the tests, then it is integrated
into the system. If it does not pass, the code is reworked until it does pass.

11.5.4 Acceptance Testing by Users

Once the system tests have been satisfactorily completed, the sys‘ﬁem is feady for
acceptance testing, which is testing the system in the environment where it will
eventually be used. Acceptance refers to the fact that users typically sign off on the
system and “accept” it once they are satisfied with it. As we said previously, the
purpose of acceptance testing is for users to determine whether the system meets
their requirements. The extent of acceptance testing will vary with the organization
and with the system in question. The most complete acceptance testing will include
alpha testing, in which simulated but typical data are used for system testing,
beta testing, in which live data are used in the users’ real working environment;
and a system audit conducted by the organization’s internal auditors or by members
of the quality assurance group.

During alpha testing, the entire system is implemented in a test environment to
discover whether the system is overtly destructive to itself or to the rest of the
environment. The types of tests performed during alpha testing include the following:

* Recovery testing—-forces the software (or environment) to fail in order to
verify that recovery is properly performed.

» Security testing—verifies that protection mechanisms built into the system
will protect it from improper penetration. ' ’

e Stress testing—tries to break the system (e.g., what happens when-a scord
is written to the database with incomplete information or what happens
under extreme online transaction loads or with a large number of concurrent
users). '

» Performance testing—determines how the system performs in the range of
possible environments in which it may be used (e.g., different hardware
configurations, networks, operating systems, and so on); often the goal is
to have the system perform with similar response time and other performance
measures in each environment.

In beta testing, a subset of the intended users run the system in their own
environments using their own data. The intent of the beta test is to determine
whether the software, documentation, technical support, and training activities
work as intended. In essence, beta testing can be viewed as a rehearsal of the
installation phase. Problems uncovered in alpha and beta testing in any of these
areas must be corrected before users can accept the system. There are many
stories systems analysts can tell about long delays in final user acceptance due. to
system bugs.

System Development

NOTES

; .
Self-Instructional Material 267

System Analysis and Design

IS

STUDENT ACTIVITY 11.2

1. What are the various factors to be considered prior to system (computer) selection?

2. What is software testing? Explain the testing process.

. ' /
268 Self-Instructional Mt}tefigi

i

SUMMARY

The major activities in the systems development phase are coding, acquiring
hardware, and testing.

Coding is the process whereby the physical design specifications created by
the analysis team are turned into working computer code by the programming
team.

A program is a list of instructions that the computer must follow in order
to process data into information.

Programming alsec known as software engineering, is a multi- step process

for creating that list of instructions.

In the program design step, the software is designed in three mini-steps.
First, the program logic is determined through a top-down approach and
modularization, using a hierarchy chart. Then it is designed indetail, either
in narrative form, using pseudocode, or graphically, using flowcharts.
Structured programming takes a top-down approach that breaks programs
into modular forms. It also uses standard logic tools called control structures
(sequential, selection, case and iteration).

Writing the program.is called coding.

A programming language is a set of rules that tells the computer what
operations to do.

Program testing involves various tests and then running real-world data
to make sure the program works. _
Documentation consists of written descriptions of what a program is and
how to use it.

Hardware/software selection starts with requirements analysis, followed by
a request for proposal and vendor evaluation.

There are three methods of hardware acquisition: rental directly from the
manufactures, leasing through a third party or from the vendor, and outright
purchase.
The final step in system acquisition is to negotiate a contract. Negot1at10n
is an art.
System testing is the bringing together of all the programs that a system

comprises for testing purposes. Programs are typically integrated in a
top-down, incremental fashion.

TEST YOURSELF

Answer the following gquestions:

1.
2.

Desecribe system implementation in brief.

Hardware selection requires the analysis of several performance categories.
For a first-time user of microcomputers, what category or categories would
be most important? Why?

Under what circumstaﬁé.e_s' would one consider buying a used computer?
What are the: benefits' and drawbacks to such an acquisition? Discuss.

. ‘Where programming fits in the éystems development life cycle? Discuss it.

1

System Development

NOTES

Self-Instructionai_Materiai 269

Syetem Analysis and Design

NOTES

270 Seif—frzstrubtic;nal Material

S e R

Discuss in short the software application festing.
How are programming needs clarified?

How is a program designed?

What is involved in coding a program?

How is a program tested?

10. What is involved in documenting and maintaining a program?

11. Discuss the major phases in hardware selection.

12. In what way is computer negotiation an art? Explain.

13. List the different type of tests conducted in software development life cycle,
Categorize these tests. How do these tests differ? Describe the purpose: of
each test.

14. What is acceptance testing? When is this test performed? What type of tests
are performed during the acceptance testing?

15. State True or False:

@
(if)

{iii)
(iv)

{v)

(vi)

{vii)
(viti)
16. Fill
(@)

(it)

(zi7)

(iv)

()

(vi)

(i)

i (viir)

The major activities in the system development phase are coding,
acquiring hardware, and testing.

The results of program and system testing are important deliverables
from the testing process.

Writing the program is not called coding.

Program documentation consists of written descriptions of what a program
is and how to use it,

Hardware/Software selection starts with requirements analysis, followed
by a request for proposal and vendor evaluation.

Selecting a system is not a serious and time-consuming business.

Software application testing is an umbrella term that covers several
types of tests.

Beta testing is user testing of a complicated information system using
real data in the real user environment.

in the blanks:

Using a plan-driven methodology, ..-.ccoeverenne. and ... are
often done by other project team members besides analysts, although
analysts may do some programming.

Deliverables from the coding are and ..., .

. are known as software engineering, is a multi-step process
for creatmg that list of instructions.

................... involves running various tests and then running real
world data to make sure the program works.

The primary ..o of a rental contract is its high cost because
of the uncertainty of remtal revenues to the vendor.

Ais acquired through a third party or from the vendor.

s . is a testing technique in which participants examine program
code for predwtable language specific errors.

. 1s user testmg of a complicated information system using
sunulated data.

P

/

ANSWERS

Test Yourself
15. State True or False: _
@ True Gi) True
(iii) False (v} True
(v} True ’ . (vi) False
(vii) True (viii) True
16. Fill in the blanks:
() coding, testing (f) code, program documentation
(iti) Programming (iv) Program testing -
(v) drawback (vi) leased system
(vif) Inspections (viii) Alpha testing

System Development

NOTES

Self-Instructional Material 271

CHAPTER

12

IMPLEMENTATION

- LEARNING OBJECTIVES

12.1 Introduction
12.2 System Jmplementation

12.2.1The Process of Installation, Documenting the System, Training Users,
and Supporting Users. '

" 12.2.2 Deliverables and Outicomes from-instaiilation, Documenting the system,
Training Users, and Supporting Users

12.3 Installation
12.3.1 Direct Installation
12.3.2 Parallel Installation
12.3.3 Single-Location instatiation
12.3.4 Phased Instal!alion‘
12.3.5 Planning finstallation
12.4 Documenting the system
12.4.1 User Documentation
12.4.2 Preparing User Documentation
12.5 Training and Supporting Users
12.5.1 Training Information Systems Users
12.5.2 Supporting Information Systems Users
12.5.3 Support Issues for the Analyst to Consider
12.6 Project Closedown '

12.1 INTRODUCTION

After maintenance, the implementation phase of the systems development phase
is the most expensive and time-consuming phase of the entire life cycle. It is due
to involvement of many people and a lot of time is taken for this process.
Regardless of the methodology used, once the system development phase is over,
it must be installed (or put into production), user sites must be prepared for the
new system, and users must come to rely on the new system rather than the
existing one to get their work done’

Implementing a new information system into an organizational context is not a
mechanical process. The organizational context has been shaped and reshaped by
the people who work in the organization. The work habits, beliefs, interrelationships,

Implementation

NOTES

Self-Instructional Materia! 273

System Analysis and-Design

NOTES

274 Self-Instructional Material

and personal goals of an organization’s members zll affect the implementation
process. Although factors important to successful implementation have been identified,
there are no sure recipes an analyst can follow. During implementation, he/she
must be attuned to (familiar with) key aspects of the organizational context, such
as history, politics, and environmental demands—aspects that can contribute to
implementation failure if ignored.

In this unit, you will learn about the many activities that the implementation
phase comprises. We will discuss installation, documentation, user training, support’
for a system after it is installed, and implementation success. This unit stresses
the view of implementation as an organizational change process that is not
always successful. :

You will also learn about providing documentation about the new system for the
information systems personnel who will maintain the system and for the system’s
users. These same users must be trained to use what an analyst has developed
and installed in their workplace. Once training has ended and the system has
become institutionalized, users will have questions about the system’s implementation
and how to use it effectively. An analyst must provide a means for users to get
answers to these questions and to identify needs for further training,

As a member of the system development team that developed and implemented
the new system, an analyst’s job is winding down now that installation and
conversion are complete. The end of implementation marks the time for him/her
to begin the process of project closedown. At the end of this unit, we will return
to the topic of formally ending the systems development project.

After a brief overview of the installation process and the deliverables and outcomes

from this process, we present the four types of installation: direct, parallel, single

location, and phased. You then will read about the process of documenting systems

and training and supporting users as well as the deliverables from these processes.

We then discuss the various types of documentation and numerous methods

available for delivering training and support services. You will read about implementation
as an organizational change process, with many organizational and people issues

involved in the implementation effort.

12.2 SYSTEM IMPLEMENTATION

System implementation is made up of many activities. The major activities we
are concerned within this unit are installation, documentation, training, and
support (See Figure 12.1). The purpese of these steps is to convert the physical

4. Prefiminary
investigation
6. Systems 2. Systems
maintenance analysis
Install
Docur:gﬁgtion 5. Systems 3. Sys_tems
Training implementation design
Support
4. Systems
devsloprnent

Fig. 12.1 The SDLC with the implementation phase highlighted

system specifications into working and reliable software and hardware, document
the work that has been done, and provide help for current and future users and
caretakers of the system. Analysts are responsible for ensuring that all of these
various activities are properly planned and executed. Next we will briefly discuss
these activities.

12.2.1 The Process of Installation, Documenting the System,
Training Users, and Supporting Users

Installation is the process during which thle current system is replaced by the new
system. This includes conversion of existing data, software, documentation, and
work procedures to those consistent with the new system. Users must give up the
old ways of doing their jobs, whether manual or automated, and adjust to accomplishing
the same tasks with the new system. Users will sometimes resist these changes,
and an analyst must help them adjust. However, he/she cannot control all the
dynamics of user-system interaction involved in the installation process.

Although the process of documentation proceeds throughout the life cycle, it receives
formal attention during the implementation phase because the end of implementation
largely marks the end of the analysis team’s involvement in systems development.
As the team is getting ready to move on to new projects, all the analysts working
on the system need to prepare documents that reveal all of the important information
they have learned about this system during its development and implementation.
There are two audiences for this final documentation :

1. the information systems personnel who will maintain the system throughout

its productive life and '

2. the people who will use the system as part of their daily lives.

The analysis team in a lé\rge organization can get help in preparing documentation
from specialized staff in the information systems department.

Larger organizations also tend to provide training and support to computer users
throughout the organization. Some of training and support is very specific to
particular application systems, whereas the rest is general to particular operating
systems or off-the-shelf software packages. For example, it is common to find
courses on Microsoft Windows and WordPerfect in organizationwide training facilities.
Analysts are mostly uninvolved with general training and support, but they do
work with corporate trainers to provide training and support tailored to particular
computer applications they have helped to develop. Centralized information system
training facilities tend to have specialized staff who can help with training and
support issues. In smaller organizations that cannot afford to have well-staffed
centralized training and support facilities, fellow users are the best source of
training and support users have, whether the software is customized or off the
shelf.

12.2.2 Deliverables and Outcomes from Instaﬂation,
Documenting the System, Training Users, and
Supporting Users

Table 12.1 Shows the deliverables from installation, documenting the system, training
users, and supporting users.

Implementation

NOTES

Self-Instructional Material 275

System Analysis and Design

NOTES

276 Self-Instructional Material

Table 12.1 Deliverables for Installation, Documenting the System,
Training, and Supporting Users

1. Installation
(@) User guides
(6) User training plan
(¢) Installation and conversion plan
(&) Software and hardware installation schedule
(iz) Data conversion plan
{iiz) Site and facility remodelling plan
2, Documentation
(@) System documentation
(b) User documentation
3. User training plan
(@) Classes
{6) Tutorials
4. User training modules
. (a) Training materials
(b) Computer-based training aids
5. User support plan
" (a) Help desk
{6) Online help

(¢) Bulletin boards and other support mechanisms

The two deliverables, user guides and the user training plan, result from the
installation process. User guides provide information on how to use the new
system, and the training plan is a strategy for training users so that they can
quickly learn the new system. The development of the training plan probably
began earlier in the project, and some training, on the concepts behind the new
system, may have already taken place. During the early stages of implementation,
the training plans are finalized and training on the use of the system begins.
The installation plan lays out a strategy for moving from the old system to the new,
from the beginning to the end of the process. Installation includes installing the
system (hardware and software) at central and user sites. The installation plan
answers such questions as when the new system will be installed, which installation
strategies will be used, who will be involved, what resources are required, which
data will be converted and cleansed, and how long the installation process will take.
It is not encugh that the system is installed; users must actually use it.

The development team must prepare user documentation. For most modern information .
systems, documentation includes any online help designed as part of the system
interface. The development team should think through the user training process
the following:

Who should be trained?
How much training is adequate for each training audience?
What do different types of users need to learn during training?

The training plan should be supplemented by actual training modules, or at least
outlines of such modules, that at a minimum address the three questions stated

previously. anally, the development team should also deliver a user support plan Implementation

that addresses such issues as how users will be able to find help once the information
system has become integrated into the organization. The development team should
consider a multitude of support mechanisms and modes of delivery. Each deliverable

is addressed in more detail later in the unit,.
NOTES

12.3 INSTALLATION

The process of moving from the current information system to the new one is
called installation. All employees who use a system, whether they were consulted
during the development process or not, must give up their reliance on the current
system and begin to rely on the new system. Four different approaches to installation
have emerged over the years: direct, parallel, single location, and phased
(See Figure 12.2).

—| Current System

Install New ' -
System

New System |—» Time

(a) Direct installation

—b Current System

instatl New
Sysiem

New System |—» Time

(b) Paralle]l installation

——»{ Current System

Install New Location 1
System

. New System [

—Pp Current System

(nstall New Location 2
. System '

New System [—>

‘- L

(¢) Single-location installation (with direct installation at each location)

Self-Instructional Material 277

System Analysis and Design

NOTES

278 Self-Instructional Material

Current
—¥ System Cumrent System
Without Module 1 | Current System Without Modules 1 and 2|- - -
Install instaii
Module 1 Module 2

New Module 1 ——»

New Module 2 ~—» - -

(d) Phased installation
Fig. 12.2 Comparison of installation strategies of a system

The approach an organization decides to use will depend on the scope and complexity
of the change associated with the new system and the organization’s risk aversion
(strong dislike).

12.3.1 Direct Installation

The direct, or abrupt, approach to installation (also called “cold turkey”) is as
sudden as the name indicates: The old system is turned off and the new system
is turned on (See Figure 12.2(a)). Under direct installation, system users are at
the mercy of the new system. Any errors resulting from the new system will have
a direct impact on the users and how they do their jobs and, in some cases—
depending on the centrality of the system to the organization—on how the organization
performs its business. If the new system fails, considerable delay may occur until
the old system can again be made operational and business transactions are reentered
to make the database up-to-date. For these reasons, direct installation can be very
risky. Further, direct installation requires a complete installation of the whole
system. For a large system, this may mean a long time until the new system can
be installed, thus delaying system benefits or even missing the opportunities that
motivated the system request. On the other hand, it is the least expensive installation
method, and it creates considerable interest in making the installation a success.
Sometimes, a direct installation is the only possible strategy if there is no way for
the current and new systems to coexist, whlch they must do in some way in each
of the other installation approaches.

12.3.2 Parallel Installation

. Parallel installation is as riskless as direct installation is risky. Under parallel

installation, the old system continues to run alongside the new system until users
and management are satisfied that the new system is effectively performing its
duties and the old system can be turned off (See Figure 12.2(3)). All of the work
done by the old system is concurrently performed by the new system. Outputs are
compared (to the greatest extent possible) to help determine whether the new
system is performing as well as the old. Errors discovered in the new system do
not cost the organization much, if anything, because errors can be isolated and the
business can be supported with the old system. Because all work is essentially
done twice, a parallel installation can be very expensive; running two systems
implies employing (and paying) two staffs to not only operate both sygtems, but
also to maintain them. A parallel approach can also be confusing to users because
they must deal with both systems. As with direct installation, there can be a
considerable delay until the new system is completely ready for installation. A

parallel appreach may not be feasible, especially if the users of the system (such
as customers) cannot tolerate redundant effort or if the size of the system (number
of users or extent of features) is large.

12.3.3 Single-Location Installation

Single-location installation, also called location or pilot installation, is a
middle-of-the-road approach compared with direct and paraliel installation. Rather
than convert all of the system in organization at once, single-location installation
involves changing from the current to the new system in only one place or in a
series of separate sites over time (See Figure 12.2(c)) illustrates this approach for
a simple situation of two locations). The single location may be a branch office, a
single factory, or one department, and the actual approach used for installation in
that location may be any of the other approaches. The key advantage to single-
location installation is that it limits potential damage and potential cost by litniting
the effects to a single site. Once management has determined that installation has
been successful at one location, the new system may be deployed in the rest of the
organization, possibly continuing with installation at one location at a time. Success
at the pilot site can be used to convince reluctant personnel at other sites that the
system can be worthwhile for them as well. Problems with the system (the actual
software as well as documentation, training, and support) can be resolved before
deployment to other sites of the organization. Even though the single-location
approach may be simpler for users, it still places a large burden on IS (Information
Systems) staff to support two versions of the system. On the other hand, because
problems are isolated at one site at a time, IS staff can devote all of their efforts
to the success at the pilot site. Also, if different locations require sharing of data,
extra programs will need to be written to synchronize the current and new systems;
although this will happen transparently to users, it is extra work for IS staff. As
with each of the other approaches (except phased installation), the whole system
is installed; however, some parts of the organization will not gel the benefits of the
new system until the pilot installation has been completely tested.-

12.3.4 Phased Installation

Phased installation, also known as staged installation, is an incremental
approach. With phased installation, the new system is brought online in functional
components; different parts of the old and new systems are used in cooperation
until the whole new system is installed. (See Figure 12.2(d)}) shows the phase-in
of the first two modules of a new system.) Phased installation, like single-location
installation, is an attempt to limit the organization’s exposure to risk, whether in
terms of cost or disruption of the business. By converting gradually, the organization’s
risk is spread out over time and place. Also, a phased installation allows for some
benefits from the new system before the whole system is ready. For example, new
data-capture methods can be used before all reporting modules are ready. For a
phased installation, the new and replaced systems must be able to coexist and
probably share data. Thus, bridge programs connecting old and new databases and
programs often must be built. Sometimes, the new and old systems are so incompatible
(built using totally different structures) that pieces of the old system cannot be
incrementally replaced, so this strategy is not feasible. A phased installation is
akin to bringing out a sequence of releases of the system. Thus, a phased approach
requires careful version control, repeated conversions at each phase, and a long
period of change, which may be frustrating and confusing to users. On the other
hand, each phase of change is smaller and more manageable for all invelved.

Implementation

NOTES

Setf-Instructional Material 279

System Analysis and Design

NOTES

280 Self-Instructional Material

12.3.5 Planning Installation

Each installation strategy involves converting not only software, but also data and
(potentially) hardware, documentation, work methods, job descriptions, offices and
other facilities, training materials, business forms, and other aspects of the system.
For example, it is necessary to recall or replace all the current system documentation
and business forms, which suggests that the IS department must keep track of who
has these items so that they can be notified and receive replacement items. In
practice, an analyst will rarely choose a single strategy to the exclusion of all
others; most installations will rely on a combination of two or more approaches.
For example, if he/she selects a single-location strategy, he/she has to decide how
installation will proceed there and at subsequent sites. Will it be direct, parallel,
or phased?

Of special interest in the installation process is the conversion of datfa. Because
existing systems usually contain data required by the new system, current data
must be made error free, unloaded from current files, combined with new data,
and loaded into new files., Data may need to be reformatted to be consistent with
more advanced data types supported by newer technology used to build the new
system. New data fields may have to be entered in large quantities so that every
record copied from the current system has all the new fields populated. Manual
tasks, such as taking a physical inventory, may need to be done in order to validate
data before they are transferred to the new files. The total data conversion process
can be tedious. Furthermore, this process may require that current systems be
shut off while the data are extracted so that updates to old data, which would
contaminate the extract process, cannot occur.

Any decision that requires the current system to be shut down, in whole or in part,
before the replacement system is in place must be done with care. Typically, off
hours are used for installations that require a lapse in system support. Whether a
lapse in service is required or not, the installation schedule should be announced to
users well in advance to let them plan their work schedules around outages in
service and periods when their system support might be erratic. Successful installation
steps should also be announced, and special procedures put in place so that users can-
easily inform the analyst of problems they encounter during installation periods. An
analyst should also plan for emergency staff to be available in case of system failure
so that business operations can be recovered and made operational as quickly as
possible. Another consideration is the business cycle of the organization. Most
organizations face heavy workloads at particular times of year and relatively light
loads at other times. A well-known example is the retail industry, where the busiest
time of year is the fall, right before the year’s major gift-giving holidays. An analyst
wouldn’t want to schedule installation of a new point-of-sale system to begin December
1 for a department store. Make sure he/she understands the cyclical nature of the
business he/she is working with before he/she schedules installation.

Planning for installation may begin as early as the analysis of the organization
supported by the system. Some installation activities, such as buying new hardware,
remodeling facilities, validating data to be transferred to the new system, and collecting
new data to be loaded into the new system, must be done before the software installation
can occur. Other the project team leader is responsible for anticipating all installation
tasks and assigns responsibility for each to different analysts.

Each installation process involves getting workers to change the way they work.’
As such, installation should be locked at not as simply installing a new computer
system, but as an organizational change process. More than just a computer system
is involved—the analyst is also changing how people do their jobs and how the
organization operates.

Implementation

STUDENT ACTIVITY 12.1

1. What are the inputs to the various processes of system implementation phase and what are their
deliverables? What is the main purpose of this phase?

2. Write a short note on planning installation.

Self-Instructional Materiq! 281

System Analysis and Design

NOTES

12.4 DOCUMENTING THE SYSTEM °

In one sense, every systems development project is unique and will generate its
own unique documentation. The approach taken by the development team, whether
more traditional and plan oriented or more Agile, will also determine the amount
and type of documentation that is generated. System development projects do have
many similarities, however, which dictates that certain activities be undertaken
and which of those activities must be documented. A generic systems development
lifecycle maps onto a generic list of when specific systems development documentation
elements are finalized (Table 12.2).

Table 12.2 SDLC and Generic Documentation Corresf.tonding to Each Phase

Generic Life-cycle Phase

Generic Document

Requirements specification

Project control structuring
System development
Architectural design
Prototype design
Detailed design and implementation
Test specification
Test implementation

System delivery

System requirements specification
Rescurce requirements specification
Management plan

Engineering change proposal
Architecture design document
Prototype design document
Detailed design document

Test specifications

Test reports

User’s guide

282 Self-Instructional Material

Release description
System administrator’s guide
Reference guide

Acceptance sign-off

As you compare the generic life cycle in Table 12.2 with the life cycle presented
in this book, you will observe that there are differences, but the general structure
of both life cycles is the same, as both include the basic phases of analysis, design,
implementation, and project planning. Specific documentation will vary depending
on the life cycle you are following, and the format and content of the documentation
may be mandated by the organization for which you work. However, a basic
outline of documentation can be adapted for specific needs, as shown in Table 12.2.
Note that this table indicates when documentation in typically finalized; an analyst
should start developing documentation elements early, as the information needed
in captured. -

We can simplify the situation even more by dividing documentation into two basic
types, system documentation and suer documentation. System documentation records
detailed information about a system’s design specifications, its internal workings,
and its functionality. In Table 12.2, all of the documentation listed {(except for
System delivery) would qualify as system documentation. System documentation
can be further divided into iniernal and external documentatiorn. Imternal
documentation is part of the program source code or is generated at compile
time. External documentation includes the outcome of all of the structured
diagramming techniques you have studied in this book, such as data flow and

entity-relationship diagrams. Although not part of the code itself, external docurnentation
can provide useful information to the primary users of system documentation—
maintenance programmers. In the past, external documentation was typically discarded
after implementation, primarily because it was considered too costly to keep up-
to-date, but today’s CASE environment makes it posslble to maintain and update
external documentation as long as desired.

Whereas system documentation is intended primarily for maintenance programmers,
user documentation is intended primarily for users. An organization may have
definitive standards on system documentation, often consistent with CASE tools
and the systems development process. These standards may include the outline for
the project dictionary and specific pieces of documentation within it. Standards for
user documentation are not as explicit.

12.4.1 User Documentation

User documentation consists of written or other visual information about an application
system, how it works, and how to use it. An excerpt of online user documentation
or Microsoft Excel appears in Figure 12.3.

_"i Mcsayodt | acel liedg

: Project future values and perform regression]
Corsorts | gpwws vicard [e | | aaguels

E @ CoutngincrestoRec« | 3] You can Bl in a4 1enes of values thet it & 1impls bnesr trend or
[Troubleshoctng Retriry 4 i| an exponential growth trend by unng the @ handle. To axtend
f« | comolex and nonlingar cats, you should ute the workshest

functions kited below, 07 use the regrastion analyses ool in the
E Anwwn-mmuut .;‘. Analysrs Tooak, ¥

£ 2dd 2 enchng to.s chard
£ {3 srg Swnestoprancr 1| 106 <40 e 4 sthowt cresting the data

i
f
3

I Flnllunh.l

ﬂnnw\nh-‘
JjCremrirew ady

(o hmvmwur
& Sotvng ¢ One-Varmele
fr @ Saving Difserert Sohibor
E @ aneying Mach. Ve

@ @ Troubleshoeting Pertord| |

) what do you want to do?

| Use the i%) hondle or the Serles cammand

Etmﬂtm L
» Sharing & Waorlbhook with O
3]

T

Preverting Computer Yuse' T

E b Valriating Ced Eriries | po

Mwmmmuo:-rj' Qo
)

i1 B O L T

R o

SRS Dot 14-Pert

Fig. 12.3 Example of online user documentation (from Mtcrosoft _Exceln’)

Notice how the documentation has some words and phrases in a different color of
text. The definitions of these words and the explanations of the phrases are hidden
are hidden from view and can be made visible by clicking on the word or phrase.
The phrases each have arrowheads next to them, which indicates that there is
more to be seen by clicking on the phrase or arrowhead. These presentation
methods have become standard for help files in online PC documentation. Many
PC help files also have litks to the software vendor's Website, where more information,
and more up-to-date information!, can be found.

Figure 12.3 shows the content of a reference guide which is just one type of user
documentation. Other types of user documentation include quick reference guides,
user’s guides, release descriptions, system administrator’s guides, and acceptance
sign-offs (Table 12.2). A reference guide consists of an exhaustive list of a system’s
functions and commands, usually in alphabetic order. Most online reference guides
allow you to search by topic area or by typing in the first few letters of a keyword.
Reference guides are very good for locating specific information (as in Figure 12.3);

Implementation

!

NOTES

Self-Instructional Muaterial 283

System Analysis and Design they are not as good for learning the broader picture of how to perform all of the
steps needed for a given task: A quick reference guide provides essential information
about operating a system in a short, concise format. When computer resources are
shared and many users perform similar tasks on the same machines (as with
airline reservation or mail-order-catalog clerks), quick reference guides are often

NOTES printed on index cards or as small books and mounted on or near the computer
terminal. An outline for a generic user’s guide is shown in Table 12.3. The purpose
of such a guide is to provide information on how users can use a computer system

’ to perform specific tasks. The information in a user’s guide is typically ordered by

how often tasks are performed and by how complex they are.

Table 12.8 Outline of a Generic User’s Guide

Preface
1. Introduction
1.1 Configurations
1.2 Function flow
2. User interface
2.1 Display screens
2.2 Command types
3. " Getting started

3.1 Login
3:2 Logout
3.3 Save

3.4 Error recovery
3.n [Basic procedure name]
n. [Task name]

Appendix 1—Error Messages
({Appendix])
Glossary

Terms

Acronyms

Index

In Table 12.3, sections with an “n” and a title in square brackets mean that there
are many such sections, each for a different topic. For example, for an accounting
application, sections 4 and beyond might address topics such as entering a transaction
in the ledger, closing the month, and printing reports. The items in parentheses
are optional, included as necessary. An index becomes more important for larger
_ user’s guides.
A release description contains information about 6a new system release, including
a list of documentation for the new ralease, features and enhancements, known
problems and.how they.have been dealt with in the new release, and information
“about installation. A system administrator’s guide is intended primarily for those
who will install and administer a new system. It contains information about the
network on which the system will run, software interfaces for peripherals such as
printers, troubleshooting, and setting up user accounts. Finally, an acceptance
sign-off allows users to test for proper system installation and then signify their
acceptance of the new system with their signatures.

284 Self-Instructional Material

12.4.2 Preparihg User Documentation

User documentation, regardless of its content or intended audience, was once
provided almost exclusively in big, bulky paper manuals, and it was out of date
almost as soon as it was printed. Most documentation is now delivered online in
hypertext format. Regardiess of the format, user documentation is an upfront
investment that should pay off in reduced training and consultation costs later. A
future analyst, should consider the source of documentation, its quality, and whether
its focus is on the information system’s functionality or on the tasks the system
can be used to perform.

The traditional source of user documentation has been the organization’s information
systems (IS} department. Even though information systems departments have always
provided some degree of user documentation, for much of the history of data
processing the primary focus of documentation was the system. In a traditional
information systems environment, the user interacted with an analyst and computer
operations staff for al) of his or her computing needs. The analyst acted as intermediary
between the user and all computing resources. Any reports or other output that
went to the user was generated by the operations staff, based on a regular reporting
schedule. Because users were consumers and providers of data and information,
most documentation developed during a traditional information systems development
project was system documentation for the analysts and programmers who had to
know how the system worked. Although some user documentation was generated,
maost documentation was intended to assist maintenance programmers who tenued
to the system for years after the analyst team had finished its work.

In today's-end-user information systems environment, users interact directly with
many computing resources, they have many options or querying capabilities from
which to choose when using a system, and they are able to develop many local
applications themselves. Analysts often serve as consultants for these local end-
user applications. For end-user applications, the nature and purpose of documentation
has changed from documentation intended for the maintenance programmer to
documentation for the end user. Application-oriented documentation, whose purpose
is to increase user understanding and use of the organization’s computing resources,
has also come to be important. While some of this user-oriented documentation
continues to be supplied by the information systems department, much of it now
originates with vendors and with users themselves.

' 12.5 TRAINING AND SUPPORTING USERS

Training and support are two aspects of an organization’s computing infrastructure.
The computing infrastructure is all of the resources and practices required to help
people adequately use computer systems to do their primary work. It is analogous
to the infrastructure of the water mains, electric power lines, streets, and bridges
that form the foundation for providing essential services in a city. Infrastructure
is one of four fundamental issues IS managers must address. It is suggested that
training and support are most important in the early stages of end-user computing
growth and less so later on. The development and implementation of a general,
and eventually, “seamless”, information technology infrastructure is a major demand
on information technology. Thus, training and support are critical for the success
of an information system As the person whom the user holds responsible for the
new system, the analysts on the project téam must ensure that high-quality training

and support are avarllable

!
7

Implementation

NOTES

Setf-Instructional Material 285

System Analysis and Design

NOTES

v

286 Self-Instructional Material

2

Although training and support can be talked about as if they are two separate
things, in organizational practice, the distinction between the two is not all that
clear, because the two sometimes overlap. After all, both deal with learning about
computing.

It is clear that support mechanisms are also a good way to provide training,
especially for intermittent users of a system. Intermittent or occasional system
users are not interested in, nor would they profit from, typical user training
methods. Intermittent users must be provided with “point-of-need support™—specific
answers to specific questions at the time the answers are needed. A variety of
mechanisms, such as the system interface itself and online help facilities, can be
designed to provide both training and support at the same time.

The value of support is often underestimated. Few organizations invest heavily in
support staff, which can lead to users solving problems for themselves or somehow
working around them. Adequate user support may be essential for successful
information system development, however. One study found that user satisfaction
with support provided by the information systems department was the factor most
closely related to overall satisfaction with user development of computer-based
applications.

"12.5.1 Training Information Systems Users

Computer use requires skills, and training people to use computer applications can
be expensive for organizations. Training of all types is a major activity in many
corporations, but information systems training is often neglected. Many organizations
tend to underinvest in computing skills training. It is true that some organizations
institutionalize high levels of information system training, but many others offer
no systematic training at all. :

The type of training needed will vary by system type and user expertise.

The list of potential topics from which an analyst will determine if training will be
useful include the following:

¢ Use of the system (e.g., how to enter a class registration request)

* General computer concepts (e.g., computer files and how to copy them}
* Information system concepts (e.g., batch processing)

* Organizational concepts (e.g., FIFO inventory accounting)

* System management (e.g., how to request changes to a system)

* System installation (e.g., how to reconcile current and new systems during
phased installation)

As you can see from this partial list, niany potential topics go beyond simply how
to use the new system. It may be necessary for an analyst to develop training for
users in ather areas so that users will be ready, conceptually and psychologically,
to use the new system. Some training, such as concept training, should begin early
in the project because this training can assist in the “unfreezing”—helping users
let g0 of long-established work procedures—element of the organizational change
£ FUCESS.

Each element of training can be delivered in a variety of ways. Table 12.4 lists the
most common training methods used by information system departments a few
years ago. | ' '

Table 12.4 Seven Common Methods for Computer 'I‘ra;lining .

zl 1. Tutorial—one person taught at a time

2. Course—several people taught at a time

3. Computer-aided instruction

4. Interactive training manuals—combination of.
tutorials and computer-aided instruction

5. Resident expert

6. Software help components

7. External sources; such as vendors,

Despite the importance and value of training, most of the methods listed in
Table 12.4 are underutilized in many organizations. Users primarily.rely on just
one of these delivery modes: More often than not, users turn to the resident
expert and to fellow users for training. Users are more likely to turn to local
experts for help than to the organization’s technical support staff because the local
expert understands both the users’ primary work and the computer systems they
use. Given their dependence on fellow users for training, it should not be surprising
that end users describe their most common mode of computer training as “self-
training”. Self-training has been found to be associated with particular sets of user
skills: using application development software, using packaged application
software, data communication, using hardware, using operating systems, and graphics
skills. The last four sets of skills are also highly associated with company-provided
training. Some areas of training might best be accomplished by centralized, company-
provided training, whereas other areas might be more amenable to self-training.

One conclusion from the experience with user raining methods is that an effective
strategy for training on a new system is to first train a few key users and then
organize training programs and support mechanisms that involve these users to
provide further training, both formal and on demand. Often, training is most effective
if the analysts customize it to particular user groups, and the lead trainers from
these groups are in the best position to provide this training to their other colleagues.

Although individualized training is expensive and time-consuming, technological
advances and decreasing costs have made this type of training more feasible.
Similarly, the number of training modes nsed by information systems departments
today has increased dramatically beyond what is listed in Table 12.4. Training moedes
now include videos, interactive television for remote training, multimedia training,
online tutorials; and electronic performance support systems (EPSSs). These may be
delivered via videotapes, CD-ROMs, company intranets, and the Internet.

EPSSs are online help systems that go beyond simply providing help—they embed
training directly into a software package. An EPSS may take on one or more forms:
It can be an online tutorial, provide hypertext-based access to context-sensitive
reference material, or consist of an expert system shell that acts as a coach. The
main idea behind the development of an EPSS is that the user never has to leave
the application to get the benefits of training. Users learn a new system or unfamiliar
features at their own pace and on their own machines, without having to lose work
time to remote group training sessions. Furthermore, this learning is on demand;

Implementation

NOTES

Self-Instructional Material 287

System Analysis and Design 3 yger completes the EPSS when he or she is most motivated to learn. EPSS is

NOTES

288 Self-Instructiona! Material

sometimes referred to as “just-in-time knowledge.” One example of an EPSS with
which you may be familiar is Microsoft’s Office Assistant. Office Assistants are
animated characters that come up on top of such applications as Excel and Word.
The user asks the Office Assistant a question and the Office Assistant returns an
answer, providing educational information, such as graphics, examples, and procedures,
as well as hypertext nodes for jumping to related help topics. Microsoft’s Office

. Assistants communicate with the application you are running to see where you are

so you can determine, by reading the context-sensitive information, if what you
want to do is possible from your present location. Some EPSS environments actually
walk the user step-by-step through the task, coaching the user on what to do or
allowing the user to get additional online assistance.

Training for information systems is increasingly being made available both over
company intranets and over the Internet. Individual companies may prepare the
training and make it available with the help of vendors who convert the content
to work on the Internet. Alternatively, an organization may prepare its own training
content using course-authoring software. Still a third alternative is to access training
provided by third-party vendors. Accessing training over the Internet can save
companies a huge amount of money each year in training costs, especially when
it comes to information technology training. Instead of having to send personnel
off-site for weeks and pay their travel expenses, companies can gain access to
Internet training for lower cost and personnel can get the training at their desks.

As both training and support for computing are increasingly able 1o be delivered
online in modules, with some embedded in software packages and applications (as
is the case for EPSS), the already blurred distinction between training and support
blurs even more. Some of the issues most particular to computer user support are
examined in the next section. '

12.5.2 Supporting Information Systems Users

Historically, computing support for users has been provided in one of a few forms:
on paper, through online versions of paper-based support, by third-party vendors,
or by other people who work for the same organization. As we stated earlier,
support, whatever its form, has often been inadequate for users’ needs. Yet users
consider support to be extremely important.

As computing spread throughout the organization, especially with the advent of

personal computers, the need for support increased as more and more employees

came to rely on computing to do their jobs. As organizations moved to client/server
architectures, their need for support increased even more, and organizations began
to rely more and more on vendor support. This increased need for support came
in part from the lack of standards governing client/server products and the resulting
need to make equipment and software from different vendors compatible. Vendors
are able to provide the necessary support, but as they have shifted their offerings
from primarily expensive mainframe packages to inexpensive off-the-shelf software,
they find they can no longer bear the cost of providing the support for free. Most
vendors now charge for support, and many have instituted 900 numbers or sell
customers unlimited support for a given monthly or annual charge.

Automating Support

In an attempt to cut the costs of providing Support and to catch up with the
demand for additional support services, vendors have automated many of their
support offerings. Online support forums provide users access to information on
new releases, bugs, and tips for more effective usage. Forums are offered over the
Intérnet or over company intranets. On-demand fax allows users to order support
information through an 800 number and receive that information instantly over
their fax machines. Finally, voice-response systems allow users to navigate option
menus that lead to prerecorded messages about usage, problems, and workarounds.
Organizations have established similar support mechanisms for systems developed
or purchased by the organization. Internal e-mail, group support systems, and
office automation can be used to support such capabilities within an organization.

Vendors may offer support that enables users to access a vendor’s knowledge
bases, including electronic support services, a single point of contact, and priority
access to vendor support personnel. Product knowledge bases include all of the
technical and support information about vendor products and provide additional
information for on-site personnel to use in solving problems. Vendors routinely
supply complete user and technical documentation over the Internet, including
periodic updates, so that a user organization can provide this library of documentation,
bug reports, workaround notices, and notes on undocumented features online to
all internal users. Electronic support services include all of the vendor support
gervices discussed earlier, but are tailored specifically for the corporation. The
single point of contact is a system engineer who is often based on site and serves
as a liaison between the corporation and the vendor. Finally, priority access means
that corporate workers can always get help via telephone or e-mail from a person
at the vendor company, usually within a prespecified response time of 4 hours or
less.

Such vendor-enhanced support is especially appropriate in organizations where a
wide variety of a particular vendor’s products is in use or where most in-house

application development either uses the vendor’s products as components of the

larger system or where the vendor’s products are themselves used as the basis for
applications. An example of the former would be the case where an organization
has set up a client/server architecture based on a particular vendor’s SQL server
and APIs. Which applications are developed in-house to run under the client/server
architecture depends heavily on the server and APIs, and direct vendor support
dealing with problems in these components would be very helpful to the enterprise
information systems staff. An example of the second would include order entry and
inventory control application systems developed using Microsoft’s Access or Excel.
In this case, the system developers and users, who are sometimes the same people
for such package-based applications, can benefit considerably from directly questioning
vendor representatives about their products.

Providing Support Through a Help Desk. Whether assisted by vendors or
going it alone, the center of support activities for a Speciﬁc' information system in
many organizations is the help desk. A help desk is an information systems
department function and is staffed by IS personnel. The help desk is the first place
users should call when they need assistance with an information system. The help
desk staff either deals with the users questions or refers the users to the most
appropriate person.

Implementation

NOTES

Self-Instructional Material 289

System Analysis and Design

NOTES

290 Self-Instructional Material

For many years, a help desk was the dumping ground for people IS managers did
not know what else to do with. Turnover rates were high because the help desk :
was sometimes little more than a complaints department, the pay was low, and
burnout rates were high. In today’s information-systems-dependent enterprises,
however, this situation has changed. Help desks are gaining new respect as management
comes to appreciate the special combination of technical skills and people skills
needed to make good help desk staffers. In fact, a recent survey reveals that the
top two valued skills for help desk personnel are related to communication and_'
customer service.

Help desk personnel need to be good at communicating with users, listening to
their problems, and intelligently communicating potential solutions. These personnel
also need to understand the technology they are helping users with. It is crucial,
however, that help desk personnel know when new systems and releases are being
implemented and when users are being trained for new systems. Help desk personnel
themselves should be well trained on new systems. One sure recipe for disaster
is to train users on new systems buf. not train the help desk personnel these same
users will turn to for their support needs.

12.5.3 Support Issues for the Analyst to Consider

Support is more than just answering user questions about how to use a system to
perform a particular task or about the system'’s functionality. Support also consists
of such tasks as providing for recovery and backup disaster recovery, and PC
maintenance; writing newsletters and offering other types of proactive information
sharing; and setting up user groups. It is the responsibility of ~nalysts for a new
system to be sure that all forms of support are'in place be:ira tae system is
installed.

For medium to large organizations with active information systems functions,
many of these issues are dealt with centrally. For example, users may be provided
with backup software by the central information systems unit and a schedule for
routine backup. Policies may also be in place for initiating recovery procedures in
case of system failure. Similarly, disaster recovery plans are almost always established
by the central IS unit. Information systems personnel in medium-to-large organizations
are also routinely responsible for PC maintenance, because the PCs belong to the
enterprise. IS unit specialists might also be in charge of composing and transmitting
newsletters or overseeing automated bulletin boards and organizing user groups.

When all of these (and more) services are provided by central IS, an analyst must
follow the proper procedures to include any nmew system and its users in the lists
of those to whom support is provided. An analyst must design training for the
support staff on the new system, and he/she must make sure that system documentation
will: be available to it. An analyst must make the support staff aware of the
installation schedule, and he/she must keep these people informed as the system
evolves. Similarly, any new hardware and off-the-shelf software has to be registered
with the central IS authorities.

When there is no official IS support function to provide support services, an
analyst must come up with a creative plan to provide as many services as possible.
He/she may has to write backup and recovery procedures and schedules, and the
users’ departments may have to purchase and be responsible for the maintenance

of their hardware. In some cases, software and hardware maintenance may have
to be outsourced to vendors or other capable professionals. In such situations,
user interaction and information dissemination may have to be more informal
than formal: Informal user groups may meet over lunch or over a coffeepot rather
than in officially formed and sanctioned forums.

12,6 PROJECT CLOSEDOWN

You are familiar with the various phases of project management, from project
initiation to closing down the project. If you are the project manager and you have
successfully guided your project through all of the phases of the systems development
lifecycle presented so far in this book, you are now ready to close down your

project. Although the maintenance phase is just about to begin, the development

project itself is over. As you will see in the next chapter, maintenance can be
thought of as a series of smaller development projects, each with its own series
of project management phases.

Your first task in closing down the project involves many different activities, from
dealing with project personnel to planning a celebration of the project’s ending.
You will likely have to evaluate your team members, re-assign most to other
projects, and perhaps terminate others. As project manager, you will also have to
notify all of the affected parties that the development project is ending and that
you are now switching to maintenance mode.

Your second task is to conduct postproject reviews with both your management
and your customers. In some organizations, these postproject reviews will follow
formal procedures and may involve internal or EDP (electronic data processing)
auditors. The point of a project review is to critique the project, its methods, its
deliverables, and its management. You can learn many lessons to improve future
projects from a thorough postproject review.

The third major task in project closedown is closing out the customer contract.
Any contract that has been in effect between you and your customers during the
project (or as the basis for the- project) must be completed, typically through the
consent of all contractually involved parties. This may involve a formal “signing-
off” by the clients stating that your work is complete and acceptable. The maintenance
phase will typically be covered under new contractual agreements. If the customer
is of an outside organization, an analyst will also likely negotiate a separate
support agreement. ' '

The job of an analyst as a member of the development feam, on this particular
project ends during project closedown. He/she will likely be reassigned to another
project dealing with some other organizational problem. Maintenance on this new
system will begin and continue without him/her.

For completing our consideration of the SDLC, however, we will cover the maintenance
and review in last unit.

Implementation

NOTES

-Seff-fhstmctional Material 291

System Analysis and Design

STUDENT ACTIVITY 12.2

1. What is documentation? Describe the general structure of documentation.

2. Write a short note on project closedown.

292 Self-Instructional Material

SUMMARY

Installation is the organizational process of changing over from the current
information system to a new one.

Direct installation is changing over from the old information system to
a new one by turning off the old system when the new one is turned on.

Parallel installation is running the old information system and the new
one at the same time until management decides the old system can be
turned off. co

Single-location installation is trying out a new information system at
one site and using the experience to decide if and how the new system

. should be deployed throughout the organization.

Phased installation is changing from the old information system to the
new one incrementally, starting with one or a few functional components
and then gradually extgnding the installation to cover the whole new system.
System documentation is detailed information about a system’s design
specifications, its internal workings, and its functionality.

User documentation is written or other visual information about an application
system, how it works, and how to use it.

Internal documentation is system documentation that is part of the program
source code or is generated at compile time.

External documentation is system documentation that includes the outcome
of structured diagramming techniques, such as data flow and entity-relationship
diagrams.

Support is providing ongoing educational and problem-solving assistance to
information system users. Support material and jobs must be designed along

with the associated information system.

Computing infrastructure is all the resources and practices required to
help people adequately use computer systems to do their primary work.

Electronic performance support system (EPSS8) is component of a software
package or application in which training and educational information are
embedded. It may include a tutorial, expert system, and hypertext jumps to
reference materials. -

Help desk is a single point of contact for all user inquiries and problems
about a particular information system or for all users in a particular department.

TEST YOURSELF

Answer the following gquestions:

Al A o

What is installation? Explain in brief.

What is system documentation? Explain in brief.

Why training and support are critical for the success of an information system?
Describe the various ways software vendors provide customer support.

What are the four approaches to installation? Compare the approaches with
reference to cost and risks. How does an organization decide which approach to
use?

6. What is the difference between system documentation and user documentation?

7. List the topics covered during training.

8. What factors are important to successful implementation efforts? Explain in brief.

Implemeniation

NOTES

Self-Instructional Material 293

System Analysis and Design

NOTES

294 Seif-Instructional Material

9. State True or False:

(@)
)
(#)
(iv)
W)
(vi)
(vit)
(viii)
10. Fill
()
(i)
€273
(iv)
(v}
(vi)

(vii)

(viti)

The installation plan lays out a strategy for moving from the old system
to the new, from the beginning to the end of the process.

The deliverables from user training plan are classes and tutorials.

Direct installation is not the changing over from the old information
system to a new one by turning off the old system when the new one
is turned on.

Planning for installation may begin as early as the analysis of the
organization supported by the system.

In one sense, every systems development project is unique and will
generate its own unique documentation.

User documentation does not consist of written or other visual information
about an application system, how it works, and how to use it.

Training and. support are two aspects on an organization’s computing
infrastructure.

The type of training needed will vary by system type and user expertise.
in the blanks:

The major activities in system implementation are)
documentation, training and support.
Installation includes installing thecocooe.... at central and user sites.
................... is running the old information system and the new one
at the same time until management decides the old system can be
turned off. .
Of special interest in the installation process is the

. is detailed information about a system’s design specifications,
1ts mternal workings, and its functionality.
ThHe e, is all of the resources and practices required to help
people adequately use computer systems to do their primary work.

.................... is a single point of contaet for all user inquiries and
problems about a particular information system or for all users in a
particular department.

. i1s more than just answering user questions about how to
use a system to perform a particular task or about the system’s functionality.

ANSWERS

" Test Yourself

9. State True or False:

(£

(iii)

(v}

(vii)

10. Fill
(@)

(iii)

(v)

(vit)

True (fi) True

False Gv) True..

True . (vi) False

True (viii} True

in the blanks:

installation (ii) system (hardware and software)
Parallel installation (iv) conversion of data

System documentation (vi) computing infrastructure
Help desk {(viii) Support

; CHAPTEHR

13

MAINTENANCE AND REVIEW

LEARNING - OBJECTIVES

13.1 Introduction
13.2 Maintaining Information Systems
13.2.1 The Proceés of Maintaining Information Systems
13.2.2 Deliverables and Cutcomes
13.3 Conducting Systems Maintenance
- 13.3.1 Types of Maintenance
13.3.2 The Cost of Maintenance
13.4 Review of System Performance (Systems Audit)
13.4.1 System Performance
13.4.2 Cost/benefits
13.4.3 Quality Assurance
13.4.4 Recommendations
13.5 _System Audit Report

13.1 INTRODUCTION

In this unit, we discuss systems maintenance, the largest systems development
expenditure for many organizations. In fact, more programmers today work on
maintenance activities than work on new development. Your first job after graduation/
post graduation may very well be as a maintenance programmer/analyst. This
disproportionate distribution of maintenance programmers is interesting because
software does not wear out in a physical way as do buildings and machines.

There is no single reason why software is maintained; however, most reasons relate
to a desire to evolve system functionality in order to overcome internal processing
errors or to better support changing business requirements. Thus, maintenance is
a fact of life for most systems. It means that maintenance can begin soon after the
system is installed. As with the initial design of a system, maintenance activities are
not limited only to software changes, but include changes to hardware and business
procedures. A question many persons have about maintenance relates to how long
organizations should maintain a system. Five years? Ten years? Longer? This is
not an easy question to answer, but it is most often an issue of economics. In other
words, at what point of time does it make financial sense to discontinue evolving
an older system and build or purchase a new one? The focus of a great deal of
upper IS (Information Systems) management attention is devoted to assessing the
trade-offs between maintenance and new development. Int this unit, we will provide

Maintenance and Review

NOTES

Self-Instructionat Material 295

L]

System Analysis and Design

NOTES

298 Self-Instructional Material

»

you with a better understanding of the maintenance process and describe the types
of issues that must be considered when maintaining systems.

In this unit, we also briefly describe the systems maintenance process and the
deliverables and outcomes from this process. This is followed by a detailed discussion
contrasting the types of maintenance, an overview of critical management issues,
and a description of the role of CASE and automated development tools in the
maintenance process. Finally you will learn about review of system performance
(system audit) and system audit report.

13.2 MAINTAINING INFORMATION SYSTEMS

Once an information system is stalled, the system is essentially in the maintenance
phase of the systems development life cycle. When a system is in the maintenance
phase, some person within the systems development group is responsible for
collecting maintenance requests from system users and other interested parties
such as system auditors, data center and network management staff, and data
analysts. After collecting the requests, each request is analyzed to better understand
how it will alter the system and what business benefits and necessities will
result from such a change. If the change request.is approved, a system change
is designed and then implemented. As with the initial development of the system,
implemented changes are formally reviewed and tested before installation into
operational systems.

13.2.1 The Process of Maintaining Information Systems

Figure 13.1, illustrates that the maintenance phase is the last phase of the
systems development life cycle. It is here that the SDLC becomes a cycle, with
the last activity leading back to the first. This means that the process of maintaining
an infoermation system is the process of returning to the beginning of the SDLC
and repeating development steps until the change is implemented.

1 Preliminary
nvestigation

Obtaining Maintenance Requests
Transforming Requests into Changes E

= 6. Systems
: maintenance
5. Systems
implementation

Designing Changes
Implementing Changes

2. Systems
analysis

3. Systems
design

4, Systems
development

Fig. 13.1 Systems developﬁent life cycle (SDLC).

Figure 13.1, shows four major activities take place within maintenance as given:
1. Obtaining maintenance requests
2. Transforming requests into changes
"3. Designing changes
4. Implementing changes

QObtaining maintenance requests' requires that a formal process be established
whereby users can submit system change requests. A user request document
called a System Service Request (SSR), is shown in Figure 13.2. C

Sheelak ‘Ram Furniture
System Service Reguest
REQUESTED BY __Aman Dixit) DATE _February 14, 2007

DEPARTMENT Purchasing. Manufacturing Support
LOCATION Pahar Ganj, New Delhi

CONTACT Tel: FAX: e-mail:

TYPE OF REQUST URGENCY

[x] New System (] Immediate—Operations are impaired or
opportunity lost

[] System Enhancement [] Problems exist, but can be worked around

[] System Error Correction [x] Business losses can be tolerated unti

new system is installed

PROBLEM STATEMENT

Sales growth at SRF has caused greater volume of work for the manufacturing support unit
within Purchasing. Further, more cencentration on customer service hasreduced manufacturing
lead times, which puts more pressure on purchasing activities. In addition, cost-cutting
measures force Purchasing to be more aggressive in negotiating terms with vendors, improving
delivery times, and lowering our investments in inventery. The current modest systems
support for manufacturing purchasing is not responsive to these new business conditions.
Data are not available, information cannot be summarized, supplier orders cannot be adequately
tracked, and commodity buying is not well supported. SRF is spending too much on raw
materials and not being responsive to manufacturing needs.

SERVICE REQUEST

| request a thorough analysis of our current operations with the intent to design and build
a completely new information system. This system should handle all purchasing transactions,
support display and reporting of critical purchasing data, and assist purchasing agents in
commadity buying.

IS LIAISON _Ankit {Tel: - Fax: e-maii:)

SPONSOR Naveen, Directar. Purchasing
---------------------- TO BE COMPLETED BY SYSTEMS PRIORITY BOARD -----—--vemmmemme-

[] Request approved Assigned to
Start data

[] Recommend revision

[| Suggest user development

(| Reject for reason

Fig. 13.2 System Service Request for Purchasing Fulfilment System (Sheelak Ram Furniture).

Most companies have some sort of document like SSR to request new development,
to report problems, or to request new features within an existing system. When
developing the procedures for obtaining maintenance requests, organizations must
also specify an individual within the organization to collect these requests and manage
their dispersal to maintenance personnel. The process of collecting and dispersing
maintenance requests is discussed in much greater detail later in the unit.

Once a request is received, analysis must be conducted to gain an understanding of
the scope of the request. It must be determined how the request will affect the current
system and l'llow long such a project will take. As with the initial development of a
system, the size of a maintenance request can be analysed for risk and feasibility.
Next, a change request can be transformed into a formal design change, which can
then be fed into the maintenance implementation phase. Thus, many similarities

Maintenance and Review

NOTES

Self-Instructional Material 297

System Analysis and Design

NOTES

298 Self-Instructional Material

exist between the SDLC and the activities within the maintenance process. Figure
13.3 equates SDLC phases to the maintenance activities described previously.

1. Preliminary
investigation

The Maintenance Process

1. Obtaining Maintenance Requests .

5. Systems 2. Transforming Requests into changes 2. Systems
implementation 3. Designing Changes analysis

4. Developing changes

5. Implementing changes

/ \

4. Systems , 3. Systems
development design

Lol

Fig. 13.3 Maintenance activities parallel those to the SDLC.

The first phase of the SDLC preliminary investigation— is analogous to the maintenance
process of obtaining a maintenance request (step 1). The SDLC analysis phase is
analogous to the maintenance process of transforming requests into a specific system
change (step 2). The SDLC design phase, of course, equates to the designing changes
process” (step 3). The SDLC development phase is analogous to the developing
changes process (step 4). Finally, the SDLC phase implementation equates to step
5, implementing changes. This similarity between the maintenance process and the
SDLC is no accident. The concept and techniques used to initially develop a system
are also used to maintain it.

13.2.2 Deliverables and OQutcomes

Because the maintenance phase of the SDLC is basically a subset of the activities
of the entire development process, the deliverables and outcomes from the process
are the development of a new version of the software and new versions of all
design documents developed or modified during the maintenance process. This
means that all documents created or modified during the maintenance effort,
including the system itself, represent the deliverables and outcomes of the process.
Those programs and documents that did not change may also be part of the new
system. Because most organizations archive prior versions of systems, all prior
programs and documents must be kept to ensure the proper versioning of the
system. This enables prior versions of the system to be re-created if required. A
more detailed discussion of configuration management and change control is presented
later on in this unit.

Because of the similarities between the steps, deliverables, and outcomes of new
development and maintenance, you may be wondering how to distinguish between
these two processes. One difference is that maintenance reuses most existing
system modules in producing the new system version. Other distinctions are that
a new system is developed when there is a change in the hardware or software
platform or when fundamental assumptionsiand properties of the data, logic, or
process models change.

Maintenance and Review

STUDENT ACTIVITY 13.1.

1. What are the inputs to maintenance phase and what are the deliverables and outcomes of the process?

2. What are the steps involved in the maintenance process? Is there any similarity between the phases
of SDLC and the steps in the maintenance process?

Self-Instructional Material 299

System Analysis and Design

NOTES

300 Self-Instructional Material

13.3 CONDUCTING SYSTEMS MAINTENANCE

A significant portion of the expenditures for information systems within organizations
does not go to the development of new systems but to the maintenance of existing
systems. We will discuss various types of maintenance, factors influencing the
complexity and cost of maintenance, alternatives for managing maintenance, and
the role of CASE tools.in maintenance. Given that maintenance activities consume
the majority of information-systems-related expenditures, gaining an under-standing
of these topics will yield numerous benefits to the career of an information systems
professional.

13.3.1 Types of Maintenance

There are several types of maintenance that can be performed on an information
system {See Table 13.1).

Table 13.1 Types of Maintenance

Type Description
Corrective Repair design and programming errors (bugs)
Adaptive Modify system to environmental changes
Perfective Evolve system to solve new problems or take
advantage of new opportunities
Preventive Safeguard system from future problems

Maintenance means the fixing or enhancing of an information system. Corrective
maintenance refers to changes made to repair defects in the design, coding, or
implementation of the system. For example, if you had recently purchased a new
house, corrective maintenance would involve repairs made to things that had
never worked as designed, such as a faulty electrical outlet or a misaligned door.
Most corrective maintenance problems surface soon after installation. When corrective
maintenance problems surface, they are typically urgent and need to be resolved
to curtail possible interruptions in normal business activities. Of all types of maintenance,
corrective accounts for as much as 75 percent of all maintenance activity. This is
unfortunate because corrective maintenance adds little or no value to the organization;
it simply focuses on removing defects from an existing system without adding new
functionality (See Figure 13.4).

1))) A i @ o e
E Corrective [}
§ Adaptive |
[\
§ Perfective
3 Non-Value Adding
QT . - “-1
< Preventive !'j il Vatte AdSng

| |) t
0 20 . 60 80

Percentage of the Maintenance Effort
Fig. 13.4 Types of maintenance.

Adaptive maintenance involves making changes to an information system to
evolve its functionality to changing business requirements or to migrate it to a

different operating environment. Within a house, adaptive maintenance might be
adding storm windows to improve the cooling performance of an air conditioner.
Adaptive maintenance is usually less urgent than corrective maintenance because
business and technical changes typically occur over some period of time. Contrary
to corrective maintenance, adaptive maintenance is generally a small part of an
organization's maintenance effort, but it adds value to the organization.

Perfective maintenance involves making enhancements to improve processing

performance or interface usability or to add desired, but not necessarily needed, -

system features (“bells and whistles”). In our house example, perfective maintenance
would be adding a new room. Many systems professionals feel that perfective
maintenance is not really maintenance but rather new development.

Preventive maintenance involves changes made to a system to reduce the chance
of future system failure. An example of preventive maintenance might be to increase
the number of records that a system can process far beyond what is currently
needed or to generalize how a system sends report information to a printer so that
the system can easily adapt to changes in printer technology. In our house example,
preventive maintenance could be painting the exterior to better protect the house
from severe weather conditions. As with adaptive maintenance, both perfective and
preventive maintenance are typically a much lower priority than corrective maintenance.

Over the life of a system, corrective maintenance is most likely to occur after
initial system installation or after major system changes. This means that adaptive,
perfective, and preventive maintenance activities can lead to corrective maintenance
activities if not carefully designed and implemented.

13.3.2 The Cost of Maintenance

Information systems maintenance costs are a significant expenditure. For some
organization, as much as 60 to 80 percent of their information systems budget is
allocated to maintenance activities. This proportion has risen from roughly 50
percent 20 years ago due to the fact that many organizations have accumulated
more and more older, so-called legacy systems that require more and more maintenance
(See Figure 13.5).

Maintenance .
35-40% 40-60%
New
Development
1960s-1970s 1980s-1990s 1990s—present

Fig. 13.5 New development versus maintenance as a percent of software budget.

More maintenance means more maintenance work for programmers. A recent servay
of over 200 executives revealed that, on average, 52 percent of a company’s programmers
are assigned to maintain existing software. Only 3 percent are assigned to new
application development. In situations where a company has not developed its systems
in-house but instead has licensed software, as in the case of ERP systems, maintenance
costs remain high. In many cases, the annual maintenance fees for ERP systems can
be as high as 20 percent of the up-front costs, In addition, about one third of the

\

Maintenance and Review

NOTES

Self-Instructional Material 301

«

System Analysis and Design

NOTES

302 Self-Instructional Material

costs of establishing and keeping a presence on the Web go to programming maintenance.
These high costs associated with maintenance mean that you must understand the
factors influencing the maintainability of systems. Maintainability is the ease with
which software can be understood, corrected, adapted, and enhanced. Systems with
low maintainability result in uncontrollable maintenance expenses.

Many factors influence the maintainability of a system. These factors, or cost
elements, determine the extent to which a system has high or low maintainability.
Of these factors, three are most significant: the number of latent defects, the
number of customers, and documentation quality. The others—personnel, tools,
and software structure—have noticeable, but less, influence.

Percent Change in Maintenance Effort from Norm

Latent defects. This is the number of unknown errors existing in the system
after it is installed. Because corrective maintenance accounts for most
maintenance activity, the number of latent defects in a system influences
most of the costs associated with maintaining a system.

Number of customers for a given system. In general, the greater the number
of customers is, the greater the maintenance costs are. For example, if a
system has only one customer, problem and change requests will come
from only one source. Also, training, error reporting, and support will be
simpler. Maintenance requests are less likely to be contradictory or incompatible.

Quality of system documentation. Without quality documentation, maintenance
efforts can increase exponentially (See Figure 13.6).

Quality documentation makes it easier to find code that needs to be changed
and to understand how the code needs to be changed. Good documentation
also explains why a system does what it does and why alternatives ‘were
not feasible, which saves wasted maintenance efforts.

400
400

300 \
200 200
Normal maintenance effort required

125 for average documentation quality

100 : |
75 ’
30
0

Norm 0 =15

-100

Poor Average High
Documentation Technical Quality

Fig. 13.6 Quality documentation eases maintenance.

Maintenance personnel. In some organizations, the best programmers are
assigned to maintenance. Highly skilled programmers are needed because
the maintenance programmer is typically not the original programmer and
must quickly understand and carefully change the software.

Tools. Tools that can automatically produce system do¢umentation where
none exists can also lower maintenance costs. Also, tools that can automatically

generate new code based on system specification changes can dramatically
reduce maintenance time and costs.

o Well-structured programs. Well-designed programs are easier to understand
and fix. '

Since the mid-1990s, many organizations have taken.a new approach to managing
maintenance costs. Rather than develop custom systems internally or through
contractors, they have chosen to buy packaged application software. Although
vendors of packaged software charge an annual maintenance fee for updates, these
charges are more predictable and lower than for custom-developed systems. However,
internal maintenance work may still be necessary when using packages. One
major maintenance task is to make the packaged software compatible with other
packages and internally developed systems with which it must cooperate. When
new releases of the purchased packages appear, maintenance may be required to
make all the packages continue to share and exchange data. Some companies are
minimizing this effort by buying comprehensive packages, such as ERP packages,
which provide information services for a wide range of organizational functions
{from human resources to accounting, manufacturing, and sales and marketing).
Although the initial costs to install such ERP packages can be significant, they
promise great potential for drastically reducing system maintenance costs.)

13.4 REVIEW OF SYSTEM PERFORMANCE
(SYSTEMS AUDIT)

The systems audit is an investigation to review the performance of an operational
system: to compare actual with planned performance; to verify that the stated
objectives of the system are still valid in the present environment; and to evaluate
the achievement of these objectives.

This investigation and evaluation may be carried out: by a systems analyst, preferably
one who was not responsible for the original design; by representatives of users,
computer operations, or internal auditors; or by a team composed of these representatives.
A knowledge of systems design is essential for analysis of findings.

The initial review should take place when the system has had time to settle down,
when any additional assistance by systems analysts and temporary staff is no
longer required, when both equipment and people are operating satisfactorily, and
before any major changes are made to the original design specification. This is
unlikely to be less than three months after changeover. The initial systems audit
provides the opportunity to check whether the objectives and benefits forecast in
the feasibility study have been, achieved. Subsequent audits, carried out as part
of regular reviews of systems (perhaps annually) will be concerned with the continued
achievement of benefits, any deviations from the master system specification, and
opportunities for improvement.

The detailed tasks to be carried for this investigation are based on a checklist of
the contents required for-the Systems Audit Report. They are summarised under
two main headings:

* system performance
* cost/benefit.

It must be emphasised that the over-riding reason for an audit is to verify that the
stated objectives of the system are being achieved, or that they are still valid in

Muintenance and Review

NOTES

Self-Instructional Material 303

System Analysis and Design

NOTES

304 Self-Instructional Material

the present environment. These objectives (for which management authorised the
use of resources in the first place) must be established before attempting to evaluate
the system performance. The objectives and cost/benefits will be found in the
management report of the feasibility study, and in subsequent reports. The expected
performance of the system, in broad terms, should also be found there, but the
System. Specification should be referred to for details.-

13.4.1 System Performance

The investigation should start by making contact with the manager of the user
departments, not only to deal with the normal formalities but, in particular, to
establish :

* whether or not the manager is satisfied with the performance of the system,
and if not, what are the reasons;

* the use being made of the output reports; whether they are accurate; if
they are timely; whether they contain insufficient or unwanted information;

¢ the operational aspects: whether the pracedures are causing problems and
if any changes have been made;

* effectiveness: if there are many error reports; whether there are inaccuracies
not being reported; turnround and response times; the level of equipment
utilization, reliability and service;

¢ changes in volumes of data, information, péper handling and their effect on
the system; _

* amendment requests, whether they have heen implemented correctly whether
there are any pending.

The above facts should also be established in more detail from other levels of user
staff employing the procedures.

When the personal interviews have been concluded, the auditor should quantify
actual performance to establish any deviations from the planned performance,
together with explanations: this is the main objective of the audit. Deviations,
which may be classed as avoidable, can arise from incorrect estimates, for example:

* clerical and computer procedure timings;
¢ . data volumes and growth rates;

* staffing levels;

* error rates.

13.4.2 Costs/Benefits

Here the actual costs and benefits are compared with those planned showing any
deviation from expectations. The causes of any deviation of costs or benefits from
those planned should be established and stated. These may arise from the
following:

¢ unplanned pay increasés;

¢ extra staffing, retention of initial temporary staff, inaccurate estimates;
* changed methods of computer charging;

* inaccurate estimates of data volume and timing;

* authorised, or unauthorised changes to procedures and documents.

Deviations may he either advantageous or disadvantageous, and all details should

be reported. An increased cost may, of course, produce a better service, perhaps
giving’ higher value.
Other types of deviation are usually environmental, arising from operational, trading
or statutory changes, eg:

e pay methods, accounting policy, new equipment and techniques;

¢ production and selling methods; .

e product and market standardisation or diversification;

* organisational expansion or contraction;

e government statutory returns, new taxes.

Where changes already have been made to the system, these should be summarised
together with the causes. A check should be made that these have been officially
approved and have followed the correct amending procedures, particularly that the
changes have been recorded on the master system file and in the other appropriate
reference manuals. ' ,
The performance statistics should first show the comparison of actual with planned,
and only then should the effect on these of any amendments and improvements

be shown. These comparison records can be fed back to the planning and estimating
section, to system analysts and programmers to improve future forecasting methods.

Management requires to know of any benefits which have not been realised, and
the causes. To enable a realistic comparison to be made, the criteria used initially
as a basis for estimating the financial benefits should be employed. Where these
are found to be ineffective in any way, reasons should be given, and alternative
criteria then applied to both the estimates and the actual evaluation. This is
particularly appli¢able to the criteria used to evaluate intangible benefits. Any
additional henefits arising which were not expected should be noted; and any
financial gains arising from changes made since the changeover. There should also
be comment on the likelihood, of attaining any long-term benefits.

13.4.3 Quality Assurance

The level of control within the system deserves special attention. It is essential
that adequate control procedures are built into the system as it is designed. These
should be checked to ensure that they are working effectively, one being maintained,
and that the system is secure. The following checklist gives a summary of the
questions which should be asked.

Conirol Environment
* is there clear segregation of control responsibilities?
e have all mandatory contrels been specified?

* what standby procedures are there, and what is the cost of having to use
them?

* can user involvement be adequately demonstrated?
» how will the user monitor system operation?
* are there procedures of authorisation to check the quality of data?

* are documentation standards maintained?

Source Data Collection

s have batch sizes been defined and maintained for maximum control?

Maintenance and Review

NOTES

Self-Instructional Material 305

System Analysis and Design

NOTES

. 306 Seif-Instructional Material

have batch control records been defined and maintained?

are batch controls established as soon as possible?

is the data collection environment suitable?

are data collection and verification procedures clearly specified?
are the following procedures defined and maintained ¢orrectly :
(f} registration of receipts?

@) verification of receipts?

(tif) recording of work distribution?

{zv) data conversion controls?

(v) error procedures?

(vi} procedures for special equipment?

Validation

L 4

»

is all input verified to the required standard before processing?

are all fields validated for range, format and size?

are check-digits used where appropriate?

are input records verified for completeness, content and field sequence?

has sufficient use been made of possible field comparison tests: consistency,
credibility, cross-checking, acceptability?

Error Conitrol

are control reimrts adequate both for errors and successful runs?
are any .errors processed with acceptable data, and if so are suitable safeguards
included?

do error-override facilities exist, and are there special controls to prevent
their misuse? '

has the most appropriate method been used for clearing a validation run?

Computer Procedure and File Controls

does the program design include contingencies for overflow, timing and
frequency variations, environment changes, and variations in machine conditions?

are file controls adequate in the form of labels or special control records?

are control totals kept for all significant fields, plus record counts and hash
totals?

could separate control files be usefully kept?
is there a full reconciliation system linking input data to all output?

is there appropriate provisioning of an audit trail?

Output Procedures

do outpit programs validate new ﬁelﬂs created for output purposes?
are key fields rechecked for credibility?

are fields and reports edited according to standard?

are full control reports provided?

are reconciliations reported whether successful or not, with supporting
control totals? ‘

* are program performance figures reported?

* are output control reports produced?

* is all output approved and monitored by an output control section.
¢ is there an output control register?

s are control totals verified by outpit control section?

o are special procedures defined for confidential data?

» does the user receive a control report showing costs, volumes, and error-
rates?

¢ are periodic in-depth.checks performed on output data?

Use of Terminals
¢ does terminal dialogue have built-in redundancy for error detection?

* ig clerical data input minimised by the use of machine-generated data, or
avoidance of fixed data keying?

* js input distinguished from output?
* are there adequate message controls (serial numbers, logging, hard copy,
audit trail)? ’

* is the terminal design best for this application in terms of keyboard, screen
format, security, etc.?

s what data protection facilities are provided for data transmission?

¢ are error correction facilities provided through retransmission, reconstruction
or using the principle of no acknowledgement?

Fallback and Recovery
 are fallback clerical input procedures defined?
» is there a specified procedure for re-establishing controls?

* are all messages logged on receipt, and are these logs retrievable for
recovery purposes? :
External Requirements
» have all appropriate external authorities been consulted?

» has the auditor approved the system controls?

13.4.4 Recommendations

Ways to improve system performance should be given: either to meet or exceed
expectations. If additional work is needed, then the terms of reference should be
formulated in detail.

13.5 SYSTEM AUDIT REPORT

When the system is operational, a document that the systems analyst may be
involved in producing is the system Audit Report. Its purpose is to report on the
performance of a system (in particular to compare actual with planned performance),
to verify that the stated objectives are still valid in the present environment, and
to evaluate the achievement of these objectives. A checklist of contents might be
as given below : :

Maintenance and Review

NOTES

Self-Instructional Material 307

System Analysis and Design

NOTES

308 Self-Instructional Material

Title page:

s title, reference

* author (8) and department (s)

* month and year of publication

* distribution list

Contents list:

* main and sub-headings with section sheet numbers.

Summary:

* brief re-appraisal of the objectives of the system;

* reference to original proposals;

* brief statement of conclusions, indicating any aspects of the system
which are unsatisfactory and stating what objectives have been achieved;

¢ brief statement of any differences of dpinion between users, designers
and operations.

Recommendations (if necessary):

¢ proposed changes to the system or its environment and justification for
the proposals;

* effects of proposals on user and operations departments;

¢ recommended short-term management decisions, assuming acceptance
of the proposed changes;

* draft terms of reference for further work.

System performance:

(i) summary of all available performance statistics and comparison with

estimates:

computer time charged resources used related to data volumes
and transactions;

growth rate of files and transactions;

manpower requirements for clerical systems;

turn-round times for user departments and operations;
efficiency of security procedures and qﬁality control checks;
error rates for clerical operations and data conversion entry;

delays attributable to operational problems (eg schedule clashes,
hardware and software failures, program deficiencies and operating
errors); .

suitability of rerun and restart procedures, back-up and standby
arrangements;

(@) the effect of changes in the environment on the performance of the

gystem:

summary of program amendments and the caunses;

relevance to the system of any new techniques or technological
advances; '

changes in company policy or other external influences which
affect the performance of the system;

(itiy the attitude to the system of the user at all levels from management
to operative;

{iv)
()
e}
{vii)
(viii)

{ix)

()

reactions from customers or other external bodies;
attitude of the computer staff;

comparison of the use being made of computer output with the potential
usefulness; -

any unplanned uses for output, or any redundancies;
verification that superseded clerical systems have been discontinued;

effect on related systems which have been influenced by the system
under review;

outstanding problems arising from this appraisal of performance of the
system, including a statement of the degree of adherence to standards
and relevance of instructions and procedures specified in User and
Operations Manuals.

6. Cost/benefit review:

present system operation cost;

the acknowledged benefits both to the company as a whole, and to
individual user departments;

unplanned developments or activities which have provided additional
benefit;

any excessive costs with possible justification;
explanation of benefits expected but not achieved;
a subjective, independent assessment of the expected intangible benefits;

forecast of any long-term benefits which could yet be realised.

" Maintenance and Review

NOTES

Seif-.’nsrruction‘ai Material 309

System Analysis and Design

STUDENT ACTIVITY 13.2

1. What are the different types of maintenance?. What are the changes made to the system in each type
of maintenance?

2. Write a short note on the cost of maintenance.

310 Self-Instructional Material

SUMMARY

Maintenance refers to changes made to a system to fix or enhance its
functionality.

Corrective maintenance refers to changes made to a system to repair
flaws in its design, coding, or implementation.

Adaptive maintenance refers to changes made to a system to evolve its
functionality to changing business needs or technologies.

Perfective maintenance refers to changes made-to a system to add new
features or to improve performance,.

Preventive maintenance refers to changes made to a system to aveid possible
future problems.

Maintainability is the ease with which software can be understood, corrected,
adapted, and enhanced.

System audit (review of system performance) will usually take place when
the system has settled down and will be concerned primarily with looking
for improvements in the performance of the system and ensuring that it is
achieving the forecasted benefits.

The system audit will also examine the level of control in the system.
It may be that the result of one of the annual audits will be to recommend a
complete redesign of the system and so the cycle of development will start again.
System audit report is a réport, that the systems analyst is likely to ha_ve
to produce, which reports on the review of the system.

TEST YOURSELF

" Answer the following questions:

1.

Information systems are designed as per users’ need and also tested before
implementation. State reasons why these systems are maintained?

Do similarities exist between deliverables and outcomes related to new -

development and maintenance of information systems. How do you distinguish
between these two processes? .

What is maintainability? What is the difference between high and low
maintainability? What factors influence and determine the maintainability
of a system? '

What alternative approaches do organizations adopt to manage maintenance
cost? How?

5. Write a short note on system audit report.

6. What are the ways for organizing maintenance personnel7 Contrast the

advantages and disadvantages of each process.

7. Describe the review of system performance (system audit).

8, State True or False:

{({) Systems maintenance is the largest systems development expenditure
for many organizations.

(ii) Maintenance is not a fact of life for most systems.

(iii) The process of maintaining an information system is the process of
returning to the beginning of the SDLC and repeating development
steps until the change is implemented:

Maintenance and Review

NOTES

Self-Instructional Material 311

System Analysis and Design

NOTES

312 Self-Instructional Muaterial

(i)

(v)

(vi)

(vii)

9. Fill

t9

(i)

(i)

(iv)
(v)

(vi)

(vii)

Once a request is received, analysis must be conducted to gain an
understanding of the scope of the request.

A significant portion of the expenditure for information systems within
organizations does not go to the development of new systems but to
the maintenance of existing systems. :

Corrective maintenance does not refer to changes made to a system to
repair flaws in its design, coding or implementation.
Preventive maintenance does not refer to chang’és made to a system
to avoid possible future problems.
in the blanks:

. can begin soon after the system is installed.

As with the initial design of a system, maintenance activities are not
limited only to ¢hanges, but include changes to hardware
and business procedures, :
As with the initial development of the system, implemented changes are
formally reviewed and tested before into operational systems.
The maintenance phase is the last phase of thec.cc..... .

.................... means the changes made to a system to fix or enhance
its functiconality.

.................... maintenance refers to changes made to a system to evolve

its functionality to changing business needs or technologies.

. is a person responsible for controlling the checking out
and checking in of baseline modules for a system when a system is
being developed or maintained.

ANSWERS

Test Yourself
8. State True or False:

€3]

(iii)

()
(vii)

9. Fill
3]

(iif)

(v)

(vii)

True (@} False

True (iv) True

True (vi) False

False

in the blanks:

Maintenance (i) software

installation (iv) systems development life cycle (SDLC)
Maintenance (vi) Adaptive .
System librarian

