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LEARNING OBJECTIVES .

After going through this unit you will learn :
@ The theory of equations which comprises of roots, relations between roots and
cosfficient of an algebriac equation
@® Horner's synthetic division, transformation of equationand Descarte’s rule of sign
along. with some results drawn

* 1.1. NUMBER OF ROOTS OF ANY EQUATION

Theorem 1. Every equation of degree n has n roots and no more.
Proof. Let the equation of degree n be

f)=ap +a " +ax" "+ ... +a,_x+a,=0 (D)

provided ay# 0.
The equation fix) = 0 has the roots, real as well as imaginary. Therefore, Let & be any root
of the equation (1), then flx) can be written as
A=) ax" ' + )
or fx) = (x —0y) §,(x) A2)
where ¢,(x) is a function of x of degree n — 1, such that ¢,(;) # 0. Further let o; be a root of
¢(x) = 0, then ¢,(x) can be written ’

0)(x) = (x — 0) §2(x)

fx) = (x = ay) (x = ) o). .(3)
Continuing this process upto n times, we obtain
Ax)=ap(x—ay) (x—t) ... (x— ). (4

From equation (4) it is clear that when x take the values from «; to &, fx} comes out be
Zero.

Hence the equation fix) has n roots. Moreover if x takes any value different from
Uy, Oz... O, , f{x) can not be zero so that fx) = 0 has exactly n roots. Hence the theorem.

Theory af Equations
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1.2. RELATION BETWEEN THE ROOTS AND COEFFICIENTS

Let the general equation of degree n be given by
ao):"+a|x"*|+'a2x"_2+...+a,,_|x+a,,=0 LA{D
where ap, @), a, ... a, are the coefficients and ag # 0 and let o, 0, O3, ... &, be the roots of the
equation (1). Then the equation (1) can be identically written as e

-1 -2 '
agx’;;-l-alx" +ax TTH Lt a, Xt ay = ag (- 0g) (- 0) - (X 0t)

or ay " +ax a4 +a,_ x+a, :

=ay [ — o "+ @ogex T L+ (- Doy @y ]

where Zoy =0+ +...+Q,
Z0,0p = 0,0, + 00 + ... etc. )
Now equating the coefficients of like power of x of both sides we get-
4 ) a3 @n
Soy=-—, Zoy0p =", To 0 =——, O0... ¢, ={-1)"— . (2
. T 10(2% 10503 = =7 0k "()ﬂo ()
Hence the equation (2) gives the required relation between the roots and the coefficients of
equation.

REMARK : © o -

If the equation is not complete i.e., some of the terms are missing, then we should first make
this equation complete by adding the missing terms with zero coefficients.

* 1.3. HORNER’'S SYNTHETIC DIVISION

In order to find the quotient and the remainder when a polynomial
£ =aax"+a|x"_' tax"" .t a, X+ a, (a2 0) D
of degree n is devided by a linear factor {x — ct), we use a method given by Horner, called syntheric
division. This method is being dicussed as fotlows :

Clay aQ Gy..c.oon-n. a,_; 4y
(077 7, TR C(b,,_z (o7, 3
ap b] bz bn—llR

(1) If the equation (1) is not complete, then first make it comptete by adding missing terms
with zero coefficient.

(2) In the first horizontal line (row) we should write the coefficients ay, a;, a5, ... ¢, . @, Of
the polynomial fix). ’

(3) Since we have to divide the polynomial f{x) by x — &, so we should write & to the left of
the vertical line as shown above.

{(4) In the third horizontal line (row) we should write aq and the first term of the second
horizontal line {row) is obtained by multiplying ag to @ and then add this term with a; we obtain
b, which is the second term of the third row. Next, we multiply &, and ¢ and obtained the second
term of the second row now adding this &b, with g, we obtain third terms of the third row. Continue
the process in the same way we obtain the last term in the third row which is in fact the remainder
R while the second last term in the same is b, _ .

REMARK B
If the remainder R comes out be zero, then o will be a root of the equation flx) = 0.

* SOLVED EXAMPLES

Example 1. Find the condition that two of the roots o,B of the equation
x —px2 + gx — r =0 are connected by the relation 0.+ =0.
Solution. Let ¢, 3 and y be the roots of the equation X —,Jsur2 +gx—r=0.Then

«d

a+fB+y=p . i
From (1) a+B+y=p
= Oty=p : [ a+B=0].
= Y=p ‘

¥ ts a root of the equation x —pxz +gx —r=0if



Y-pY+qy—r=0
P -p @) +gp-r=0 [ y=pl
gp-r=0
: “ pg=r

which is the required condition.

Example 2. If the two roots o, of the equation x* + px* + gx+ r=0 are connected as
af + 1 =0, then show that 1 +q + pr+r* =0.

Solution. Let o, f§ and ¥ be the roots of the equation

=
=

,r3+px2+qx+r=0 D
offy=—r
= Dy=-r [ af+1=0]
= y=r
¥ is a root of equation (1) if crreen
I S (2)

- Putting the value of y in (2), we get
r3+pr2+qr+ r=0-
o r2+pr+q;+l=0.
which is the required condition.
Example 3. Find the condition that the sum of two roots of the equation
X+ px® + gxt + rx + s = 0 be equal to the sum of the other two roots.”
Solution. Let o, 3, ¥ and 3 be the roots of the equation

i

x4l+px3+qx2+rx+s=0 D
Then o+B+y+8==p - .A{2)
of+oay+oad+PBy+Pé+v8=¢
or (+P) ¥+ +aPf+yd=4g : -(3)
offy + ayS + Byd +afd=-r

or oBly+8)+y3(a+P)=-r (4
and C afyd=s (5)
Also o+ B=v+38 (given). ’ ...(6)

From (2} and (6), we get
a+B=y+d=-£ S

From (4} and (7), we get .
' ' _p _P|__
aﬁ( 2]+78( 2] r
. of +y =-2p—r-' ~{8)
From (3), (7} and (8), we get
_Bi_B| % _, .
)
or P -4pg+8r=0
which is the required condition.
Example 4. If o, B,y are the roots of the cubic x° +px* +qx+r=0, find the value of
B+y)y+ o) (a+p) :
Solution. We have )
o+B+y=-p
af+Py+ay=g
Tofy=-r
B+ @+P=(@+B+y-)(@+Pf+y-Py(a+P+y-v)
=(-p-)(-p-B(-p-v) :
=~[p’+p (0 +B+Y) +p (B + By + o) + afiy)
-+ Ep+pi -]
r—pq.

or

no

Theory of Equations
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TEST YOURSELF-1

1. If one root of the equation £ —pxz +qx—r=0 be n times of the other, show that it may be
found from a quadratic.

2. Find the condition that twé roots of the cubic x> — px2 + gx — r =0 be equal.

3. Solve the equation 45 + 204 - 231 + 6 = 0, two of its roots being equal. o
If the equation ax® +3b:* + 3cx +d =0 has two equal roots. show that each of them equals
bc —ad
2(ac - %)

ANSWERS |

11
2 (g-9=4¢ -3 -3, 355.-6 -

* 1.4. TRANSFORMATION OF EQUATION

Sometimes there arises some difficulties to find the roots of a given equation. In that case a
process of transformation of a given equation into another equation pldys an lmportam role for
finding the roots of given equation. -

In this section we shall discuss some 1mp0rtant transformation.

() To transform an equation into another equation whose roots are the roots of the given
equation with different sign. '

Let the given equation be

f)=apx" +a V+ax" l+ . +a,_x+a,=0 D
and let o, oy, O3, ... O, be the roots of the equation (1).
Now put x =-y in (1), we get
ey =ap -y +a ()" ra -2
or == DMay —ay™ ey T (- )

This is the transformed equation.

(ii) To transform an equation into another equation whose roots are equal to the roots of
the given equation multiplied by a given constant number m.

Let the given equation be

A =apx"+a" ' +ax" "+ .. +a, x+a,=0 A
and. let ¢, O, ... O, be its roots, then (1) can be written as
Tl g xtamag (k-0 (x—0p) ... (x~0) .2

+..ta,_ (- +a,=0
Yo y+(=1)'a,=0. ..

apX* + a1+ ay
putting y = mx or xri in (1), we get

n =1 n=2 '
Aol vali) ola] eornn i)

or f *:; =Lﬂ[aﬂy"+mrzaly"_l +miay” 2+ . +m" ya,_, +m'a,)=0
m

_lan_|y+m"an=0. A3

or @Y +ma " v miay" P
. This is the transformed equation.
(tii} To transform an equation into another-equation whose roos are the rec:pmcals of the.
roots of the given equation.
Let the given equation be”
fy=ap +ax"  +ax" i+
and let o, 0y, ... @, be its roots, then we have

a{}x"+a1x"_] +a2x"-2+...l+a,,_]x+a,,l =a(j(x—(11)(x"'(12)

+a,-x+a,=0 (D

x—a,) .2

putting x = % in (1), we get

n n—1 n—2
f{i};&.{i} +a|(31’-J +a2[$) +..I.+a,,_1(-)l|*]+a,,=0



1 _
or f(;)=_;[aa+ax)’+azy2+-~+an—|}’".1+“nyn]:0
. y

or @y ta, 1y . +a y+ag=0. ..03)
This is the transformed equation.
(iv) Reciprocal equation. An equation which remains unchanged when x is replaced by
, is called a reciprocal equation.
Let the given equation be

2

_ﬂx)za{_}x"+alx"_1+a2x"_ tota,x+a,=0 (D
Replace x by i we obtain, ’
f[%}za0+a1x+a2x2+...+a,,_1.t"','+a,,a.;"=0. ) ..(2)

1.5. REMOVAL OF TERMS OF AN EQUATION

Let the given equation be
fsap" +ad  vax" i+ . ta, x+a,=0 (D
if we put x=y+h, we get
GO+ +a G+ ay+ R L v d, s (v +R) +a, =0
This equation can be written in the decending powers of y as follows :

a Yy + (nagh+a))y" ™' + m‘__l)'ﬂnkz‘i'("*l}ﬂlhyn_z'*‘ﬂz}'l'u = 0.

2! -

Now we want to-remove-second term, then we shall equate to zero the coefficient of y*~ !,
we get
a, '
nagh+a,=0 or h=———
fiagy a
. . . ]
Hence we decreased all the roots of the given equation by a constant — P the second term
of the given equation can be removed. 0
Similarly if we want to remove third term, we put

ﬂj'—‘l_—ll'::o:‘32+(1va—l]lah+a =0.
X ! 2

Solve this equation we get two values of & and similarly we can remove any term of the given
equation.

e SOLVED EXAMPLES

Example 1. Change the signs of the roots of the equation
X450 - AP+ Tx+3=0.

Solution. First making the equation complete by adding missing terms with zero coefficients,

we get .. ' _
e 408 +5° +0x -+ P+ Tx+3=0 (D
Put x =-y, in (1), we get ’
N +0 (3 +5E N HOEN -+ HTENH3=0

or, —y"r+l‘:]'-y‘s—5)J5+()-)94+)J3-f—yz—]"y+3=(I]|
or Y 45y -y -y +7y-3=0.

This is the required equation whose roots are same to the roots of the given equation with
contrary signs.

Example 2. Transform the equation 725 - S4x* + 45x — 7 =0 into another equation with |

integral coef. - nts ar *“aving the leading coefficient unity.
Solv . :'he g.ven equation can be wriiten as
: 3 54 5, 45 7

T R TR i
or xl—-3-x2+§x--'7—=0. .(1)

4 Y

Theory of Lqguation.
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oF

or

or
or

or

or

or
or

Put y =xm or x === in (1}, we get

-3 A

3_ 3. 2.5 2.7 3

Y g™ +8my 23 ™ =0. _

Now to remove fractional coefficients let us put m = 12 in (2), we get
3_3 2,5 a2 _ 1o
¥ =302y +3 12y 55 (12 =0

¥ - 9y* + 90y — 168 = 0.
This is the required eguation.

2
m

Example 3. Form the equation whose roots are the reciprocals of the roots of the equation

-3+ 7+ 5x-2=0,
Solution. The given equation is . o el Gom
-3+ +5x~2=0

Putting x =§ in (1), we get

A A

l—3y+7y2+5y3—2y4=0
24 -5y -1y +3y-1=0.

. This is the required equation whose roots are the reciprocal of the roots of (1).

Example 4. Remove the fractional coefficients from the equarion
ij—éxz'"‘l—x'f-i 0.

2 16
Solution. The given equation is
3321 .3
2x Ak 0.

Putting x = }% in (1), we get

I 3
A4y

3.3 2 1 2 3 -3_
2y > my Smy+16m 0

Let us put m=4, we get
3_ 3.2 4o 03 3
2= 5@y - g @y + o @ =0

2y —6y*—2y+12=0 or ¥ -3'—y+6=0.
This is the required equation.
Example 5. Solve the fo!fawmg reciprocal equanon

* - 1007 +26x% - 10x + 1 = 0.
Solution. The given equation can be written as

L1100 +2)+ 2662 = 0.
Divide by ¥%, we get

(x2+in- 10[x+1)+ 26=0.
X X

Le:tuspulx+;tl~=yandjr:2 Lz ~2in (1), we get

y2—2—10y 26=0 or y'-10y+24=0
y-6y-dy+24=0 or (y—6)(y-4)=0
y=4,6.

. i . !
—_= = 4 =
Since x+x y if y=4, thenx p 4

(D

-

(D

FTO-



4t\’;6—4 :4i22ﬁ:2i43—

or. L-6x+1=0 or Jnr=6i 36_4=6i:ﬁ=

Hence, the roots of the given equation are 2 ¥3,3+£2V2.
Example 6. Ifa, B,y are the roots of the cubic x —,.wr2 + gx — r =0, form the equation whose

or -4x+1=0 or x=
if y=6, thenx+i=6

342V2.

roots are By + l, Yo+ l, o+ L
o B Y
Solution. Since the given equation is
xj—px2+qx—r:0 . (D

and o, 3,y are its roots, then
oa+B+y=p, P+Py+ay=g.afy=r

Let y be a root of the required equation. Then e
1 0@[+1
= +—=
v =By o a.
_rxl o rtld P
y=Too V=T, x=0)
r+ |
X = .
y

Substitute this value of x in (1), we get

r+1 3—,0 r+1 2+q r+1 —r—l‘O :...«-.
y y y o

C+1)’ pe+D® gl _,

or

y ¥ y
or r+ 1) -pr+ Py +qr+ 1)y -n’=0
or Y -qr+ 1)y +pir+ Dy —(+1)=0.

This is the required equation.
Example 7. Remove the second term of the equation Hrad+ul-ax-2=0
Solution. Suppose the roots of the given equation are diminished by 4 so put y=x-# or
x =y + #in the given equation, we get
G+ +4G+R +2(+h) ~4(y+h)-2=0
O° + 4y’ + 60% + 4R%y + WY+ 4 5% + 3hy" + 300y + 1)
+20 +29h+ W) -4y -4k -2=0
or Vo @+ 4) Y + (6 + 12k +2) y* + (4R + 120 + 4k — 4) y .
v+ A v 20 -4k -2)=0.  ..(1)
In order to remove the second term let us put
dh+4=0 or h=-1"
substitute this vaiue k4 in (1), we get
y4 - 4y2 +1=0.

* 1.6. DESCARTE’S RULE OF SIGNS

Before discussion of descarte’s Rule of sign, we must refiember ‘the following theorems
{(without proof) : :

Theorem 1: Let f(x) be any polynomial. If a and b two real numbers such that f(a) and
f(b) are found of opposite signs, then atleast one or an odd number of réal roots of the equation
f(x) =0 lie between a and b.

Iff(a) and f(b) are of the same sign, then either no real root or an even number of roots of
the equation f(x) =0 lie between a and b.

Theorem 2 : Let f (x) be any polynomial. If f (x) keeps its sign constant for all real values of
x, then the equation f(x) =0 has no real roor. )

Descarte’s Rule of Sign determines the nature of the roots of the equation f (x) = 0 without
actually finding its roots. before going into the detail of the rule, we first try to understand the
changes of signs in a given polynomial whose terms are arranged in descending or ascending order.

Y
Theory of Equations
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Changes of Signs : Consider the polynomials

(i) fE=2+3 -5 +6x%+2x -7

(ity g () =x*-dx’ +5x* - Tx -3

(i) In f{x} we write each terms with sign as follows :

fEy— X W s 6 2 7

Signs —  + + - + .+ -

Here we observed that the change of signs occurs with terms are as follows :
0 3 5¢° 6x? 2x 7
+ + - + +

\No change} Change l Change lNo change] Change l
Clearly, there are three changes of signs in f(x).
(i1} Similarly
gx) — x* 43 5

Sign —» + %
| Change | Change

Clearly, there are three changes of signs in g (x).

Next, we try to understand, what is Descarte’s rule of sign ?

For posiive roots : An equation f (x) = O cannot have more positive roots than the number of
changes of signs in f(x).

For negative roots : An equation f (x) = 0 cannot have more negative roots than the number
of changes of signs in f(- x).

For complex roots : If £{x) = 0 is an incomplete equations of degree N and f (x) has p changes
of signs and f (- x) has n changes of signs, thcnf(x) 0 has atmost p + n real roots and has atleast
N — (p + n) complex roots.

Remark : If f(x) =0 is @ complete equation of degree n, then we cannot draw any definite
conclusion regarding the existence of complex roots.

IMPORTANT RESULTS DRAWN FROM DESCARTE’S RULE OF SIGN

Result 1 : Every equation of an odd degree has at least one real root whose sign is opposite
to thar of its last term, the coefficient of the first terms being positive.

Proof : Let f(x) =apx" +ax® '+ a4 L +a,- X +a, with ag#0 and n is odd, be a
polynomial of odd degree.

Then we have

° 3
t t f
I !

Change INo change

(=) <0 (- n is 0dd)
fO)=a,

and f(=2)>0

Now we have two cases here. : ‘

Case 1 : If a, is positive, then f{— o) and £ (0) have opposite signs, thus f(x) = 0 has at least
one real root between — oo and 0 which is negative i.e., opposite to the sign of a,.

Case Il : If a, is negative, then (0} and f (=0} have opposite signs, thus f(x) = 0 has at least
one real oot between 0 and o which is positive i.e., oppostte to the sign of a,..

Result 2 : Every equation of even degree, whose last term is negative and the coefficienr of
the first term is positive, has at least two real roots, one positive and one negative.

Proof : Let f(x)=apx"+a X" +ap" 2+ ... +a, 1%+ a, (ag#0) bea polynomial of
degree n (n is even), then

fi==)>0, f(O)=a, and f{=)>0

As a, <0 so that £ (— o) and f(0) have opposite signs, thus f(x) =0 has atleast one real root
lying between — o and O and it is negative.

Also f{0) and f (o0} are of opposite signs, thus the equation f (x) = 0 has atleast one rcal root
lying between O and oo and it is positive. :

Hence, f(x) = 0 has atleast two real roots one positive and one negative,
Result 3 : If an equation has only one change of sign, it must have only one positive root and
no more. :



!

Proof : Let f(x} =0 be an equation. Without any loss of generalty we miay assume that the
leading coefficient (coefficient of highest degree term) is positive.

Since f(x) =0 has only one-change of sign, then £(x) = 0 must have a set of positive terms
followed by a set of negative terms, which gives a conclusion that the constant term of £(x) = 0 is
negative. : '

Therefore, we have

f(ea)>0 and f(0) <0 (As £(0) is the constant term)

Since f (=c).and f (D) are of opposite signs, thus f (x) = 0 has at least one real root lying between
0 and ce. But f(x) has only one change.df sign so hat the number of positive root of f(x) =0 can
not more than one. Hence f(x) =0 has only one positive root.

Result 4 : if all the terms of an equation are positive and the equation involves no odd powers
of x, then all its roots are complex.

Proof : Let f(x) = 0 be an equation having all terms positive and it involves no odd powers
of x, then f(x) and f(—x) will have no changes of signs. Thus, by Descarte’s rule of sigms,
£(x) = 0 will not have any positive or negative root. Hence all the roots of £ (x) = 0 must be complex.

Result 8 : If all the terms of an equation are positive and the equation involves only odd
powers of x, then O is the only real root of the given equation.

Proof : Let f(x) = 0 be an equation having all terms positive and it involves only odd powers
of x,

As f(x) = 0 has only odd powers of x, so that f(x) = 0 has no constant term, which implies
that x = 0 must be a root of f(x) =0,

- Thus, f(x) can be writter as
FO=xg®

Now g (x) = 0 has all terms positive and it involves no odd terms, then by Result 4, ali the

roots of g (x) = 0 must be complex. Hence, x = 0 is the-only real root of f (x) = 0.

* SOLVED EXAMPLES

Example 1. Show that the equation
437 ~5x+1=0

has atleast four imaginary roots.

Sol. Let fR=xt+3P-5x+1=0

Clearly, f(x) has two changes of signs so f (x} = 0 has.not more than two positive roots.

Also f(—-x) = x%+ 3x +5x + | has no changes of signs so f(x) =0 has no negative root. As
degree of £(x) = 0 is 6, hence f{x) =0 has at least 6 - (2 + 0) = 4 imaginary roots.

Example 2. Apply Descarte’s rule of signs to discuss the nature of the roots of the equation
4+ 1582 +7x - 11=0.

Sol. Let fO=x*+15°+7x~11=0

Clearly, f (x) has only ane change of signs, so by Descarte’s rule of signs, f(x) = 0 has at most
one positive root. )

Also f{)>0 and f{0}=-11<0.

Since f(0) and f(eo) are of opposite signs, then £(x) = 0 has one or odd number of real roots
lying between 0 and ce, But f(x} = 0 has atmost one positive root.

Hence f(x) = 0 has only one positive raot.

Next flen=x+ 15x% - Tx = 11.

Clearly, f (— x) has only one change of signs, so that f (x) = 0 has atmost one negative root.

Also f (=) > 0 and £ (0) < 0. which implies that f(x)=0 has one or odd number of real roots
fying between — oo.and 0. But f(x) = 0 has atmost one negative root. Hence f{x) = 0 has only one
negative root. Further, degree of f(x) =0 is 4 so that f (x) = 0 has other two TOOts imaginary.

Example 3. Locate the positions .of the roots of the equation L+l -2x-1=0.

Sol. Let f=L+P-2x-1=0 - '

Clearly, f(x) has one change of signs so that f{x) =0 has atmost one positive root. But
f(0)=-1,f(1)=— 1 and f(2) = 7, which implies that f (x) = 0 has on¢ or odd number of roots.lying

between 1 and 2.
Therefore, f(x) = 0 has none positive root lying between 1 and 2.

Theory of Equations
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Now, C ftxs-X 4 42— 1=0w

Clearly, f (~ x) has two changes of signs so that f (x) = 0 has atmost two negative roots. But
FO==-1f(-1)=1, f(-2)=-1L.

Since f(- 1) and f £{0) are of opposite signs so that one negative raot less beween — 1 and

0. Also f(— 2} and f(- 1) are of opposite signs, so that one negative root lies between —2 and
- 1.

Hence, all the three roots of f(x} = 0 are real and lying in open intervals (-2, - 1), (- 1, 0)
and (1,2).

* STUDENT ACTIVITY

1. Find the value of r so that the root ¢, B of the equation 2 = 3x% 4 2x - r=0 are connected by
the relation ot + B =0,

ayema¥y
2. Reduce the equaion 4x* — 855 + 357x% — 340x + 64 =0 into reciprocal quation.
» SUMMARY
» Every equation of degree n has » roats no more.
o Ifoy, 005 ...... «, are the roots of the equation
agx" + " ke i L ta, xta,=0  (ay#0)
then . N\
a a3 as ' n Bn
i=—- o=—, Xo =—-— ... (0 3TV 70 SR =(-1y—.
r ZC(., aq 2 ] ap 1{1;05&- aq 10,0 oy =10 ap

*  Reciprocal equarion : An equation f (x) =0 is said 1o be reciprocal if £ (x) = O remains the same
when x is replaced by % ) '

«  Descarte’s Rule of signs : (i) An equétion f(x) =0 can not have more positive roots than the
number of changes of signs in f(x).
(ii) An equation f (x) = 0 can not have more negative roots than the number fo changes of signs
in f(-x).
(iii) If an equation f (x) = 0 has atmost p positive roots and has atmost n negative roots, then
S {x) = 0 will have atleast N ~ (p + n) complex roots if & is the degree of f(x}=0.



TEST YOURSELF-2

Change the signs of the roots of the equation -4 +3% +8x-9=0.
Transform the equation X —4xt + ix - é =0 into another equation with integral coefficients

and having leading coefficient unity.

“Transform the equation It -5 +x*—x+1=0 into another equation with integral

. coefficients having leading coefficient unity.
Find the equation whose roots are twice the reciprocats of the roots of

) P3P P+ 2 —4=0.

. Remove the fractional coefficients from the equation

352 7 1 _
x 2.:'2 18x+108_0'

6. Remove the fractional coefficients from the equation
5 13 1
- x4—gx3—l—2x2+50-=0.
7. Solve the following reciprocal equations :
) &8-25x +31x% - 312 +25x-6=0

(i) ¥ -5x* +9° - 9x% + 5~ 1=0.
8. Find the equation whose roots are the squares of the roots of the equation

A+ 2t 4x+1=0.
9. Remove the second term form the following equations :

() -6x+10x-3=0 (i) £+ 85 +x~5=0

Gii)x* +5x* +35° +x2 +x—1=0
10. ff g, B,y are the roots of the equation ©+ gx + r =0, form the equation whose roots are

W a@+.Beraly@+p) G (a— %](ﬁ - %} ,(v—%}
11. Show that the equation 2_17 —x*+ 4x> — 5 = 0 has atleast four imaginary roots.
12. Apply Descarte’s Rule of signs to discuss the nature of the roots of the equation

X +4x* +9x+10=0. )
13. Locate the positives of the roots of the equation 4x° — 132 - 31x - 275 =0.
14, prove that the equation x° ~ x+ 16 =0 has two pairs of complex roots.

ANSWERS

L Y -47-32+8y+9=0. 2.y -2/ +9-24=0.

3. -5+ -9y+27=0. 4 y -y +6y -6y-a=0.

5, y - 155214y +2=0, 6. y*-25y° - 9757 + 2700 =0.

7 @ 2k 3ENT @ 1, axivn, La e,

2 6 2 2
8. yY+3 +4r+3+1=0.
9, () y¥-29+1=0 (i) y*>24y* +65y-55=0
i) y° - 797 + 12y~ Ty =0 :

10. () ¥ -2qt+gy+r=0 (i) 8y +12° +(6+8g)y +(8r+dg+1)=0.
OBJECTIVE EVALUATION
FILL IN THE BLANKS :
1. If &y, & ... &, are the roots of the equation fx) =0 where fix) = apx" + a*  + .. +a,

then the product of the roots is ...... .
2. I lo.Gp..0,., are the roots of x"-1=0, then the value of

(1-'(11}.(1—(12)...(1—(1"_1.) [LINOP .

Theory of Equations

Self-Instructional Material 11
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3

MULTIPLE CHOICE QUESTIONS :

. [ 1.
If o, B are the roots of ax’+ bx + ¢ =0, then the equation whose roots are —, =.is ...... .

o' P
4. TIf o,f,v are the roots of the equation x> —5x-3=0, then the equation whose roots are
| -, -B.-yis ...... .
TRUE OR FALSE :
Write ‘T’ for True and ‘F’ far False ¢ .
1.  Every equation of odd dégree has at least two real roots. (T/F)
2. Every equation of even degree with last term negative has at least two__real roots. - (T/F)
3. To remove the second term of the equation apx” +a1¥* ! + ... + gy =0, we diminish its all
— : Y I 4
roots by A = 4 -
nag (178)
4. If o and B are the roots of x* + bx + ¢ =0, then the equation x> + (b-2) x + c — b+ 1 =0 has
the roots a.+ 1, B + 1. (T/F)

Choose the most appropriate ore : -
1. If 1,o,03, ...0n—) are the _roots of x"—1=0, then the value of
(I—on(-a)...(1-om-1)is:
(@) n-1 (b) n yn+l (d) n°.
2. If a, B.y are the roots of the equation x3+qx+r:O, then the eguation whose roots are
11} - - -
o' By .
(a) rx3+qx2+l=0 . (b)rx3—qx2+l=0
(c) rx3+qx2—l=0 (d)x3~qx+r=0.
3. If @, B are the roots of x*~x+1=0, then the equation whose roots are az,,ﬁz is :
@ F+f+1=0 Gy P +x+1=0
© x*-x+120 x> +x-1=0. ,
4. To remove second term of the equation x*+8x> + x = 5 =0 we diminish its all roots by :
(@) 2 (b) 3 {c) -2 {d)-3.
5. Ifa, B, ¥ ate the roots of the equation P +px+r=0thena+P+vyis:
(@ p (b)-p 0 @ L.
ANSWERS
Fill in the Blanks :
1. (—1)"% 2.n B ibxta=0 4. -5x+3=0

Trueor False: 1.F 2T 3.T 4T
1.

Multiple Choice Questions :

) 2.a) 3.(b) 4.({c) 5. {c) OmO
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SOLUTION OF CUBIC EQUATIONS

@ Cardan's Method to Find the Roots of A Cubic Equation
® Solved Examples
) @ Student Activity
@ Summary
@® Tost Yourself

LEARNING OBJECTIVES

After going through this unit you will be leam :
@ How to calculate the roots of a cubic equation using Cardon’s Method.

« 2.1, CARDAN’'S METHOD TO FIND THE ROOTS OF A CUBIC EQUATION

Let the general cubic equation be
agx’ + 3ayx° + 3agx + a3 = 0. ) . . (1)
First reduce this equation (1) into an equation having no second degree term . i.e., 3a,x2. The
equation (1) is reduced to the following equation.

Z+3Hz+G=0 (2)
where H=gapa, ~ a}, G= a%a; = dapayay + Za-jl and z=agx + ay.
Let us assume z=u+v, ..(3)

Cubing both the sides of (3), we get

za=(u+v)3:u3+v3+3uv(u+v) =u3+‘v3+3uv(z)

2= +v +3uvz or z3—3uvz—-(u3+v3):0. (4
Comparing (2) and (4), we get

w=-Hu+v=-G or u3v3:(-H)3,u3+v3=—G

hence «, v* are the roots of the quadratic equation given by

12+ Gt-H =0. ...(5)

Solving {5}, we get
—GVGEraH
2

=G+ NG? + 4H’

W= 5 ...(6)
; —G-VNG*+4H’
and v =—'—_—E-—'—" (7

From (3), we get
13 173
=G NG a4 -8 NGl - .(8)
2 2 2 2 :
From (6) and (7} it is obvious that each « and v will have three cube roots and hence from
(8), z will have nine values. But the degree of the equation (2) in z is three so it must have three
rOOts i.e., three values of 2. Since we have that uv = — H, therefore the cube roots are taken in pairs

so that uv = — H. Hence we shall take the pair of cube roots as
U, v 5 4O, VO uw’, v
where w and w* are the imaginary cube roots of unity. Therefore the roots of the equation (2) are

Sobution of Cubivc Equaiions
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?

u+ v, uw + v, un? + vo ‘ /

and hence we can find the roots of the equation (1) by the relation z=ayx + @, corre.spondmu to
u+ v, u@ + vo’ and ue?® + vo.

* SOLVED EXAMPLES

Example 1. Solve the equation x* — 15x — 126 = 0 by Cardan's method.
Solution. Since the given equation is
_ ¥ -15x-126=0 ()
and let the solution of (1) be x=u+v ’ {2)
Cubing (2), we get .
O= (u + v}3 =+ + 3uu + v)

or =i+ + 3uv(x) [ x=ut V)

or < —3uvx - (uz’ + Ua) =0. . .(3)
The equations (1) and (3) are same so comparing the coefficients of like terms, we get

3uv=15 or uv=—13§ or V' =125

and W+ =126
hence »’, v* are the roots of the quadratic \
=~ 1260+ 125=0
(r—125)(rfl) 0,1=125,r=1
: wW=125v"=1 or u=5,v=1.
Thus thc roots of (1) are given by
B+v.u{1)+v0) N uu)2+v{D
where m:—l+£
2 2
u+v=5+1=6
@ +v00° = 50 + 0° = 40 + @ +

=4 -1 ' (o l+o+0’=0)
=4(—l+i—§)-1=\73+i2€ )
2 2
and U0 + v =50 + @ = 400% + 0% + © = 4% — |
_ ity
=4{—l§+§] —1=-3-i2V3.

Hence, roots are 6, — 3 + 2iV3, - 3 2;\F
Example 2. Solve the equation x* — 15x* — 33x + 847=0 by Cardan’s merhod
Solution. Since the given equanon is

X - 15x° -33x+84? 0. (1)
First we remove the second term i.e., — 15x° by diminishing each of its roots by the conbtdm
& —15
h=-— ;lTo T3l 5.
Now using synthetic division method
5 i -15 -33 347
S =350 415
1 - 10 -83 4
Ky
+ -25
5
1 -5 -108 b
. 5
1] 0

Thus the transformed equation is (without second degree term)



2’ 108;+432=0
where ~  z=x-5
Let the solution of (2) be
I=utv
Cubing (3) of both sides, we get
2 - 3uvz - (hc3 + v3) =0.
The equation (2) and (4) are same so we have
uv = 36, ;;43 +v=-432 or V= (36}3.
u*, v* are the roots of the equation #4432+ (36)3 =0
_ 432+ V@32 - 436 432
= 5 =-
w=-216,v*=-216
u=(-216)""=-6,v=(-216)""3=
The roots of (2) are

-216

U+ v, 40 + v, w0’ v Qe, Zy=utv=-6-6=-

2 =~60-60°=-6+0%) =-6(-1)=6
23 = = 60° - 61 = — 6(0° + ©) = — 6(— 1) = 6.
The;efore the roots of given equation (1) are
»=4+5=-12+5=-7
n=p+5=064+5=11
X3=3+5=6+353=11
Hence the roots of the given cubic equation, are — 7, 11, [1.
Example 3. Show that the roots of the equation X —3x+1=0are

2c0529 !280.5‘89_“ cos—l%
Solution. Since the given ci;uatlon is
X -3x+1=0
Let x=u+v’

Cubing (2) of both sides, we get
x> =3uvx - (2 + ) =0.
Since (1) and (3) are same so we have
w=1, L +vi=-1
or 33:1,:: +vi=—1
u*, v} are the roots of the following equation £ +1+ 1 =0.

-1+vV1-4

2
-1 i'x’\[’;—'

From (2), we get

L 173 1 . 1/3
i3 T S
x_[-2+2@] (325)

Change the complex number on R.H.S. of (4) into polar form by putting

—l—rcosﬂ i:rsinﬁ

2 T2
A== r=1
and tan @ =— i 9—7
x={(rcos® +ir sin 'B)”3 + (rcos 8 —irsin 8)”3
=7 [cos 2.“"“3+9+isin ———2"1;+9+cos ————2m;+8—_isin

12

2nm+ 0
3

{2

.3

w4

(D)
.2

..(3)

(4)

Selution of Cubic Egiitinns
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=2r’"7 ¢os ——

3 , n=0,1,2
*) 27
x, =21 cos 32eos %y
. 2m40 o (2m om) . 8n
xX>=2cos 3 —2cos[3 + 9}_2c05 9
dn+8 4t 2m {47
x3=2C0s 3 —2005[3 + 9]—2(.(}5 9

* STUDENT ACTIVITY

1. Explain Cardon’s method.

A

2. Find the roots of the equation -6+ 1lx-6=0 using Cardon’s method.

+  SUMMARY

» Cardon’s Method
Step I : First reduce the equation aoxj + 3a1x2 +3ayx + ag =0 to the form 2+ 3Hz+ G =0 where

H=apay~ a%, Cy= a%ag - 3agaa;y +-25:;’ and z=agx + a,.
Step Il : Putz=u+vin 2+3Hz+G=0and find a quadratic whose roots are o and v*.
Step III : Find « and v* and then find « and v.

Step IV : The roots of £ +3Hz+G=0are given by u + v, uw + vr?, uw? + va,
i Step V : The roots of the given equation are given by the equation z = agx + ;.

* TEST YOURSELF

Solve the following cubic equations by Cardan’s method :
1. X+6x*+9x+4=0. 2. X+6x°-12x+32=0.

16 Self-Instructional Material



3. X -2lx-344=0. 4., X©-12¢"-6x—10=0.
5, 27x° +54x* + 198x - 73 =0. 6. X*-18x-35=0.
7. X -6x-9=0. 8 x°—15x°—357x+5491=0.
9, P+3°-27x+104=0. 10. £ -6x—9=0.
1. 25 +3x%+3x+1=0 12. 8a’x’ — 6ax +2sin 3A =0.
13, 64x — 144x* + 108x - 27 = 0.
ANSWERS
. -4,-1,~1. 2. -8, (1 +i3). 3.8, (-4 +i3V3).
4. 4+32) 430 4+ 30@)" 7 + 30793, 4+ 307(2)"* + 30(4)'” where © = (— % + éwﬁ
] L33 5 i3 L1 1
5. 3,( st J 65[ 2_‘2,_) 7.3 (3+\ﬂ) 8. —19,17,17
1 i3 1{ 1,&3
e de 3.3 N A . )
9. 8,2(5_:3\5). 10. 3, 2: ‘2/_) 11 2,[ 5t \;]
Lo, 1. (¢ 1. (n 333
12.asmA.asm[3—A].—asm 3+A]._ 13.4 12

OBJECTIVE EVALUATION
Fill in the blanks :

1. To solve the cubic equation a(}x3 + 3a1x2 + 3a,x + a3 = 0 by Cardan’s method, we first remove
the second term by diminishing its roots by A=.......

2. The cubic equation aox3 + 3a1x2 + 3ayx + a3 = 0 reduces to 2+3H;+G=0byZ= apx + ay,
then G equals ...

3. If z=u+v is a solution of the cubic equation 2 +3Hz+G, then W= and
1131’3 = ...
TRUE OR FALSE _
Write ‘T’ for True and ‘F’ for False :
1.  The equation Z° + 3Hz + G = 0 has two equal roots if G*+4H =0, (T/F)
2. A cubic equation with real coefticient has at least one real root. (T/F)
3. The equation £ 4 3Hx + G =0 all its roots real if G*+ 4K > 0. (T/F)
MULTIPLE CHOICE QUESTIONS :
Choose of the most appropriate one : -
1.  Ifz=u+vis a solution of z° + 3Hz+ G = 0, then w4y equals : -
(@ G ) -G () H d-H
2. Ifz=u+v,z=uw+ v’ are two roots of 2° + 3Hz + G =0 then its third roots is
{a) uo? +ve (b uw? = v ( c) um = v’ (dyu—v.
3. Ifz=u+visa solution of 2’ ~ 12z — 65 = 0, then « and v are the roots of the quadratic :
(a) £ +651-64=0 (b) F-65:+64=0
© rF-641+65=0 (d) #+640+65=0.
_ ANSWERS
Fill in the Blanks : 1_.% 2. afas — 3agaay +2a1 3. - G, — H®
True or False : LT 2.T A3 F

Multiple Choice Questions : 1. (b) 2. (a) 3. (b}
QaQa

Sotution of Cubic Equations
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SOLUTION OF BIQUADRATIC EQUATIONS -

STRUCTURE

® Descarte’s Method for Finding the Roots of a Biquadratic Equation
@ Ferraii's Method for Finding the Roots of a Biquadratic Equation
® Solved Examples

@ Student Activitly

® Summary

@ Test Yourself

LEARNING OBJECTIVES

After going through this unit you will leam :
@ How to calculate the roots of the biquadratic equations using Discarte’s and Ferrari's
Method |

. 3.1. DESCARTE’S METHOD FOR FINDING THE ROOTS OF A
BIQUADRATIC EQUATION

Let the equation of a biquadratic be
a0x4+4a1x3+6c12x2+4a3x+a4=0, D

First we remove the second term i.e., 4a,x3 from (1} be diminishing each of root of (1) by a
a .
constant = - —_ we get
nag .
4 2 2 2 .
2 +OH +AGZ v+ qpi-3H =0 L2
where H=a0a2~a?.(}=a§a3—3a0a|a2+2a?,I=a0a4-4ala3+3a§ and z =apx + a,. -
Let us assume
2+ 6HZ +4Gz+ag!- 3H = (4 kg + l)(z —lcz+m)
Now equating the coefficients of like powers of z, we get
I+m—-k*=6H, k(m - =4G,lm=a3 1~ 3H2
Solving first two of these equations for / and m, we get

2=k +6H - %
4G (A
and 2m=k*+ 6H +==
Substitute these values of {, m in the following equation lm = af [ — 3H>, we get
[kz +6H - ‘ﬂ [;3 +6H + ‘fJ 4 (a1 -3
or (3 + 6Hk — 4C) (* + 6Hk + 4G) = 4 (a3 I - 3HH) K*
K+ 12HK + 4k (12H* ~ a3 ) - 16G* = 0. (3)

This is a cubic equation in &% so it will always have one positive real value of k%. when &7 is
known, then the values of { and m are obtained from the equation (A}, Thus the biquadratic (2) is
obtained as the product of quadratics (2% + kz + {) and (z* — kz + m).

Now solving these two quadratics

FHlz+1=0 and Z'~kz+m=0



]

and finally from the transformation z = agx + @, we obtain the sclution of the given biquadratic Solution of Biguadratic Equarions
(1) corresponding to the roots of the equations

P+kz+1=0 and 2 —kz+m=0.

¢ 3.2. FERRARI'S METHOD FOR FINDING THE ROOTS OF A
BIQUADRATIC EQUATION

Let the equation of a biquadratic be
i 4203 + ax® + 2ax +a,=0. ..(D
| Now adding (ax + b)° to each side of (1), we get
P 2a1x3 +apx’ + 2a3x +ag + (ax + b)* = (ax + b)2
or L X240 + (ag + a)xP + 2ay + ab)x + (as + bY) = (ax + b, o)
In order to determine a and b make the left side of above equation a perfect square. Suppose
the perfect square of left side of (2) is (x* + ayx + k)°, then
 + 20,8 + (@ + a)x° + 2ay + abyx + (ag + B = (P + aix + k)% (3)
Comparing the coefficients of like powers of x of (3), we get
d+2%=a,+a’ ak=a; +ab K =a, + b
Eliminating a and b between these equations, we get
(2k+a - a)(K* - ag) = (@rk — a3)*
or 26° - a,k* + 2(a a3 — adk — ala, + asay— a3 =0. (D)
This is a cubic equation in & so it must have one real values of k. This real value is obtained
by trial method. Once we obtained the vatue of & we thus obtain a and & and then put these values
in (3) and using (2), we get
(x2 +ax+ k)2 ={ax+ L'l)2
or x2+alx+k=i(ax+b).
Thus the given biquadratic is obtained as the product of two quadratics
4@ —a)x+(k-b)=0

. ..(5
and Pt ta)x+k+b)=0 ©®)
On solving these quadratics we finally obtained the solution of the given quadratic.
+ SOLVED EXAMPLES
Example 1. Solve the equation x* = 3x* — 42x - 40 = 0 by Descarte’s method.
Solution. Since the given equation is :
Xt = 3% - 42x - 40=0. e)
Let us assume  x° — 3x - 42x — 40 = (x* + kx + H(x* —kx + m) =0, {2
Equating the coefficients of like powers of x, we get
I+m—-k=-3 or l+m=-3+4k . A3)
and k(m—1D)=—42 orm—f=—% (@)
and Im=—40. ...(5)
Solving (3) and (4), we get
am=-3+ k-2
k
and 2t=—3+k2+%-

Substitute the vaiues of / and = in (5) we get

(—3+k2—£}(—3+k2+£]=4(~40)

k k
or (K =3k — 42)(k° - 3 + 42) = ~ 160k°
or (k- 3k)° - (42)* = - 160k or k°—6k* + 169%* - 1764 =0.

Let &* =1, then we get
£~ 66 + 1691 — 1764 =0.

Self-Instructional Material 19
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By tria] method it is obvious that ¢t = 9 satisfies above equation.
Hence =9 or k=13.
Taking & = 3, then (3) and (4), we get
I+m=6 and m-I1=-14.
Solving these equation for / and m, we get ! = 10, m = —4 therefore from (2) we obtain the

given biquadratic as the product of two quadratics

(*+3x+10) (x* - 3x~4) = 0.’
Solving these quadratics respectively we get the required solutions
~2+i31
x=4,-1, 5
Example 2. Sofve the equation x* + 8x> + 9x% — 8x — 10 = 0 by Descarte’s method.
Solution. Since the equation is

480495 -8x-10=0, ’ (D
First we remove the second term i.e., 8x° by diminishing each of its roots by a constant
aj 8
e e Al
Using synthetic division method :
-2 11 8 9 -8 -10
-2 12 6 4
! 6 -3 -2 (-6
-2 -8 22
1 4 -11 |20
-2 -4
1 2 |-15
-2
1 IO
1
Thus the transformed equation is
#-152+202-6=0 2
where z=x+2 . .
Let us assume 7'~ 1522+ 20z~ 6 = (Z + kg + I)(2* — kz + m) = 0. {3
Comparing the coefficients of like powers of z, we get
I+m—-k==15 or l+m=-15+# TN
k(m-0=20 or m—i’:z—f ' (5
and im=-6. '
Solving (4) and (5), we get
2 15_20
20=k"-15 p
om=- 15+ 2
Substitute these values of { and m in (6), we get
2_15_ 20,2 200__
{k 15 k][k 15+ T = 24
or (K = 15k = 20)(k° — 15k + 20) = — 244
or (K - 150° - 400 =— 24K or &°-30k" +249%° - 400=0 .
let &% =1, then £ - 304 + 2491 - 400 = 0. (D

From (7) it is obvious that ¢ = 16 satisfies the equation (7)
. =16 or k=t4.
Taking & =4, in from (4) and (5), we get
l+m=1
m~l=35.



On solving these equations, we get
{=-2,m=3. .
Substitute the values of I, m and & in (3), we get
1522 4202-6=(F +4z-2)(Z" -4z +3)=0
- (+42-2)(Z*-42+3)=0 and z=1,3,-2+V6
But z=x+2
o x=z-2.
Hence the solution of the given biquadratic are
: x=—1-,1,—4i\f15_.
Example 3. Soive the equation -2 -5+ 10x-3=0 by Ferrari's method,
Solution. Since the equation is
-2 -5+ 10x-3=0 (D)
Adding (ax + b)? of both sides we get
x* = 2x% ~ 5x + 10x = 3 + (ax + b)? = (ax + b)?
or x* =220 + (% - 5 +2(ab + S)x + b2 - 3 = (ax + b). (2
Let us assume that L.H.S. of (2) must be a perfect square therefore suppose (x2 —ax+ k) is
u perfect square of L.H.S. of (2)
-2 @ -5+ Aab+ S+ b -3 = - x+k)° . {3)
¢ a=-1
Equating the coefficients of like powers of x, we get -
a?=2%+6,ab=—k-5b"=k+3.
Now eliminating a and & between these three equations, we get
(k+6) (K +3)=(k+5)° or 2&°+5K —-4k-7=0.
[t is a cubic in k so it must have one real root, then by trial method, we get
. k=-1
and hence a*=4,b*=4,ab=-4 or a=2,b=-2,
Substitute the values of &, a, and b‘in (3) and (4), we get
(FP-x-1P=(2x-2 or ¥-x-1=%£(2x-2)

or *-3x+1=0 and x*+x-3=0.
3+V5 —1xV13

Solving these quadratics, we get x = 5 )

These are the solutions of the given biguadratic equation.
Example 4. Solve the equation X+ 25 S 7x* —8x + 12 =0, by Ferrari’s method.
Solution. Since the given biquadratic is _
Arad - T -8 +12=0. D)
Adding (ax + b)° of both sides of (1), we get
420 - T - 8x + 12+ (ax + b)) = (ax + b)Y’
or P +20 + (@ -1+ (2ab - 8)x + P+ 12 = (ax + b))% .(2)
In order to determine a and b make the L.H.S. of (2) a perfect square. Let the perfect square
be (x* + ayx + k)’
P +20 4@ - TP+ (Qab - 8)x + 62 + 12 = (x* + ayx + k)°
or P20+ (@ -+ Qab -8+ b2+ 122 (WP + x + k) . (3)
{. ay=1from(l))
Equating the coefficients of like powers of x, we get
@ -T=2k+1,2ab-8=2k b’ +12=k
Eliminating a and b between above three equations, we get
(k +4)* = 2k + 8) (K - 12)
or K+ 16+8k =2k + 8k - 24k ~96 or 2k +7K -32k-112=0.
This is a cubic in k¥ so it must have one real root. By trial method, k = — 7/2 satisfies above
cubic.

Then at=1,6=

a=1,b

il ST
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Algebra, Trigonometry and Vectors Now substitute the values of k, a and 4 in (3) and using (2), we get

2 2 '

2 7 | 2 7 1 -
+ -—— ) —— —_——= —
(x X ,ZJ (x+2] or x +x 5 _[x+ ZJ

or x*-4=0 and x*+2x-3=0.
Solving these quadratics, we get
x=—2,2,andx=1,-3.
Hence the solution of given biquadratic are x=-3,-2, 1, 2.

» STUDENT ACTIVITY -

1. Find roots of x* + 8x® + 9x% — 9x - 10 =0 by Descarte's method.

2. Find the roots of x* - 8x* — 12x* + 60x + 63 =0 by Ferrari’s method.

SUMMARY

Descarte’s method : The given biquadratic equation f(x) = 0 is expressible as
fFE = (P +kx+ D) (2 —kx+m).
*  Ferrari’s Method :
Step I : The given equation f (x) = 4201 + apt + 2a3x + a4 = 0 is expressible as
FO) +(ax + by = (ax + b)°.
Now make L.H.S. a perfect square.
Step II : Let f(x) + (ax + b)2 = (x2 +ax+ k)z, where 24y is the coefficient of X in fi{xy=0.
On comparing the like terms both sides, we get
a?+2k=a2 +a2,a1k=a3 + ab, K+ as+ b
liminating ¢ and & between these three equations, we get
2&3—a2k2+2(a1a3—a4)k—aﬁz4+a2a4—a%=0
Find the value of & by trial method and thus we obtain @ and b.
Step 111 : Putting the values of k, @ and & in the following equation’
(2 +ax+ k) = (ax+ b)*
= x2+(a(—a)x+k—b=0 and x2+{a: ayx+k+b=0.
On solving these quadratics to find the roots of the given biquadratic. .
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* TEST YOURSELF

Solve the following biquadratic equation by Descarti’s method

1. x*-62-9x"+66x~22=0. 2. -8 ~24x+7=0.

3. x-10%-20x-16=0. 4 F+2° -7 -8+ 12=0.
5 <-8°-12"+60x+63=0.

Sotve the following biguadratic equation by Ferrari’s method.

6. x*-8-12+60r+63=0. 7. X +12x-5=0

8 x-2P-5x"+10x-3=0. 9. x'-3x"-42x-40=0.
10, x*+9x°+ [2¢° - 80x - 192 =C.

ANSWERS
1. VI 3+¥7. 2.-2+i¥3.21 V3. 3. 4,-2.-1%i
4, +2.-3,1. 5.-1,3.3£V30. 6. -1.3.31+30.
7.-11V2,- 12 8.312‘!5_._'12m 9, 4,'—1.—%(31:\!3_1‘).

10.-4,-4,-4,3
OBJECTIVE EVALUATION
FILL IN THE BLANKS :
1. To solve the biquadratic equation nox‘ + a,r" + a}rz + a3x + a4 = 0 by Descarte’s method, we
first remove its second term by diminishing its roots by fi=...
2. The biquadratic ecquation ao,rd + 4a|x3 + 6ap? + dasx+a,=0 reduces to the cubic

2
an! 2
t3 + 3Hr2 + (3!1’2 - -g—-] r- —i' = 0. Then this cubic is known as ... .

3. Ifthetworootsof x* + 12x— 5 =0are — 1 + V2 and | — 2i then its other roots are ... .
4, I P-22+8-380l+hx+Dx’ —kr+m), then I +m=-k*=... and k(m—-{)=... and

Im=....

TRUE OR FALSE :
Write ‘T’ for True and ‘F’ for False :

1. If the two roots of lhcéguation =32 -6x-2=0 are — i +iand 1 +V2, then its other

rootsare | +iand 1 —v2. (T/F)
2. The equation agx’ + 4a,x3 + (yayr2 +dayx + aa =0 reduces to
2 +6HZ +4Gz + (al - 3H) =0 by z=apr +a). (TIE)

3. Solve the equation ol -9+ 66x-22=0 by Descarte’s method we first remove the

second term by diminishing its root by & = %

(T/F)

MULTIPLE CHOICE QUESTIONS :
Choose the maost appropriate one :
1. Ifx*-2x%+8x - 3= (& + 2x + [)(x* - 2x + m), then the values of / and m are :

(a -1,-3 (b) - 1.3 1.3 (d) 1,-3.
2. Ifthe two roots of x* —3* ~6x—2=0are — 1 +iand 1+ V2 then its other two roots are :

(@) ~l-i—-1+¥2 () —1-4,-1=-v2

() ~1-i1-v2 () 14i1-2.
3. The sum of all the four roots of agx* +a,° + ap + ayx +a,=0is :

(a) a,/a, (b) -a,/ay (c) ay/ay (d) -a,/a,.

ANSWERS
ay . .

Fill in the Blanks : 1. h=- % 2. Eulercubic 3. -1 - V2,1 +2i 4.~2.8.-3
True of False: 1. F . T 3T
Multiple Choice Questions : 1. (b) 2. (¢) 3. (b). a0a

Solution of Biquadratic Equations
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UNTIT

4

CIRCULAR AND HYPERBOLIC FUNCTIONS
OF A COMPLEX VARIABLE

STRUCTURE

Exponential Series of Co_mplex Numbers
Theorems of Exponential function of Complex Numbers
Circular Function of Complex Quantities
Euler's Exponential Value
- Periods of Comptex Circular Functions
To Prove that Period of & is 2n/
Some Trigonometrical Identities for Complex Variable
Solved Examples
@ Test Yourseli—1
Hyperbolic Functions
Felation Between | lyperbolic and Circular Functions
Some Important Results of Hyperbolic Functions
Expansions of sinh x and cosh x
Periods of Hyperbolic Functions
Solved Examples
@ Student Activity
® Summary
@ Tes! Yourself-2

-, . LEARNING OBJECTIVES

After going through this unit you will leamn ;
@ About the circular and hypeerolic functions of complex variable

® How to develop the relation between circular and hyperbolic function

* 4.1. EXPONENTIAL SERIES OF COMPLEX NUMBERS

We know that the exponential series for all real values of x is given by
3

e —]+r+;+"{-+ . ad. inf. (D

But where x is complex, the expression ¢' has nc meaning at present. The series (1) is
absolutely convergent for all finite values of x.
Now consider the series

2

3
E(z).—l+v+%+§-?+ . ad. inf. (2
where = x + iy = r (cos 8 + i sin B) and therefore |z | =7 > 0.
Let the series of the moduli be
n 2 3 t
l+|.=:f+LJ L—l P 1 Iy R LA
n! 2t 31 n!
This is a series of positive numbers and convergent and hence the series (2} is absolutely
convergent for all finite values of z.
In particular, if z = x + {0 which corresponding to the real number x, £(z) assumes the value
2 n
x
1+ 1—; + —27 +... 4 o1 +.



which corresponds to exp. (x) or &°, where ¢ stands for,

X
and ¢* means (I+l+l+ +—1—+...)
2! n!

for all real valyes of x.
Hence the series (2) is usually written as exp. {z) or ¢° in close analogy to the exponential

series for real number, and also because the fact that

2 n
4 2z
E(z)—l+z+-é—|+ +E+...

where z = x + iy when z = x + {0, corresponds to exp. (x) or ",

It should be clearly understood that the series
2 n
z b4
1+Z+21+ +n!+...
is written exp {z} or & by definition only, and that it does not mean, unless it is so proved,

that the exp (z) or &° stands for

If z is complex.
Hence by definition, if z =x + iy,
1 ~

exp(z)=l+‘,+;+ +;—!+...

» 4.2, THEOREMS OF EXPONENTIAL FUNCTION OF COMPLEX NUMBERS

Theorem 1. If z; and z; are any two complex numbers, then

€. =€ or exp(z)) % exp(z) = exp (24 + %)

Proof, By definition we have

2 n 2 ”
21 r4 22 %)
exp (z;) X exp (z2) {l +z +—27+ +n-7+ ..Jx{i +22+E'TT +n—;+ ]

[1 + (2 +Zz)+ +(21+22112+32)+
n- _1 - n
+%[z’f+nz1 ]22+—(——H ;l 2 2z§+...+z;]+..l

@+’ @z | @to)
2! 3! n!
The series on the R.H.S. is absolutely convergent if exp (z,) exp (zz) are absolutely convergent.

Theorem 2. If z is a complex number, then (€Y" = ™.
Proof. If m is positive integer, we have by repeated application of theorem (1),
exp (21) €XP (27) ... €XP (Zm) =€XP (z; + 22 ¥ ... + 2Zp)-
Ifzy=2=..=2,=2 we have
(exp 2)™ = exp (mz).
Theorem 3. E (2) # 0, for any value of z.
_ Proof. By the addition theorem, we have
, ER) . E-=E{z+{}=E0)=1

since E(z) is well defined for all values of z, therefore, it follows that E(z) # 0, for.any value of
REMARK
(E@)'=E¢2).

¢ 4.3. CIRCULAR FUNCTION. OF COMPLEX QUANTITIES

-For real values of X,

=[1+(z3+2)+ + ... =exp(z; +22).

Circular and Hyperbolic
Functions of @ Complex Variable
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Kl 5 n_2n+
SME=x—2- k34 .+ — 1) x +
3 st Zn+1)!
2 4 n _2n
x X -1)x
and cosx=l——+——-—...+£——)——+
2t 4 (2n)!
These definitions are extended for the complex quantity = x + iy, where x angd y are real.
_ JERN 1yt .
5mz=z--—+—~...+£—2—~—+,.. '
tost 2n+1)! v
: 2 4 A _2n
<z 1)z :
and cosz=l—-s5+-—— ...+ + ...
217 41 (2n) ! H
. sin cos 1 1 s
Similarly, tan z=~—= cotz = X gecz= and cosec z=——
COS 2 i nz

From these definitions we can deduce the fundamental properties of two functions.
(a) cosz+isinz=e%cosz—-ising=e ©

cosPz+sinfz=€re Pz 0= 1.
l N _: X 1 N o
b) cosz=§[e"+e f smz:;[e’zﬂ‘.’ 4. .
Ll

(¢} To prove that
sin {z, + z3) = sin z; cos Z5 + €OS 2, 8iN 2.
2 _ " iz) ex'z: + &% ex‘z, ‘e iz &l g iz,
_— X

e
RHS. = 2i 2 2 T2

=1L[2e:'(z,+zz)_ O Y R I B R T CEY
i

:_l_ [ei(tl*”z‘.'l _e““ZJ‘*ZJ]

- 2i
"(d) To prove that sin 3z=3 sinz—4 sin’ z.

) ; . A3
P - &
wais o5 o[£55)

i 2 —i iz —2 -.3iz
[es’z—Se'z.e”+3e’ze S i J
87

= 2% (36" =3¢ F 4+ e =3¢ + 3677 _ ¢y

=5in {z| + 23)-

= 2o (3"~ 3¢ ) -4,

d 3{2)

= % (€~ ¢ ¥ = 5in 3z.

Similarly we can derive other results. These results show the generality of trigonometical
formulae.

* 4.4. EULER’S EXPONENTIAL VALUE

To prove that ® = cos 0+ isin Q, for any real 8.
2 3
Proof. We have &= | +z+2£7+§_|+ e
Put z =0, where 8 is real '
207 2o

B8 _ . 1y v
e —l+:9+2! +3! + ...

2 a4 b 3 5
=1—%+g—!—£—!+...+;‘[9‘—%+5§—!-—..} . (o ==
=cos@+isin® (D
¥ =cosB+isinB 1 (2)
and e ®=cos@-isin0. -
By adding of (1) and (2)
. {a) cosB=EmJ-;J~

By subtracting (2) fro.n{ il)



8 =19

. e —¢
(b) sinB= T
These resuits are known as Euler’s exponential values, .
_sin®_ (€®-e9

{c) tan® = .
) cos & i@ +e ™
cos B _i (°+e ﬂ])_

sin B (ex‘B e iﬂ)

“(d) cotB=

REMARK

Since €' *? = ¢*. [cos y + i sin y], this method helps in breaking an exponentiai function into real
and imaginary parts.

* 4.5. PERIODS OF COMPLEX CIRCULAR FUNCTIONS

€08 (z + 2nm) = €Os z COS 27 - sin Z Sin 27 = COS 2 (if n is an integer]
sin (z + 2nm) = sin z €08 2nM + COS 2 §in 24T = §in 2 [n being an integer)
sin{z+nm) _Esinz
cos{n+nm) *cosz

Hence the periods of ¢os z, sin z and tan z are real, and are the same (i.e., 27 in case of cos
z and sin z and T in case of tan 2) as the periods of the circular functions of a real number.

* 4.6. TO PROVE THAT PERIOD OF €° IS 2ni

If z=x + iy, then
I = & FUTT = o [cos (y +2m) + i sin (y + 2m)]
=¢* . [cosy+isinyl=et. ="V = (5
Hence &7 =¢"
Thus the period of exp (z) is 2.

* 4.7. SOME TRIGONOMETRICAL IDENTITIES FOR COMPLEX VARIABLE

For all x,y (Real or Complex)
()] cos*x+sin*x=1

(&) sin(—xy=—sinx

(iii) cos (—xy=cos x

() sin2x=2sinxcosx

2

and tan (z + nm) = = tan z [according as n is even or odd integer]

(v) cos2x=cos x—sinfx=2cosx—1=1-2 sin® x
(i} sin Ic=3sinx—d5in x

(vii}cos 3Ix=4 cos® x -3 cos x

(viis) sinx + sin y = 2 sin }‘_;_2 cos E.%-X
(ix) sin x = sin y=2cos %X sin 1;_2
(x) cosx+cosy=2cos x__;-_x cos x_;z
(xi} cos x — cos y =2 sin _x_;;z sin ,X%{

(xif)sin (x X y)=sinxcosytcosxsiny
(xiii) cos (x * ¥)=cos x cos y + sin x sin y.

» SOLVED EXAMPLES

Example 1. Show that exp [i l“g] =31
Solution. Since exp (% i) = cos 8 £ i sin 0, we have

=+ i . s

T T . T
+'__ — _+’ —
COS(_I,Z]—O()Sz_ISIH,Z

Cirewlar and Hyperbohe
Functions of a Complex Variable
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Example 2. Prove sin (0.+nB)~¢ @ sinnd=e " sin a.
Selution. L.H.S. =sin (@ + #8) — (cos ¢ + i sin @) sin nd

=sin & cos nB% cos ¢ sin 76 ~ cos & sin #O — i sin & sin nO

= sin o (cos #@ — i sin n@) =sinqe” ™ =R H.S.
Example 3. Prove that

(sin(a—Q)+e ™ sin 8)" = sin" "~ Yo {sin (o — n) + ¢ % sin n@}.

Solution, L.H.S. {sin (c. - 8) + ¢ * sin 8}"

= {sin o cos O — cos ¢ sin & + (cos & — i sin @) sin 8}

= {sin ¢tcos 8 —isin & sin 8}" = sin” & {cos B — i sin B}"

= sin” & {cos n8 ~ i sin nB) {by De Moivre's theorem)
Again  RH.S. =sin" '« {sin (. — n0) + ¢~ sin nB}

=sin" ! @ {sin & cos 8 ~ cos o 3in 1B + (cos &t — i sin ) sin 76}

=sin” " o {sin & cos nB — i sin @ sin #0) '

=sin" o {cos n8 — isinn®) =L.H.S.
RHS.=LHS.

Example 4. If cos O+ isin@=x, N1 - ¢ =nc- |, prove that

t

1+ccosﬁ=:§(l fnx}(l +§]

Solution, We have x=cosB0+isinB,

x ' =cos8—isin®.

< n
RHS. = 2H(1+m;](l+x
=§;[{l+u({:059+;’sin8}} {i+"(0059-i5in8]}]

=Lt /0 ~ihyy _ €. -8 0, 2
—zﬂ[{l+ne V{1 +ne }]—2n[l+ne +ne® +n

£
2n

[1 +n(e‘°+e”°)+n2} :;'En-[l +2n cos 0 +n’)

=§£{l+n2)+cc059 NN

But Vi-*=nc—1lor l_—czz(ncf l]:..

Hence from (1), we have

= 2 (1 +n%) = 2nc
i—x?n+ccosﬂz~j[+cc059. a

* TEST YOURSELF~-1

L. [sin(x+8) - ¥ sin 0" =sin"ae " 2. sin (o + n8) - ¢ sin n0 = ¢ " sin .
3. Iftan” ' () -tan" ' (¢ ™) =tan" %, find x.
ANSWERS

x

3. x=2nﬂ+2

where n is an integer.

4.8. HYPERBOLIC FUNCTIONS

We have proved that for all values of the argument y (real or complex),

2 4 6

cosy=l'~%’—!+i-’—!~€—!+... . _ A
3 5 7

siny=y~§—!+§—!-‘%’-?+m ..{B)

We notice that in cach of these series, the terms are alternatively positive and negative. If we

place the positive sign before all the terms, we get two functions of y defined by indefinite series,



which are related to the circular functions cos y and sin y by interesting properties. These functions
are known as hyperbolic cosine and hyperbolic sine of y and are indicated for shortness by cosh
¥ and sinh y respectively. Thus

2 4
coshy=1+‘2y—!+::—!+.., . Al
- royr Ly
smhy=y+3!+5!+7!+... ()
2 3
'coshy+sinhy=1+y+"2‘%+*;-;+.‘.=e" .3
and coshy—sinhy=e¢" A4

v coshysrzl—[e’#e_y] and sinhy=%[e”-e_"].

Now we give formal definition of these functions.

e Y
Definition. The quantity 4 2e . whether y be real or complex, is called the hyperbolic sine

of y and is written as sinh y.
V+ -y

Similarly & 2‘"
The hyperbolic tangent, secant, cosecant, and catangent can be obtained with the help of

hyperbolic sine and cosine.

is known as hyperbolic cosine of y and is written as cosh y.

tanh y = sinhy &-¢”

coshy @ 4¢7
cosech y = — = 2 ,
sinhy Q2 —g7

sechy= 1 = 2 s

coshy eg'+e”

cothy=005h2 =ey+e"'.

siphy J-g% _
* 4.9. RELATION BETWEEN HYPERBOLIC AND CIRCULAR FUNCTIONS

Hyperbolic functions can be expressed in terms of corresponding circular functions.

ir —ix

We know sinx=£—2;.—, put x =1y

sinfy = — =

i[f~e?]

sin iy = 2 =isinh y.

2 1 .
. Tre 'Y e
Similarly, Cosiy= = ; = 28 =coshy

sindy _ ¢ sinh znitanh y.

and tan iy = ;
cosiy, coshy
From (3) and (4), we have _
(cosh y + sinh y)" = ¢ = cosh ny + sinh ny ...(5)
and {cosh y —sinh y)" = ¢~ ™ = cosh ny — sinh ny. _ : ...(6)

These results are analogous to De Moivre’s Theorem.

+ 4.10. SOME IMPORTANT RESULTS OF HYPERBOLIC FUNCTIONS

For any real x and y

(&) s5inh0=0,cosh0=1, tanh0=0
(if) cosh®x —sinh® x=1

(i) 1~ tank’ x = sech® x

Circular and Hyperboli-
Functions of @ Complex Variable
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(v) sinh2x=2sinhxcoshx= Ltanhx_ fanh:zc
. 1 —ranh®x

(vi) cosh2x=cosh®*x+ sinh® x=1 + 2 sinh*x=2 cosh*x - | = _l-ﬂﬁz_x
1 —tanh”x
2 tanh x

1 +tank*x

(viii) sinh 3x = 3 sinh x + 4 sink’ x

(ix) cosh 3x =4 cosh® x — 3 cosh x

3 tanh x + tank’ x

1+ 3ank’x
(xi) sinh (x +y) = sinh x cosh y + cosh x sinh y
(xit) cosh {x + y) = cosh x cosh y + sinh x sinh y

(vii)tanh 2x =

(x) tanh3x=

(xiif) € = cosh x + sink x, & * = cosh x - sin hx.

¢ 4.11. EXPANSIONS OF sinh x and cosh x
We know that

& —e "

2
N | o0 X A x5
Then slnhx—z[[l+x+2!+3!+4!+...]—[l—x+2!—3!+4_!—..:.

1 xj <
—2[:2x_+23!+25!+...]

sinhx =

k) 5

, X x o
sinh x=x + 31 +§_!+ v 10 1nf1mty_

Also, cosh x = % (+e

< X A2 £ o0 K
l+x+‘2—!+i+ﬂ+... + l—_x-tg'!'—g‘!‘l*l-z-—.... .'
i .

y a’

X A . .

[21+22—.?+2H+"‘]'
2 4

X ox o
t 41 + .... to infinity.

e 4.12. PERIODS OF HYPERBOLIC FUNCTIONS

We know cos {6 = cosh 6.
Therefore cosh (x + iy) = cos [i {x + iy)] = cos (xi - y) = cos [~ 27+ ix — y]
=¢os [(2ni +x + iy) i] = cosh [(27i + x + &y)].
Similarly, cosh (x + iy} = cosh [47ti + x + iy].
Hence the hyperbolic cosine is pertodic, its period being imaginary and equal to 2.
Similarly it can be shown for sinh (x + iy} that its period is 27t/ and of tanh (x + fy) is .
It is to be noted here that hyperbolic functions differ from the circular functions in
having imaginary periods, '
After, These results can also be obtained in a simpler way.
Since e”™ = cos 2nM + i sin 2nm = 1.
eu-zm'n =& and e—z—z.-mi=e~zl
FrUM L I U _ p 2 and Gt ImI e'—z—nm' = — e'—z.
cosh (2 + 2n%i) = cosh (z) and sinh (z + 2n7ti) = sinh z
Next e™ =cos n + isinnn = (- 1)",

e ™ = cos nm — i sin am = (- 1)".

N | —

N |-

coshx=1+
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+ati_ -z-nmi
2 —e? e_ez

ez+rrm'+e—z—m &f+e’

Hence cosh z and sinh z have an imaginary period of 27t and tanh z an imaginary period of

tanh {z + n7) = =tanh z.
.
* SOLVED EXAMPLES

Example 1. If tan y = tan o tanh P, tan z = cot & tanh B, prove that
tan (y + z) = sinh 2 cosec 20..

_L__
Solution. tan{y+2)= tany + 182
—tanytanz

ta nhB[ sin +E9S—a:|

_ _tanctanhB+cotatanhf cos sma

" 1-tano tanh Bxcotctanh 1 - tanh’ B
sinh §

_ cosh B o i :sinhﬁcoshﬁxg=sinh2[3

-l_sinhzﬁ sinctcosee sinccosc 2 sin2a

cosh’ B
= sinh 2 cosec 20 .0
Example 2. If cosh x = x sec 8, prove that tank® = 2= tan’ >
Solution. We know

cosh x M sece—-—l-—

1 — tanh® x/2 " cos®
Apply componendo and dividendo, we have
a-b_c—-d
Le lfb d then a+b_-c+d]’ t
2
2 tanh x/2=1—cose=tanz§‘ )
2 1+cos® 2
tanh? % =tan® L3

2
Example 3. If 0 is acute and x = log tan (4 2] , show that cos 0 cosh x = 1.
Solution. x =log tan [: g)

nm 0 1l +tan 8/2
ex“a“(a +2J 1—tan 6/2°

Now cosh x = 1 [ef+e

2

—x,_1|/1+tan8/2 1-tan®/2
“2l1-tan8/2 1+tan6/2

2 _ 2 2
:l|:£l_+tan6/2) 4+ (1 - tan 8/2) ]: 1+an’8/2 _ o

2 1 -tan®98/2 1 —tan®8/2

s.coshxcos9=1.

Example 4. If u = log tan [n B] prove that tanh £ = tan 8,

4 2 2 2
. n. 0
Solution, Given u = log tan| -+ =
2 2
or ¢ = tan E+Q or e _1+tan8/2
4 2 e"? 1-tan0/2

By componendo and dividendo, we have

u/2 - u/2

e —e 2 tan 8/2 1 0
. =tan8/2 h = u=tan =

i o 5 an or tanh> u=tan

Exampie 5. {f u = log tan [: g} prove that

Circutar and Hyperbolic
Functions of a Complex Variable
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Solution. (i) We have « = log tan [% + %]

or e“=tan(ﬂ+g}=—"—l+mne/2 A1)
22| 1-tané/2
i l-tan6/2 '
1+tan8/2
Hence, & — ¢ % — l+tan6/2 1 ~ tan 0/2
’ - 1l=-tan9/2 l'+tanB/2
_(I+tan8/2- (1 —1an 872)°  41anb/2
- 1 - tan’ 6/2 T 1-1an9/2

..(2)

=2tan 0.

sinh u =%[e“—e_“] =tan 0.

(ii)) From (1) and (2}, :
_l+tan8/2 + l-tan8/2
T 1-tan8/2  1+tanB/2

_ (1 +1an 6/2)° + (1 — tan 6/2)°
- 1-tan?@
_2(1+twn’6/2) 2
"~ 1-tn’8/2 cosH

cosh u = sec B.

e+e

U
Hence tanhg=—"—""—=~——-=5inb.

wu+iv) sinu+tisinhv
Example 6. Prove thar tan = .
2 cos u + coshv

Solution. L.H.S. =tan (H * WJ

cos u+iv 2 cos u+iv cos u—iv
2 2 2

_sinu+siniv_sinu+isinhv_RHS
cosu+cosiv ¢osu+coshv T

* STUDENT ACTIVITY

1. Show that exp(i-lzﬂ]zii.

82 Self-Instructional Material



2, Ifu=logtan ( % + g] , then prove that tanh 4 =sin 8.
¢ SUMMARY
. 22 3 zn
. exp(z}=l+z+§—?+??+ ...... +;1—!+ ......
¢ Circular function :
3 5
sinz=z2 gz—' + 557 .........
i 7
cosz=1- 21 + RS
tan z = LS el
S 2

s Period of exp (z) is 27 i. .
. Hyprboiic function : sinhx= ex_; , coshx= ¢ +2e

«  Relation between circular and hyperbolic functions :

sin (ix) = i sin Ax, cos (ix) = os hx tan (ix) = i tan hx etc.

+  Expansion of sinh x and cos Ax :
i s

. X
smhx:x+%+;+ ......

< i )
coshx=1 +2_?+ﬂ*+ ......

s  Priod of cos z is 2w i.
«  Period of sinh z is also 2w i.

TEST YOURSELF-2

Verify the following :
1. (a) sinh (x —y) = sinh x cosh y — cosh x sinh y,
(b) cosh {x — y) = cosh x cosh y — sinh x sinh y,
tanh x + tanh y

2. ‘tanh(x+y)}= 1 + tanh x tanh y

3. (a) sinhx—sinhy=2cosh gc_;-_z sinh %X
(b} coshx+cosh y=2 cosh %}i coshT=2Z

2
Prove that :

4, sinh{x+y)cosh (x—y) =% [sinh 2x + sinh 2y]

Circular and Hyperbolic
Functiony of a Complex Variabie
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7.  sinh fsin o+ i cosh fcos & =i cos (@ + iff).
8.  sin2a +/sinh 2B =2 sin (o + iB) cos (@ — if).
9. cos(a+iP)+isin(a+Py=eP(cosatisina),

10. 1+ tanh x = cosh 2x + sinh 2x.
| 1-tanhx |
11. cos(a~iB)+isin(o~iP)=e B {cos & — i sin ). T ag

12. ' If cosh a = sec 8, show that & = log, tan (/4 + 6/2).
13. Iftan 8 =tanh x cot y and tan ¢ = tanh x tan y, prove that
. sin 20 _ cosh 2x + cos 2y

o sin2¢_cosh2x—c032y‘
OBJECTIVE EVALUATION
FILL IN THE BLANKS :
1.  The series £z, = Zx, + i Zy, is convergent if Zx, and Xy, both are ...... .
2. Every absolutely convergent series is ...... :
3. If the series | £ z, | is convergent, then it is said to be ......

4. .=, . '
TRUE OR FALSE :
Write T for True and F for False statement :

|
1§}

1. The hyperbolic function differ from the circular function in having imaginary periods. (T/F)
2. tanh z has an imaginary period of 27i. (T/F)
3. cosh z and sinh z have an imaginary period of 2. (T/F)
4. If zis a complex number then E (2) . E (- z) is one. (T/F)
.. e-e”

5 The value of sin x is 5 s
MULTIPLE CHOICE QUESTIONS :
Choose the most appropriate one : .
1. If z; and z; are two complex numbers then the value of €' . e is :

(a) &4 2 (b) &% ()2 ™  (d)et*™  (e) None of these.
2.  If zis a complex number thus the value of E(z) . E(—z) :

(@ e % b) (© 1 (d)-1 (¢) None of these.
3. If € =cos 8 +isin @, then the value of cos 8 is :

i9 -0 t8 - i@ - 6 0 0 - i@
€ —e e +e e —¢ e +te

(a) 2 (b} ) {c) — (d)———-—zt_ (e) None of these.

4. If®=cos0+isin 6, then the value of sin 9 is : _
i@ -6 0 - -0 ] ] -8 .
e +e e —e e —¢ e +e
(a) oY (b) Y (c) T (d) T (e} None of these.
ANSWERS

Fill in the Blanks ;

1. Convergent 2.Convergent 3. Absolutely convergent 4. ¢° * %

True or False : .-
1.T 2.F 3.T 4. T 5. FE
Multiple Choeice Questions :
L{d) 2{() 3.() 4.
.
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LOGARITHMS OF COMPLEX NUMBERS

LEARNING OBJECTIVES

Introduction

Logarithm of a Positive Real Number
Logarithm of a Negative Real Number
Logarthm of x + iy in the Form of A +jB
Some Important Results

Solved Examples

@ Test Yourself-1

General Exponential Function
Logarithms to Any Base

@ Solved Examples

@ Student Activity

@ Test Yourselt-2

LEARNING OBJECTIVES B |

After going through this unit you will leam :
@ How to find the value of th logarithms of complex numbers
® About the general exponential functions.

* 5.1. INTRODUCTION

We know that if x and y are real quantities and ¢* = y, then x i§:said to be the logarithm of y
to the base e and is written as
x=log,y.
Similarly if &*” = u + iv, then x + iy is called the logarithm (Napierian) of u + iv to the base
¢ and is written as

log, (u+iv)=x+iy. NEY
Since M= | {where n is an integer or zero), we have
ex+t’y+2nm = ex+iy‘
giving that Log, (u+iv)=2nmi+x+ iy \ .. (2)
=x+i(2nn+y).

This shows that the logarithm of a complex quantity has an infinite number of values and
hence is many-valued function. These values are called general values of log, (u + iv).

This is known as the general value of the logarithm, the principal value of the logarithm is
obtained by putting n=0 in (2).

In order to distinguish between the general value of the logarithm as given by (2) and the
principal value as given by (1), we get by putting 7= 0 in (2), general value is written as ‘Log’ and
‘the principal values as ‘log’.

' Since n can take any integral values, there are an infinite number of logarithms of x + iy and
they differ from each other by 2m.

REMARK
The base of a logarithm will be ¢, unless or otherwise stated.

* 5.2, LOGARITHM OF A POSITIVE REAL NUMBER

Let x be a positive real number. Then
x=x+0.i=r(c0os 0 +isin0)

Logarithms of Complex Numbers
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= rcosO=x,rsin®=0
K r=x and 6=90.
Now Log x =.Log r (cos 0 + i sin 0)

=2nmi+log r (cos 8 + isin 6)
=2nmi +log r + i0
=2nmi+logx+i.0.
Logx=2nmi +log x
This is the general value of x.

* 5.3. LOGARITHM OF A NEGATIVE REAL NUMBER

Let x be a positive real number. Then
—x=~x+i.0=r(cos0+isin8)

= reosO=-~x and rsin8=0
= r=x and 8 =m (not 0}
Now Log (—x) = 2nmi + log (— x)

=2nmi + log r (cos € +isin ©)
=2nmi +log r + {0
=2nmi +log x + in
Log (—x} = (2n + 1) i + log x.
This is the general value of (- x).

* 5.4. LOGARITHM OF x+ iy IN THE FORM OF A + iB
letx+iy=r{cos0+isinb)

= x=rcosB,y=rsinf
= r= V12+y2 and 6=tan"' ﬂ
Now Log (x + iy} = 2nmi + log (x + iy)

=2nmi + log r (cos 8 + i sin 8)
=2nm + log r + i0

=2nmi+log Vx* +y* +itan”! tan"(l].

x
Log {(x + iy) = 2nmi +—é~ log (Jr2 + yz) +itan”! [f) . (1)

This equation gives the general logarithm of x + iy.
For the principal value put n =0 in (1), we get

log(x+iy)=-%—!og(x2+yz)+imn”(i].

REMARK
In (2) if we put — y for y, we get

log (x - Ey)_:%log (Z+y% - itan”! (ﬂ .

* 5.5. SOME IMPORTANT RESULTS
() log (z129) = log z, +10g 22 '

Z
(i) log = =log z, - log z,.
o)

Let =0 €0, 5= re,
Now Logz; + Log z; = [log ry + i 2myn + 8,)] + [log rz + i (2myn + 0,)]
=(log r, +log ry) + i (8, + 0, + 2nn) D
where m, and m;, are integers, and # = m; + m,.
Also log 2,z = log riry & @+ % —log ryr, +i (8, + 6, + 2mm). .(2)

Since n and m can take up any integral values, it is clear that every value of Log (z;z,) is
equal to some value of log z; + log z; and that every value of latter is equal to some value of the
former.

log 2)z; = log z; + log z;. ...(A)
Similarly it can be proved that



b4 ' L
logz—l=log 2 —log 75 ...{B)
) .

REMARK
It is important to note that,
logziza=logz; +log z,

E U

z
and log z_] =log z; - log z,,
2

the principal values of the two sides of these equations need not necessarily be equal, for the simple
reason that amp. (z;) £ amp. {(zz) need not necessarily lie between — 7 and + 7, whereas

z .
amp. (z,2p) and amp. z—l must lie between — 7 and + R,
2

« SOLVED EXAMPLES
Example 1. Find the general value of Log (- 3).

Solution, Let -3=r(cosB +isin8)
= rcos®=-3, rsin9=0
= r=3 and §=r1.

Log (- 3) = 2nmi + log (- 3)
=2nmi + log r {cos B + i sin B)

= 2nmi + log re® ¢ ¢
=2nmti + log r + 6
=2nmi +log 3 + .

Log (-3)=(2n+ 1) in+log 3.

Example 2. Prove that Log (1 +)) = % log2 +i{2nm+ %J )

9= cos B +isin@)

Solution. Log (1 +{) = 2ani + log (1 + i)

= 2nmi + —;- log (12 + 1% +itan”! (ﬂ

=2n1ti+-é—log2+itan_1(l)

. in
-2nm+2log2+ 4

1 . !
—210g2+a[2mt+4].

Example 3. Show that i lo i—i =m-2tan ' x.

Solution. { log {i—ﬁ) =i [log l—}ﬁ?] .

. =1 -
:'log( l—xi]

=i{log (—1-xi)—log (1l —xi)]
=i[log (- 1) (1 +xi) - log (1 - ix)]
=i[log (- 1} +log (1 + xi) — log (1 — xi)]

2
=i[-im+itan

=£{—:‘n+llog(l +x2)+£mn'1x—%logt1.+jrz)-itan"] (—x)}
'x—itan ! (-x))

1]

=i[-im+itan” ' x+itan” ' x} [v tan”} (-x)=—tan
=i[—£1'n+2itan'1x]
=m-2tan 'x.
Example 4. If tan log (x + iy) = a + ib, where a* + b* # 1, prove that
tan {log (x2 +y9} =—-—-2.f—2-
1-a°-b
Solution. tan {log (x + iy)} = a + ib. (1)

Logarithms of Complex Numbers
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Adding (1) and (2), we get
tan {log (x + iy)} + tan {log (x — iy)} = 2a. ..(3}
Multiplying (1) and (2), we get
tan {log (x + iy)} tan {log (x — iy)} = a® + N
2a _ _tan {log (x + iy)} + tan {log (x — iy)}
1-a*-p* 1-tan{log (x +iy} tan (log (x - iy}}

Now

=tan [log {x + iy} + log (x — iy)]
=tan (log (x + iy) (x — iy)]

=tan {log (% + yz) }.

Example 5. Prove that log, tan [E + % :} =itan" ' sinh x.

sin|—+=i
. nox (4 2 J
Solution. LH.S. =log, tan Z+Ei =log, ———~

N S
sin =+ sin xi ..
=log, =lo 1+isinh x (as sin ix = { sinh x)
, B coshx
. cos + cos xi

.2

= tog, LESIMNX | 4 van= ! (sinh x)
cosh” x

1 cosh? x —1 .

—log, ———+ itan ' (sinh x)

2 cosh? x

i

=5 log 1 +itan ! (sinh x) =i tan™ ' (sinh x).

., a-—ib)_  2ab
Exampl 6. Show rhat tan [1 {Oga+ibJ*a2_b3
Solution. Let a=rcosQ, b=rsind.
a—ib_r(cosﬁ—isinﬂ)__eif_ — 28
a+ib r(cos@+isin®) e =€
|-. a-ib|_ NP
tan I_I leg P ib]_ tan [i (—2i0)}
A
—tan20=-21200 __ 2 _ Zab
1-tan’ 8 l_b_2 a’~ b
JE]
-1
Example 7. If a + ib = &** ¥ prove that Y_2tan b/a YA

X log _(a2 + bz)
Solution. a+ib=¢""".

This gives x + iy =log (a + ib)
e oo+ —itan' 2.
-zlog(a +b%) —itan .
Separating real and imaginary parts, we have

% fog (a? + 5%

xX=
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=tan g-l
y=tan
Therefore, Y_ zla_n_b/Ta, ~
X log (a +59) - -
» TEST YOURSELF—-’]
Prove that :

1. (a) Logi =%(4n + 1) mi.

(<} Log3f=log3+ 2mr+%n )

(@) Log (z—tig) =2itan~" [ﬁ] . '

2 (@) Log-N=y@n-Dm. - (® Log\(i_=%(3n+l}ni.

3. log(l +itan8)=log,sec 0 +i6.

1 I o m oo
4, Showthatlog, o log,l: cosec 2:|+:[2 2]
§. Showthat loglog(x+iy}= —log(a +B)+tan lg-

where 20 = log, (x* + %) andB:tan"z-
X

6. (a) I (a;+ib) (ay+iby) ... (a,+ib,)=A +iB, prove that

_ b b b
tan”t L rpan ' 2y gt gt B
a a Q, A
and (al+bH(af +b]) ... (@l + b =A"+ B

(b) IFC1+ ) (1+20) (1430 ... (1l +ni)=A +iB.
Show that2.5.10 ... (1 + n?) =A%+ B

7. Prove that the value of log log sin (x + iy) is % tog (4° + %) + i tan

. 1 cosh 2y —cos 2x
where u=7_log

2 2

-and y=tan~" (cot x tanh y).

-1V

5.6. GENERAL EXPONENTIAL FUNCTION

The general exponential function is defined as
= flesa
. a'=e
where a and z are any two complete numbers.
The function a* is many valued function as Log a is many -valued.
(f) General value of a*
From (1), we have
- Lo
=exp [z Log a).
a* = exp [z (log a + 2nm)]

(ii) Principal value of a* :
Putting n =0 in (2), we get
a’ = exp [z log a]
which is the principal value of a°.

(1)

(2)
[' Loga=loga+2ami]

T

* 5.7. LOGARITHMS TO ANY BASE

Definition. If z, w and & be any three complex numbers, and if

Logarithms of Complex Numbery
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o=z ...il}
then we define that w is a logarithm of z to the base o, and we write
logg z=w. ..(2)

But we have already defined 6” as ¢* %% ¢

e %=z or wlog, o=log,z -
or .- 11 - C 3
log. o
From (2) and (3), we have
log, z
log"z_logl p (A}
With the help of formula (A), we can write logarithm of any base to basc e
The principal value of Log, z is defined by
I _ log, B)
oguz—loqu- |
* SOLVED EXAMPLES
. _4m+1 ,
Example 1, Prove that Log; i = antl where m and n are integers. *
Selation, We know that
Logd
Log, b= Loga
_Logi
Then Log;i= Log i
:M| mnel
Log i + 2nmi
_in/2+2mni _4m+1
Cin/2+2nmi 4n+ ]
Example 2. Find the general and principal value of (i)'
Selution. We know that
az — ezl.oga
So, () = ¢' 08!
= g/ Tlog i + 2umi]
_ o /2 +2mi) _ [ Logi=%[J
o (V2¥20m) _ Tt
. (1) =g WrrDTZ : . - -,..{l]
For principal value, put » =0 in (1}, we get )

i‘ -rc/?. .
Also, putting n=0,1,2,3,... in (1), the various values i are ¢ V% e 2 ¢ "2
e V2, which form a geomemc progressmn with common ratio ¢” "2, '

Exnmple 3B, (cos y +isiny), then pmve that
x=—§-(4n+ DnB and y:~2-(4n+ 1) mor.

Solution. We know that
a=é Loga
So, l-uHB:-e(aHBJLogi
= {0+ iB) Nlog 1+ 2m i)
= (@ ) lin/2 + 2nmi)

B (a+iB]i£d’"+ HR
=¢e 2

i an+ |
:e:{d»u+1]1m./2 e—[—z )nﬁ

. 1, .
B g et Iinp [cos {% (4n+1) na} + i sin {% (4n +1) na]] O



and

-

But %+ % = F (cosy +isiny) \

3
= ¢ (cosy+isiny)= e“%“"* REL l:cos {é— (4:1 +1) m} +isin {% 4n+1) 1'!(1]]
- {

- _r=_%(4n+1)nﬁ and y=%(4n+1)’ﬁa.

Example 4. If sin (log i'} = a + ib, find a and b. Hence find cos (log i)
Solution. log i = ilogi -
=i[itan ' ]
=i{m/2]=-7n/2.
sin (log ') = sin (- ©/2) = - L.
But sin (log i) = a + ib
= a=-1,b=0.

Also, cos (log i) = V1 - sin® (log i)
ot _=N|l—(—1)2=\“—:_=0.

el i
Example 5. f ' = A + iB, principal values only being considered, prove that
; 1l B T N e . |
(&) ranzﬂ'A—A (i) A+8B°=e ™.
Solution. We have
fo.ond Inll
¢ =A+iB
= At B = A+ iB
= AtBILOBI - 4 4B
= £AT B A 4B (. principal value being taken]
A+ 2 _ .
= e 2|=A+iB
_ng mA
= e 2e?2 =A+iB
78
= e 2 cosMHsin-@- =A+iB
2 2
Separating real and imaginary parts, we get
e-? coslt'zi=A (D)
3!2 .
e 2 sinll;i = B. 2)
(i) Dividing (2) by (1), we get
sin et
¢ .8
'cos M 4
2
tan % A =.§- ) Proved.

(i) Squaring (1) and (2) and adding, we get

¢ ™| cos L) + si_n2 M} =A%+ B

[ 3

2 2
o A*+Bi=¢"8 " Proved.
Example 6. [f #* 7 = x + iy, prove that X* + y* = ¢~ *"* nw,
Solution, We have '
D = x iy
PR LY

e—{dn +)ny/2 e{d.n+ 1) mx/2

=
- et Qe tlogh o 4 o g

. m
DN HE T
=2

=x+iy

Logarithms of Complex Numbers
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=

{

Separating the real and imaginary parts, we get

and

—(4n+ 1) my/2
¢ ( )y

Squaring and adding, we get

eyt=e

(4 + 1)ymy

cos {(4u +1) -?} =x

g nt 1) ny/2 sin {(4n + 1) T_;I_} =y.

Example 7. Prove that the real part of the principal value of (i)' ' * 9 is

Solution. Let
=

=
=

=

=

4

@ =A+iB
Ui 44 i

e"’g“*"[%]:,«a +iB

2
e cos[}'ﬂ: log2].

m m

1
32[5"’@2* 4]:.4 +iB

2 in
e " s Bi=a4iB

1
e"”s[cos T tog 2J+isin(

4

Equating real parts, we get
2
A :e'““cos[lnlogZJ.

4

kil

4

et ”"””{cos {(4:: +1) E;_x} +i sin {(4:: +1) %H =x+iy.

Proved.

[Principal values are considered]

Example 8. Find the general value of Log, (- 2).

Solution, We know that Log, & _Logd

Thén

Logs(-2)

Logs (- 2)

Loga
JLog(-2)
" Log4d

- fog (=2) +2mmi

log 4 + 2nmi

_ logg?em!+2mm‘

log 2% + 2nmi

_log2 + i+ 2mmni

2log 2 + 2nmi
_log2+(@2mt)nmi
2log 2 + 2nmi

log ZH =A+iB.

_[ilog2 + (2m + 1) i} [log 2 — nmi)

2 (log 2)* + 2n’n’
_|(log 2+ (2m+ 1) n?

Qm+1-n)mlog2

2(log 2)2 + 2n*m

g

2 (log 2)° + 2n’n’

]

Proved.

» STUDENT ACTIVITY

1. Find the value of Log (I — i)’




2. Find the real part of (i)log (+ l}. Logarithms of Complex Numbers

SUMMARY

* Logx=2nmi+logx
« log(-x}=2n+1)m+loga.

]
* Log (x+iy)=2ﬂ£+%log(x2+y2)+itan—l(‘z)

»  For any complex numbers a and z,
a* = ¢t 18 %,
log. z

«  Principal value of Log, z= fog. 0 °

TEST YOURSELF--2

1. If ()Y =cos ® - isin §, prove that 8 =% 7t (dn + 1).

b

If i =cos8+isin 9, prove that 8 = [Zm + %J T exp [— [2_:: + %J n] .

3.  Separate (1- ) into real and imaginary parts.

Prove that {* = cos [[Zm + %] m:} +isin [(Zm + %} m:} .

. ANSWERS

&

3. Real part = ¢““ cos [% log 2]. Imaginary = e™*sin [% log 2].

OBJECTIVE EVALUATION

FILL IN THE BLANKS

1.  The principal value of a logarithm the coefficient of i should lic between ......

2. The principal value of a logarithm of a negative quantity is logarithm of the positive quamlty
added with ......

3. log(l+itanB)=log,secB'+......

4. The value of log tan [E + ﬁ) =itan ' (....),

4 2
TRUE OR FALSE :
Write T for True and F for False statemeant .
1.  The logarithm function is a one-one function. (T/F)
2.  The logarithm function is a many-one function. (T/F)
3.  The principal value of log z;z; is always equal to the log z; + log z,. (T/F)
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4. log (1 +itan®)=log, sec O + i0.

MULTIPLE CHOICE QUESTIONS :
Choose the most appropriate one -
1. If z; and z; are complex numbers then log (z; - z;) is :
(a) logz—logz; (b)logzz—logz;  (c}logz +logz,
(d) log (z, — z3) (e) None of these.
.

2. If z; and z; are complex numbers then log (z_} is :
2

(a) logzy-logz; (b)logz;—~logz,
(d) log(z) +2)) {e) None of these.

, a-iby|. =~
3. Value of tan [s log (a " ibIl is :

(c}logz +log 2,

2ab 2ab -2ab
a b c 5 d
(2} R, ()a2+b2 ' (Ja2+b“ (d)

(¢) None of these.
4, . Principal value of log (- 1) is :

SV
(CJE.N (d -

(@) =« (b) mi
ANSWERS
Fill in the Blanks :
1. -wton 2.1 3.0 4. sin At

True or False :

1.F 2.T 3F 4. T
Muitiple Choice Questions :

L) 2( 3.() 4. 0.

{T/F)

(e) None of these. e

QA



n=-1. [ m—%sesnmﬂ

4
(iii) Here © lics between
s 17n
' . 4 . 4
__117_: d _15_“- :
or . 4 an_ 4
T 7
or (—4‘11:—4] and (—-41’c+4]
n=—4¢4 ' [ nﬂ—%ﬂﬁﬁnu+:ﬂ
(iv)Here 0O lies between
o 2in
4 4
)’ T
or {51:—4] and (51':-1»4)
i T
. = .t -—< < -—
n=5 _ [ nw 4_9_nn+4}
Example 2. Sum to infinite the series :
L 1 1 1 , 1 1
() —- +——— — ... ad. inf. i) 1-— + —...ad.inf.
2 3.2 52" R A
1 1 1 .
Solution. (i) — - +————... ad. inf.
' ()23 3,27 5.2"
JAffay_afay (1Y
2|12%] 3|2 522| °~
-1 't:an" L [using Gr 's series l~<.1
2| " 52 g Lregory 354 ]'
_1 ol
u (2]
.. 1 1 ,
i) 1- + —... ad. inf.
i) 4t 5.4%
L1y a1f1y
4[4'3(4}*5(4}""‘]
=4 |:tan' : i] (using Gregory’s series as ;lI <1]
a1
=4tan” (1.
an [4]
Example 3. Prove that n=2V3 l——%+—l—2~———3~+ ad. inf. |.
5.3 7.3
Solution. 1 -+ + = - —L 4 ad.int.
5.3 7.3 )
1 1

Gregory's Series
and Summation of Series
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Hence = 24_1——-+—15——1—3+mad.inf.‘
3?2 53% 73 '

Example 4. If x> 0, prove that

3 M)
-1 T fx-1) 1fx-1} 1fx—-1} .
tan x=3 +(x+lJ 3(x+l] +5(x+l) ... ad. inf.

Solution. We have

x> 0=t o,
x+1

Then, by Gregory’s series
3 5
x=-1) 1fx=-1}) I{x=1} .
(x+1J 3(x+lJ+5(x+lJ -+~ 8d. inf.
=tan ' =l
- x+1

=tan"! [M] where x =tan ¢

l+tanGptanm/4 |’

=tan”' [tan (¢ ~ /4)]
=¢-n/4 ) . .o

=tan 'x-n/4 - ) [ x=tan 9]

5
) -1__7® fx-1} 1 Yfx—1}) .
tan x_4+[x+l) 3[.:1-1] +5[.x+l} ...ad.mf._

¢+ TEST YOURSELF-1

Subjective Questions :

‘1. Assuming that 8 — amt="tan 8 - % tan’ 0 + % tan® © - ..., write down the value of n when 8 lies
between
T I on Sn ... =13=m —1iin
(i) e and — n (n) and 4 (iii} 4 and 1
s __l_ _L 1
2.  Prove that 2=13 5? XTI —+.
| 3. If O lies between ry and% show that 8= 5 —cotf+ % cot® § - g cot® 8+ .... ad. inf.
4. When both 8 and tan™* (sec 8) lies between 0 and g prove that
-1 _n 28 _ 8 108 -
an (secﬁ)—4+tan 5 3ta 2+5tan y T

s. If tan x < 1, show that

2 1 o4 16 _.2 L4 1. g
tan® x 2tan x,+3taf1x ... =§In x+2sm x+35m X+ ...
ANSWERS
1. () n=2 (iyn=1 (iliyn=-3
OBJECTIVE EVALUATION

FILL IN THE BLANKS :
tan’ @ + tan’ O

1.  The series § = + ... is valid only when © lies between ......

3 5
2. The main use of Gregory’s series is to find the value of ......
11 1 .
3. The valueof1+3 5" ? ...... is=.....
1 1 1, 6qg:
4. 'I'hcvalucofztan 0 4tan 8+6lan Qis.......
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. ' LEARNING OBJECTIVES - -

L EARNING OBJECTIVES

After going through this unit you will leam :
@ About the Geoggory's and trigonometric series.
@ How to lo obtain the sum of the given series.

* 6.1. GREGORY’S SERIES

To prove that, if © lies within the closed interval [-n/4, /4], ie.if —1/4<0 < n/4,

B=ran9—%ran39+—;—tan59—%ran78+ ... ad. inf.

(cosB+isinB)=secH. e

cos O

Proof, We have(l + i tan 8) = [ z;“s g) =

Trigonometry and Algebra )

Taking logarithm of both sides (considering only principal values)
log (1 + i tan 8) = log sec 8 + log e

: logsec9+19—log(l+ztan9)

Now since ~ /4 <O <n/4,tan 6 is numcrlcally less than unity.

Expanding R.H.S. of (1), we have

2 4, 4
T _ttanB:tsz_:tanS
logsecB+iB=itan© 2 + 3 4 + ...
. tan’® itan’°6 tan®@ itan’0
=itan B+ R 4 5

)

e

Gregory's Seriey
and Summation of Series

Self-instructional Material 45



Algebra, Trigonometry and Vectors

48 Self-Instructional Material

Equating imaginary parts on both sides,
1an’@ tan’@
3 s

This series is called Gregory’s series after the name of James Gregory.
If we put tan 6 = x, so that 8 = tan™ | x, we have another form of the Gregory’s series.
3 7
tan*'x‘=x—~'§—+§—%+...ad.inl’. c{4)
when x lies between ~ 1 and 1 and — t/4 < tan™ ! x < /4.
Equating real parts on both sides of (2), we have
’ 1

1 o2, 1 4 0 1 6.
logsecﬂ—ztanﬁ 4tam 8+6tan9

9=tanB - ... ad. inf. ...(3)

* 6.2, GENERAL GREGORY’S SERIES

Gregory's series may be considered as pasticular cases of the theorem.

To prove that if O lies between nm — % and nm + % both limits being inclusive

. ¥ T
ie., nm-—<0<nn+-—,
. 4 4

tan> 8 . tan> 0 B tan’ 9
3 5 7

then O-nn=tan 0 -

* 6.3.VALUE OF n

Gregory’s series has been used for evaluating the value of . We have seen that

I_Ix—x—£+£5——£+
e T I
Putting x = 1, we get %=l—%+%—%+

From this series the values of 7t can be calculated; but as the successive terms do not rapidly
become small, a very large number of terms would have to be taken to obtain the value of 7 correct
to a certain decimal place. On account of this other series have been found out,

* SOLVED EXAMPLES

5

tan® © + tan’ O
3 5

Example 1. Assuming that ® —nm=1tan 6 - -ad inf. when B lies between

nm - % and nm + g, write down the values of n when 0 lies between
|
Ll 13n P 4 m
0] 4 and ) (&) 4 and 4
.~ 151 17n 191 21n
i - 3 and — 4 (iv) 1 and n
Solution. (i) Here 8 lies between
ln__ 13n
4 4
i 18
or (Sn - 4} and [31: + 4)
: .. _n r
n=3 [ nn 4£B£nn+4]
(ii) Here 9 lies between
. and - ELd
4 4

or [_mﬂand(_n_g)
o . [_n-;;)and(-“g]



TRUE OR FALSE : .
Write T for True and F for False statement : .
1.  The Gregory's series is valid for afl value of ©. (T/F)

2.  If O lies between —Tgn and _T—m then value of the Gregory's series is 7 + g -
1 P 4
3. tn xsx-T+T -5+
AT s T ‘ (T/F)
4.  James Gregory discovered the Gregory Series T (T/F)

MULTIPLE CHOICE QUESTIONS :
Choose the most appropriate one :

1. If8=tan9—%tan38+ltan59—%tan?8+...octhcn limits of B are :

5
y K14 s Y11 T mw--
<g<— —— < - _l« b4
() 0<0<7 - <0sF ©-5<0<]
W —%ses% (¢) None of these.

2. The main use of Grégory's series is to find :
*(a) trigonometrical expansions
(b) to find the value of ©t
(¢) to find the value of 8 in form of tan & in any limits of 6
(d) None of these.
3. Gregory's series is :

(a) B:tan8+%tan29+%lan38+ ... (b) B=tan8—%tan29+%lan38—%tan_49+...

{c) §="tanB - % tan’ 8 + % tan’ 0 — s (d) None of these.
- tan° 8 tan’ @

+ e —
3 5

4. If @ lies between nw ~ g and nm + %' then®—nm=tan 8 — — ... then value of

n, if 8 lies between I?Tn and %TE is :

(a) 1 (b) 2 (c)3 @ 5.
ANSWERS

Fill in the Blanks :
n
1. -n/4tomn/4 2. 3, N 4. log sec ©.

True or False :

1.LF 2.T 3.T 4. T.
Multiple Choice Questions :

1L.d)y 2.(b) 3.(c} 4.(d)

*» SUMMATION OF SERIES e

General (C + iS) Method

A general method for the summation of series of the type

c,cosO+crcos (O+0)+c3cos{(B+20)+... (D)

or c,sin@+cysin(B+a)+eysin(B+2a) + ... (2

is 1o denote the series (1) by C, since the coefficients of C's in this series are cosines of the
angles increasing in arithmetic progression and the series (2) by §, being a sine series. Multiplying
(2) by i and adding,

C+iS=c (cos B +isinB) +¢; {cos (B +ct)+isin(B+a)}
+c;3 {cos (8 +20) +isin (0+20)) +...

+c;e’(e+2u}+

: (@ +2
=cle‘a+c2e‘( *20)

= (o) + coe™ + 3™ + ..} ..(3)

Gregorys Series
and Swummation of Serfes

oo

s
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The real part of (3} gives C and the imaginary part gives S. If either of the series Cor § is
given, the other series, known as auxiliary series, can be formed and the sum of C +iS is found.
The real part of the sum so found is equal to C and the imaginary part equal 10 §.

Use of Geometric Series
Trigonometric series is given by o + 0tz + 0z” + 02" + ... inf.
Sums of » terms and infinity of the above series are given by

S,,=a%_;llliflz|>l, )
7l
=aﬂl"—zzlif|z|<1. (2)
o :
S,‘,::prowdedkl'c 1. A3

* SOLVED EXAMPLES

Example 1. Sum the following series to n terms and to infinity
1+xcos0+x°cos20+... ad. inf.
where x is less than unity.
Let ] C=1+xcosO+x°cos20+...
and S=xsin®+x’sin20 + ...
C+iS=1+x(cos @+is5in0) +x2(cos 20 +isin20) +...
=1l+xe®+x%%+ ...
This is a geometric series with common ratio xe'®, modulus of which is less than 1: hence
; L-(xe®" 1-x%" (1 -x"¢" (1 -xe®
CotiSy= " B i ~i8,
I —xe {(l-xe)y(1-xe ) .
multiplying the numerator and denominator
by complex conjugate of denominator

1 —xeé'

l_xe—ﬁﬂ_xnefnﬁ+xn+lei(n—1)9
1+ -x(%+e™ ™
_l-x(cosB-isin 0) - x" (cos n0 + i sin n0) + X" * ' {cos (n-1) 8 + i sin (n-1) 0)
1-2xcos B +x°
Equating real and imaginary parts, we get
1-xcosB-x"cosn®+x"" ' cos(n-1)8
1 -2xcos 8+ 52
S :xsinB—x"sinn9+x"+1sin(n—l)9'
" 1 —2x cos B + x>
Sincex< 1,x", X"t > 0asn — oo,
_ 1-xcos@ - and S.= xsin @ .
1-2xcos8+x 1-2cos8+x
Example 2. Sum the series
() cosct+ccos(0+PB)+c?cos(0+2B)+... tonterms
@iy sin 0L+ c sin (0 + B) + % sin (& +2B) + ... fo n terms..
Ifc < 1, deduce the sum to infinity.
Solution, Let

C,=cos 0.+ ¢ cos (00 + ) +c%cos (0L+2B) + ... to n terms,
S, =sin & + ¢ sin (& + P) + ¢ sin (& +2P) + ... to n terms,
C,+iS, =% +cd@*P 2 5@+M ... to n terms.
This is a geometric series with first term ¢’ and common ratio ce®; fience

C +iS = %1 -c"® - e (1 - cey
o (1-ce® (1-ce®) (1 -ce™®

C,=

k3

oa




eiu_Ce:‘(a-[i)_cne:'(u+n8)+cn+l ef(a+(n—l)ﬁ)

1-c(e®+ePy+c?
Equating real and imaginary parts, we get
C =cosot—ccos((x—ﬁ)—c"cos(a+nﬁ)+c"”cos [+ (n—1)B]
" 1-2ccosP+c’
sina —csin(@—B)—¢"sin (@ +nf) + " sin[o+ (1 - 1) Bl
1-2ccos B+c? '

5, =

Now for sum to infinity, we have since
|ce® |=c <1, hence ¢" and ¢
c _cosa—ccos(a-PB) sin @ ~ ¢ sin (& —B)
T 1-2ccosB+el © 1-2ccosB+c
Example 3. Sum the series 1+ cos © + c05229 + c03339 +...n terms.
cos0  cos®0 cos’
Solution. Let C,=1+ cos 9 + COSEB + 005339 + ... t0 nterms
cos®  cps’®  cos’ B
. sin8 +§1_n_229+ 51n338 +
cos8  cos’B cos" @
cosO+isin@ cos28+isin20 +cos38+:’sin39

"l _30asn—> o,

and S, =

and . " ... to nterms .

CotiSn= 1t cos 8 cos* 8 " cos’ B
"=1+secBe®+sec’ 8+ ... 10 nterms
:gsecﬂem)"—l_
secBe® -1

Since the series on R.H.S. in G.P. with common ratio e sec 8., the modulus of which is
greater than unity, hence -

. - sec” 8™ - | ™ — cos” 8
C"+,S"=scB(cosG+isin9)—l=. ‘ n-1
© ismB.cos 'O
_cos nB +isinnb —cos” B _sinnB +i(cos” 8 — cos nb)
isinf.cos""'0 sin®.cos”” ' B
' sin n8
C -

nT - :
sin@cos"”' 0

* 6.5. SUM OF FINITE SERIES OF SINE AND COSINE WHOSE ANGLES
AR IN AN AP.

() sin ot +sin (ot + B) + sin ({1_+2B)+ ......... +sin(at+{n—1DP
sin[u+(£';—l“)ﬁ}sin£i2ﬁ]
) sin(g—]
(i1) cos o+ cos (ot + B) + cos (¢t + 2B) + ...... +cos (0 + (n—~1)B)

_eos[or( "5t o Jsn( )

) _ sin [ g ]
+ 6.6. SUMMATION DEPENDING ON ARITHMETICO-GEOMETRIC SERIES“

Example 4. Sum the series 3 sin ot + 3 5in 200 + 7 sin 30 + ...to n terms.
Solution. Let
S=3sino+5sin 20 + 7 sin 3¢ + ... io n terms,
C=3cosa+5cos20+7cos 30+ ... tonterms.
C+iS=3e"+55+15%+ ... +(2n+ 1) "™
and OC+iS] =362 %+562% 4 +(2n~1)e"* +@2n+1) TP

Gregory's-Sertey
and Summation vf Series
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Muitiplying both sides by the common ratio and shifting by one term.
Q- [C+iS)=3 % +2 (7% + e %+ .. 46"~ (2n+ 1) 0¥ N

. . o _ina
(O~ @ne ety 2o (loe ]

[ _ ot
L. . _in
=% -@2n+1) e'("”)‘}[]+2—[1,m;1
e ‘%-1
C+£S:[eiu_(zn+1)et(n+l)u]_ 2[1—8”‘“]
' l_eia (l_g—fﬂ)(l_efﬂ'.)
=[eta_(zn_'_])el(n‘*l)ﬂ][l_e-la]_ z(l_er'na)
(1= (-9 (1~ (1-€%
0=+ )" V%4 (4 3) -3

2-2cosa
Hence equating imaginary parts,
§= sina-2n+Dsin(n+ DNa+(2n+3) sin not
2(l~cosa)
Example 5. If S, denotes the sum of n terms of the series sin x + sin 2x + ... nterms
y S1tStS) 1 x 7 2O

=—cot ' W
n 22 SR

show that Li

n—pes
Solution. We have
S, =sinx +sin 2x + ... sin nx.

tx inx
. . . , e l_e
C,,+;Sﬂ=e"+e2“+...e'”“=_~[ ]

1__er'x
_e“[l __einx} [1 _e—ix] _eix_ 1 _ei(n+1)x+ein:
[l_etlx][l_e".l‘).‘] 2[1_COSI] i
( IJ . X
cos n+5 xsmE
So s _sinx—sin(n+ Dx+sinnx _ sin x B
" 2 [1-cosx] T 2[1 -cosx] [I -cos x]
n 1
S S cos(k+—}x
Now S +85+ Sn:k=1 k= sinx _sinx/2 2 )
) n n 2[l-cosx] (l-cosx) .=y n
Also' ;I cos k+l x‘—cosé +cos§x+ cos ;rl X
2 5 [*= 2x > n 5 | %
3 5 1
Let C-c052x+cos2x+...cos[n+2]x.

1
Six Tix ""“]”‘
Then C+iS.=e? +e2 +e(

3
o ¢ . .
e%“ [l _emx] _ ez I“‘_elnx] [ _e-rx]

1-¢&7 [1-€%1{1-¢'9

3. i[n+':‘]x X i[ni-%]x

_'ezu—e ~e’te
2 {1 -cosx]
0 §- —¢0s +§ x—cos£+cos +—l— X

C 52x n 2 7 n 2

C= 2[1-cosx]
2s.in£r:os£
S1+85,+...8, .
Now Lim ==L ——2 2 im i-[C]

n—rw

23 poe
2 x 2 sin >



=l tZ - Lim 1 -——i coséx—cos M+g x—cos£+-cos n+l x
2 2 now |2[1-cosx)’ 2 2 2 2
=1 %_ Liml1l .. o] = L ot X

—2cot2 m—tee g [finite quau'ltlty]—2col2

* TEST YOURSELF-2

Sum the following series to n terms :

1.
2.

3.

sin A + sin 34 + sin 54 + ... and deduce the sumof 1 + 3 + 5 ... to n terms.

c0s* 0 +cos> 20 +cos> 30 + ... .
3n

. m 2n
hat th + -+ —
Prove that the two series sin — 14 sin 14 sin 14 +...t0 28 terms,

and cos -1*4—_ + cos % +cos3 E + ... to 28 terms,
have the same sum. What is the magnitude of the sum ?
Sum the series cos 6 cos 20 + cos 20 cos 30 + cos 36 cos 48 + ... to 20 terms.
Sum the following series : “ . :

¢os x — sin 2x — cos 3x + sin 4x + ... to n terms. T 3
Sum to infinity the following series :
) sino+ 3 sin 2a+§sin 3a+ ... ad. inf.

.., sin@ sin2a  sin 30

(i) - +

tan B tan’B  tan’ B
where tan 8 > | numerically.
Find the sum of the following series to n terms and hence deduce the sum to infinity given

—...ad inf,

Ct#“z"

(i) cosasina +¢os? ¢ sin 20 + cos’ o sin 3¢ + ...
{ii} cosa.cosCt+ cos® o cos 20 + cos® ¢t cos 30 + ..
(iii) cos @ sin & + cos 2a sin® O + cos 3 sin® o + ...

ANSWERS
1. (sin®nA)/sin A; n*. % {n+cos {(n+ 1) 8 sin nB cosec 8}
1
3. Magnitude of the sum =0, 4. %[ +£08 lilﬁns(;n 108J
sin ntl 3I£+.:r sm BE  2X
2 {2 2
5.
in[ 2+
i
, cos™*! o sin not .. n
{iy spy=—""———— (ii) s,=cos (1l —cos” @ cosna)

sing
2no + a]

nsin( 5
. 1l + cos no
T B 0 —cosm T 2sina2
1 4+ cos 20 — 2 cos & + (— 1)" cos nat + (— 1)" cos (no - 200)
(2+2cos o)’
_ (= 1)"n[cos nat + cos (no — )]
2(1+cosq)

(i) C,=

1+1cos2a-cosa

: 7
~—COoS O
[4 cos J

(iii) C=

Gregory Series
and Summation of Series
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* 6.7. USE OF BINOMIAL SERIES

Following are the binomial expans:ons when z is complex
(1) If n is positive integer,
(1+2)"=1+"Ciz+ ng +. +z
(1) If n is any quantity (say negative lnleger) or a positive or negatwe fraction,
nin=1) » nr-1@®E-=-2) S+
37 =+ 31 . ad. inf. .
Provided | z]| < 1, when [z] =1, this result is still true if (i) 7> 0 or if (ii) = | <n <0 and
z#-1.
With the help of results (i) and (if) we can recognise all binumial expansions without
remembering any more fromula. The method is illustrated in the fol]0w1ng solved examples.
Example 1. Sum the series

(1+2)"=t+nz+

1+10052a—Lc‘os4a+ L3

5 24 24.660.?‘6(1— . ad. inf.
where O lies bemeen—gandi-
Solution. Let C—l+lc052a~~l—cos4a+ L3 cos 6o — ...
2 2.4 2.4.6 . "

S—lsin20t —sm4or.+ 1.2 sin 6¢ -

2 2.4 2.4.6

Lo 1 n‘..‘l'._ l 4ice [3 ﬁm._
CHiS=ltze—g7e +345¢ —

Comparing this with
(1 +z)"=l+nz+"—%—7-l-lz2+

we get nz:le”“, e)! LAGER Y JP YT Y (D)
2 2 8
ap—l)__ 1,4 [dividing (2) by square of (1]
n? 871
n_lz—l or n=l
n 2’
2 :e?,iu'

Hence S CHiS=(1+e5' %) [Note that n > O and | €| = 1]

=(1+cos2¢ + i sin 20{)”2 =<2 cos 0 [cos O + i sin (}t]'/2

=*J2cosa{cos%+isin%]

Equating real and imaginary parts, we have

C= 2cosa.cos%=\fcosa(l+cosa),

S=v2cos o ‘sin%=\fcosor.(l—cosa).

Example 2. Sum the series

sma+lsm 3Cc+£sm$0t+

5 >4 . ad. inf.
Selution. Let
S= smo:+—l-sm30:+l—3c055a+
h 2 24
C= sa+lcos3a+ﬁsm5a+
cosETy 24
<__|'0.__l_ 1_35:(1 [+ 4 _l,fu ﬁiﬁu
. C+iS=e¢ -I,Ze +24 +..=¢ [l+2e +2.4e +]
Comparing the series within square brackets with
(l+z)"':1+nz+n ;:l P



,,_1:82,“ n{n-1}) 5_3 3 e

we have = ,
¢ T2 2t 7%
Solving, we get n=— % z=- €% hence
C+is=£%(1 - "% ' Provided tt # mm, m being an integer

= [cos & + i sin @] [1 — cos 20 — i sin 20" 2
=(V2sino)” Y2 [cos ot + i sin o] [sin 0. — i cos )" 172

=(¥2sin @) "% {cos o + i sin ¢/ {cos [g - ch- i sin (g - a]]

-1/2

= (\12 sino) 12 [cos o + f sin o) [cos (4 g) +isin (Z %}] .

Equating imaginary parts, we get

S§=(V2sinc)” ml:cosasm(dr 2]+smacos( ﬂ
=(\‘2sina)'m[sin(a+%m—ﬂ (V2 sina ) 2 sin {E % _

S~

4

» 6.8. USE OF EXPONENTIAL SERIES

The following are important resuits for complex z :

2 3 2

) ezr—l+z+z—+% adinf. (i) e ‘—1—z+%—%+ ad inf.
3 5 2

(iii)sinz:z—%-i—%—madinf. (1v) cosz=l—~§'—'+z —...ad inf.
2 R

(v) coshz—l+;+ﬁ+ .ad inf. (vi)sinhz—z+§7+-5—1+ .ad inf.

Method of sutnming up such series which reduce to either of the forms given above is

illustrated below. )
Example 3. Sum the series

2
l—-cosacasﬁ+ws C;(;oﬂﬁ cos’ t;::os 3B ... ad inf.

Solution. Let
3

cos® ot cos 2 _cos” a.cos 3P +
2! 31

cos® o sin 2B B cos sin 3
21 3t

3B

C=1-cosocosB+

S=—cosasinP+

2. 2P 3
o (p, COS” e cos” 0t
C+iS=1l-cosae’+ X — 31

=exp {—cos e} = exp {— cos o (cos P + i sin B)}
= exp {— cos o cos B} [cos (cos o sin ) — i sin (cos & sin B)]
C=exp {— cos o cos B} cos {cos a sin B).

* 6.9. USE OF LOGARITHMIC AND GREGORY'S SERIES

Iflz|<1,butz#-1,

z 7
log(l+z)=z—5+3——...ad.tnf. ()
If|z)< 1, butz# 1,
' Z2 23 inf. .
log(il~2)=- z+2+?...ad.1n ] ' (i)

From (1) and (ii), we have
3 4 6
1og(1+z)+10g(1—z)=~2[2 +"; +56—+ ]

Gregoryls Serwes
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305
and log(l_-t-z)—log(l—z)=2[z+%+’£5-+.,},

Gregory's series 35, if ~1<]z|<1, then
35
-1 Z Z .
=z-"T+... ad inf.
tan  z=2 37 ad. inf.
The method of summing such series is given below.
Example 4. Sum the following series;

1
)] cosa—%co.s' 2a+§cos Ja—...ad. inf.

1
(i) sina~ % sin 200+ 3 sin 30— ...ad. inf.
Solution. Let series (i) and (ii) be denoted by C and S respectively, then
(3 l 24, L 3o _
C+iS=e 2 e+ 3

=log (1 + ) provided €% # l ora# 2n+ 1) ®
2 2 2

; e
= log [:2 cos % e‘(“m] =log (2 cos %) + i%‘ )

o o]
C—log(2cos 2], S~2-

Condition is that o # (2n + 1} 7.
Example 5. Find the sum of the series
3

=log (I +cos ot +isin (x)=log[2 cos-o—t(cosg*+isingﬂ

(i) acosa—%a2c052a+%a cos 30 - ...ad. inf.

2 sin 20t +-;*a3 sin 36t — ...ad. inf,

Solution. Let series (i) and (ii) be denoted by C and § respectively : then

() asina—%a

) 1 .
C+iS=aem—%azezm+§a3e3'°‘—

=log (1 + a¢'®) provided | a | < I, and ae® # - |
=log (1 +acos &+ aisin )
| asind

1 2 -
== +a”+ -
> log [1 +a”+2acos o] +i tan [+ acos

since log (x + iy) = % log (xt+ yz) +itan”’ ii

Equating real and imaginary parts, we get
1 2 1 asinq
== l+a"+ = —_—
2 log [l +a” +2acos a], §=tan 1+ a cos O
Conditions of validity are
(i) |ae|<1,ie |a|< | numerically
and (ii)a is not odd multiple of T when @ = | and even multiple of T when a= - «., i.e.,

ae“#-1.
e TEST YOURSELF-3

Sum the following series :
sin o cos 20 | sin” o cos 30

1. cos o + T + 21 +... ad inf.
2 .
COS &L COS 20t €08~ O COs 3¢t \ ®

2. cos oL+ T +c X + ... ad inf.

. ) | . 1 . .
3. smasmaﬂismzasm2a+—sm30tsm30£—...

3



1

3 sin 20 sin 2B+%sin 3osin 3B + ... ad inf.

4, sinasinf+

n 1 2n 1 3n .
. —+— — -—— —— ,
5 cos3 2::os. 3 +3cos 3 + ... ad inf

3

6. (D ccos(x+iczcos2ot+ic cos 3a + ... ad inf.

2 3
(ii} ccosa—%c20052a+ ... ad inf.
o c
7. csina+—2~sin2(x+?sin3a+...adinf‘
ANSWERS
R 2
1. &MMESE cog (o + sin’ @), 2. & % cos (o + sin 0t cos CL).
.2 .
3 g |—30C | 4, 1 log cosecg—ﬁ—log t.:osa:cEiﬁ . 5. 0
l +sinccos o ’ 2 2 2

6. () - % log (1 =2ccos a + cz) (i) % log {1+ ¢+ 2¢ cos al.
7 tan! ¢ sin g _

) 1—ccos

e 6.10. THE DIFFERENCE METHOD

Sometimes it is easier to sum the series by expressing each term as the difference of two
terms, so that the expressions into successive terms cancel out, leaving only one or two terms. No
particular method can be given for splitting the terms and it generally depends upon the practice
and chance in many cases.

Let T, be the nth term of a series and let it be expressed it the form

T,=Clfin+ )-f(M)]
Then §,=T1+To+...+T, :
=CIAD -A+ A=A+ ... +fn + 1)~ fn)]
=C[fin+1)-A1)I
since the intermediate terms all cancel out.
If series is convergent and sum to infinity is required, we deduce the sum as below :
lim $,= lim (Ar+ 1)-R1)].

n=—ye n—ca

REMARK

i . . -if a )
If a Series is such that its n term is of the form tan™ b then we put

a2z tan  w—tan= ! v = tan | =2,
T,=tan [b] tan. x—tan y=tan L+xy

. x-y=o - N
ie., xy=b—l.} Lo (x+y)=Va f4{f) 1. !
Solving, we get x and y. Then pﬁtfﬁg x=1,2,3,... and adding, we get the required sum.

« SOLVED EXAMPLES

Example 1. Sum the series to n terms . .

o e

-4 -6 +ran_1———8 +
i+34 1+89 1+15.16 7
L 2(n+1)
l+(n+2n(n+1)

-1 Xy

1+xy
x-y=2(n+1), =nln+2){n+1)’
x+y=2{n+ 1)
x=m+2)(n+ 1), y=n(n+1)

Solution, Here 7, =tan

i

=tan ' x—tan 'y =tan

Gregory's Serivy
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Algebra, Trigonometry and Vectors T, = tan” ! [(n+2) (n+ 1)) - tan~ ! [(n+ 1) n).

Now giving valuesof nas 1,2, 3, ... n, we have
Ty=tan '3.2—tan" ' 2.1,
T, =tan" 143 —tan! 3.2,
T;=tan 154 —tan”! 4.3,

T,=tan '{n+2)(n+1)] —tan”' [(n + 1) n].
Adding, we get
Sy=tan ' {(n+2) (n+ 1)} —tan" ' 2.1 =tan” ' (n®+3n+2) —tan ' 2
1 n®+3n - tan” " 0+ 3n _
1+2(n*+3n+2) 2t +6n+5
Example 2. Sum the series

=tan

tan”'—l-—2+ran_l———l——2-+mn'l———2+...+ran_'—-l—-;-
3+3.1+1 3+32+2 C 3+433+3 3+3n+n
Solution, Let T',,=lan_l——1—2 =tan"! —'——l-—z
3+3n+n 1+2+3n+n
=tan"x—tan_l'y=tan' e
1+xy

x—y=1
xy;n2+3n+2,
x+y=V1+4 (i +3n+2) =2n+3.
x=n+2,y=n+l
. T,=tan ' (n+2)—tan " (n + 1).
Putting n=1, 2, 3, ... n and adding, we get
S,=tan""(n+2)—tan"'2.

. -1 1l a1
Example 3. Sum the series tan ! 3 tran 'S vran <+ . nterms.

7 13
Solution: Method 1. The given series can be put in the form

1 2-1 -1 3-2 _1 4-3 -1 (nt1}—n
= + + ...
Sp=tao o ptEn g ten gt e ey,

=(tan”'2-tan”' 1) +(tan” ' 3—tan"'2) +(tan" 4 -tan ' 3)+ ...
+(lan'1(n+l)=tan"n)—tan_l(n+l)—tan_ll

!
n+2
Example 4. Sum the series
sec B sec 20 + sec 28 sec 30 + sec 30 sec 40 + ... 1o n ternis.
|
cosnBeos(n+1)0 :
1 sin @ 1 | sin(nB+8-nB)
“sin®|cosnBcos{n+1)8| sin®|cosnBcos(n+1)6
1 |sin{n+1)8cosnb—cos(n+1)8sinnbd
" sin@ cosnBcos(n+1)6

=tan"

Solution. 7T,=secnbsec(n+1)6=

=cosec O ftan (n + 1) 6 — tan nB).
Putting n=1, 2,3, ..., n and adding.
S, =cosecO[tan(n+ 1) 0 —tan B].

68 Self-Instructional Material



* STUDENT ACTIVITY

1. Sum the series 1—-_1—2+ 14— ...... o,
3.4 5.4
N4l
*tgl et
i -1l -1 1 -1 1
2.  Sum the series tan §+tan ;+tan -1§+ ...... n terms

 TEST YOURSELF-4

Sum the following series :
1. cosec 8+ cosec 28 + casec 228 + ... n terms.

2. tanatan (o + B) + tan (& + B) tan (& + 2P) + tan (ot + 2P) tan (& + 3B) + ... to n terins.

3. tnbtanls2 n2tan? 2 4 22 an L wn? L+ . ton terms.

4, tanzﬁtan28+%tan229tan48+1/22tan248(an89+”.lonterrns‘
5. twn'2+tan ' Z4tan ' 2 +... ton terms |
' 4 9 6 ' '
6. tan".rﬂan’l--—L—antnn_l-——x—Eﬁ-...tonterms.
. 1+12.x 1+23.x
7. cot ' 3+cot ' THcot 13+ +cot” (1 +n+nd)
R )
8. Sum the series X tan 24 )
1 4n°+3

-1 1 -1 1 -1
2

+tan +tan ' ———+ ..
1+1+1° 1+2+2° [+3+3°

10. (@) cot’ ' 2.1 +co™! (22%) +cot™ 2.3%) + ... ad. inf.
Deduce its sum to infinity.

9, tan

. to n terms.

Gregorys Serie
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() an”' — +tan” ' [—= |+ an [ —= 1+ . tan 1.
2 2 2 2
2.1 22 2.3 . 2n

Deduce its sum to infinity.

-2, 3 -1f52, 3 ~1fa2, 3
11. cot (I +4J+cot [2 +4J+cot [3 +4]+....

12.  tan © sec 28 + tan 20 sec 48 + tan 48 sec 80 + ...n terms. '

ANSWERS
8 n—1
1. cota—cot2 8. 2. cot B [tan (& + nf} - tan ] — n.
3. tanB—Z“tan-g- 4, l_ltan2”B-2lanB.
2" VAR
5 tan”! (n+2)+tan ' (n+ l)—tzm']2—lzm'1 1.
6. tan 'nx. 7. tan” ' —2—.
n+2
-1 4n —1 _ -1
8 tan s 9, tan " (n+ 1) —tan L
E‘ -1 _4n )
10. (a) 4 11. tan i3
12. tan 2" 8~ tan 0.
OBJECTIVE EVALUATION
FILL IN THE BLANKS :
1. InC+iSmethod Cisacosineand Sisa ...... series.

2,  The sum of the series cosa+-é~cos 2a+515cos 3¢t ... o8 ...

3. The sum of cosec 6 cosec 20 + cosec 28 cosec 30 + cosec 36 cosec 40 + ... upto n terms is ...

TRUE OR FALSE :
Write T for True and F for False statement :

1. The exponential and binomial series is not convergent. (T/F)
2. The sum of the series is s";hl = 51112}1 ’Za + smah '30& + ... is equal to —;- &% sinh (sinh o)
(T/F)
3. The sum of the infinite series sin8 + sin28 , sin 36 + ... is ¢° sin (sin 6).
1! 2! 3! (T/F)
4. The sum of infinite series 1 + 250 €029 cos30 - o
cos8  cos’® cos’ @ (T/F)

MULTIPLE CHOICE QUESTIONS :
Choose the most appropriate one :
1. C+iS method of finding the sum of these series which invoive :
(a) sine and tangents of multipte of angles
(b} cosine and cotangent of muitiple of angles
(c} sine and cosine of multiple of angles
(d) tangent and cotangent of multiple of angles
(e) None of these.

2, If C + i§ method of finding the sum, the resulting series is a + ar + ar’ + ...to n terms then we
use the formula ;

@ 5,=2=l g5 tll= 5 el =)

) §,= (e} None of these,

a
1-r
3. If in above case the resulting series is a + ar +ar* + ar’ + ... oo, then we use the following

formula to find its sum :
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a
@ S=l—r

4. Sum o infinite terms of the series 1 +

(a) tan© (b) 0
Fill in the Blanks :
. 4cosx—2
1. sine 2. _5 4 cos
True or False :
1.F 2.T 3T 4.F.
Multiple Choice Questions :
1.(c) 2.(c) 3. 4.(

(c)s=“—(l‘;""l
-r

{e) None of these.

cos @ cos 26 C(-)S 30 +

3 3 ..oeis:
cos 0 cos’8 cos’@
(c)cot® (d) sec®  (e) None of these.

ANSWERS

3. cosec 0 {cot @ —cot (n + 1} 0]

Qaa
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UNIT

7

RANK OF A MATRIX

LEARNING OBJECTIVES S

Marices

Sub-Matrix of a Matrix

Rank of a Matrix

Elementary ransformations of a Matrix ¢
Elemenary Matrices

Invariance of Rank Under £-Transformation 7
Normat Form

Equivalence of Matrices

Solved Examples

@ Student Activity

® Summary

@ Test Yourself

, - LEARNING OBJECTIVES S

After going through this unit you will learn :

@ About the Matrices in detail.

@ How to calculate the rank of a given matrices.
@® About the equivalent matrices.

* 7.1. MATRICES

1. Definition :

A set having mn numbers either real or complex, arranged in the form of a rectangular array
in which there are m rows and n columns. This rectangular arrangement is called z matrix of order
m X n which is denoted by [@y),x, Where i=1,2,3,...mandj=1,2,3,...nand a matrix of order
m X n is usually written as

any a2 413 ... a4,

Qy 4dx 4y ... A4y
[@idnxa=| a5 a2 a3 ... a3,

Cmn) Qm2 8m3 -+ Bmn |mxn

7.2. SUB-MATRIX OF A MATRIX

Definition. Let A be a matrix of order m X n, then a matrix which is obtained by leaving
some rows and columns from the given matrix A, is called a submatrix of a matrix A. For example
a1 42 &3 Ay

Let A=|ay ap a4y ay

a3 a4x a3z Q3

Ix4

a; ap 013} oo

Then the matrix B =
a3 Gxn an

"y

is a submatrix of A, which is obtained by leaving second row and fourth column.



If the given matrix A is a square matrix, then a square submatrix of the given matrix is called
Principal submatrix. )

Minors of a Matrix :

Definition. Let A be a matrix of order m X n, then the determmam of every square submatrix
of A is called a minor of A.

* 7.3. RANK OF A MATRIX

i Deﬁmtlol’l{ A positive integer r is said to be the rank of a matrix A if it contains at least one
square submatrix of order r x r whose determinant is non-zero while any square submatrix of 4 of
order (r + 1) X (r + 1) or greater is smgular i.e., having determinant zero. The rank.of a matrix 4 is
denoted by p(A).

It is obvious that the rank r of a matrix of order m X n may at most be equal to the smaller
of the numbers m and #n, but it may be fess.

If the rank of a square matrix A of order n X n is r and r < n, then the matrix A is said to be
singular, on the other hand if r = n, then the matrix is said to be non-singular.
REMARKS

If the rank of a matrix is zero, then matrix is a null matrix.

The rank of every non-zero matrix must be greater than or equal to 1.

The rank of a unit matrix is equal to the order of the unit matrix.-
Echelon form of a Matrix :

Definition. A matrix A (s said to be in Echelon torm :f it satisfies fol.‘owmg conditions :

(i) Every row of A has all its entries zero which occurs below the every row having a non-zero

entry. .
(i) The number of zeros before the first non-zero entry in the same row is less than the number

of zeros in the next row.
REMARK

The rank of a matrix is equal to the number of non-zero rows in Echelen form of the given
matrix.

For example :
0 2 3 5
0 0 3 2f.
0 000

This matrix A is in Echelon form and it has two non-zero rows since rank of A is equal to
the number of non-zero rows. Hence rank of A = 2.

Theorem 1. The rank of the transpose of a matrix is the same as rhar of the original matrix.

Proof. Let us suppose 4 is any matrix and A’ is its transpose and let rank of A = r. This
implies that A contains at least one r-rowed square matrix whose determinant is non-zero, let it be
B. Obviously B’ is a submatrix of A” but we know that det B’ = det B and since det 8 # 0 = det
B’ #0. Thus the rank of A’ 2 r. Now if A contains a (r + 1)-rowed square sub matrix C, then det
C = 0 because rank of A = r. Obviously C”’ is a submatrix of A" and det C’'=det C =0, it-follows
that A’ does not contain (r + |}-rowed square submatrix with non-zero determinant. Hence rank of
A’ £ r and consequently we obtained rank of A’ = rank of A.

» 7.4. ELEMENTARY TRANSFORMATIONS OF A MATRIX

Definition.” A transformation is said to be élementary transformation if it is one of the
Jollowings :
(i) Interchanging of any two rows (or columns).
(ii) Multiplying any row (or column) by any non-zero number.
(iif) Addition of any row to K times the other row, where K is any non-zero number.
REMARKS
If the elementary transformation (or E-transformation) is performed on rows, then it is cal]ed

row-transformation. -
If the E-transformation is performed on column, it is called column- transformation.

o 7.5. ELEMENTARY MATRICES

Definition, A matrix which is obtained by a single E-transformation is catled an elementary
matrix. For example

Let A=

Rank of a Matrix
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0 01 1 00
0 1L 0,]0 1 Ojetc.
1 0 0 |0 O I

Here first £-matrix is obtained from I3 by interchanging C, and C; columns and the second

"E-matrix is obtained by R} = R, + 2R,

REMARKS
All the elementary matrices are non-singular.
Each elementary matrix possesses its inverse.

* 7.6. INVARIANCE OF RANK UNDER E-TRANSFORMATION v

Theorem 2. Elementary transformations (E-transformation) do not change the rank of a
matrix.

Proof. Since we know that E-transformations are of three types. Therefore, we shall prove
this theorem for three cases. ,

Case 1. Interchanging the rows (or columns) does not change the rank.

Let A be a matrix of order m xn of rank r and let B be a matrix obtained from A by
mterchanging the rows R, and R, i.e., by E-transformation R; <> R;. Let the rank of B be s. Then
we shall prove r=3s.

Since rank of A =r. This implies A contains at least one. r-rowed square submatrix with
non-zero determinant let it be R i.e., det R # (. Let us suppose S be the r-rowed square submatrix
of B having the same rows as are in R though these rows may be in different posnmns Then either

detS=detR or detS=-detR

But detR#0 = detS#0

Rank of B>r = s2r. A

Further since the matrix A can aiso be obtained from B by E-transformation R; < R;. Then
we have

rzs. . (2)

Hence from (1) and (2) we conclude that r = 5.

Case IL.  Multiplication of the elements of @ row by a non-zero number does not change the
rank.

Let A be a matrix of order m x n of rank r and let B be a matrix which obtained from A by
E-transformation R; — KR, where X #0 and let rank of B be s. Therefore we shall prove that
s = r. Suppose By is an {r + 1)-rowed square submatrix of B, then these exists Ay of (r + [)-rowed
square submatrix of A such that either

det By =det Ay or det By = K det A,
But rank of A =r this means that every (r+ 1)-rowed square submatrix of A has zero
determinant
[ag =0 =1B,] =0
= Every {r + 1)-rowed square submatrix will have zero determinant
=> Rank of B can not exceed the rank of A

= s<r (1)

Further since the matrix A can also be obtained from B by E-transformation R, — {l] R;.

Thus we have K
r<s. . -..(2)

Hence from (1) and (2) we canclude that

r=s.

CaseIIl. Addition of any row to the product of any number K and other row does not charige
the rank.

Let the rank of a matrix A of order m X n be r and let B is obtained by the E-transtormation
R; — R;+ KR, and let rank of B be 5. Then we shall prove s = r.

Now if Byis an (r + 1)-rowed square submatrix of B, there exists uniqually Ay an (r + 1)-rowed
square submatrix of A.

Since we know that any E-transformation does not change the determinant value. Therefore
if no row of Ay is a part of i™ row of 4, or if two rows of A are the parts of the i™ and ;™ rows
of A, then det By = det A,

Buttherank of A=r = detd;=0 = detB;=0
Now suppose if a row of Ay is a part of i row of A and no row is a part of /" row, then
det Bﬂ =det AU + K det CU
where Cy is an (r + 1)-rowed square submatrix which is obtained from A, by E-transformation
R, > R+ KR;.



Clearly, all the (r + 1) rows of C;y are exactly same as the rows of some {r + 1)-rowed square
submatrix of A, though in some different position. Therefore det Cy is + 1 times det of some
(r + 1)-rowed square submatrix A. But the rank of A is . This implies every (r + 1)-rowed square
submatrix will have zero determinant. - -

detAg=0,det Cy=0 = detBy=0
hence rank of B can not exceed the rank of A
sEr. (D
Further since A can also be obtained from B by E-transformation R; — R; - KR;, therefore we
have -
r<s. : )
From (1) and (2) we conclude that : O
r=s.

* 7.7. NORMAL FORM

Definition. Ifa matrix is reduced to the form Lg _gJ Then this form is called normal form
of the given matrix. 10
Theorem 3. Every matrix of order m x n of rank r can be reduced to the form {6’ 0] bya
finite number of E-transformations, where I, is the unit matrix of order r X r.
Proof. Let A = [ay),,  , be a matrix of order m x n and of rank . If A is a zero matrix, then

its rank is zero and thus A can be written as [g g] .

Let us suppose A is a non-zero-matrix it means that it has at least one of its element non-zero.
- Let this non-zero element be a;= K=+0 _ ' .

Let B be a matrix which is obtained from 4 by E—transformaticfns R, & R;and C, & C;and
whose leading element is K. Again using the E-transformation R, — X R, on B and we get a matrix

C whose leading element becomes 1. Let this matrix C be

1 C C3 ... Cu

Ca Cn Cpn ... Cy

C = C31 C;g C33 C3_.-,
Ci Cz Cus - G|

Now subtracting first column after multiplying by suitable number from remaining columns
of C and subtracting first row after multiplying by suitable number from remaining rows of C. We
therefore obtain a matrix D whose elements of the first row and first column are zero except the
leading etement. Let D be given as

10 0 ... 0
0
D=|0 A
0
mxn
where A | is a matrix of order (m — 1) X (n - 1).

If this matrix A is non-zero matrix, then we shall apply above process on 4,. Since we know
that E-transformation will not effect the first row and first column of D, so that we shall apply
E-transformations on D and there no need to take A, separately. Continuing this process finitely we
obtain a matrix M such that

Iy O
M _(O O].
This implies the matrix M has a rank K. But M is obtained from A by a finite number of

E-transformations and we know that E-transformations do not change the rank, therefore X must
be equal to r.

Hence the matrix A of order m X n of rank r can be reduced to the form [g g] by a finite
number of E-transformations.

Rank of a Matrix
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r

o 0

Corollary 1. The rank of matrix of order m X n is r if it can be reduced to l0 by a
. . o 0
finite number of E-transformations.
Corollary 2. IfA is a matrix of order m X n of rank r, then there exist non-singular matrices

P and Q such that
(I ©
PAQ —(0 0] .

* 7.8. EQUIVALENCE OF MATRICES

Definition. Let A be a matrix of order m X n. If a matrix B of order m X n 15 obtained froi
A by a finite number of E-transformations, then A is called equivalent 10 B. It is denoted by
A ~ B (Read as A is equivalent 1o B).

Theorem. The relation “~" in the set of all m X n matrices is an equivalence relation.

Proof. :

i R'eﬂexivity. If A is a matrix of order m X n, then A is equivalent to A i.e., A ~'A.

(ii) Symmetry. Let A and B be two matrix of order m x # and A ~ B. This implies if B 1s
obtained from A by a finite number of E-transformation, the A can also be obtained from B by a
finite £-transformations. Hence A ~ 4.

(iii) Transitivity. LetA, B, C be three matrices of order m x n and A ~ B, B ~ C. This implies
that of B is obtained from A by a finite number of E-transformations and C is obtained from B by
a finite number of E-transformations, then € can also be obtained from A by a finite number of E-
transformations. Hence A ~ C.

Hence the relation "~" is an equivalence relation.

* SOLVED EXAMPLES

Examples 1. Determine the rank of the following marrices

REMARK
The form [

J of A is also called first canonical form.

123 4 123
(i) 246 8 (GiY{ 345
36912 456
Solution. (i) The square submatrices of the given matrix are
1.1 23 124 1 3 4 23 4
Ay =24 06 |A;=| 248 |A;=(2 6 8[As;=|4 6 8
369 3612 3912 6 9 [2

detA; =1(36-36)+2(18-18)+3(12-12)=0
detA,=1(48-48)+2(24-24)+4(12-12)=0
detA;=1(72-72)+3(24-24)+4 (18 -18)=0
detAy=2(72-72)+3 (48 - 48) +4 (36 - 36) = 0.

Therefore determinant of all square submatrices of the given matrix of order 3 x 3 are zero

so the rank of the given matrix is less than 3. Now the square submatrices of the given matrix of

order 2 x 2 are ) : )
12 13 1 4 23 2 24
241126 ('|28]"|4 ‘_4 136
2
6‘

4
8
26] (28] [46] [48] [638
39|13 12769 |°|612)(9 12|
Obviously the determinant of afl square submatrices of order 2 X 2 are zero. Thus the rank of

(1 a) (23] [24][3 4]

3120°(691°16 12|19 12 |’
the given matrix is less than 2. Since the given matrix is non-zero matrix. Hence the rank of the
given matrix is 1.

| S—|

13
39

d b

1
(i) A=| 3
4

A
N Lh W



detA=1(24-25+2(20-18)+3(15-16)=-1+4-3=-2+2=0.
Therefore the rank 4 # 3

Now the square submatrices of A of order 2 x 2 are 4, :[ 12 ] A ={ L3 }e[c.

34 35J
detA,=4-6=-2%0
Hence the rank A = 2.

Example 2. IfA= . find the rank of A and A,

Solution. Since the matrix A is an Echelon form and there are three non-zero rows. Therefore
rank of A is equal to the number of non-zero rows. Hence rank of 4 = 3.
Next find A°

0100 0100 0010
Az_OOlO 0010¢}_(0001
“|looo1|(o001 | (0000OC

0000 0000 000GGQO

Obviously A7 is an Echelon form and having two non-zero rows. Hence the rank of Ar=2.
Example 3. Use E-transformation to reduce the foh‘owmg matrix A to triangular form and
hence find the rank of A.

8 1 36
A=l 0 3 22
-8 -1 - 34 ,

Solution. Since we have _
8 1 36
A= 0 3 22
-8-1-34

1 1 36 i 113 6

ind o 3 22 b)(C1'_}§C|"‘ 032 2 byR3"')R3+R1.
1-1-34 000 10

This matrix is a triangular matrix (Echelon form) and it contains three non-zero rows, Hence
the rank of A =3.

Example 4. Find two non-singular matrices P and Q such that PAQ is in the normal form
where

A= -1-1
3 1 1
Solution. Since we have
A=LAIL
1 1 1t 100 100
ie., 1-1-1{=|010JA|010 ..
3 1 1 001 001

Now applying E-transformation on the matrix A on the L.H.S. of (1) until A reduced to the
normal form. In this process we apply E-row transformation to pre-factor I3 of R.H.S. of (1) and’
E-column transformation to post-factor Iy of R.H.S. of (1). Now performing R, — R; — Ry,
R3; — Ry—3R,, we get ‘

11 1] 100 100
0-2-2=|-110|4|l010
0-2-2 -301 001
performing C; > G, - C,, C3 > G- C,
1 0 o] 100 1 -1-1
0-2-2|=|-1104l0 1 0
0-2-2]||-301 0 0 1

Rank of a Muir
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i performing R, — — % R,

; -
1 0¢
1 0 0 Lo 1 -1-1
0 1 1= E_EOAO 1 0
0-2-2 0 0 1
-3 OIJ
performing Ry — R; + 2R, )
: 1 00
100 11 1-1-1
011='5—§0A0 1 0
000 0 0 1
-2 -11
L ]
performing Cy; - Cy — G,
1 00
100 11 1-1 0
G010 |= E-EOA 0 1-1
000 0 0 1
-2 -11
L 0o)_
(o OJ_PAQ
1 00
11 i-1 0
where P= 5—-50,Q=0 1 -1
0 0 1
2 -11
Hence rank of A =2,
* STUDENT ACTIVITY ..
1. Determine the rank of the matrix
8 1 36
A= 0 3 22
-8 -1 -3 4
2. Convert the following matrix into normal form and hence find its rank

68 Self-Instructional Materials



SUMMARY

Sub-matrix : A matrix obtained by deleting some rows and columns from the iven matrix is
calied sub-matrix. _

Minor of a Matrix : The determinant of every square sub-matrix of a given matrix is called
a minor of the given matrix.

Rank of matrix : A positive integer r is said to the rank of a matrix A, if it contains at least
one square submatrix of order r X r whose determinant is non-zero while any square submatrix
of A of order (r 1) X {r + 1) or greater is sinular.

Normal form : If the given matrix is reduced to the form ({J’ 8} then this form is called

normal form of the given matrix.

TEST YOURSELF

Determine the rank of the foﬂqwing matrices :

(1 2 3 1 2 3 1 2 -7 5
1. 2 1 of 23 4 5. 3]0 5 o0 8

0 1 2 4 5 6 0 0 0 -8

(1 -1 3 6 .
4 |1 3 -3 -4 5 [1 ‘? ; g}.

5 3 3 11 '

o] 0 2 1 6 1 3 '8 8 0 0 1
p 0 1 -2 1| |42 6 -I g |1 0 8 1
" 1 -1 4 0] "j10 3 9 7 "o 0 1 8

-2 2 8 0 16 4 12 15 0 1 1 8

10. Reduce the following matrix to its Echelon form and find its rank :

1 3 4 5
13 9 12 9
-1 -3 -4 -3

10. Reduce the following matrix to normal from and find its rank :

0 1 3 -1
i 0 1 1
3 1 0 2
i1 -2 0

Rank of a Matrix =~
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11. Change the foliowing matrix A into normal form and find its rank

1 2 -1 4
A=l 2 4 3 5]
-1 =2 6 -7
ANSWERS
1. 2. 2. 1. 3.2, 4.3.5 3 6.2 1.3 8.2.
9, 3 10, 2. 11. 3 '

OBJECTIVE EVALUATION
» FILL IN THE BLANKS :
1. The rank of A and A are ...... .

|tz 3.
2. TherankofA.—[2 4 5]13 ...... .

3. IfAisanon-zero column matrix and B a non-zero row matrix, then rank of (4B) = ...... .
4.  The rank of two equivalent matrix are ...... .

1 2 3
5. Therankofamatrix| 0 1 4 |is...... .

0 0 O

> TRUE OR FALSE :
Write ‘T’ for True and ‘F’ for False statement :

l. If rank A = 3, then the rank of its transpose is 3. (T/F)
0o 1 2 3 - ‘
2. Therankof thematrix| 0 0 |t -1 [is3. : Co
0 0 0 0 ' . (T/F)
a.
3. IfA=| “ |and B=[by b1z ... byl then the rank of AB =1 ‘ (T/F)
Qi l '
4.  If the rank of a square matrix of order n is n - 1, then AdjA #0. - - (1/F)
5.  The rank of a matrix is always greater than or equal to the rank of its.every. submatyix. (7/F)
6. The rank of (4B) 2 rank of A. N (T/F)

MULTIPLE CHOICE QUESTIONS :
Choose the most appropriate one :

1. If the rank of A =[a11 @12 is 2, then rank of[a" a2 }s :

@z A . a1z an

(a 3 ()2 ©1 (d) None of these.
2. If A4 is a null matrix, then its rank is :

(@ 0 {(b) 1 (©)2 (d) None of these.
3. Therank of Igis:

(@ 2 {b) 3 (c)s (d) 6.
4. If A and B are equivalent, and rank A = r, then rank of B is :

(@ r-1 dyr+l {c) r (d) 0.

ANSWERS , A

Fill in the Blanks :
1. Singular 2.1 I.n 4, Vanish 5. Same
True or False :
1.F 2.T 3T 4.F 5T 6. F
Multiple Choice Questions :
1.{b) 2.(a) 3.(d) 4.(c)
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INVERSE OF A MATRIX

LEARNING OBJECTIVES |

@® Inverse of a Marices
@® Adjoint of a Matrix
@® Solved Examples
@ Test Yourseli—1 |
@® Some Important Theorems on Inverse of a Matrix
@® Solved Examples
@ Student Activity
@® Summary
@ Test Yourself-2

LEARNING OBJECTIVES

lafter going through this unit you will learn :
@ How to adjoint of a matrix
@ How to to find the inverse of the given maitix

8.1. INVERSE OF A MATRIX

AB = BA =1, where I is the unit matrix, then B is called the inverse of A.

ie.,

Let A be any square and non-singular matrix. If there exist a matrix B such that

A l=B.

Some Important Theorems :

and

Theorem 1. The inverse of a matrix, if exist is unique.
Proof. Let 4 be any given square matrix.
Let if possible there exist two inverses B and C of A.
Then, by definition of inverse of a matrix, we have
AB=BA =1
AC=CA =1
Now from (1) and (2), we have
AB=AC = B(AB)=B(A()

= (BA)YB=(BA)C
= IB=IC
= B=C.

(D)
(2)

(by associativity)
[using (1)}

Theorem 2. If A and B be two non-singular or invertible matrices of the same order then
AB is also non-singular and

(AB)'=B a1
Proof. Let A and B be two non-singular matrix.

= A 'and B! must exist i.e., A4 =1 and BB~ =g

Therefore  (AB)(B A" H=A BB HA™"
=A(nA™!
=AA" =1

= (ABY(B A )=1

Also Blah@aB=A"14"'4)B
=B luB)
=B 'B-=1

Now from (i} and (ii), we conclude that

(by associativity)
(- BB '=1p

(1)

{by associativity)
¢ AA"'=p

. (ii)

inverse of a Matrix
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@AB) (B A h=B'4A"H@AB) =
= B '47lis the inverse of AB

ie., , By '=B'A"1,
REMARK
»  The result, discussed in theorem 2 is also known as “Reciprocal law for the inverse of the
product™,

» 8.2. ADJOINT OF A MATRIX

Let A = [a;] be a square matrix of order n X r and Cj; be the cofactors of the element a,, in
the determinant of A i.e. | a; |

Cy Cy ... Cy
then adjoint of 4 = Cl! sz . an
Cln Cz,r;
REMARKS
»

Adjoint of a given square matrix can be obtained by transpose the matrix of cofactors.
»  Here, it is clear that the cofactors of the elements of the first row of | a,, | are the elements
of the first column of Adj A.

Some Important Theorems :
Theorem 1. If A = (ay) be a non-singular matrix of order an 1 x n, then
A .(Adj.A)=(Adj.A).A=]|A|.1I,
where I, is an n X n identity matrix.
Proof. Since, we know that AdjA = {C’)
where C,; is the cofactors of ay; in | a; | such that C'y = Cy;.

Now A . (Adj 4) = (ay) (Cj) = [Byl {say)
. n n
where By= T a;Cy= % a;Cy (by using C'j = Cyy)
i=1 i=1 :
={A|ifi=k
=0 if i=k
Therefore, all diagonal terms of A . (Adi. A) are |A and all non- dlagonal elements are zero.
|A] O
0 JA| 0
Now A . (Adj.A)=] O 0 |A|
0 0
1 0 0O 0
0 1 0 0
=jA]|0 0 1 0 =|A|.L (1)
0 0.0 1

Similarly, we can easily prove that
(Adj.A) . A=|A|.L ...(ii}
Now, from (i) and (ii) we conclude that
A.(AdjA)=(AdjA).A=|A|.1

(AdjA) _ _(Adj.A)
= A. A=T
{41 |A]
= A“l=%—l.— (by using I =AA"1=A"14)
= The inverse of A = T’J’T
Theorem 2. If A = [a;] be a non-signals matrix of order n X n matrix, then
|Adj.A|=]A """,

Proof. Since, we know that



|Al.|B|=]|48]
Therefore |A|.|AdjA|=|4.adjA |
4] 0 0 0
0 |4A] 0 ©
=0 0 |a] o
0 0 0 [A]
= (A[.]AdjA (=T[4
Since | A | # 0, therefore divide both sides by { A |, we get.
[Adja|=|a]"""

Theorem 3. If A and B are two non-singular n X n matrices, then
Adj (AB) = (Adj B} . (Adj A).

Proof. Let A and B be two n X n matrices.

We know that A. (adjA)=|A|. 1

= AB) . (AdjAB)=|AB|. L

Now consider (AB) . (Adj B) . (Adj A)
=A.B . AdjB.AdjA
=4 .(B AdjB) . (AdjA)

c(1)

=A.|B|.I.AdjA (- B.AdjB=|B|.D

=A.[B}. Adj.A

=|B| .A.AdjA .

=|B|.|A|.I=}A|.|B|.{

=|AB|.1 ,

- ¢ |AB|=|A].

Now, from (i) and (ii}, we conclude that |
(AB).(AdjAB) = (AB). (Adj B} . (AdjA)

= Adj.(AB)=(Adj.B}. (Adj.A4).

... (i)
|B D

» SOLVED EXAMPLES

11 3
Example 1. Find the adjoint of the matrix A ifA=|0 1 -1
: 20 4
Solution. Here, first we find the cofactors of A such that
1 -1 0 -i
“n=lo 4l:4 Cr="1 4|=‘2
(I : 13
Cis=1y o =72 Cu=-g 4[=’4
13 11
C22= 2 4 ='_2 CZ‘.'!_‘ 2 0(‘=2
1 3)_ 3
C3'_|l __1[— 4 Cyp= 0_1‘—1
IR U
and C33— 0 1 =1.
Therefore, the matrix of the co-factors of A is given by
a4 -2-2
C=|-4 -2 2
-4 1 1
4 -4 -4
= Adj (A) = transpose of C=C'=[{~2 -2
: -2 2 1

Example 2. Find the adjoint of the matrix A = [; - :

5 i[ and verify the following result

Inverse of a Mati iy
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and

A.(Adj.A)=(Adj.A) A=|A|.L
Solution. For the given matrix A, we have

Cn=-5C2=-3,C=-2 and Cn= L.

Therefore, the matrix of cofactors is given by

-5 -3
C'{—z 1

=

Adj (A)=C’=[Z3

5 —
3

Now A. (Ade)=B _g]
2
1

(Adj. A) . A =[:
Also, we have

|A{=

Therefore, we conclude that

5 —

5|

A,(Ade)z(Ade).A:[’“ 0]:-11

0-1

* TEST YOURSELF-1

1

Find the adjoint of the following matrices :

1 2 4 1 0 -1
W[5 7 8 )3 4 5
9 10 12 0 -6 -7
-1 -2 3 (15 7
Gin|-2 21 (iv)|2 31
.4 -5 2. 432 .
(12 3 -1 -2 3
vy |05 0 (vi)|-2 11
243 -4 -5 2
-4 -3 -3 123
(vii)) ‘1 0 1 (vii)[4 5 6
4 4 3 6 79
Verify that the adjoint of a diagonal matrix of order 3 is a diagonal matrix.
123
IfA=[0 50|, find A>-24 + AdjA.
2 43
1 1 1
IfA=[1 2 -3 1, then verify that A (Adj. A)=(AdjA) . A=|A|.L
2 -1 3
ANSWERS
4 16 -12 _ 2 -6 4
1. G| 12 =24 12 (i) | 21 -7 -8
-13 8 -3 -18 6 .4
9 11 -8 '3 11 -16
(iii)[8 -14 -5 (iv)| 0 -26 13
2 -13 -6 -6 17 17
[ 15 6 -15 [7 -11 =5
v) 0-3 0 (vi)| 0 10 -5
~10 0 5 14 3 -5




-4 -3 -3 3 3 -3

(vi)) 1 0 1 (viii)] 0 -9 6
4 4 3 -2 5 -3

20 26 -9

3 012 0

-6 28 14

8.3. SOME IMPORTANT THEOREMS ON INVERSE OF A MATRIX © -

Theorem 1. The necessary and sufficient condition that a square matrix may possess an

inverse is that it be non-singular.

Proof. (i) Necessary Condition. Let A be a n x n matrix, and B is the inverse of A.
Then, we have .
AB=1 = |AB|=|I|
= |A|.|Bl=]I|=1 = |A|#0
= A is non-singular. '
(i) Sufficient Condition. Let A be ann X n matrix, which is non-singﬁlar and there be another

matrix B defined by
_ QA 4] (Adj. A).
Then, we have AB=A [I—ALT . (Adj. A}:[=i.—;-—| (4. Adj. &)
| =l—;—|.|‘4|.1=1.
Similarly, we can find
BA = |A|(Adj A). A-IAl[(Ad_} Ay _A)
ﬁ Alg=t

and

and

Hence, B is the inverse of A.
Theorem 2. The inverse of transpose of a matrix is the transpose of the inverse.
Proof. Let A be the given matrix, whose inverse is A~ 1
Then, we have

AA'=4a"A=1 (D)
Taking transpose of (i), we get

AA~Ty =74y =y

= (A YA =A@y =I (by using (AB) =B'A’ and I' = )
= A’ is invertiable

@y =@ty :
Hence, the inverse of a transpose of a matrix is the transpose of the inverse.
Theorem 3. The inverse of the inverse of a matrix is the mairix itself. -,
Proof. Let A be the given matrix and A~ is the inverse of A.
Also we have -

AL =474 =1 D)
Taking inverse of (i), we get

@aayl=@ =

= (A—l)—lA—l:{A—l)(A—l)—]=(I-l)=1 _
. (by using (Am!i)'1 =B 'A"and ' =1
= @y at=aThay -
= A~!is invertiable.
@y

= the inverse of the inverse of AisA 1tsclf
Theorem 4. If a non-singular matrix A is symmetric, then A~ Yis also symmetric.

Inverse of a Matrix
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Proof. Let A be a non-singular matrix.
Also, let A is symmetric. To show A™ Lis symmetric.
Since A is non-singular = A~ " exist.

= AA=I=T=(AA"Y =(A"YA" (. (ABY=FBA")
= AlA=4a"YaA _ (v A is symmetric => A' = 4)
= A—l=(A—l_)f
= A"} is symmetric.
SOLVED EXAMPLES S :
(3 -2 -1
Example 1, Find the inverse of the matrix A=[-4 | =1
2.0 1
3 -2 -1
Solution. Here, we have |A|=1-4 1 -1 |=1=20
2 06 1

= A is non-singular
= A" ! must exist
Now, find the cofactors of A

] -1 -4 -1 -4 ]
C“‘]o 1=k C”:’I 2 1l=2* C”:I 2 0l='2
-2-1 3 - 3-2
LR R R R S
~2 -1 3 -1 3 -2 '
CM—‘ 1 -1 23, C}l‘_ -4 l|=?‘, C33—‘_4 1|=_5
Therefore, the matrix of the cofactors is given by
¥ 2 =2
C=|2 5 -4
3 7 -5
= Adj. A = Transpose of C=(’
1 2 3
= 2 5 7
~2-4-5
L 2 3
Therefore, 2 5 7
|‘” ~2-4-5
3
Example 2. Find inverse of the matrix A=|-1 0 ~1
. —4 —4 —
Solution. Here, we have
4 3 3
JAl=1-1 0 -1{=-1=0
-4 -4 -3
=» A is non-singular and therefore invertible.
Now we find the cofactors of A.
0 -1 ) -1 -1 -1 0
Cll=|_4 _3|=_4v CT'JZ=_ -4 _'3’=1' C13: —4 _4‘:4
_ 3 31__ 4 3 _ 14 37
|2 2] macam |4 20 com |t 3]s



3 3 4 3
Gui=-lgp|=-3% Cn=- —1—1|=1’ C33‘*|
Therefore, the matrix of the cofactors is given by
-4 1 4
C={-3 0 4
-3 1 3
-4 -3 -3
" = Adj.A= Transposeof C={ 1 O 1
' 4 4 3
. -4 -3 -3 4 3
Now ':%:Tl 1 0 1f=[-1 0-1
| 4 4 3| l-4-4-3
Solved- Examples Based on Second Method :
1 -3 2
Example 3. Fmd the inverse of the matrix A=|2 0 0
1 4 1

Solution. Consider AB =/, where B is the inverse of A.

1 -3 2] 1 00
=[2 ool|B=|010
. 1 41 001
Rz“—iRm - - )
[1 0 0] 1 0.0
~11 -3 2|B1=|0 172 0
(I 41] 0 0 1
Rl(‘—)Rz
' 1 0 o] [o120
~l1 -3 2|Bl=|1 0 0O
1 4 1 0 0 1
Ry~ R,— R, and R; — R; — Ry, we get
-1 0 o 0 1/2 0
-l 0 -3 2|Bl=|1l -1/2 0
10 4 1 0 -1/2 1
Ry -» R, — 2R3, we get
1 00 0 172 0o
~l6 -11 o{[Bl=|1 172 =2
0 41 0 -1/2 1
Rz-e—ﬁkg,wcgct
1 00] 0 172 0 |
~10 1 0 {[B]={-1/11 —1/22 2/1]
04 1 0 -1/2 1
Ry~ Ry—4R;, we get ) ) i
1oo0] 0 172 0
~{0 1 0i[BI=]-1/11 -1/22 2/11
001 4/11 -1/22 3/11
[0 12 0
= B={-1/11 -1/22 2/11
4/11 -7/22 3/11

which is the required inverse of 4.

Inverse of a Matriy
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STUDENT’S ACTIVITY

1.

2,

If A be a non-singular matrix of order n X n, then
A (Adj. AY=Adj. A)A=|A|. I,

where f, is the unit matrix of order n X n.

O W
—_ O N

l
Find the inverse of the matrix A =| 2
1

SUMMARY

For square non-singﬁ]ar matrix A,
A{Adj. A) (Adj. A) = |A]"™"
For any non-singular matrix of order n x n,
, |Adj.Aj=|A[""
Adj (AB) = (Adj. B) (Adj. 4)
Inverse of a matrix : A~ :ﬁfj‘ﬁﬂl
4B =" 4"
TR REYY



TEST YOURSELF-2

1. Find the inverse of the following matrices : -

24 3 o120 t 21 ) 111
1 [0 1 1 i)y |13 1 2 Ggi)ll3 2 3 av)|2 2 3
2 2 002 112 2 49
(1 2 3 (1 2 3 12 3] (2 2 .2
(v) 12 45 (vi)y|1 3 5| vi)|0 5§ O (vii)|2 5 5
356 15 12 2073 2 5 11
T 2 4 T2 -1 ‘
(x}|5 7 8 x)y|-1 1 2
9 10 12 2 -1 1
1 -11
IfA=|2 -1 0 |then show thatA’=A""
1 00
Find the inverse of
cos® -sinB 0 1 1 1 .
() A= smB cosB 0 (i) A=|1 w w?* |, where wis the cube roots of unity.
1w w
010 .
Show that the matrix A =] 1 0 O |is its own inverse.
001

If(1+:‘B=[_E E},show that (oz+i[3)’1=[__gL E

.. | o atib ctid | 2 .2, 3, 2
ItA—[_C_H.d a—ib]lfa +b°+c+d =1,

c—id a+ib

Then show that A™'= [
Prove that | Adj (Adj A) |=| A [~ V' if | A | # 0 is any n X n matrix.

a-—ib —~c—£di|

ANSWERS

| 3 -10 -1 1"0—3 -3
@ z|-2 8 2 @) 5| 6 -2 -1
2 -4 =2 : -3 1 5

[—1/4 3/4 -1 l'—s 5 -1
Gii)| 374 -1/4 0 (v) g} 15 -8 |
-1/4 -1/4 1 -6 3 0

1 -3 2 1173 -3 1/3

™ [-3 3 -1 wiy|-773 3 =273

2 -1 0 2/3 -1 1/3

([ 15 -6 -15 5/6 —1/3 0
wip-35| 0 -3 0 wii)|[-1/73 172 -1/6
-10 4 5 0 -1/6 1/6
[—1/6 -2/3 172 (3 -! i
ix)| - 172 1 -1/2 ® | 5 3 -1
13724 ~1/3 1/8 -1 5
[ cos® sin® O 0 1,;4 -1/2 ]
@) |-sin® cos® O i) |[-1 3¢ 2
0 0 1 . 0 1/4 172

Inverse of o Matria
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> FILL IN THE BLANKS :

1.  Non-square matrix has ......... inverse.
2. A matrix 4 is said to be singular if [A |= ...
3. A matrix is said to be ......... if it is square and non-singular.

4. If{A|#0, then matrix is said to be ......
» TRUE OR FALSE :

Write T for true and F for false statement :

1. If A, B are any two n X n matrices such that BA = 0, where 0 is the null matrix, then at least -

one of them is non-singular. (T/F)
2. The inverse of an orthogonal matrix is not necessarily orthogonal. (T/F)
3.  Adj. (AB)=Adj (4). Adj. (B) : (T/F)
4.  The inverse of matrix A exist if A is singular (T/F)

> MULTIPLE CHOICE QUESTIONS :
Choose the most appropriate one :
1.  The transpose of the matrix of cofactors is known as :

(a) Inverse (b} Adjoint (c} Transpose {d) None of these.
2.  For the inverse of a matrix A it is necessary that A must be :
(a) Singular © {b) Non-singular (¢) Diagonal (d) None of these.
3.  The (Adj.A)/| A |is known as : : :
@ A' - (ma? (04 (d) None of these.
| ANSWERS.
Fill in the Blanks : ,
1. no 2.0 3. Invertible 4. Non-singular
True or False :

1I.T 2.F 3T - 4.F
Multiple Choice Questions :
1.(b) 2.{(b) 3. (a)

0Qa

[ 'Jf
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UNTIT

9

APPLICATION OF MATRIX

LEARNING OBJECTIVES

Homageneous Linear Equations

Nature of the Solution of the Equaticn AX=0
Solved Example

@ Test Yourseli—1

Non-Homogeneous Equations

-Condition for Consistency

Solved Examples

@ Student Activity

® Summary

@ Test Yourseli-2

LEARNING OBJECTIVES C

After going through this unit you witl learn :
® How to find the solution of ﬂ_:IB system of linear equations using matrix method.

» 9.1. HOMOGENEOUS LINEAR EQUATIONS

Let us consider a system of linear homogeneous equations as follows :

a1 X, +a|212+ ‘ee +a1,,x,,=0
ayx +apx+ ... +apx, =0 (0

X+ QuaXp F ..+ Appxy =0

These equations are m equations in n unknowns. Any set of numbers x,, x3, ... x, that satisties
all the equations (1) is called a solution of (1).

Trivial solution. The solution x; =0, x, =0, ... x,, = 0 of the equations (1) are called trivial
solution.

Non-trival solution. Any other solution, if it exists, is called a non-trivial solution of
equations (1).

Let the coefficient matrix be

[ay ap ... ap,
a a .. @&
A= :21 22 2n
[8ml Cm2 - Cmn|pxp
X3 0
X2 0
and X=| x ,0=0
_xn nx1 0 mx 1

Then the equations (1) can also be written as
AX=0. - (2)
This equation (2) is called a matrix eguation.
Theorem. If X, and X; are two non-trivial solutions of (2), then k| X; + k;X3 is also a solution
of (2), where k| and k, are any arbitrary numbers.



Proof. Since the equation (2) is
AX=0 and AX;=0,AX;=0 are given
Now consider, _
Ak Xy + kX3) = ki(AX)) + kx{AX3) = k(0) + ky(0) = 0.
Hence kX + kX, is the solution of (2).

* 9.2. NATURE OF THE SOLUTION OF THE EQUATION AX=0

Since AX =0 is a matrix equation of a system of m homogencous linéar equations in n
unknowns and A is a coefficients matrix of order m X n. Let the rank of A be r. Then obviously 7
can not be greater than n. So that either r is n or r is less than a. Therefore these are some cases.

Cnsel. Ifr = n, then the equation AX = 0 will have no linearly mdcpcndenl solution. So in
this case only trivial solution will exist.

(Meerut 2002)

Casell. Ifr < n, then there will be (n = ) lincarly independent solution of AX = 0 and thus in this
case we shall have infinite solutions.

Case III. Suppose the number of equations are less than number of unknowns i.e.. m<n
and since r < m, then obviously r < a1 thus in this case & non-zero solution will exist. Therefore the
equation AX = 0 will have infinite solution.

« SOLVED EXAMPLES

Example 1. Find all the solution of the faf!womg sy.s'fem of hnear homogenous equanons
~2y+z-w=0 '
x+y-2:43w=0
dx+y-5:+8w=0
Sx=-Ty+2z~w=0.
Solution. The coefficients matrix is given by
1 =2 1 =1
1 1 -2 3
A=lg 1 -5 8f
5 -7 2 -1

Change this matrix into Echelon form as foliow :
performing RI - Rz - R[. R], -3 R3 - 4Rl and R.; -3 R4 - SR]

1 =2 1 -1 -
{0 3 -3 4
o 9 -9 12
0 3 -3 4
performing R2—>%Rz
1 =2 1 -1
4
_ 0 1 -1 3
¢ 9 -9 12
¢ 3 -3 4

performing Ry = Ry~ 9Ry, Ry 2 R- 3R,

1 =2 I =1
4

.-0 1 -1 3.
0O 0 0 0
o 0 o0 0

This is an Echelon form and having two non-zero rows. Hence rank of A = 2. Therefore the given
system of equation is equivalent to

Application of Matrices
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" or
Let
From (25
and from (1)

I 5 4
Hence solution is x=¢;~ S Cny=¢ ~5€12=¢,W=0;

1 -2 1 -1
o 1 -1 A7*
31y leo
0 0 0 o0f|¢
w
LO 0 0 0

3
I=C,W=0Cy
)’=C1“if~‘

3 2

_ 5

x—61—§C2

3 3

where ¢; and ¢, are arbitrary numbers.

()

..{2)

* TEST YOURSELF-1

Find the solutions of the following system of linear homogeneous equafions :

1.  x+2y+3z=0
Ix+4y+4z=0

Tx+ 10y + 122 =0.
3 x+y+z=0

2x+Sy+7z=0
2x - Sy + 3z=0.

e lx:d:y:z 2.x=0:3}:z=w 3-x=0=)’:Z

2, x+y—-3z+2w=0

3Ax—2y+z-4w=0
—4x+y-3z+w=0.

4 2x—3y+z=0
x+2y—-3z=0
dx—-y—2z=0.

ANSWERS

4. x=0=y=¢

‘| Show that the only real values of A for which the following equations have non-zero solution is 6
Tix+2y+37=2x, 3x+ ly+22=Ay, 2x +3y+z=Az. ’

| * - 9.3. NON-HOMOGENEOUS EQUATIONS

Let us consider a system of equations which are non-homogeneous as follows :

aux + 815t .t a5, = b, ]l
ayx taptt ... e, =b;

These are m equations in n unknowns. Let

[ay a4 .., &y

A= a:gl ay ... Gy,
_aml Am2 -+ Gmp mxn
xq b

x=|%2| B=|%
_x” nx1 b mx1

Then the system of equations (1} can also be written as

This equation is called matrix equation. If x;, x,
then (x;, X, ... X,) is called the solution of (2}.

AX=B8B.

. (2)

... X, simultaneously satisfy the equation (2),



Consistency and inconsistency. When there will exist one or more than one solution of the
equation AX = B. Then the equations are said to be consistent otherwise said to be inconsistent.
Augmented matrix. The matrix of the type

a, Qz ... g b

ay 4y ... Ay, bz
[4B1=|"*

Am Qm2 -~ Qg bm

is called the Augmented matrix of the equations.

* 9.4. CONDITION FOR CONSISTENCY

Theorem. The equation AX = B is consistent if and only if the rank of A and the rank of
the augmented matrix [A | B] are same.
Proof. Since the equation is
AX=B. 1)
The matrix A can be written as
A= [Clr CZ' Cn]
where C), C, ... C, are column vectors. Then the equation (1) can be written as

x
*2
[C1, Gy . G| *F (=B
%,
ar X1C1+XZC2+ ...+I,,C”=B (2)

Suppose the rank of A is 7, then 4 has r linearly independent columns. Let these columns be
Cy, Cy, ... C, and these Cy, G, ... C, are linearly independent and remaining (n — r) columns are
linear combination of C,, C,, ... C,.

Necessary condition. Suppose the equations are consistent, there must exist &, k,, ... &,
such that

klcl +k2C2+ --.+kHC"=B. N ...(3)

But C,.1,Crs2 ... Cyis a linear combination of Cy, Cy, ... C,, then from (2) it is obvious
that B is also a linear combination of Cy, C,, ... C, and thus [A | B] has the rank r. Hence the rank
of A is same as the rank of [A | B].

Sufficient condition, Suppose rank A = rank [4 | B] = r. Thisimplies that [A4 | B] has  linearly
independent columns. But Cy, Cy, ... C, of [A | B] are already linearly independent. Thus B can be
expressed as :

' B=k1C1 +k2€2+ +k,C, ...(4)
where k|, k», ... k, are scalars.

Now, equation {4) becomes

B=kCi+kCo+ ... +£C,+0.Cop +...+0.C,. ...(5)
~ Comparing (2) and (5), we get xy = Kk, x3 =k, ... x, =kn X, =0, ... x, = 0 and these values
of x;, x5 ... x, are the solution of AX = B . Hence the equations are consistent.
REMARKS '

> The n equations in n unkrowns have a unique solution.

» Ifrank of A‘.< rank of [4 | B}, then there is no solution.
» If r=mn, then there will be a unique solution.
» If r <n, then (n — r) variables can be assigned arbitrary values. Thus there will be infinite
_ solution and (n - r + 1) solutions will be lineraly independent.
» If m<nand r<m<n, then equations will have infinite solutions.
|

¢« SOLVED EXAMPLES

Examples 1. Show that the equations
x+2y-z2=3,3x-y+2z=1,2x-2y+32=2, x-y+z=—-1
are consistent and solve them.

Application of Matrices
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Solution. The given equations can be written as

1 2 -1 X 3
g :; g y I= é ie. AX=B.
1 -1 1{L®] | -1
Therefore Augmented matrix is
1 2 -1 3
3 1 2 i
UiBl=3 _, 3 2
1 -1 1 -1
pcrfonninng—)Rz—3R1,R3—-+R3—2R1,R4—>R4—R1
1 2 -1 ¢ 3]
0 -7 5 : -8
‘wcget [A]B]~ 0 -6 5 : -4
0 -3 2 : —4
performing R; —> Ry — Ry _
1 2 -1 : 3
o -1 0 : -4
0 -6 5 1 -4
0 -3 2 : -4
performing R3~—>R3—6R_, Ry— Ry— 3R, A
1 2 -1 ¢ 3
~ 0 '&31111‘*5';{9‘-5 ~4
00 i 20
o0 "0 2 : 8
| d
performing R3—>%R3,R44—>%R4
1 2 -1 3]
_lo -1 0 -4
0 0 1 4
0 0 l 4
pcrforming R4—)R4—R3
1 2 -1 ¢ 3]
o -1 o0 -4
0 0 1 41°
0 0 0 : 0

This is an Echelon form and having three non-zero rows. Thus rank A =rank of [4 | B} =3

Therefore the equations are consistent

I 2 -1 . 3
and 0 -1 o) 7 |-4|

0 0 I 4

0 0o ofL? 0

- x+2y—-2=3,-y=-4,z=4
Hence the solution is
x=-1,y=4,z=4. .

Example 2. Solve the following equations by matrix method :

x-2y+3z=6

Ix+y-4z=-7

5x-3y+2z=35.. .
Solution. The given equations can be written as

1 -2 3)lx 6

3 1 -4 y|=t-7

5 -3 2|z 5

ie., AX=8B.



Augmented matrix is

1 -2 3 6
[A}B1=[3 1 -4 @ -7|.
s -3 2 : 5
petforming Ry & R, — 3R}, R; — Ry — 5R;, we get
1 -2 3 6 L
(A|B]~|0 7 -13 : -25
0 7 -13 : =125
performing Ry 2R3 — R,
I -2 3 6
~l0 7 -13 ¢ -25|.
0 0 0 : 0

This is an Echelon form and having two non-zero rows and rank A = rank [A | B]1=2. Thus
the equations are consistant.

1 -2 3 x 6
0 7 13|y |=} —-25
0 0 0|l z 5 -
ie., x—2y+3z=6
Fy—13z=-25
Let z=c¢, then
25,13
7 7 X
x=—§+§c '
77
Hence the solution is
x=—§+§c y=—§+£c z=¢
7 77 7 77

where ¢ is an arbitrary constant.
Example 3. Investigate for whar values of A, |\ the simultaneous equations
X+y+z=6,x+2y+32=10,x+2y+Az=H
have (i) No solution (ii) a unique solution (iii) an infinite solutions.
Solution. The given equations can be written as
6

1 11 x
1 2 3| {y|={10
1 2 Al |z il
ie., AX=8B
Therefore Augmented matrix is
' 111 : 6
A|By=|1 2 3 : 10
1 2 A p
performing R; — R, = Ry, Ry 2:R5;z R, we get
1 1 : 6
~10 1 2 : 4

01 A-1 : u-6

performing Ry — Ry —

11 1 : 6
~10 1 2 : 4
0 0 A-3 : u-10

If A # 3, then rank A = rank (A | By =3. Thus in this case a unique solution exists.
If A = 3 and pg # 10, then rank A = 2, rank (A | B) is 3. Thus rank A # rank’(4 { B): Hence in

this.case equations are inconsistent.
If A =3 and p= 10, then rank 4 = rank (4 | B) = 2. Thus in this case mﬁmte solutions exist.

Application of Matrices
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3. Examine if the system of equations x+y+4z=6,3x+2y—-2z=95x+y+2z=13 is
consistent. Find also the solutions if exists.
4.  For what values of A wiil the following equations fail to have a unique solution
Ix—y+Az=1,2x+y+z=2,x+2y-Az=-1L
Will the equations have any solutions for these values of A ?
5. Solve2x+3y+z=9,x+2y+32=6,3x+y+2z=8.
Solve the following equations by matrix method :
6. 'Show that the following equations are inconsistent _
. 2x-y+z=4,3x-y+z=6,4dx~y+2z=7,-x+y—-2=9.
7.  Show that the equations are inconsistent
x—4y+7z=14,3x+ 8y -2z =13, 7x - 8y + 26z =35.
8.  Prove that the following system of equations have a unique solution
Sx+3y+14z=4,y+2z=1,x-y+27=0.
9.  Solve the equations by matrix method
x+y+z2=92x+5y+72=52,2x+y-z2=0.

ANSWERS
1. x=1l,y=2,z=3 2. x=2¢-1,y=3-2¢,2=¢
3, Consistent; x = 2, y=2,z= % 4. l #—- % solutton is unique; A = — -;-, no solution.
35 29 5

S, ARET LRI kT 9. x=1,y=3,z=4.
OBJECTIVE EVALUATION
> FILL IN THE BLANKS :
1.  The matrix equation AX = 0 is a system of linear ...... equatjons.

2, If the rank of A = r, then the number of linearly independent solutions of m homogeneous
equation in r variables is ...... .

3.  IfX, and X, are the solutions of AX =0, then ...... is aiso a solution of AX = 0.

» TRUE OR FALSE :

Write ‘T’ for True and ‘F’ for False statement :

1. If X, is a solution of AX = 0, then 2X, is not a solution of AX = 0. (T/F)
2, If the rank A is less than the number of unknowns, then there will infinite solution of

AX =0. " (T/F)
3.  The equation AX = B are inconsistent if rank A # rank (4 | B). (T/F)

» MULTIPLE CHOICE QUESTIONS :
Choose the most appropriate one
1.  The matrix equation AX = 0 represents :
(a) non-homogeneous linear equations {(b) homogeneous linear equations -
{¢) homogeneous-non linear equations (d) None of these.
2. If X, and X, are the solution of AX =0, then which one is also the solution of AX =0 :

@ X +X; . D@ +X)  ©Xi+X (d) X,/ Xz
3,  If the equations AX = B are consistent and rank of (A | B) =4, then rank of 4 is :
(a) 4 (b) 8 (c)3 (@2
ANSWERS

Fill in the Blanks :

LCX +CX; 2. rank (A |B) 3. Inconsistent
True or False :

LF 2T 3.T
Multiple Choice Questions :

L) 2.() 3@

QU
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* STUDENT ACTIVITY

1. Find the solution of

x+y+z=0
2x+5y+7z=0
2x-5y+3z=0

2. Solve the following equations by matrix method :
x+2y+3z+11
3Ix+y 2z 11
2x+3y+z=11

SUMMARY

»  AX=0 s the matrix equation of system of homogeneous equations.

» If X, and X, are two non-trivial solutionsof AX =0, then & X + k>X; is also its solution, where
k) and k; are any arbitrary numbers.

» If ris the rank of the matrix 4 in AX =0, then we have following conclusions :
(i} If r = n, then AX =0 has only trivial solution.
(ti) If r <n, then AX = O has infinitely many sclutions.

=  AX =B is the metrix equation of the system of non-homogeneous equations.

o If ris the rank of the matrix A of order # X n in AX = B, then we have following conclusions .
(1) If r = n, then AX = B will have unique sclution.
(ii) If r <n, then AX = B will have infinitely many solutions.
(iii) If A is the matrix of order m X n with m < r and r < m < n, then AX = B will have infinitely
many solutions,

TEST YOURSELF-2

1.  Use matrix method to solve the equations
2x-y+3z=9 x+y+z=0,x—-y+z=2.
2. Show that the equations x—-3y—8z+10=0,3x+y-4z=0,2x+5y+6z—-13=0 are
consistent and solve them.
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(an =A)xy+apx+ ... +a;,x,=0
2 Xy +(512'3_x).1'2+ +aznxn=0

..(3)

Ay +apXa+ ...+t — AN x,=0

Therefore, the coefficient matrnx is

ay—A ap ay,

a ayy — A a
(A=-AD)= 21 22 2n

an . Qpp

b 19
nxn

For non-zero solution, the rank of the matrix (A —A F) must be less than the number of .

unknowns i.e., the rank of (A — JJ ) must be less than n and for this the matrix (4 —AJ ) must be

singular i.e., det (A —AJ ) =0,

ie., ta-n =0 (Y
This equation (4) is called the characteristic equation of the matrix A. Infact this equation

is an equation of degree n in A so it has n roots. These roots are called characteristic roots or eigen

values of A and the set cof eigen values are called spectrum of A.

Some Important Theorems :

Theorem 1. A is ¢ characteristic root of « matrix A if and only if there exists a non-zere
vector X such that -
=AX. .

Proof. Suppose A is a characteristic root of the matrix A. This implies A is a root of the
equation

lA-M| =0 D)

Thus from (1} it is concluded that the matrix A — Af is a singular matrix. Therefore the rank
of the matrix (4 ~ Af) is less than the number of unknowns so there must exists a non-zero solutions
of the equation. :

A-AYX=0 ie, AX=MAX.
Conversely. suppose there exists a non-zero solution X # 0 such that
=2X le, (A-ADX=0. : (2
Since the matrix equation (2) has a non-zero solution thus the matrix A — Af is singular. That

la-M ]| =0
Hence, X is a characteristic root of a matrix A.
Theorem 2. [f X is a characteristic vector of a matrix A, then X cannot correspond to more
than one charactenstic values of A. .

Proof. Let us suppose X is a characteristic vector of a matrix A carresponding to two

characteristic root A, and A, of A. We have to prove that A, = A,. Since X is characteristic vector
corresponding to A; and A,, then
AX =M X LD
and AX =2 X, 2
From (1) and (2), we get
7L|X=:'\QX or (7\4 —)\.z)XZO

or A —hy=0 - X#0)
or A=A,

Hence proved.

Theorem 3. If X is an ergenvecmr of A corresponding to e:genvafue A, then KX is also an
eigenvector of A corresponding to same eigenvalue A, where K is any non-zero number.  +

Proof. Since X is an eigenvector corresponding to the eigenvalue A of 4, then

AX = AX A
suppose K is any non-zero number, then XX # 0 T .
A (KX)=KAX)=K(AX) [from (1)]
= MKX) Q. S )
ie., A (KX) = MKX).

This implies that KX is also an eigenvector corresponding to the same eigenvalue A of A.

» 10.3. CAYLEY-HAMILTON’S THEOREM

Statement. Every square matrix satisfies its characteristic equation

Eigenvalues and Eigenvectors
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UNIT

10

EIGENVALUES AND EIGENVECTORS
~ LEARNING OBJECTIVES | '

Linear Dependence and Independence of Vectors
Eigenvalues and Eigenvectors

Cayley-Hamilton's Theorem

Solved Examples

@ Student Activity

@® Summary

@ Test Yourself

. LEARNING OBJECTIVES .

After going through this unit you will learn :
@ How to find the eigen values and eigen veciors of a given vectors.
@ How to verify Cayley-Hamilton’s Theorem.

* 10.1. LINEAR DEPENDENCE AND INDEPENDENCE OF VECTORS

Some General Definitions :

Definition. Any ordered n-tuples of numbers is called an n-vector. Let x;, x3, ... X, be n
numbers and be placed in fixed position. Then the ordered n-tuples (x,x,, ... x,) is called an
n-vector. It is denoted by X =(x), X3, ... X,). These n numbers X, x,, ... x, are also called the
components of X, )

Defimition. A set of r vectors Xy, X3, ... X, is said to be linearly dependent if there must
exist r scalars a;, 4, ... a, not all zero such that- '

a X, +aXo+ .+, X, =0 )
where X, X3, ... X, are all n-vectors and O is also n-vector whose components are all zero.”
_ Definition. A set of 7 vectors Xy, X3, ... X, is said to be linearly independent if we have a
relation

aX;t+aXp+ . tae X, =0
for whicha, =0=a,=...=a,
Definition. A vector X is said to be a linear combination of X, X, ... X, if X can be
expressed as
X=a,X,+8,X;+... +alX,
where ay, a;, a3, ... @, are any numbers.

« 10.2. EIGENVALUES AND EIGENVECTORS

Let A ={a;l,, be a given square matrix of order n X n and let
AX=AX (D
be a vector equation. It is obvious that X =0 is a trival solution of (1) for all values of A. A

"value of A for which the vector equation (1) has a non-zero solution i.e., X # 0, is called eigen value

of the matrix A. This eigen value is also known as characteristic value and the corresponding
non-zero solution X # 0 is called a eigen vector or characteristic vector.
The equation (1) can also be written as
AX=MX or A-MX=0 (2
where I is a unit matrix of order n X n. Now the equation (2) represents a matrix equatton of
homogeneous linear equation in n unknowns. Let these homogeneous equations be given as



Example 2, Find the characteristic roots and the corresponding characteristic vectors of the

8§ -6 2
matrixA=|-6 7 —4|.
2 -4 3
Solution. The characteristic equation of the matrix A is given by
la-ai=0
8-A -6 2
-6 7-2 -4 |=0 "
2 ~4 3=}
or S B-NT-NGB-A)-16)-6[-8+6(3-A)+2[24-2(7T-N)]=0
or B-AT-AEB-2)-16B-A)+48-363-A+48-4(7~-A)=0
or 168 = 1014 + 18A% = A ~ 128 + 161 + 48 — 108 + 36A + 48 — 28 + 4A =0
or A - 1802 +45L=0 or MA-3)(A-15)=0
or A=0,3,15.

Hence the characteristic roots are 0, 3, 15.
Determination of Eigenvectors :

X
Let X =| x; | be an eigenvector corresponding to A = 0, then we have
X3
AX=)X
8 -6 2% X 0
or -6 7 -4 x=0.]x(=!0
2 -4 3 IES X3 0

performing R; «——> R|

2 -4 3 xl [0
_6 7 -4 X3 |= 0
8 -6 EJ X3 0
performing Ry = Ry + 3R, Ry - R3 - 4R,
(2 -4 3Nxa | (o
0 -5 5 X2 |= 0
0 10 -10 | x; 0

performing R; — R, + 2R,

2 =4 3% 0
0 -5 § X 1= q
0 0 0f[x| (0O

This is an Echelon form. Therefore rank of this matrix is 2. Thus there will be 3~2=1,
non-zero linearly independent solution obtained by the equations
2x)~4x7+3x3=0 and -—5x;+5x;=0.

From tf’lesc equations, we have x, = x; and assume x, = x, = ] then from 2x; — 4x, + 3x; =0,

we get x, = E

Thus X = is a characteristic vector corresponding to A =0.

= D e

Characteristic Vector Corresponding to A = 3.
The characteristic vector carresponding A = 3 is given by the non-zero solution of the equation

(A-3DX=0
8§ -6 2|xn X
or -6 7 -4 b %) =3 X,
2 -4 3| X3

Eigen Valuey and Eigen Yectors
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or Let A be a square matrix of order n and the characteristic eguanon of A is
lA-M =) WV +al vad 2+ +a,  A+a,]=0
then its matrix equation
X"+aX" '+a X" +.. . +a,_X+al=0
is satisfied by the matrix X =A
ie., A"+aA" v a A" M va,_ Atal=0
where I is a unit matrix of order n and 0 is null matrix of order n.
Proof. Since A and f are two square matrix of order # and A is any characteristic root of
A, then the matrix (4 — Af) is also a square matrix of order n and whose elements are at most of
degree one in A. Therefore Adj(A —AI) will have its elements a polynomials in A of degree
n— 1 or less and thus Adj (4 — A7) can be expressed as a matrix palynomial in A as tollows
: Adj(A-A)=BA "' +BA 4 . +B, oA+ B,_, (D
where By, By, ... B,_, are the square matrices of order n.
Since we know that 4 (Adjd)= ] A | I,
(A-MYAGA-A)=1A-AL LT
or A-MYAGA-M)=1)"WN+ar" " +.. +a,. A +a,l L ()
Multiplying both sides of (1) by (4 — AT), we get
A-ADAdi(A-AD=(A-M) [BA" ' +BA 2+ 4B, A +B,_\ .3
Prom (2) and (3), we get
A-AD[BA" "' +B A" 4. +B,_A+B,_
=1 A el e, At a) L
Now comparing the coefficients of like power of A, we get

~IBy=(- 1)1
ABy—-1By=(-ayd |
AB, - 1By=(-1aif | )

AB,_,~IB, 3=(-1)a, I
AB,_=(-1Ya,] |

premultiplying first, second, third etc. equations of (4) by A", 4"~ 1,472 etc. respectively and
then adding, we get
—A"By+ A"By A" B v A T B+ == 1) A 40 A vt
or O0=(-1)"fA"+@A" '+ ... +a,]
or A"+a A" T+ e d=0. .(3)
Determination of A™". If the matrix A4 is non-singular i.e., |A| #0 and provided a, #0
because |A| = (- 1Ya,. Then A™ ! exists. Now from (5), we have

A"+a A" T+ rad=0
prcmultlplymg this equation by A , we get
© A" 4 qA" e ta, I ta AT .

or A =——-[Av"_l+a1A"'2+...+a,,_11.
a, . .

* SOLVED EXAMPLES

1 23
Example 1. Determine the characteristic roots of the matrix A={ 0 ~4 2
T . | . 6 07
Solution. The characteristic equation of 4 is given by’
| la-u|=
11-A 2 3

0 -4-x 2 (=0
0 0 7-x

or (1-A (-4~ (T-A)=0o0r A=-4,1,7.



1 -2 —-61*" 0
0 -20 -40 |l x» |=| 0.
¢ 0 0l xs 0

The rank of above coefficient matrix is 2. Therefore there will be 3 — 2 = 1 non-zero solution
which is given by h
X —2%-6x3=0
- 2012 - 4013 = 0.
From second equation we get x, =—2x,;. Let us assume x3 =-1, x, =2. Then from first
equation, we get

x=-2.
-2
Hence the eigenvector X =| 2
-1
i 0 2
Example 3. Obtain the characteristic equation of the matrix A=| 0 2 1 |and verify that
2 03
it is satisfied by A and hence find its inverse.
Solution The characteristic equation of A is given by
IA-M‘LO
1-4 0 2
or 0 2-A 1=0
2 0 3-A
or 1-A[2-MB-A-01+2[0-2(2~A)]=0
or (1-M2-A@B-2)-42-1)=0
or 2-MA-AB-A)-4=0 or 2-AR-4r-1)=0
or D2-BA-2-A+4A7+A=0 or A>-6r2+TA+2=0.
This is the required characteristic equation of 4. '
Next we have to show that
AP —64%+74 +20=0 _
1 0 211 0 2 5 0 8
A’=j0 2 1|0 2 1|=12 4 5 :
2 0 3|2 0 3 8§ 0 13
5 0 81 0 2 21 0 34
and A=A A={2 4 5|0 2 1|=[12 8 23
8 0 1342 ¢ 3 34 0 55

Ad-6A%+7A + 21

21 0 34 5
12 8 23|-6|2
34 0 55 8 0 13 2

2
1
3
[21-30 0-0 34-48 9 0 14
7
3

=|12-12 8-24 23-301+| 0 16
34-48 0-0 55-78 14 0 2

[-9+9 0 -14+141 [0 0 0 _
= 0 -16+16- -7+7 0 0 0|=0. (D)

-14+14 0 -23+23 000

Hence AY-64A%+74 +21=0.

Determination of A,

Since | a|=-2%0.

Premuitiplying (1) by A~ ' we get
A -6A+TI+247 =0

- A"=—%[A2-6A+7I]
s o s 10 2 i 00 [ 6 0 -4
=212 4 s|-s/0 2 1|+7)0 1 oft=-2{ 2 -1 -1
8 0 13 2 0 3 00 1 4 0 2

Eigen Values and Eigen Vectirs
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5 -6 2||x 0
or -6 4 -4 || xn|=0
2 -4 0 x| |0
performing Ry «—> R,, we get
2 -4 0lix| [0]
-6 4 -4|lx|=|0
5 -6 2lx| |0
performing R, —)%Rl
1 -2 olx] [o]
-6 4 -4{ix|=|0
5 -6 2{x| 0]

performing R; — R, + 6R;, R; — R; — SR, we get

performing Ry — R; +

A
N
t

[1 -2 ol[x | fo
0 -8 -4fix|=0
0 4 2 x 0

1
3R

1 -2 0| * 0
0 -8 -4} x 0
0 0 Oflx| |0

Thus the rank of this above matrix is 2. Therefore these above equation will have 3 -2=|
non-zero solution given by

x[—'2.x2=0 and —8._12—4):3 =b.

From second equation we get x; =~ 5 %3 Let us assume x;=-2, x3=4. Then from first
equation, we get
X =22x,=2(-2)=-4.
-4
Hence the eigenvector X =| -2
4

Eigenvector Corresponding to A = 15.
The eigenvector X of A corresponding to A = 15 is given by the solution of the equation

| performing R; > Ry - R,

A-15Hh X=0
(-7 -6 2| = 0
or ~6 -8 —4||x|=0
. 2 -4 -12 || x 0
performing Ry < R, we get .
[ 2 —a-12][x 0
-6 -8 -4 || x[=]0
-7 —6 2 X3 0
performing R, — —é— R, )
1 -2 -6][x] [0
-6 -8 -4 |l x|=|0
-7 —6 2 X3 0
IperformingR;-—;R;+6R,,R3—)R3+7Rl
[1 -2 -6 /x| O
0 -20 -4 || x (=0
0 -20 -40 || x; 0



6 -2 2
2.  Find the eigenvalues and corresponding eigenvectors of the matrix A =) -2 3 —1/.
. 2 -1 3
1 20
3. Verify the Cayley-Hamilton theorem for the matrix A ={2 -1 0.
0 01
4.  Verify that the matrix A satisfies its characteristic equation and find A~ ', where
12 1
A=|0 1 -1}
3 -1 1
2 21
5. Show that the matrix 4 =}1 3 | [satisfies Cayley-Hamilton theorem.
T2 2
I 2 3

6.  Find the eigenvalues and corresponding vectors of the matrix A =(Q0 2 3

100 2

- ANSWERS
1 2-1%v3 2.2,2,8,[2-111,[-102], (120
110 3 3
4 A_l=§ 3 2 -l 6.1,2;(1.0,00[2, 1,01
3 -7 -1

OBJECTIVE EVALUATION
» FILL IN THE BLANKS :
1. The characteristic roots of a Hermitian matrix are ...
2.  The characteristic roots of a unitary matrix are of ...

3.  The characteristic roots of the matrix ? g are ... .
4.  The eigenvalues of the matrix A and A” are ... .

» TRUE OR FALSE :

Write ‘T’ for True and ‘F’ for False statement :

1. If X#0is an eigenvector corresponding to the eigenvalue 3 of A, then (4 - 3DX=0. (T/F)

2. The characteristic roots of a skew Hermitian matrix are always real.
1 00

3. TheeigenvaluesofA=|{0 1| Ofare 1,0, 1.
0 01

» MULTIPLE CHOICE QUESTIONS :
Choose the most appropriate one :
1.  If A=0is an eigenvalues of A, then det (A) is :
(a) 0 {by 1 (c) A (d) None of these.
2. If |A| #0and X is an eigenvalue of A, then the eigenvaluc of A ' is : -

(a) A (b) 1* ©) -;: (o.
3, If|Al#0andAisan eigenvalue of A, then the eigenvalue of Adj (A} is :
@rlal  ®mF o ©F (ci)";‘L -
ANSWERS

Fill in the Blanks :

1. real 2. unit moduius 3.6, 1 4. same
True or False :

.T 2.F 3.F
Multiple Choice Questions :

1.éa 2 3@

(1T/F)

{T/F)

QaQ

Eigen Values and Eigen Vectors
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I
L2
o]
[ (]

(=R
— 2 -

STUDENT ACTIVITY

I

2.

Prove that the characteristic roots of a Hermitian matrix are real.

Verify Cayley-Hamilton’s theorem for the matrix

1 0 2
A=10 2 1
20 3

SUMMARY

Let A be a square matrix of order n X n and A be its one of eigen-value, then

AX=XX for X#0
The characteristic equation of A is given by

|A-Af|=0.

If X be an eigen vector of A corresponding to eigen value A, then &X is also an eigen vector of
A corresponding to the sam eigen value A, & being a non-zero number.
The characteristic roots of a Hermitian matrix are all real.
The characteristic roots of a unitary matrix are of unit modulus.
Cayley-Hemilton’s Theorem : Every square matrix satisfies its characteristic equation.

TEST YOURSELF

Find the characteristic roots of the matrix A =

N - O
1
—
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LEARNING OBJECTIVES :

iAfter going through this unit you will learn :
@ About the groups, properties of the groups, permutation groups; ete.
@ Homomorphism and isomorphism of groups

Some important theorems related to groups.

* 11.1. BINARY COMPOSITIONS

Let S be a non-empty set. Any function from $x S to S is called a binary composition (or
a binary operation) in S. .

If f: §x 85— § be a binary composition in § and x, y € S then fx, y) is called the composite
of x and v under the composition £ It is usually denote by any of the following symbols.

Gronps
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* T, L@, O, +, ., Juxtaposition
If we denote a binary composition in a set * and x, y € S, then the composite of x and y under
this composition is denoted by x * y.

REMARKS
> The number of total binary operations defined on §, where n (§) =m, is (m)"‘—.

Algebraic structure. A non-empty set with one or more binary operations defined over it
and satisfying certain laws of binary operation is called algebraic structure or an algebraic system.

« 11.2. GROUPS
“Let G be a non-empty set and * be a binary operation defined on it, then the structure
(G, ¥) is said to be a group if the following axioms are satisfied.
(i) Closure property. a*be G V a,be G.
(ii) Associativity. The operation * is associative on G. i.e,,
axb*cy=(a*xb)*c V a,b,ce G.
(iii) Existence of identity. There exists an element ¢ € G such that
] ate=e*ra=a ¥V a€ G.
The element e is called identity of * in G.
{iv) Existence of inverse. For each element a € G, there exist an element b € G such that
a*b=b*a=e.
The element b is called the inverse of element a with respect to * and we write b=a" ',
ABELIAN OR COMMUTATIVE GROUP '
A group (G, *) is said to be abelian or commutative ifa*b=b*a Vaq,be G.
The group which are not abelian are called non-abelian or non-commutative.
FINITE AND INFINITE GROUP
If a group contains a finite number of elements, it is called a finite group.
If the number of elements in a group is infinite, it is called an infinite group.
Order of a group. The number of elements in a finite group is called the order of the group.
It is denoted by o (G). ’
An infinite group is called a group of infinite order.

LU :

*« SOLVED EXAMPLES

Example 1. Show that the set Z of integers (positive or negative including 0) with additive
binary operation is an infinite ablian group. '

Solution. Let us apply the group-axioms to all integers.

{i) Closure property. Closure property is satisfied because the sum of any two integers is an
integers.

(ii) Associativity. The associative property is satisfied, because of @, b, c are any three
integers, then (@+b)+c=a+(b+c).

(iii) Existence of identity. The axiom on identity is satisfied, because 0 is the identity element
in the set Z such thata+0=a V a€ Z.

(iv) Existence of inverse. The axiom on inverse is satisfied, because the inverse of any
integer a is the integer — a such that @ + (— @) = (- a} + e = 0, the identity element.

(v) Commutativity, Since, we know thata+b=b+a V a, b€ Z, the cummutative law is
satisfied. ) :
Also, the number of elements in Z is infinite.

Hence, the set Z is an infinite abelian group with additive binary operation.

Example 2. Show that the set {1,- 1,1, — i} is an abelian finite group of order 4 under
multiplication.

Solution. (i) Closure property. Closure property is satisfied as

1(-D)==-1,1.i=§i=H=1Li-i)=—ietc.
(ii) Associativity. Associative property is satisfied as
A.0CEH=1.U4EN=L{1.d}. D=L {i{-1}=-iet.
(iii) Existence of identity. Axioms on identity is satisfied, I being the multiplicative identity.
(iv) Existence of inverse. Axiom an inverse in satisfied since the inverse of each element of

|1 the setexists I-1=e=1, (- 1)(~-D=e=1 i{-i}=e=1,(-H({H=e=1



(v) Commutativity. The commutative law is also satisfied as ! (-1}=(-1).1,
(-1Di=i(-1)etc. 2.

Since, there are four elements in the given set, hence it is a gmup of order 4.

Example 3. Show that the set of all positive rational numbers forms an abelian group under

_(a_bl

the composition defined by a * b=

Solution. Let Q* denote the set of all posnwe rational numbers to’ show (07, *) is a group.
(i) Closure property. Forevery a,be Q' abl2e Q"
= " is a closed under the composition*.
(i1) Associativity. Leta, b, c€ Q°, then
(@a*b)sc= ab o= [(ab)2} . c _ al(be)2] —a bc Car(bHo)
2 2 2
(iiii) Existence of identity. An element e will be the identity element if e € Q" and if
exa=a=a*xe ¥V ac Q"

Now, e*aza'(—l=a :[%](e—2)=0 =>e=2

Since, ae Q" = a#0
2e Q*andwehave2 *a=(2a)2=a=a*2 Yaec Q"
= 2 is the identity element.
(iv) Existence of inverse. Leta € Q b is the inverse of a, lhen we must have
brxa=e=2 = ba :2=:ab=i
2 a
Now, ac Q" = 4dlac o'
We have (4/a) * a= {{4/a) . a}/2 =2 =a * (4/a)
= 4fais the inverse of a
= inverse of each element of Q" exist.
(v) Commutativity. Leta,be @ = a*b=(aby2=(ba)y2=b+*a
Hence (Q*, *) is an abelian group.
Example 4. Show that the set Z of all integers form a group.with_respect to binary operation
* defined bya*xb=a+b+1 V a,be Z is an abelian group.
Solution. (i) Closure property. Leta, be Z
= a+b+leZ = a*be 2 = Zis closed with respect to *.
(ii) Associativity. Ifa, b, ce€ Z, then .
(a*byxc=(a+b+1)*c={a+b+ )+c+1=a+b+c+2.

Also, a*{b*xc)=a*(b+c+D=a+b+(+1)+1)=a+b+c+2

= (@*b)*c=ax(b*xc) V a, b,ce Z.

(iii) Existence of identity. An element ¢ € Z will be the identity if exa=a V a€ Z.
Now, exg=e+a+l

etat+l=a =e=-1.
Since, — 1 € Z and we have forany e € Z

(-D*a=-1+a+l=a = — 1 is the identity element.
(iv) Existence of inverse, If a€ Z, then be Z will be the inverse of a if bxa=~1
("~ — 1 is the identity element)
Now, ‘bh*a=-1 = bt+ta+l=-1= b=-2-a
Also acZ =-2-acZ
and (~2-a)*a=(—2-a)+a+1=-1, identity element

(—2 - a) is the inverse of a.
(v) Commutativity. Since,a*b=a+b+1=b+a+1=5b*a = commutativity satisfied.
Hence, Z is an infinite abelian group under the given composition.

* 11.3. SOME PROPERTIES OF GROUPS

Theoren 1. (Uniqueness of Identity). Let (G, *) be a group, then the identity element in G
is unique.

Proof : Let ¢, and e, be two identities of a group G. Then by the definition of identity, we
have

Groups
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if e; is identity, then € *e;=e, - o
and  if e; is identity, then L are=e , )

Since e| * g, is the unique element of G, then from (1) and (2), we obtain

e = e

Hence, the identity element in a group is unique.

Theorem 2. (Uniqueness of inverse) : Let (G, *) be a group, then the inverse of each element
of G is unigue.

Proof : Let b and ¢ be two inverses of any element a of G. Then by the definition of inverse,
we have

ax*b=e=bx*q (D
and a*c=e=c*a . (2)
where ¢ is the identity element of G.
b=bxe=b*(axc) [using (2)]
=(b*a)*c (By associativity)
=e*c¢ [using (1))
=c ' (By the definition of inverse)
= b=c '

Hence, each element of G has unique inverse in G.
Theorem 3. If (G, *) is a group, then (@) '=a¥ a€ G.
Proof : If e is the identity element of G, then for each element a of G there exists an element

| b of G such that

a*b=e=b*g
b=a" and a=b"

-
Now a*b=e

= axa'=e , [ b=a']
= (@a*aHyx@hH 'zex(@h)"! [sa'eG=@""eG)
= a*x(@' *@))=@'y" [ *inGis associativ and ¢ is'the idntity of G]
= axe= (a_])__l [ (.c:_-])._I is the inverse of a_']
= a=(a"" I
Hence, (@Y '=aV acG.

Note : If (G,+)isagroupthen - (-a)=a¥ a€ G.

Theorem 4, (Reversal law) : If (G, *) is a group, then (a* b)Y ' =b"' xa™ "% a.be G.

Proof : For all a,b€ G, we have a*be G. If a~' and b'! are the inverses of a4 and &
respectively, then

a*a'l=e=al*qa : (D
and bxb'=e=b"%p ' N )
Now ¥ a,be G,
(a*b)y* (' xay=axBxb)xg’ . [ *is G is associative]
=(a*e)*xq’ [using (2)]
=axa [ a*e=a]
= [using (1)]
Also,
b xa )y x(@axb)=b" % (a7 * (a * b)) (By associativity)
=b"' % (@ *a)*b) (By associativity)
=b % (e*b) [Using (1)]
=b"xp : [ exb=b]
=e [Using (2)]
(axb)* (b *a)=e=(p""*a" ) * (a* b)
= (@*b)'=b"%a'¥ a,beG.

Note : If (G, *) is an abelian group, then (a * b)_lz a'l«pt
Note : If (G, +) is a group then — (@ + &) = (- &) + (- a).
Note : If ay, a3, ..., a, are elements of a group G, then



(ay*a;*...a) " ' =a; xay.
Theorem 5. (Cancellation laws hold good in a group) : If a, b, ¢ are three elements of a

group (G, *), then

-1 -1
¥a,_ 1¥...%aq,
Groups

{i) a*b=a*b = b=¢ [Left cancellation law]
(ii} b*a=c*a = b =c . ' fRight cancellation law]
Proof : If ¢ is the identity element of G, then we have 4
For each a€ G fa™' € G such that .

a*a‘=e=a'*a - (D
Now,

ar*b=a*c

= a'l*(a*b}=a'l*(a*c)

= (@ *a)*b=(a ' *a)*c (By associativity}
= etsh=ex%x¢ | [Using (1)]
= b=¢ [ e is the identity]
Also, brxa=c*ag |

= (x!:ﬂ"r.z)*‘a;t_l=(c’l‘a)=l=a'l

= br{a*xaY=c*{@*al) : [By associativity]
= b*xe=c*e [Using (1)]
= b=c '

Note : If (G, +) is group then

: a+b=d+¢c = b=c
and b+a=c+a = b=c ¥a,b,c,e G

Theorem 6. In a group (G, *), the equations a*x=b and y * a=b, where a, b€ G have
unique solutions in G. )

Proof : If e is the identity element of G, then for eachae G 3 a' € G such that
1

axa'=e=a'*a : (D
Now a*x=b
= a'waxn=a*b Coe [By associativity)
= exx=q'*h [Using (1)}
= x—a'*b [ eis the identity]
Also y*ra=b ’
= (yxa)*a '=b*a
= y*@*ay=b*a [By associativity]
= y*xe=b*a _ [Using (1)]
= y=b*a" [ e is identity]

Now, ¥a,be G = a' *be G b*a' e G.

Hence, the equations a * x =4 and y * a = b have solution in G.

Next, we prove that these solutions are unique.

Uniqueness : Let, if possible x; and x; be two solutions of the euation a * x = b, then
a*x;=b and a*x,=b

= ' a*xx =a*x

= X} =Xy [By left cancetlation Jaw]

= the equation a * x = b law has unique solution. .

Simitarly, if y, and y, be two solutions of y * @ = b, then
yi*a=b=y%a ,

= Y=Y [By right cancellation law]

= the euation y * a = b has unique solution. ‘
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COMPOSITION TABLE FOR FINITE SETS

Let S={aj,a5 a3, ...... a,} be a finite set and * be a binary operation on S, then the table
shown below is called the composition table for S.

* aj az a3 | iy

a) ay *a) az *qay ay*ay | ... ayxay,

a3 az*a) az*az ay*ay | .o az*a,

a3 ay*a) ay ¥ a; az*ay | ... az*a,

| e |

a, a, *d| a, ¥ az p*ay | ... a, *a,

TEST YOURSELF-1

1.  Show that the following are groups :
() Setof all even integers (including zero) under addition.
(i1) Set of all non-zero rational numbers with respect to binary operation of multiplication.
{ii1) The set of all real numbers with respect to addition.
(iv) The set C of all non-zero complex numbers with respect to multiplication.
2. Show that the set of positive rational numbers does not form a group with respect to the binary
operation * defined by a * b= %-
L o] [-1 0]t o][-1 o ,
3.
Show that the four metrices [0 l]’ [ 0 l]‘ [O _ l]’ [ 0 - 1] forms a grou? with
. respect to matrix multiplication
4.  Show that the set of all n, n roots of unity forms a finite abelian group of order n with respect
to multiplication.
5. Show that the set Z of all integers is an abelian group with operation defined by
a*b=a+b+2.
6. Show that the set @ of all rational number. other than 1 with operation *, defined by
a*b=a+b-abfroma group under binary operation *.
7.  Show that the set G= {1, w, ® } where @ is an imaginary cube root of unity is a group with

respect to multiplication.
ANSWER

2. No.

11.4. INTEGRAL POWER OF AN ELEMENT

Let G be a group with respect to multiplication. If a € G, then aa is denoted by a*, aaa is

denoted by a® and so on. We have

ntimes=a"ne Z°*
But closure property a°. a° ... a" € G.
Also, if e is the identity element in G, we define a° =e.

If n is a positive integer, we define

aaa ...

a"=(@) e Gsincea"=a.a.a....ntimese G.
Further, (@ '=(aa..ntimes) ' =a 'a ' ... ntimes=(a")"
Thus, a =@ =@y
REMARKS

> For additive groups we write na instead of a". Thus, if n is a positive integer, we wnite
upto n terms.

na=ata+...



»  For an arbitrary element g of a multiplicative group G and for arbitrary constant m and
n, it is easy to venfy that

() a"a" = amfn
(”) (GM)H — amn

(iii) € = e, where e is the identity of G.

11.5. ORDER OF AN ELEMENT OF A GROUP

Let G be a group under multiplication. Let ¢ be the identity element in G. Suppose ais any
element of G then the least positive integer #, if exist, such that &" = e is said to be order of an
element 2 € G, and can be written as

o(a)=n.

In case, such a positive integer n does not exist, we say that the element a is of infinite or

zero order.

REMARKS
>

If G is an additive group, we write na in place of a".
If m is a positive integer such that a™ = e the o(a) S m.
Identity element e in a group G, is the only element whose order is one.

Yvyy

The order of an element of an infinite group may be finite or infinite.

* SOLVED EXAMPLES

Example 1. Consider the multiplicative group G = {1 = 1, i, — i} of cube roots of unity. Find
the order of each element of G.
Solution. Since 1 is the identity element, therefore

L

o(1) = 1
Also, (-1)?*=1=0(-1)=2
@=1=00)=4

-id*=1 = 0(-i)=4.
Eample 2. Consider the additive group Z=1{...-3,-2,-1,0,1,2,3, ...} of all integers.
Show that O is the only element of finite order.
Solution. If a be any non-zero integers, then there exists no positive integer » such that
na=(a+a+...+ntimes)=0 '
= 0(a) s infinite.
Hence, in Z the identity O is the only element of finite order.

* 11.6. Some Important Theorems :

Theorem 1. The order of every element of a finite group is finite.
Proof. Let G be a finite multiplicative group and a € G.

Consider all positive integral powers of a, i.e.,

2 3
a,a%a,..a,...a,

By closure property, these all are element of G.
Since, G is finite, therefore, all the integral power of a can not be distinct element of G.

Suppose that a =d,wherer>s (1)
Then, ad=d=da’=d.a’
= ad ¥ =d=e

= a"=¢, wherem=r—5>0

Thus, then exist a positive integer m such that a™ = e. Now since every set of positive integers
has a least member it follows that the set of all positive integes m such that a™ = e has a least member
say n.

Thus, o(a) = n, which is finite.

Hence, the order of every element of the finite group G is finite.

Theorem 2. If the element a of a group G is of order n, then &" = e iff n is a divisor of m.

Proof. Let o(a) =n and a” = ¢ for some positive integer m then m > n.

If m=nthen n is a divisor of m.

. Groups
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r=0.

If m > n, then by divison algorithm, there exists two integers ¢ and r such that
m=ng+r, where 0 <r<n.

‘Therefore, a"=e¢ =a '
= g% a =e

ng+
CASGu.

=a=e . ¢ d"=@"=¢"=¢)
Thus, a =e, whereO<r<norr=0 (By divison algorithm)
Now, since 0(a) =n, n is the least positive integer such that ¢” = e. Hence, it follows that

Therefore, m = ng = n is a divisor of m.
Conversely. Let » be a divisor of m, so that

m=nq, forqe Z".
Hence, d"=a""=(a"=e"=e.
Theorem 3. The order of an element of a group is the same as that of its inverse.

Proof. Let G be a group under multiplication and a is any element of G.

Sﬁppose that o(a)=m and o(a” 1) =,
1

Now, Oay=m=a"=e = (@) '=¢ '=e

= (@ Y'=e since (™) ' =" )"

= o(a_l)Sm = nsm (D
Again ol@ay=n=(@@"Y=e = @) '=¢

=@y Y= = a"=¢

= oa)<n = m<n. . (2)

Now, From (1} and (2). we conclude that
m=n, ie, olay=ola h. .
Theovem 4. The order of any integral power of an element a cannot exceed the order of

Proof. Leta’ be any integral power of « and let o{a) =n.

Now, oa)=n=a"=e¢
= (@) ==d"=¢
=3 (@)'=e=o0(a)<n.

= o{a") cannot exceeds the o(a).
Theorem 5. If a and b are any two elements of a group G, then
o(a) = o(b™ 'ab). :
Proof. Let o(a) =m, hence m is the least positive integer, such that 2" = e.

Now (b 'ab)’=(b""ab) (b 'aby=b""a (bb') ab (By assaciativity)
= b aeab ¢ b =)
=b""a% (. ae=a)

Similarly (6" 'ab)* =" 'a

: ... and so on
(6" 'aby" = (b 'ab) (b™ 'ab) ...to m factors

=b"'abb™'ab ... b ab (By associativity)

=b'abb Ha®s)... (b ) ab (By associatvity)

=b'd"b=b"leb=b"'b=e¢ (. d"=e)

Thus, we have (b 'ab)" = b 'a"b =e.
Now, since, m is the least positive integer such that a” = e, it follows that m is the least positive

integer such that

(b 'ab)" = e
Hence, o(b™ 'aby=m.
Theorem 6, For any rwo elements a, b of a group G,
o(ab) = o{ba). )
Proof. We have -
ba = e (ba) = (a” 'a) (ba) = a” '(ab)(a).



Hence, by theorem 5
o[a”'(ab) a) =o(ab) = o{ba)= o(ab).

+ SOLVED EXAMPLES

Example 1. For any two elements a and b of a group G, show that G is abelian iff

(ab)* = a’b*.

Solution. Let us first suppose, G be abelian,

So that ab=ba V a,be G

Consider (ab)’ = (ab) (ab) = a(ba) b (By associativity)
=alab) b (By commutativity)
= {aa)(bb) (By associativity)
=a’. b

Thus, (@)’=a’t’ ¥ a,be G.

Convesely, Let (ab)2 =d’b* ¥ a,be G.

To show ab=bha.

Consider (ab)* = a’b* = (ab) {ab) = (aa) {bb) _

= a(ba) b = a(ab) b, (By associativity)

= ba =ab {By left and right cancellation Jaw)

Thus, we have ab=ba Vabe G

Hence, G is abelian.
Example 2. Show that if G is an abelian group than for all a,be G and all integers

(@) =a"v"

Solution. (i) Let n=10.

Then {ab)® =e.

Also, a°b’=¢ee=e¢
(ab)° = a®p°,

(ii) Let n>0

Ifn=1, then (ab) =ab=a'b'.

Let us suppose our result is true forn=r
iefabY =a'h'.
Then {ab) ' =(abY .al=a'bab=dab’b ¢ ab’ =ba)
Frlopr+l
b

Then, by mathematical induction for all n > 0, (ab)" =a" . 5",

(iii) Let n<0

Let n =~ r, where r is a positive integer.

Then (ab)" = (ab) " =[(ab)] ' =[a'®b) ' =[¥'aT" ¢ a"b" =b"a")
= [ar]—! [-b-"]"] [.'. (ab)_] :‘b- lﬂ_ lI

=a "b "=d"b".
Example 3. If G is a group of even order, then show that there exist an element a. other than

the identity ‘e’ such that a=e.

Solutlon Let o(G) = 2r, where r is any positive integer.
Since, we know that, in a group every element possesses a unique inverse and ¢’ =e The

remaining (2r — 1) elements should, therefore, be divided into pairs in such away that each pair
consists of two distinct elements, which are inverse of each other. But this is not possible, since
(2r— 1) is odd.

Hence, 3 an element g € G, such that
a'=a, wherea#e
But ) a=a ! = d’=a'a=e

Thus, there exists a € G such that a # ¢ and a‘=e.

TEST YOURSELF-2

1.
2.

If 2 and b any elements of a group G, then show that (bab™ ])"i =ba"b ™! for any ne Z.
Show that if for every element a in a group G, a=e, then G is abelian.

Growps
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3. Show that if every element of a group G has its own inverse, then G is abelian.

4. If G is group such that (ab)’ = ot for three consecutive integers p ¥ a, b € G, show that G
is abelian. :

5. Show that a group G is abelian if every element of G except the identity element is of order
5 . .

6. Find the order of each element in the multiplicative group G = {1, w, mz} where @ is the cube
root of unity,
7. If the element a, & and ab of a group are each of order 2 show that ab = ba.
8. Show that in a group G, we have .
(i) ab=e = a=b""and b=a" (i) ab=aorba=a= b=e.
9. Ifaisan element of a group, prove that the integral powers of a form a multiplicative group.
10. Show that a group G is abelian iff (ab) '=a '67' V a,b€ G.
1. Ifinthe group G, a’ =e,aba” ' =b* fora, b e G.
Show that 0(b)=1 if b=eand O(b) =31 if b2 e.
12. If in a group G, the elements @ and & commutes, then prove that
(i) a 'and 5! also commute (i) a~' and b also commute
{iii} ¢ and 5! also commute.

ANSWER

6. o(l)=1, o() =3, o(w’) = 3.

* 11.7. PERMUTATIONS AND PERMUTATIONS GROUPS

(i) Permutations. A one-one mapping f of a finite non-empty set § onto itself is called a
permutations.

If the set § consists of # distinct elements, then a one-one mapping of § onto itself 1s called
a permutation of degree » or a permutations of #-symbols.

Notation. Let S={a), a, ...a,}.

Then, we denote a permutation f on the set § in a two-rowed notation

_f{anay . a ..., a,
I b by, o by b, |

So that in-the first row all the elements of § are written in a certain order and
Aay) =by, Ray)) = by ..., fla)y = b;, ... fla,) = b,
REMARKS

> It is clear that each be S i=12,..,n
»  Itis immaterial in which order, the elements of § are written in the first row, but the image
of element a; must be written under a;. Thus, the interchange of columns does not change
the permutation,
1234} (2134} (1432
For example. (2 34 1]‘[3 2 4‘1)‘(2 14 3]'
Equality of permutations. Two permutations f and g of a set § are said to be equal if
fla)=gla) ¥ a€ §. ' '
123 {231 . )
. For example, If f= 312 and g = | 2 3|2 two permutation of degree 3 then we have
f=gsince f1)=g(1)=3,R2) = 5(2) = 1, 3) = g(3) = 2.
Identity permutations. A permutations on the set S is called the identity permutations if it
maps each element of § onto itself.
It is usually denoted by the symbol /.
_Thus, Ha)=a VY a€ §.

123..n
123..n

For example, /= ] is the identity permutaiton of degree n.



Total number of distinct permutations. Let § be a set consisting of n distinct elements.
Then the elements of S can be permuted in n ! distinct ways, i.e., a ! distinct arrangement of the
elements belonging to S are possible. If P, be the set consisting of all permutations of degree n,
then the set P, will have n ! distinct permutations of degree n.

This set P, is called the symmetric set of permutations of degree n ! and is denoted by

P, ={f:fis a permutation of degree n}. -

Inverse permutations. Since a permutation is a one-one onto mapping and hence it is

inversible, i.e., every permutation f on a set P = {a,, a, ..., a,} has a unique inverse permutation

denoted by f~.
For example, If f= a ay...- a"] '
bl bg bn)
Then = by by... b,
' Clar axan)

Product or composite of permutations. The product or composite of two permutations f and
2 of the same degree, denoted by f- ¢ is obtained by first.camying out the operation defined by
mapping f and they by mapping .

Let, f, g € P,, so that

(a1 az...a, by by... b,
f [b, bz...bﬂ]’ § [cl e ...,
where a,b.c;e S, i=12,..,n
a, ay...a,\(b) by... b, a; ay...a,
Then, = = € P,
sz {bl by ... b, [cl C3--. €y €L €.+ €y

g ﬂ by two permutations of degree 4. Then

Y2341 (1234

1421374213

and s (1 4 4\f3431) (1234
' 87713 4 2341 114132714132

_Here, we observe that f2 # g f. Thus, the product of permutations is not commutative.

* 11.8. CYCLIC PERMUTATION

Let fbe a permutation of degree » on a set having n distinct elements and let it be possible
to arrange m ¢lements of the set § in a row in such a way that the fimage of each element in the
row is the element which follows, the f-image of the last element is the first element and the
remaining n — m elements of the set § are left unchanged byf Then fis cal]cd a cyclic permutation
or a cycle of length m or an m-cycle.

For example. Let f=

3
4
3
2
p

REMARKS
»  The following have the same meaning cyclic permutation, circular permutations or
cycles.

»  The number of distinct objects permuted by a cycle is known as the length of the cycle.

For example

203 1
12 345
1, 3 4 51

Symbol for cyclic permutations. We denote the cyclic permutations
a, a Gy...a, G
a; Q3. Qg.--Guq a

0] 12 3} is a cyclic permutation of length 3.

J is a cyclic permutation of length 3.

by the symbols (a;, a3, ..., a,), Which means that each member in the bracket is replaced by its
successor on the right and the last member is replaced by the first one. Thus (he cyclic permutation

1 4 2 6
(1, 426)|scxpre551blcas[4 2 6 1).

Groups
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REMARKS

> The lergth of the cycle (456) is 3, where as the degree of the permutation

. 1 23456
(123564]16

» A cycle does not change by changing the places of its elements in cyclic order.
Thus, (1 2345=(2345 1)=34512).

Cycle of length 1. A cycle of length | means that the image of the element involved is the
same element and the missing elements are unchanged. Thus, all the elements are unchanged. Hence,
every cycle of length one represents the identity permutations.

Transposition. A cycle of length two is called a transposition. Thus, the cycle (9 6) or
(1 2})is a transposition, If the cycle (1 2}isa permutation of degree 3 on three symbols 1, 2, 3,

213

Disjoint cycles. Two cycles are said to be disjoint, if they have no elements in common.
Examples. (i) (I 2)and (3 4) are disjoint cycles
(Gi)¢{1 5 3)and (8 9 10) are disjoint cycles
Multiplication of cycles. We multiply ¢cycles by multiplying the permutations represented
by them.
For example. Let us suppose that (2 3 4)and (5 3 | 2) represents permutations of
degree 6 on six symbols 1, 2, 3, 4, 5, 6. Then, we have

then the corresponding permutation is [[ 2 3] .

2 3 45 3 1 2Y.(1 23 45 6531246
34 2|3 125|711 3425 6/1312546
_(12345613'4256
113 4256)214536
123456
= - \
{214536} (1 23 4 56
=(1 2)(3 4 5

(" acycle of length 1 represents the identity permuiations)
Some Important Theorems : ' '

Theorem 1. Every permutation can be expressed as a product of disjoint cycles.

Proof. Let fbe a given permutation of degree n, defined n the set § = {a,. 2, ..., @, }. Firs
select all the cycles of length 1 each given by the invarient element.

Now select an element, which is non-invarient and construct a row, starting with this element
and writing after writing each element its image under f.

As the number of elements in § is finite, after a finite number of steps, we get an element
whose image under fis the one with which we started. This row is a cycle. '

Now, we choose an element of § which is not contained in the above cyc les and get another
cycle, as above.
Proceeding in the same way, each and every element of S is included in one or the other cycle.
Obviously, these cycles bave no element in common and hence they are disjoint.
Hence, the permutation f can be expressed as a product of disjoint ¢ycles.
Theorem 2. Every permutations can be expressed as a product of transpositions.
Proof. By theorem-1 we have that every permutation can be expressed as product of disjoint

cycle.
Consider the cycle (ay, a3, ..., a,)} of length n, where n > | then, we see. .
(ay, ag, - @) = (@132} (a1a3) (@1a4) ... (;yay,).
For example. (a) 22 @3) = (a; ay) (a, a;).
Also for n=1

(@) ={(a a3) (a2 a))

i.e., the identity permutation can also be expressed as a product of transpositions.

=> Every cycle can be expressed as a product of transpasitions. Hence, it follows that every
permutations can be expressed as a product of transposmons
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REMARK

»  For any manner of expressing a given permutations as a product of transpositions, the
number of transpositions is either even or a odd.

+ 11.9. EVEN AND ODD PERMUTATIONS

A permutation is said to be even or odd according as it can be expressed as a product of even

or odd number of transpositions.
There is another easy way determining whether a permutation is even or odd.

Let P:[l 2 3..n ]
a G a3...4,
be a permutation of degree n. The pair (i, j) is said to be regular if i — j and a; - a; both have the
same sign. Otherwise irregular. Thus for irregularity of any pair (i, /), (i —/) and (a; - a;) are of

opposite signs. The number of irregular pairs denotes number of inversions.
A permutation of a set of integers onto itself is even or odd according as it contains an even

or odd number of inversions.
For examples

(1) (5 g j = No inversion

(i1) {; % g = Two invesions

(iii) ; g :E = Three inversions
(iv) ; g g : ?] = Eight inversions
W (é T g) = One inversion.

Hence, (i), (ii} (iv) = Even permutations
(i) and (v) = odd permutation.
t I -
Theorem 1. Of the n ! permutations of n symbols, %—"are even permutation and n? are odd

permutations.
Proof. Let P, be the set of all permutations on # distinct symbols. The £, contains n ! distinct

permutations of degree n. Also P, is a group with respect to permuwtation multiplication as
composition. '

Out of those n! permutations, let the even permutations be E,, Ej, ..., E, and the odd
permutation be 0y, 03, .., 0, sothat p+g=n!

Let t € P, be arbitrary such that ¢ is a transposition so that ¢ is an odd permutation. Let t be
operated on each of E; (i = 1, 2, ..., p) and similarly on each o; (i=1, 2, ..., 9.

Now, since (P, +) is a group and therefore tE; € P,and to;€ P, for 1 <j<p, 15j<q

The permutations (E; for i=1,2,..,p are all odd permutation (. transposition is an odd
permutation and product of even and odd permutation is an odd permutation). Also, these
permutation are all distinct. ’

For tE;=tE;= E; = E; .

tE;#E; if E;#E,

Similarly, the permutations f0; (j = 1, 2, ..., g) are all distinct even permutations.

Since, a permutation can not be both even and odd, we have that the even permutations
Ey, E; ..., E, are equal to ¢ even permutations f0y, 10, ..., 0.

Similarly, ¢ odd permutations 0y, 0,, .., O, are equal to p odd permutation £y, tE;, ..., 1Ep.

Consequently p=q. Alsop+g=n!. :

n!
p_ _2'

Group
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REMARK

» n!

If A, is the set of all even permutations of degree n then A, C P, and A, contains By
elements. The set 4, is called an alternating set of permutations.

Theorem 2. The set A, of all even permurations of degree n forms a finite non-abelian group
of order n?’ with respect to permutation multiph'\cation as composition.

Proof. Let A, be set of all even permutation of degree ». Let f, g, h-e A, be arbitrary.

To show that (A4,, <} is a finite non-abelian group of order %' .

(i) Clesure property. Letf, ¢ € A, = fand g are even permutation
= f-g is an even permutation

(" product of two even permutation is even permutation)
= frg€A,

(ii) Associativity. Letf g, he A, = f, g, h are expressible as

[y ay _ b[--.bﬂ _ Cl oo Oy
‘f_[b] cen b”}’g_[ﬁj cee CHJ‘ h_(di ...dn]

where the etements &, by, ..., b,, ¢, ¢z ... ¢y d), d, ..., d, are simply different arrangement of the
same n elements a,, ... a,.
i e
T ) I S v )
Now 0 Pl
L P P S e G

Now, from (I} and (2), we have {fg)h = Rgh).

(iii) Existence of identity. Let 7 be the identity permutation of degree n.

Then f=lf=f ¥ fe A, :

(iv) Existence of inverse. Let /' denote the inverse of £ Then f =1 =an identity
permutation.

Also f is an even permutation

= f'isaneven permutation

o flea,

Hence, every element of 4, is inversible.

(v) Commutativity, The product of permutation is not commutative. Also the set of

. . S Lon! n!
permutation of degree n contains n ! permutations out of which 5 are even and — are odd.

= (A, +) is a non-abelian group of order %l .
REMARKS

> The set of all odd permutations is not a group with respect to permutation multiplication
as composition. Because closure property is not satisfied, since product of two odd
permutations is an even permutations.

* SOLVED EXAMPLES

Example 1. Express the permutation f = [: g g ; . i g] as a product of disjoint cycles.
Solution. Clearly




f=[123456J=[126354J-

1 6 53 4 2 1 6 2 5 4 3w -~

=2 .63 5 4) o T
Example. 2. Express the permwations f= : g g g,i g ;] ::s_ a Iproducr of

transposition. . ' S -
Solution. f=[: § g g 3 g ;z(l)(z e 6HOm .

=(1 2@ DE HE 6@ HT HU 7. _
Since, ()=(1 2)2 Dand@ 6 S=@ 6@ SH(M=0 DA 7.

Example 3, Decompose the permutation f =[; ? 3 ; ; 2 ; g] into rran.moﬂnon

Hence, show ithat f is an odd permutations.” '

Solution. Here, we have b et . ﬂ”,_i,. 4
f=(13"?3232]=(13478652) Co

3478 6 p 1 .
=(I O A DA B -0 Dy p -1 - s
Hence, f is an odd permutation. . S SV,
+ TEST YOURSELF-3

1. _Find the order of each element of the group ({0, 1, 2, 3, 4} +s).
Show that the set G=1{0, 1,2, 3,4,5) is a finite abelian group of ordcr 6 wnh rcspccl o
addition modulo 6. S

3. Showthat G={15.7, 11} is a group under multiplication modulo 12.

4.  Show that the set Py of all permutation on three symbols 1, 2, 3, is a finite non-abelian group

of order 6 with respect to permutation multiplication as composition.
5. " Show that the set A3 of three permutations (a) (a b c). (a ¢ b) on three symbols 4, b, ¢ forms

a finile abelian group with respect to the permutation multiplication.
{1 23 1 2 3
6. Iff= [3 | ] and g = [1 3 2]. then find fg and gf.

7. Find the inverse of the following permutation :.
1 2 3 4y 1 2 3°4
(@) [1 3 4 2} “’)[3 a1 2] ‘ .
8. Show that if § has more than two element of G. Then the symmetric group S, is not-abelian.
9. Show that a cycle containing an odd number of symbols is an even permutation where as a

cycle containing an even number of symbols is an odd permutation.
10. Iff=(1 2 3 4 5 6).then show that '

=1 42 5HEB 6.
11. Examine whether the following permutation o even or odd

1 2 3 4 5 6 7
6 5 2 43 17
ANSWERS
1. 0O{o) =1 and order of other.element is 5. : Il
_f1 3 2 3 |
6. fg'(z ]““dgf [3 2 1}
i 31 4 2 3 4

7. @ [l 2 3) ®) [3 4 1 2]'

» 11.10. HOMOMORPHISM AND ISOMORPHISM OF GROUPS

Homomorphism. Let (G, Q) and (G, *) be two groups. Then a mapping f: G = G’ is called
a homomorphism if

L4

—_—~

SN

fxoy)=R/x)*fy) ¥V x.yeG.

Here, we say that f preserves compositions in G and G'.

(rrotign
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Some Examples of Subgroup : -

() [{1.—1}.<]is asubgroupof {{1,-1,~{ —{), ]

(ii) (Z. +) is a subgroup of (@, +)

(iii) (Q.+) is a subgroup of (R, +)

(iv) The set of all non-singular matrices with real elements whose determinents are 1. is o
subgroup of multiplicative group of all non-singular # X 1 metrices.

(v} The multlphcatwc group of positive rational numbers is a subgroup of the multiplicative
group of all non-zero rational numbers. T S
Some important Theorems :  —.-.. .. L T

Theorem 1. {f H is any subgroup of G, then H "= H. Also, show that converse is not true.

Proof. Leth™'e H.Thenhe H.

Since, Hisa subgroup of G. therefore he H = h € H.

Thus, A'eH '= nlen

= H'cH “‘ L 1)
Again heH = h'eH )
: =0 'ed"' = heH!
HgH" (2)
Now. from (1) and (2) we have H=H"". .

Now, to show converse is not true.

i.e.. If H is a complex of a group G and H ™' = H, then it is not necessary that 4 is a subgroup
of G. For example :

H={-1} is a complex of the multiplicative group G = {- 1, | }.

AlsoH™'= {=1} (. = 1is the inverse of — 1). But H={-1}isnota subgroup ofG We
have (~ 1)(~ 1)=1¢ H, i.e., H is not closed with respect to multiplication.”

Theorem 2. A non-empry subset H of a group G is a subgroup of G if and only if

(Na.be H’=>abe H

(i) -a€ H=a"'€ H,where a~ " is the inverse ofa€ G.

Proof. Let A be a subgroup of G, then H must be closed with respect to multiplication,
i.e., the composition in G.

Therefore ae Hbe H=abe H. e

Conversely. Suppose # is a subset of a group G such that (|) and (ii}, the given c0ndmons

holds. In order to show that H is a subgroup, all that is needed is to vcﬂfy that the |dcnmy clement

e € H dnd that the associative law holds for elements of H.

JMae H thenby (2),a” e # and so by (1) we see thate = aa”'e H, again since dssociative
law does holds in G, it holds all the more so for A, which is a subset of G. Hence, is a subgroup
of G.

Theorem 3. Let H be a non- empry subset of a group G. Then H is u .rubgroup of Gif
: abe H=ab™' e H, where b” ::rhemverseofme
Proof. Necessary conditions. Let us first suppose H is a subgroup of G and a, be H. Since
H is a group, each clcmcnt of H must have its inverse in . Thusif be H# = b~' € H and then by
closure property ab™' € H. This proves the necessary condition.
' Condition is sufficient. Conversly, let H is a subset of G for which a.b€ H implies
ab™! € H. To show that # is a subgroup of G, we must verify that # is closed, the identity element
ec H, every element of A has an inverse in 4 and the associative law holds for elements of H.
Letb=a, thenwesecthitae H=aa 'e H=ec H
) = identity element of G also belongs to H
Now, for the elements e and b of H, wc have ea™.) € H and 50 b~ '€ H,since b is an arbitrary
element ofH we sce that for any b E HbleH.
Now. abe H=a b 'e H .
= ab""V'e H (By hypothesis)
=abe H
= H is closed.
Finally, since the associative law does hold for 4, it also holds for # which is a subsct of

G
= (H,+)is a subgroup



Theorem 4. A necessary and sufficient condition of a non- empry subser H of a group G to

be a subgroup is HH™~ 'cH.

Proof. let A be a non-empty of a group G such that H is a subgToup of G.
To show that ¥ ' C H

Let xeHH '=3Jabe Hst.x=ab"’
= ab'eHstx=ab' (" His a subgroup)
=sable H
=xeH

= HH 'cH.
Conversely. Suppose that H is a non-empty subset of a group G such that HH ™! c H.
To show that H is a subgroup of G. For this we shall show that a,be H = ab~ '€ H and

a,be H= ab~' € HH™' (By definition of HH ')

= ab '€ Hfor HH ' CH.
Theorem 5. A necessary and sufficient condition for a non- empty subset H of a group G 10

be a subgroup is that HH ™' = H.

Proof. Let # be a non-empty subset of a group G such that H is a subgroup of H so that

(H,+) is a group.

and

To show HH '=H.

Let xe HH '=3ae H b 'e H 'st.x=ab™'
= abe H:x=ab™!
=ab'eH: x=ab"'
=ay'eH:x=ab"' = xeH.

Therefore HH 'CH. ‘ D
Now, let xe H=xe H ec H.
For (H, =) is a group and e is the identity for G

=x'e HH '=xec HH™' - (. el=e)

= xe HH ! o

= HCHH™. ' 2
Now, from (1) and (2), we get

HH '=H.

Conversely. Let H be a non-empty subset of a group G such that H4H™ ' = H.
To show that H is a subgroup of G, it is sufficient to show that

abe H=ab'e H

a,be H>aeH b 'e H'= ab 'e HH '=H=ab" 'c H
Theovem 6. [f H, X are subgroups of a group G, then HK is a subgroup of G iff HK = KH.
Proof. Let H and K subgroups of a group G so that

HH '=H, KK~ '=K ()
K=K H =8 (2)
Step I. Let HK be a subgrop of G so that : :
(HK) ' = HK. (3
To show HK =KH.
3= K 'H '=HK.
Using (2), we have HK=KH. : ()
Step II, Let ~ HK=KH
To show that HK is a subgroup of G. For this we have to provc
(HKYHK)Y ' = HK. ' ..(5)
Consider (HK)YHK) '=(HK) (K™ 'H™ 1} HKK Yo ! (By associativity)
=HKH™' [by (D]
= KHH™ S [by 4))
=K(HH ") =KH =HK (by (4)]

Hence, the theorem is proved.
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11.12. UNION AND INTERSECTION OF SUBGROUPS

Theorem 8. The intersection of any two subgroups of a group G is a subgroup of G.
Proof. Let H; and H be two subgroup of a group G. To show that H, M H, is a subgroup
of G. For this we have to show that a, b€ H, N H, = ab™ '€ H, N H,,
leta,bec HiNnHy=a,be Hyanda,be H,.
Now, since H, and H, are subgroups, then
a.be H = ab '€ H,
and a,bEHz:ab_'eH;
ab”'e H, and ab']eHZ:ab"IeH,mhfz. v
Theorem 9. An arbitrary intersection of subgroups of a group G is a subgroup of G.
Proof. Let H, be the collection of subgroups for r € N.

oa

Let H=n H,.

r=1

To show that H is a subgroup of G

abe H=ae N H.oandbe N H,

r=1 r=1

= ae H,beH V reN

= ab'eH, YreN=ab'e n H=H= ab’'cH

r=1
Thus, we have proved that a, b€ H = ab™ ' € H.
This declares that H is a subgroup of G.
Theorem 10. The union of two subgroups of a group G is a subgroup of G iff one is contained
in the other.
Proof. Let H, and H, be subgroups of a group G. Let #, Cc H, or H, C H),.
To show that #, U H; is a subgroup of G
H1 CH2=?H1UH25H2.
Also, H, is a subgroup of G = H, UH; is a subgroup of G. Again H,CH, =
H] () H2 = Hl‘
Also, Hy is a subgroup of G = H, U H, is a subgroup of G.
Hence, H, U H, is a subgroup of G, in both cases. .
Conversely. Suppose that H, and H, are subgroups of a group & such that H; U H, is a
subgroup of G.
To show H,CH, or H,CH,.
Suppose the contrary. Then H, € H, or H, ¢ H,
H @H;,=>3ac H st.ag H,

and HzQ:H{::"EbEH‘zS.t.beH].
Now, a, b€ H|, U H,, and H{ LU H; is a subgroup of G
= abe Hy U H;.
This implies abe Hy or abe H,
ac H,abe H,= a '(ab) e H, (v H, is a subgroup)
= (a_la)bEH1=>ebEH]=bEHl
which is a contradiction (- be H)
be Hyabe Hy= (abyb '€ H,
= ac H, . For (ab) b '=a(bb 'y=ae=a)
Again, we get a contradiction (- ag Hy

Hence, our initial assumption is wrong.
Consequently H,CH, or H,CH,.

e SOLVED EXAMPLES

Example 1. Is Z a subgroup of (@, +) ?
Solution. For Z < Q and the invesse of be Qis-ba, be Z=a+(-by=a-be Z




-t

y a2y
Therefore Z is a sugbroup fo @, under addition. c— e

Example 2. Let G be the additive gmup of. qnegers and H=1{nl:n is a fixed integer and
1€ Z). Show that H is a subgroup of G.

Selution. Here, we have that

HcG.

Leta = nhand b = nk, be any two elements of H, with &1, k€ Z. Thena + b = n{h + k) certainly
€ H. :
Thus, @, b € H implies thata + b€ H.

Also, — a = n(- k), the additive inverse of a, is in H. Thus g € H implies that — a € H. Hence,
H is a subgroup of G.
Example 3. If G is a group, then the set Z, defined by
={ze G:xx=xz Vxe G}.
Prove that Z is a subgroup of G.
Solution. Letz(, z; € Z, then

X=X, X=x2p ¥V x€ G - (D
Now, xy=ax=z(5 %) ¥V x€G
=212 (z%) = 2i%; (xzp) [from (1)]
@' =05 ()3
or X ) =223 % (222 ) = (2123 ) x Vxe G

Therefore, 7;2;' € Z = Z is a subgroup of G.
Example 4. If a is a fixed element of a group G, then prove that rhe set
N(@)={xe G:xa=ax}
is a subgroup of G.
Solution. Let x, y € Ma), then xa = ax, ya = ay.

Now va=ay=y ' (ya)y =y ay)y !
-1

=ay'=yla - (D)
= y'I € N(a} :

Also (v Ha=x('a)=x(ay™ ) [by ()]
=(xa)y ' =(a)y" ' =a(xy)

= xy ' € N(a), whenever x, y € N(a)
Hence, N(a) is a subgroup of G.

* 11.13. COSETS

Let H be a subgroup of a group (G, »). Let a € G be arbitrary. We define
={gh:h€ H} and Ha={ha:he H}
then aff is called left coset of # in & generated by a, and Ha is called right coset of H in G
generated by a.

REMARKS

» If e is the identity of G, then e € H is also identity for H
a=ae€ aH,a=ea€ Ha

This gives that any left or right cosets of H in G is non-empty.

Since He = H = eH, hence H itself is right as well as left cosets.

If the group (G, +) is abelian, then ah =ha ¥ h e H so that
aH=Ha ¥ ac H.

»  If the composition in G is additive, then the right coset of H in G generated by a is defined
as

Yy

H+a={h+a:he H)
and a+H={a+h:he H}.

Index of a subgroup in a.group. If A is a subgroup of a group G, then number of distinct
right (or left) cosets of H in G is called index of H in G and is denoted by [G: H] or by

i (H) = o(G)/ ofH).
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Relation of Congruence ‘module a subgroup in a group. Let / be a subgroup of a group
G.Let a, b€ G be arbitrary, we define a =5 mod H iffab™ ' € H.

The symbol ¢ = & {(mod H) is read as a is congruent to & modulo A.
REMARKS -

> aEb(modH)iffab"lE H or Ha= Hb.
» acHboab 'e He Ha=Hb.

Some Important Theorems :
Theorem 1. Let a€ G be arbitrary and let H be a subgroup of a group G. Then
Ha=H=aH & a€ H.
Proof. Let H be a subgroup of G and let a € G be arbitrary.
Step I. To show that
Ha=H © a€ H.
Let us first suppose Ha = H, to show a € H
eec Hace H=eac Ha=a€ Ha

= a€ H. For H=Ha.
Now, let a € H, to show Ha=H.
Let xa€ Ha= xe H
= x€ H, ae H, Forae H
= xa€ H (" Hisasubgroup)
Thus, any xa€ Ha=xa € H. :
This prove that Hac H (D
acH=a'eH (" H is a subgroup)

For any y€ Ha'eH =ya'eH
= (ya"Ya€e Ha
= ye Haforya 'a=ye=y
Thus any yeE H=ye€ Ha
= HCHa. (2)
Now from (i) and (ii) we get
H=Ha.
Step Hl. Toshow aH=H & a€ H.
We can prove step II by making the parallef arguments as in L.
Theorem 2. If a and b are arbitrary distinct elements of a gmup G and H is any subgroup
of G, then
Ha=Hb & ab™ '€ H
_ aH=bH & b 'ac H.
Proof. Let a and b be arbitrary elements of a group G such that a # b.
Let e be the identity of G => e € H.
Firstly, we shall show that
Ha=Hb & ab '€ H
Ha=Hb = (Ha) b~ = (Hb)(H™ ")
= H(ab™ "y =H(bb™")=He=H
= Hab )=H=ab'e H " -(By previous theorem)
Conversely. ab"'e H = H{ab™')=H
= (Hab™') (b)=Hb
= (Ha) (b"'6) = Hb
= (Ha)e =Hb = Ha = Hb.
Therefore, we have
Ha=Hb & ab™ '€ H.
Similarly, we can prove aH =bH < b 'ac H.
Theorem 3. Any two left cosets of a sugroups are either disjoint or’identical.
Proof. Let aff and bH be any two left cosets of H. To show if aH and bH have an element
in common, i.e., If aH M bH is not the empty set, then they are identical, i.e., aff = bH.



Let aH N bH # ¢ and let ¢ be any element of aHf M bH then-there exist elements /), i, € H

such that ¢ = ah and ¢ = bh, it follows that

ahy =bhy so a=bhz{h,)'l. (D
Now, let ak be any element of aH. Then
ah = bhy(h) 'h. [Using (1)]

Now, since H is a subgroup, Ay(h|) 'he H and so ah € bH.
This shows that every ah € afl is also in bH. Therefore

aH ¢ bH.
Simitarly, we can show that

bH C aH.
Therefore, we have

aH =bH.

Hence, we have shown that any two left cosets which are not disjoint are identical.
Theorem 4. (Lagrange’s Theorem)
The order of each subgroup of a finite group is a divisor (factor) of the gmup
Proof. Let H be a subgroup of 2 finite group G and let
o{Gy=n and o(H)=m.
To show m is a divisor of »n
For this we have to show that n = mp for same p € N.
Let Ha be any right coset of H in G.
Then ofH) =m = 3 m distinct elements A, Az, ..., A, € H
= I m distinct elements ha, haa, ..., h,a € Ha. For any map form H into Ha is one-one onto
= o(lHa)=m=0o(H)V ac G.
= every right coset of  in G has m distinct elements. Since, G is finite and therefore, number

of distinct right cosets of H in G will be finite say p. Also, any two right cosets of A in G will be
either identical or disjoint. Hence p disjoint right cosets of H in G will contain mp distinct elements.

G=HUHaeVHbOUHcU... wherea, b, ¢, ...€ G.
o(G)=o(H) + o(Ha) + o(Hb)+ ... =m+m+ ... p times = mp
o(GY=mp=n=mp *
= Order of the subgroup of a finite group is a divisor of the order of the group.

REMARKS

»

The converse of the Lagrange’s theorem is need not be true, i.e., if G is a finite group of
order n and m is any divisor of n, then it is not necessary that G must have a subgroup of
order m. :

For example. Consider the symmetric group P, of permutation of degree 4. Then
o(Py) =41=124. Let A4 be the alternating group of even permutation of degree 4. Then

oAy = 22—4 = 2. There exist no subgroup H of A4 such that O(H) = 6, though 6 is a divisor

of 12.

The Lagrange’s theorem has important applications in group theory. If G is a group of
order 8, then there will not exist subgroup of G of order 3, 5, 6, 7. The oniy subgroup of
G may be of order 2 and 4. Since, 2 and 4 are divisors of 8.

Theorem 5. The order of every element of a finite group G is a divisor of the order of the

group, i.e., o(a) | o(G).

Proof. Let G be a finite group of order n and let a € G be arbltrary, such that o{a) = m.
To show m is a dvisor of n,

Define H={a’:pe Z}
o(a)=m

= m is the least positive intcger in such that g" =e.
H={.. a ].ag,al,az,...,.amte}

Letx,ye H:bEI,p,q,EZsuchll_'latap=x,a"'=y
= xy '=d" T=qa"wherep-g=rec 2

= xy'=deH

= xy_IEH
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= f1 is a subgroup of G.

Now, to show o(H) = m, i.e., H contains m distinct element

2 3
aaa,...d"=e=d".

Letr,s€e T such that
r>0, 1<r<m, | €5<m

Now,d' =a'=a" "=eola)<r-s<m= ola)<m
which is a contradiction("." o(a) =m)

axaifr#s
= a, a2 a3, ... d" are distinct elements of H
= o(H)=m=o0(a)
Then, by Lagrange’s thearem, we have m is a divisor of n
= o(a) is a divisor of o(G).
Theorem 6. Let G be a finite group of order n and a € G then a" =e.
Proof. Let G be a finite group of order # and let 2 € G be an element of order m so that

=ée.

To show a"=e
Let H={Z:pe Z)}.

Then, by previous theorem, # is a subgroup of order .
Using Lagrange’s theorem, we have m is a divisor of n

= Jpe Nsuch thati:pﬁnmnp

Now, a'=d"=@"Y=(ef=e = d"=e.

Theorem 7. (Cayley Theorem). Every finite group G is isomorphic to a permutation group.
Proof. Let G be a finite group of order n such that G = {a,, a3, .... 4,}

Letae G. Define amap f, : G — G given by

' fi=ax ¥ x€ G. : (D
J. is one-one. '
Let falx) =falxn) 1 X1, 352,€ G
= ax =ax; = X =x.

f, is onto.
fo: G —= G is one-one and G is finite = £, is onto. Thus, f, is one-one map of a finite set &

onto itself. It means that £, is a permutation of degree n. Here

aa; aa; ... aa,

'. f=[al az ---an]

The elements aa,, aa,, :.., aa, are all distinct eiements of G.

Write G’ = {f, : a € G} then G’ is a set of permutations of degre n.

Now, we claim that (G’, +) is a group, where (+) denotes permutations mukliplication.
Leta, b, c € G be arbitrary and e be the tdentity in G.

Let a”! denote inverse of ¢ in G.
1

So that ala=aa'=e
(i) Closure property : f,.f,c G =f,/,€ G
Consider o fo) () = fo Uo(x)] = fol bx)
= a(bx) = {(ab) x, by associativity in G.
= fab(%)
= Jafo =fa . A2)

a,be G=abe G=f,e G'=f,f,€ G
(ii) Associativity : Leta,b,ce G
= (ab)e = albcy = fiapy = fao)
= fanrJe =faSoe = Ul fe=La (o f)-

(i) Exlstence of identity : a,e€ G= f,€ G'andae=ca=a
= foe=tea=Sa = fofe =L S =1
= f.,€ G’ is identity element of G".
(iv) Existence of inverse : a€ G=a,a '€ G ::-_ﬁ,,fa_' eG
Also, aa '=ala=e



Jaa™! =f&r:- ‘o) =f or ST =S e Lo
= f7'€ G isthe inverse of f, € G.
(v) Order of G :
For 0G)=n,G={f,:ae G} =0G)=H.
Therefore, we have (G, +) is a finite group of order n.
Now we claim that (G, ») = (G, *).
Now define a map g : G — G’ such that g(x) =f, Vx€ G.
(i) g is one-one :
For g(x)) = g(x2) 1 x;, x,€ G

= f;] :f:{2

= S =fx) Vx€G

- = a [by ()]
= X = x,. . .

(ii) gisonto:
For any f, € G’ = a € G such that g(a) =f,.
(iii) g preserves comparision in G and G’ :
For 8(x1x2) = fr, (where x;, x, € G = xx € G)
=fifr, = 8(x1) - g(x2).

Hence, G is an isomorphism of G onto G’ and hence G =G,

SOLVED EXAMPLES

Example 1. If G is a group and a € G, then show that the set H={a" : n €2} is a subgroup

of G and it is the smallest subgroup of G which contains the element a.

G.

Solution. Clearly, H is non-empty subset of G.
Letx,ye H, thenx=4d", y=a’ where p, g€ Z.

Therefore, xy = () ah ! =da = c H ) (. p~qe )
=> H is a non-empty subset of G and x,ye H = xy~' € H.Therefore, H is a subgroup of

Now, if K is any subgroup of G which contain a, they by closure property in K, a" € K for

every integer n. Also

A=ecK and a =@ '€k
= every integral power of a belong to X, i.e., H C K. Hence, H is the smallest subgroup of

& which contain a.

Example 2. If H be a subgroup of group G and
={xe G:xH = Hx}.
Show that T is a subgroup of G.
Solution. Sinceee GandeH=He=>ec T
= T is a non-empty subset of G.
Let x;, x, € T so that x,H = Hx|, x,H = Hx,
Now 3 € T xH=Hry = x5 (0 )3 ' = %3 (Hxp) 3!
=330 (H5 ) =02 'H) (023 ) = el ) = (i 'H) e
= Hg'=x'H = xj'e T.

Thus, xneT=x'€eT
Also,  (nxp') H=x (x'H) =x(Hxy ") = ) 53 = (Hx) 53 = H(xpy )
S T
Thus, T is a non-empty subset of G and x|, x; € T= x;x; e T therefore, T'is a subgroup of
G.
s TEST YOURSELF-5
1. Let G be the additive group of integers. Then show that the set of all mu]tlplcs of integers by
a mixed integer m is a subgroup of G.
2. Show that the integral multiples of 5 from a subgroup of the additive group of 1ntegers
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3. Show that the 24 permutations on 4 symbols from a group with respect to permutation
multiplication.

4. Use Lagrange’s theorem to show that any group of prime order can have no proper subgroups.

If a finite group & contains an element of even order, show that G must also be of even order.

6. If afinite group possesses an element of order 2, show that it possesses an odd number of such
elements.

11.14, CYCLIC GROUPS

If a group G contain an element a such that every element x € G is of the form 4", where
m¢€ Z, then G is said to by cyclic group and G is generated by a i.e., a is the generator of G, and
we write G = {a}.

REMARK
>

¢

If G is a cyclic group generated by a then, since G is closed under multiplication, then
a“e G Vke Z' Also, since the inverse of a* is & we see thata™¥ e GV ke Z*. Also
a’ is the identity ¢ of G. Then

G=(a)={a" ke Z)
Thus the cyclic group G generated by a, consist of all elements of the form a*.

Example on Cyclic Groups :
The multiplicative group G = {1, — 1, i, - {] as a cyclic group with generator i, Because
O'=i (@ ==10 =-iand ()* =1
= each element of G can be expressed as some integral power of
= (s cyclic, generated by i.
REMARK

> A cyclic group always at least have two generator. For example if a is the generator of

G then a” ' is also the generator of G.
g

2. The multiplicative group of n a" roots of unity is cyclic with generated e2mi,
P P Y g

3. Let n be a positive integer. We construct a group G of order n as follows : Suppose that G
consists of-all symbols @', i=0, [ 2, ... n— 1, where we insists that a’=a" =e, d' @ =a'*/
ifi+j<nanda’ aj=ai+-n If i +j>n. Then we may easily verify that this is a cyclic group
of order n. .

G={a}={e,a,d’...a" "} ,

4. The additive group of integers {... = 3,-2,- 1,0, 1,2, 3 ...} is a cyclic group with generators
1 and - 1. :

Properties of Cyclic Group :

Theovem 1. Every cyclic group is necessarily abelian but the converse is not necessarily true.
Proof. Let G = {a} is a cyclic group generated by an elementa € G.

Let x and y be any two elements of G.

Then x = a™ and y = a”", for some integer m and n.

m+n n+m " m
=qd"" " =a .a" =y

Now, xy=a"d"=a

= xy=yx Vx,yel

= (G is abelian. .

Conversly. An abelian group is not always a cyclic groups. It is illusted by the following
example. . ,

The set Ry of all non-zero real numbers is an abelian group with respect to multiplication.

If a € Ry, then H={a": ne Z} is a countable subset of Ry and so it can not be equal to the
uncountable set Ry

= All the elements of Ry cannot be expressed as some integral power of a single element of
= (Ry,+) is not a cyclic group.
Theorem 2. If the generator of a cyclic gorup G is of infinite order (or of zero order). then
G is isomorphic to the additive group of integers.

Proof. Let a is the generator of the cyclic group G = {a} leto(a)=ce = a" # ¢

To show (G,)=(Z,1).



Firstly we shall show that any two powers of a can not be equal let if possible, a” = a" for

m¥n
n

a"=ad"=d"=ed" = a" "=¢
= o{a) £ m — n = a finite number
= ofa) is finite,
A contradiction
=d +ad" form#n
= G contains an inifinite number of distinct elements
G= {ao =e ! a*? a? .}
Z={(0),+1,+2,+3,%...}.
Now, define a map f: G — Z such that @) =n Va"€ G.
f is one-one.
Let fdM=fld).a",a"€e G = m=n=d"=4d"
ie., fa™)=fla") = a"=a" = fisone-one.
[ is onto.
Since o(G) =00 = 0(Z) and fis one-one =fis onto.
J preserves compositions in G and Z.
Let a™ a" € G, then
fad™.aY=Ra" Y =m+n=Ffa") + fla")
ie., Ra™. a"y=fa™) + fa")
= fpreserves compositions in G and Z.
Hence, f is an isomorphism and (G, «) = (Z, +).
Theorem 3. The order of a cyclic group is equal to the order of any generator of the group.
Proof. Let a be the generator of o group G = {a}. Let o(a) = finite =n
= a"=e,a zeforO<r<n
To show o(a)=o(G)=n.
Step I  Firstly we show G contains n elements.
The elements of the cyclic group G is given below :
a,at,a, . ..d"=e=d".
Let if possible, G contains an element a™ besides these elements where m > n. Then by divison
algorithm
m=nq+r,0<r<nandg,re N
a"=a"" =g d =@V.ad = ad=¢e.a"=a
a"=a,08r<n.

a’ is already contained in the set of # elements and so @™ is also contained
= G contains n elements.
Step 1. Now to show that any two elements of G are not equal. For this we have to show
that a” # 4’ where r#5, 0<r<n, Q<s<n.
Let ' r<s<n
Then s-r>0
ar:af:‘sear=a.r:>a.r—!=e
= olg)<s—-r and s—-r<n = of@)<n.
Which is a contradiction. Hence, a” # a* where »# s.
Thus, we have shown that G cortains » distinct elements and hence o(G) = .
Theorem 4. A finite group of order n containing an element of order n must be cyclic.
Proof. Let G be a finite group of order n and let a& G such that o) =n. Then
o(G) = n = o(a). v

To show G is cyclic
Let H be a cyclic group generated by a, then

o(H)=o0(a)=n . (.- order of a cyclic group

: is equal to the order of its generator)

= H can be expressed as

H={d :r=1,2,3,...,n}
Since, G is a group - »

Groups
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then = a€ G = a € G for every integral value of r.
Thus HcG.
Moreover o(G)=n=ofH).
H =0, but H is cyclic = G is cyclic.
Theorem 5. Every group of prime order is cyclic.
Proof. Let G be a finite group of order p, with p is prime. To show G is cyclic.
Since G is a group of prime order = G must contains at least 2 elements.

(" 2 is the least positive prime integer)
= There must exist an elementae G aze

ate = ola)22.

Let o(a) =m. Then H = {a} is a cyclic group of G and o(H) = o(a) = m. Then, by Lagrange’s
theorem m must be a divisor of p. But p is prime and m 2 2. Hence m = p.

Therefore, H=G.

Since, H is cyclic, therefore G is cyclic with generator a.

Theorem 6. Every subgroup of a cyclic group is cyclic.

Proof. Let G = {a} be a cyclic group generated by a. If H=G or {e}, then obviously H is
cyclic. .

Now let H is a proper subgroup of G.

H contains the element of integral power of a.

If @' € H= a * € H. Therefore, H contains elements which are positive as well as negalive
integral of a. Let k be the least positive integer such that ¢* € H. To show H = {a”}.

Now let @' € H. Then, by division algorithm

Then exist g + r € Z such that

t=kg+r, 0<r<k
Now deHos@YeH=2d%e€eH=2 @ e HodYe H.
Also, deHa eH=daeH=d MetH=adcH

k is the least positive integer such that o € H and 0<r<k.
= r must be equal to 0
= t=kq
d'=d" ="
= every element ¢' € H is of the form (¢*)?
= H is cyclic with generator a”.

¢« SOLVED EXAMPLES

Example 1. How many generators are there of the cyclic group of order 8.
Solution. Suppose that the cyclic group G of order 8 is generated by an element « then
ola)=_8.

Clearly, G={a.a, a.adt a dad,db= e). ]
Now from theorem 7, an element a” is also a generator of G, if m is less than 8 and relatively
prime to 8.

Such numbers are 1, 3, 5 and 7.

Hence, a, 2°, @° and o’ are generators of G.

=> There are four generators of G.

Example 2. Show that the group G ={{1, - 1, i, — i}, } is cyclic.

Solution, Let G=1{1,-1,i,—i}.

To show G is cyclic. :

If there exist an element a € G such that o{a) = 4 = o(G). Then G will'be cyclic group with

its generator a.

Evidently d=iif=-17 i, it=1. !

Here identity element e of Gis l.

Thus i*=1, {"= 1 for any r <4

= o) =4=0(G)

= {is the generator of G.

Now G is expressible as G = {i, i, i, &y,



STUDENT ACTIVITY

1.

2.

Show that the set Z of all integer form a group with respect to binary operation * defined by
a*¥b=a+b+1Va, be Zis an abelien group.

State and prove Lagrange’s theorem.

SUMMARY _ .

A structure (G, *) is said to be a group :

(Ya*be G¥a,he'G

((a*by*c=a*(b*c)Va,bea,§Ce G

(iii) Identity e exists in G ie.,a*e=a=e*xa¥Vae G

(iv) Inverse of each element of G exists in G.

Order of group : No. of distinct elements of G-gives the order of G it is denoted by O (G} or

|Gl- :
Order of an element of a group : Let 2 € G and e be its identity element, then a least positive
integer » is said to be the orderof aita”=eie, O(a)=n.

Modulato system : )
(i) Addition modulo n : a + nb = r, 0 < r < n where r is the remainder obtained after dividing

a+bbyx
(ii) Multiplication modulo 7 : a X nb=r, 0 £ r <n, where r is the remainder obtained after

dividing ab by n.

Groups
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Permutation : A one-one mapping f of a finite non-empty set § onto itself is called 2
permutation.

Transposition : A cycle of length two is called a transposition.

Even and odd permutations : A permutation is said to be even or odd according as it can be
expressed as a product of even or odd number of transpositions.

Homomorphism and isomorphism of groups : A mappingf: (G, 0) — (G', *) is said to be 2
homomorphism if £ (x, y) = f(x) * f () ¥ x, ¥y € G. Ahomomorphism fis calied an isomorphism
if £ is one-one and onto.

Subgroups of a Group : A non-empty subset H of G is called a subgroup of G is closed under
the sam binary operation and defined on G and H itself forms a group.

Cosets : Let H be a subgroup of a group G. aff={ah:he H}} and Ha= {ha : he H)

The aH is called a left coset of H in G and Ha is called a right coset of & in G.

Lagrange’s theorem : The order of each subgroup of a finite group is a divisor of the group.
Cayley Theorem : Every finite group is isomorphic to its permutation group.

Cyclic Group : If a group is generated by a single element, then it is called a cyclic group and
that single element is called a generator of that group.

" TEST YOURSELF-6

[—y

Bl ol o

SE >

If w is the cube roots of unity, show that the set { [, w, wz} is a cyclic group of order 3 with
respect to multiplication.

Show that the group [{1,2, 3, 4, 5, 6}, x7] is cyclic. How many generators arc there ?

Show that the two cyclic groups of same order are isomorphic.

Show that, every finite group of composite order possesses proper subgroups.

Show that the set Uy of a, n complex roots of unity forms a cyclic group with respect to
multiplication.

Show that every finite group of order 6 must be abelian.

Show that the group [{1, 2, 3, 4}, Xs] is eyclic.

How many generators are there of the cyclic group of order 10. .

Show that the residue classes [1], [2], [3], [4], [53] 6]} and mod 7 from a multiplicative cyclic
group. Find the number of generators.

0 6’0 O 1l

10. Let G be the set of four matrices [O 0}, [l l]. [? 0], F l]

11.

where 0 and 1 are the elements of the set Z = {0, 1} modulo 2. Show that G is an abelian,
non-cyclic group under matrix addition. '

Find the order of each element in the cyclic group G = {a, .a.a @, el = e}

ANSWERS

2. Two,ie,3and 5 8. Four, ie.,a,a.a"a .

11. ofa) =6, ola®) = 3, 0(a®) = 2, o(a*} = 3, o(a®) = 6 and 0(a®) = 1.

OBJECTIVE EVALUATION ‘
> FILL IN THE BLANKS :

1L
2.
3.
4.

A group G is said to be abelian if @ ........c.c.......

The number of element in a finite group G is said 10 .....covvenee. of the group.
The identity of a group is .....ccocnnnee..

The invese of each element of a group G is ..o,

> TRUE OR FALSE :

Write ‘T’ for True and ‘F’ for False statement :
1.

2.
3.
4,

The product of two odd permutation is an odd permutation. o (T/F)
If for every element a in a group G, a® = e, than G is an abelian group. (11F)
If each elements having its own inverse then group is said to be abelian. (17F)
If * be a commutative composition in a set S, then ' L
a*b*cy=(c*b)*a ¥ a,b,ce S. : (T/F)

> MULTIPLE CHOICE QUESTIONS :
Choose the most appropriate one :

L

A subgroup of an abelian group is :



. (&) not abelian (b) necessarily abelian
{c) may be abelian (d) none of these.
Let G = {1, w, w’} is a cyclic, then the generators of G are : .
(a) landw (b) wand w?  (c) 1andw® {d) none of these.
If H, K are two subgroups of a group G, than HK is a subgroup of G if :
(a) HK=KH () HK=¢'  (c) KH=¢ (d) HK # KH.
Every group of prime order is : _
(a) Abelian (b} Cyclic (¢} both (1) and (b) {d) none of these.
ANSWERS
Fill in the Blanks :
1. ab=ba ¥V abe G 2. order 3. unique 4. unique
True or False :

1.F 2.T 3T 4. T
Multiple Choice Questions :
L) 2.(6) 3.(a) 4.(c)

Qg

Groupy
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UNIT

12

MULTIPLE PRODUCTS OF VECTORS

S ' LEARNING OBJECTIVES .

Vector and Scalar Products

Triple Praducts

Scalar Triple Product

Properties of Scalar Triple Product
Expression for the Scalar Triple Product in Terms of the Components of the Vectors
Vector Triple Product

Quadruple Products

Scalar Quadruple Product

Vector Quadruple Product

System of Reciprocal Vectars
Solved Examples

@ Student Activity

® Summary

@ Tost Yourself

LEARNING OBJECTIVES '

After going through this unit you will learn ;
@ How to find the scalar and vector products of vectors.
@ How to find the vectors reciprocal of the given vectors.

|* 12.1. VECTOR AND SCALAR PRODUCTS

Let a and b be two non-zero vectors. Then the product of the type a X b which gives a vectors
quantity, is called vector product of a and b whereas the product a » b which gives a scalar quantity
is called scalar product of the vectors a and b. The vector a X b is perpendicular to both the vectors
aand b.

* 12.2. TRIPLE PRODUCTS

Definition. A product involving three non-zero vectors is known as a triple proa'uct of these
three vectors.

There are two type of triple products :

(i) Scalar Triple Product.

(1i) Vector Triple Product.

* 12.3. SCALAR TRIPLE PRODUCT

Definition. ifa, b, ¢ are three non zero veciors, then the triple product (a x b) - ¢ which gives
a scalar quantity is known as scalar triple product of the
vectors a, b and c.

Geometrical Interpretation of Scalar Triple Product:

Let a, b, ¢ be three non-zero vectors and consider
a parallelopiped whose coterminous edges are along these
vectors and lengths of these edges are magnitudes of
a, b and c respectively.

Since we have that OA=|a|, OB=|b| and
OC=|c| Let V be the volume of this parallelopiped




which is taken as positive. Let p be a vector which is perpendicular-to both the vectors a and b
such that p = a X b. Thus vector p is perpendicular to the face OBDA of the paralielopiped.
Therefore the area of the face OBDA =|a x b |. Suppose the vector p makes an angle 8 with
vector ¢. Then the perpendicular distance from C to the face OBDA is OC cos 8 which takes the
positive and negative signs according to the angle © is acute or obtuse. Thus the vectors a, b, ¢
form a right hand triad if 0 is acute otherwise witl form a left hand triad.
The volume of the prailelopiped
= (area of face OBDA)
x (perpendicular distance from C to the face OBDA)
or V=|axb|OCcosB
=fpllc|cos@. (1)
Now consider
(axb).c=|axb||c|cos8

(axb)-c=|p||c|cosB. . -(2)
From (1) and (2}, we have
V=(axh).c

Hence, we conclude that the scalar triple product of three vectors gives the volume of the
parallelopiped whose coterminous edges are along these three vectors. "

If 8 is acute, the volume V will be positive and thus the triad a, b, ¢ form right handed riad
whereas if O is obtuse, the volume V will be negative and the vectors a, b, ¢ thus form left handed
triad.

If a, b, ¢ form right handed triad, then b, ¢, a and ¢, a, b wilt also form right handed triad and
hence we obtain that
V=(axb).c=(bxe).a=(cxa) b
Hence we conclude that the scalar triple product is independent of the position of the dot and
cross but depends on the cyclic order of the factors and therefore dot and cross may be interchanged.

¢ 12.4. PROPERTIES OF SCALAR TRIPLE PRODUCT

Property L. I/fany two vector of a, b. c are equal, then the value of their scalar triple product
will be zero.
Since a, b, ¢ are three non-zero vectors and we know that the scalar triple product is
fabcl=(axb)-c
If a = b =k (say), then
fabel=kkc]=(kxk):¢c=0.c=0

REMARK
> axb=(a||b|sn6)n

kxk= (|k||k|sm0°)n‘
Property 1. If any two vectors of a, b, ¢ are parallel, then their scalar triple product will
be zero.
Since a, b, c are three non-zero vectors and suppose a and b are parallel to each other. Then
we have

b=ra (1)
where t is any scalar quantity. :
[abec]=(axb)-c=(axra)-c [Using (1))
=¢(axa)-c [~ axmb=maxb=m(axbh)]
=1{0-¢0)=0 [ axa=0j|

Property I11. The three non-zero and non parauel vectors a, b, ¢ are coplanar if and only
if their scalar triple product is zero.

Suppose the Ihree non-zero and non-parallel vectors a, b, c are coplanar, then we have to
show thatfa b ¢] =

Since we know that the vector aX b is perpendicular to both the vectors a and b but
a, b, ¢ are given to be in a plane, then ax b will be perpendicular to the vector ¢ hence
[a b¢]=

Conversely, Suppose the scalar triple product of the vectors a, b; ¢ is zero

ie., [a bci=(axb)-e=0.

Multiple Products of Vectors
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Then (a X b) - ¢ = 0 implies that the vectors {(a X b) is perpendicular to the vector ¢ but by the
definition of (a X b) is perpendicular to the plane of the vectors a and b both. Thus the vector ¢ is
paraliel to the plane of a and b. Hence these vectors a, b, ¢ are lying in a plane cosequentily, they
are coplanar.

Property IV. Distributive law holds for the scalar triple product.

Since scalar and vector product are distributive so we have that for three non-zero vetors
a, b, c.

(i) a.-(b+c)=a.-b+a-.c

(ii) ax(b+c)=axb+axc

Then we have to show that [abe+d]l=[abc]+[abd

LHS. =[abc+d]l=(axb).(c+d)

=p-(c+d) fLetp=axh]
=p-ctp-d (Using ()
=(axb).c+(axh).-d [ p=axbh]

={abe+[abd=RHS.
Hence, distributive laws holds for scalar tripie product.

¢ 12.5. EXPRESSION FOR THE SCALAR TRIPLE PRODUCT IN TERMS OF
THE COMPONENTS OF THE VECTORS

Let a, b, ¢ be three non-zero vectors and having the components (a;, aa, @3). (6), b, b3) and
{c|. ¢4, c3) respectively, such that
A A A
a=a i+a2j+a3fc
A A A
b=byi+b,j+brk
a o a
A A A c=cqitejrek

where i, j, k are the unit vectors along the rectangular co-ordinates axes respectively.

a) 23} a3
Then [abcl=|b by b)) (D
¢ € G

* 12.6. VECTOR TRIPLE PRODUCT

Definition. [fa, b, c are three non-zero vectors, then the triple product a X (b X ¢) which
gives a vector quantity is called vector triple product of the vectors a, b, c.
())To prove thataX(bxe)=(a-c)b-(a-b)c.
Let us suppose r=a x{(bxc)and letbxc=p.
By the definition, the vector b X ¢ is perpendicular to the plane of vectors b and ¢ both.
Therefore p is perpendicular to the plane of b and ¢.
r=axXx(bxc)=axp (. p=bxg)
Therefore the vector r is perpendicular to both the vectors a and p. Since p is perpendicular
to both b and ¢’so the vector r is fying in the plane containing the vectors b and ¢. Thus the vector
r can be written as the linear combination of the vectors b and c
r=mb+ne (D)
wherc m and n both are scalars. Now taking the dot product of both sides of (1) with the
vector a, we have

r-a={mb+nc)-a

=m{b-a)+n(c-a) (.~ Scalar product is distributive)
Since the vector v is perpendicular to a
Y r.a=0.
m-a)+n(c-a)=0
m n
mo___n _ (2
or c.a b.a A (say) (2)

Substitute the values of m and a from (2} in (1}, we get
r=A(c-a)b+{-A(b-a)ec}



r=A[(c-a)b—(b-a)c] A A (3)
~  Now we have to determing the value of 2. So let us consider the unit vector j and & such that
j is parallel to the vector b and £ js perpendiculyr to the vector b in the plane of b and ¢, we have

b:sz and C:€2j+€3 k.

A A A
Also the vector a=a,i+aj+azk
r=ax(bxc)

A !\ LA A A A
=(a]i+a21+ask)x[szxfczf+fak)]

—(a]t+a2_;+a3k)x(b2c3_;xk)
A AA
—(al:+a21+a3k)xbzc3t (‘.' jxk= i}
TA
= 025163_} X z + aqb»q k Xi= a3b~,c3j arb,c3 k

and (c-a)b-(b-a)c=(ac; +asc3) bzf - axy (Czj +c3 k)
A A
= agb2€3j - ﬂ'gbZCj, k.

Substitute these values in (3), we get il 2ursn 9,
A=1.
On putting A =1 in (3), we get ¥
=(c-a)b~(b-a)c. ’
Since r=aX{bxc)
Hence ax(bxe)=(c-ajb-(b-a)c .
or aXx(bxc)=(a.-c)b—-{a-b)c ' (Dot are commutative)

(ii) To prove that the vector triple product is not associative.
Let a, b, ¢ be three non-zero vectors, then we know that

ax(xe)=(a-c)b-(a-b)c. (1)
Now (axbyxc=-ex(axb)=—[{(c-b)a-{c-a)b] [From (i)]
(@axb)yxc=(c-a)b—(c-b)a. ..{2)

From (1) and (2), we get
ax(bxc)#{axbjxec
Hence, vector triple product is not associative.

* 12.7. QUADRUPLE PRODUCTS

Definition. The product involving four non-zero vectors is called quadruple product of these
four vectors.

There are two quadruple product :

(1) Scalar quadruple product.

(ii) Vector quadruple product.

« 12.8. SCALAR QUADRUPLE PRODUCT

Definition. If a, b, c,d are four non-zero vectors, then the product (a X b) - (¢ X d), which
gives a scalar quantity, is called scalar product of four vectors or scalar quadruple product.
(i) Toprove that (ax b} . (cxd)=(a-c)(b:-d)—(b-c){a-d).
Let p=aXxb, then
(axb) {cxd)=p-(cxd)

=(pxc)-d (In a scalar triple product the dot
and cross can be interchanged)
=[(axb)xc]-d (- p=axb)

~[c-a)b—(c-b)a]l-d=(c-a)(b-d)—{(c-b)(a d)
=(@a-c)(b:d)-(b-c)(a.d)

(axb)-(cxd) =(a-c)(b-d)—(b-c)(a-d).

REMARK :

>

(axb).(cxd)= :

¢ b-c
d b-d

Muitiple Products of Vectors
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12.9. VECTOR QUADRUPLE PRODUCT

Definition. If a,b, ¢ and d are four vectors, then the product of the type (a X b) X (¢ x d)
which gives a vector quantity is called vector quadruple product of four vectors.
To prove that : '
(i) (axb}x(cxd)=[abdlc-[a b c]d
(ii) (axb)x(exd)=[a ¢ d]b-[b ¢ d] a.
(i) Letaxb=p,then
(axb)x{exd)=px(exd)=(p-dye—(p-¢c)d
=(axb.-d)c-(axb-¢)d
=[a b d]c~[a b cld.
(ii) Let cxd =q, then '
(axh)x{exd)y=(axb)Xg=-gx{axb)
=-[{(q-b)a-(q-a}b]=(q-a)b-(q-b)a
=(exd-a)b-{(cxXd.-b)a=[cd a]b—[c d b]a.
Corollary. Prove that
[b cdla-[acdlb+[abd]c—[abc]d=0.
From (i) and {(ii), we have
(axb)x{(cxd)=[a b dlec~[(a b c]d
and (axb)x(cxd)y=[a ¢ d]b~-[b ¢ d] a.

From equation (1) and (2), we get
fbcdja-[acdlb+[abdlc-[abc]ld=0.

* 12.10. SYSTEM OF RECIPROCAL VECTORS

Definition. If a, b, ¢ are three non-coplanar vectors, then the three vectors &', b, ¢ are
called system of reciprocal vectors of the vectors a, b, ¢ if
a = bxe B _CXa e = axb _

[a b c] [a b c] [a b c]
Properties of Reciprocal system of Vectors :
Property 1. Ifa’, W, ¢ are reciprocal vectors to the vectors a, b, ¢ respectively, then

a.a’=b.-b'=c.¢'=1.
Since we know that a’y b’, ¢ are defined by the following equations
a= bXc¢ Jho_CXa o= axb

{abc] [a b <) [a b ¢]
bxe _a:-bxc _(ab¢]
[abe¢] [abe] [abe
Similarly b.b’'=1,¢c.¢'=1

Hence, a-a’=b.b'=c.c'=1.
Property II. The scalar product of any two vectors, one from each reciprocal system of

vectors is zero i.e.,
a-b’:a-t’:b-a':b.?':c.a':c.b'=0‘

(1)
A2)

a.a’ =a-.

Since we know that
,_ _bXxe , __€CXa ,__axbhb

= v b = ] = .
"“labvd " laba “"labd
cxa _a-cxa_[aca]= . _
abc bec labo 0 (- facal=0
Similarly we can show that
a.c’=b.a’=b.c’=c.a’=¢c-b'=0.
Property IIL. The scalar triple product of &', V', &' is reciprocal to the scalar triple product
ofa, b, c.

Since we have .
, bxc ,__cxa , axb

*"abe " labeg “Tlabe
[@" b ¢]=a" (b xc")

a-b’'=a.




“[abc]' fabc] [abc]
(bxe).[(cxa)x(axb)]

_ _bxe {(cxa) N (axb)}

[a” b’ ¢)= 3 (1)

[a b c] _ .
Now (cxa)x(axb)=[c a bja—[c a a]b * (Using vector quadruple product)
=[c a bla. . ) (- [caal=0)

Substituting this value in (1}, we get
(bxc)-[c a b]a f[c a b]{(bxc-a)
[ab ¢ [a b
_[ab ¢
[abcp
- ]' .
“lab ]
[a" b ¢’][a b c)=1.

* SOLVED EXAMPLES

Ia) b) cl] -

(- [cabl={bcal=[abc]

Example 1. Find the volume of the parallelopiped whose edges are represented by the vectors
A A A A A A A A A

(i) a= 2i—3j+4k b=i+2j-kc=3i-j+2k

or 34)(12 l)and(3—12)
A A A

(if) a= 21—4;+5k b=i-j+k c=3 z—5;+2k

Solution. The volume of the parallelopiped whose edges are a, b, ¢ is equal to the magnitude
of [a b c].

i) V=[a b ¢]
2 -3 4
=1 2 ~1{=2(4-1)-3(-3-2)+4(-1-6)
3 -1 2
=6+15-28=-17.
V=7 (Numerically).
2 -4 5
(ii) V=11 -1 1
3 -5 2

=2{(-2+45)-4(3-2)+5(-5+3)=6-4-10=-8
V = 8 (Numericaily). A A A
Example 2. Prove that the four points 4+ 5] + k, - 0 + k) (31 + 9_,' + 4k) and 4 (i +_; + k)
are coplanar.
Solution. Let A, B, C and D be the four points and O be the origin.

—_— A A A — A A — A A A

Then OA=4i+5j+k OB=—j—k, OC=3i+9j + 4k

. - A A A

and OD=-4i+4f + 4k.

—_— —— — A A A
AB=0B-0A=-4i-6j -2k
— —_— — A A A A A A A A A
AC=0C- OA—(3i+9j+4k)—(41‘+5j+k)=—i+4j+3k

— — _— A A
and AD=0D— OA= (- 4i+4] +4k) - (4 + 5] + &) = - 31 -} + 3F.
Now find [AB AC AD]
—4 -6 -2
[AB AC AD] 4 3
—8 -1 3

=—4(12+3)~6(=24+3) =2 (1 +32)
=—60+126—-66=—126+126=0.

Hence, XE: ffa fIH are coplanar and hence the four given paints are coplanar.
Example 3. Provethat [a+b,b+c¢,c+a]l=2[a b c].

Muttiple Products of Vectors
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and

Solution. Taking L.H.S.
LHS. =[a+b,b+c,c+a]

=(a+b).[(b+c)x(c+a)]
=(a+b)-[bXxc+bxa+cxXc+cxal
=(a+b).[bxc+bxa+cxa] . (. cxe=0
=(a+b)-(bxc)+{(a+b)-(bxa)+(a+b)-(cxa)
=a-bxc+b-bxc+a-bxa+h-hxa+a-exa+b-cXxa
=[abc¢]J+bbcl+{abal+[b b al+[aca]t|bc a

=[a b c¢]+[b c a) (b b ¢]=0,[ab aj=0,

[bba]l=0(ac¢ua=0
=labe]+labc=2[abc] (. [abel=|bc a))
=R.H.S.

Hence, [a+b,b+c,c+a]=2[a b c].
Example 4. Show that [axb,bxc¢,cXa}l=(a b cl%
Solution. Since, we have o
faxb, bxe, cxal=(@xb).{(bxc)x(cxa) R RS
Now consider first (b x ¢} X (c x a). T
Letb xc=p, then
(bxe)x(exa)=pX(cxXa)=(p-a)c—-(p-c)a
=[(bxc¢).-alc—f(bxc)-c]a
=[bca]c—[bcc]a(bxc)x(cxa)=[abc]c R )
{. [bccl=0
Now from (1) and (2)
[(axb)(bxe)(cxa)=(axb):{[ab ec]c}=[ab c][{axb)-c]
=[abecl[abel=[ab )’
Hence [axabXccxal=[(a b c”.

A A A A A A
Example 5. Prove that ix(axi}+jx(@xj)+kx{axk)=2a.
Solution. Since, we have

?x(ax;}:(?-;\)a—(?-a)? LD
Jx@xp)=(-Ha-G-a)j A2)
kx(axk)= (E-k)a—(k-a)k. K )]

_ Adding (1), {2) (3), we gc{

1x(ax:)+;x(ax;)+k><(a><k)

A
=3a—(i-a)z—(;-a);—(k-a)k ] )
A A A A A A
(o dei=jeg=kek=1)
A A "
Further, let a=aitayj+ask
f\l A A
i-a=al,j-a=a2,k-a=a3.
A A A A A A A A A
(i-a)i+t(-a)j+k-ayk=q itayjtazk=a. (5

- From (4) and (5) we get

:x(ax:)+;x(ax;)+k><(axk) 3a-a=2a.
Hence proved the result.

Example 6. Find a set of vecmrs reciproca[ to the three given vectors
A A A A A A A

a——-1+j+k b-—1~;+k c=itj+k

Solution. Let a’, b’, ¢’ are the vectors reciprocal to the vectors a, b, ¢, then

A A A
i Jj k
bxe=|1 -1 1
1 1 1



A A A A A

=i(-1-D+jA-D+k(1+1})=-2i+2%
A A A

ik

cxXa= 1 1 1

-1 1 1

A A A A A
i (1-D+j(—1=-D+k(1+D)=-2j+2k

A A A

i J ok
and axb=|-1 1 1
' I -1 1
=?(1+1)+}\(1+1)+E(1A1)=2?+2}\
-1 1 1
and labej=| 1 -1 I|l==1(=1-D+1(0-D+i{l+1)=2+2=4,
I 1 I
Lok -
,__bxe -2i+2k 1 4 2 .
a_[abc]_ 7 —2( i+k) hy
A A
,__exXa _(-2/+2) 1 * %
“Tabeq . a4 —20itR

A A
,__axbh 2i+2j 1 A~ 17
““abg a4 20t

AA

*+ STUDENT'S ACTIVITY

1. Prove that

Y
+
o |
o
+
al
ol
+
&)
I
[\
Y|
o~
Ral)

2. If@,b,c are the vectors reciprocal to the vectors @, b, c. then prove that

= a+b+7c
axXb+b X+ xa =
[abc]

Mudtiple Products of Vectors
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SUMMARY

@ . (bx7T) = Scalar triple .product.
@ x (b x ) = Vector triple product.

(a % 3) (e x E) = Scalar quadruple product.

@ x b) X (¢ x d) = Vector quadruple product.
Reciprocal vectors

S_bXE p_Txa o _ axb
“[abd’ C T@ha’ © labe
+ TEST YOURSELF

Zgeen

13.

Prove that a x (b + ¢) =a X b + a X ¢ for any vectors a, b and c.
A

A A A A A A A A
(i) Show that the vectors i + 2 + &, 3i + 2j — 7k and 5i + 6j ~ 5k are coplanar.

AA A

(i1) P}nd the  value of 'the constant A such that the vectors a=2i—-j+k, b—£+2j 3k
c=3i+ 7LJ + Sk are coplanar.
Prove that a.(bxc}= (ax b).c.

A AA A A

Prove that [i -/, j—k, k—:]v .
(1) Fmd lhe volume of a parallelopiped whose edges are represented by 8‘1—2}1 3k
b= 21 +j- k c= _,t+k

(ii) Evaluate (21 - 3 - [(i 45 — §) x (3¢ - R)].

If OA za, OB=b, OC=c, then prove that ax b+ b x ¢ + ¢ xa is a vector perpendicular to
the plane ABC. A A

Find the value of a x (b x ¢), where a—x-2j+k b= 21+;+k C—t+2j k.

Show that the vectors a X {b X ¢), b x (c X a), ¢ X {a x b) are coplanar.

Prove that (a xb) xc=ax (bxe¢) if and only if (e xa) xbh=0.

Prove that ax (b xa)={(a xb) xa.

Prove that [a” b” ¢'][a b'¢]=1, where a’, b, .¢ are the vectors reciprocal to the vectors
a, b, c.

Find a set of vectors rec1procal to the vectors

A A A
a=2;+3,r—k,b=;—;—2k,c=-:‘+2j+2k.
If a’, b’, ¢ are the vectors reciprocal to the vectors a, b, ¢ then show that
(i) axa’+bxb +exe =0

(i) a= b'xe” . __¢xa c= a’xb’
1 - [a: bl c)] - [a; h.r cr] - {at ba c.f]
ANSWERS
2. (it) A=-4.
5. (i) 12 cubic unit (ii) 4 cubic unit
7. —9i-6) - 3. 12. —(2; +8), —( 8i+ 3 — Th), = 3 L~ 784 35— 5R).

OBJECTIVE EVALUATION
» FILL IN THE BLANKS :

1.

2.
3.
4

The vector a is perpendicular to .......... .

If a vector a is paralle! to the vector b, then a equals to .......... .

axb.c=......

The coterminous edges of a parallelopiped are represented by the vectors &, b, ¢ then its
volume is .......... .

» TRUE OR FALSE :
Write ‘T’ for true and ‘F’ for false statement :

1L
2.

A AN ATA A
[i j KI+UAk A=20k iyl A n & (T/F)
The vectors { — 2j + 3k, - 2i + 3; 4k, i-3j+ Sk are coplanar. (T/F)



» MULTIPLE CHOICE QUESTIONS :
Choose the most appropriate one :

1.

2,

3.

a x b is perpendicular to :
(a) a (b) 0 (ca-b {d) None of these.
If O is the angle between aand b and |[ax b} =|a.b| then 8 equals :
fa) O (b) n/2 (¢c) m/4 © (d) n/3.
iffa=rbh, then[a b c] equals : .
(a) 1 (b)y -1 (c)a+b (d 0.
Ifa b ¢ are coplanar, then {a b ¢] equals : '
“(a) 0 by 1 oo el (d) None of these.
ANSWERS
Fill in the Blanks :
1. axb 2. th 3.a.bxc 4. [a b c]
True or False :
1. T 2.T

Multiple Choice Questions :
L @ 20 3 4@

QaQ

Multiple Products of Vectors
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UNIT

13

DIFFERENTIATION AND INTEGRATION OF
VECTORS

" LEARNING OBJECTIVES .

Scalar Function
Vector Function
Scalar and Vector Fields

Differentiation of a Vector Function with Respect to a Scalar
Differentiation Formulae for the Vector Function

Derivative of a Constant Vector

Derivative of a Vector Function in Terms of Its Components
Derivative of a Vector Function of Function

Solved Examples

@ Test Yourselt—1

Integraticn of a Vector Function

Solved Examples

@ Student Activity

® Summary

@ Test Yoursel-2

. I LEARNING OBJECTIVES - .

After going through this unit you will feamn :
@ About the scalar and vector functions
@ How to differentiate and how to integrate the given vectors

* 13.1. SCALAR FUNCTION

Since we know that the quantity which is associated with the magnitude but not associated
with direction is known as scalar gquantity. Therefore every real number is a scalar quantity.

Let D be a subset of a set of real numbers. Then a function f defined over the subset D sucti
that for all t € D, 1) is obtained as a scalar quantity. is called a scalar function.

¢ 13.2. VECTOR FUNCTION

If the scalar function ft) for all t € D is associated with some direction then this function is
called a vector function and is therefore denoted by f(1) or f.

Let f; (0. £ (0. fa (1) be three components of a vector function f(z), then this function can bg
uniquely expressed as a linear combination of these three fixed non-coplanar vectors f, (1) 1.
XOINI0Y: oA

: f[=fOi+L O+
A A A

where i, j, & are three mutually perpendicwlar non-coplanar unit vectors.

* 13.3. SCALAR AND VECTOR FIELDS

Scalar fields. A scalar point function f defined over some region R such that to each point
P(x, y, 2) in space, there corresponds a unique scalar {P), is called a scalar field. For example
Sy, )= x+ y2 +25- 3xyz.
Vector fields. A vector point function € defined over a region R such that to each point
P(x, y, z) there exists a unique vector f(P), is called vector field. For example




I AT T
f(x, y,2)=xyi+xz -y zk.
Some Result Related to the Limits and Continuity of a Vector Function :
1. The necessary and sufficient condition for a vector function f{f) to be continuous at g is

that

Differentiation and Integration af Vectors

lim £(f} = f{zy).

11,
A A A
2.8 =f; () i+ (@) j+ 55 (1) &, then f(¢) is continuous iff £ (#), £ (1), f; () are continuous.
A A A A A
3 If fO=L@i+LO+/E &k and I=£11‘+Izji\+ lyk, then . lim f(H=1 iff

{31y
iim f] (f) = il! lim fz (I) = 12 aﬂd lim f3 (t) = 33.
{1y =1 t=y .
4, If () and g(¢) are vector functions of scalar variable ¢ and ¢(¢) is a scalar function, then

G) lim [K0)+gn)= m )+ him gi)

1= 1= =1
i) lim [r(:).g(r)]z[ lim f(t)][ lim g(t)}
t—rty t=>1fy 14y

31 =iy =iy

(iii) lim [f(t}xg(t)]z{ lim f(r)jx[ lim g(t)]

(v) fim [f(:)(={ im f(r)(_

(v} lim [60) f(r)}=[ lim ¢(r)}[ lim f(r)].

» 13.4. DIFFERENTIATION OF A VECTOR FUNCTION WITH RESPECT TO
A SCALAR

Definition. Let f(r) be a vector function of scalar variable t. The function (1) is differentiable

with respect to t if . .
. e+ -1 .
tim exists.

5t—=0 ot
And it is denoted by %Q

3 . d
Successive Derivatives, If uio] exists, then f{¢) is differentiable and di(z) is also a vector

dt dt
function of variable 7. Ifd—gfl is differentiable, then f() is called second derivative of f(f).
dr
Similarly we can find the third, fourth etc. derivatives of f(#).
REMARK ' ’
> "~ dr dr . L
If r =f(£). then &’ -F » etc. are the first second etc., derivatives of r=f() and also

denoted by r, r efc.

* 13.5. DIFFERENTIATION FORMULAE FOR THE VECTOR FUNCTION

Let a, b, ¢ be differentiable vector function of a scalar variabie t and ¢ be a differentiable
scalar ﬁmct:’on of L, then

) S@rp)=2:+ 2
b da
(i) —(a +b)=a-. —~+dr -b
(iif)F(axb)=ax?+%?xb
da _ﬂ

@) 2 g2 =09+ L a

(v) —[abc] l: bc} {a%c] [a bjc]
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() 4 (ax (b x0)) = —X(bxc)+ax{%x¢:l+ax[bx%J

* 13.6. DERIVATIVE OF A CONSTANT VECTOR

Definition. A vector is said to be constant vector if its magnitude as well as direction are

fixed.

Let r be a constant vector, then

r=c¢ (a constant vector) ' D
' r+or= 42)
Subtract (1) from (2), we get

or=0.

Divide by 8¢ and taking the limit as & — 0, we get

or dr

a}l-Tn & =0 or ” =0

Hence the derivative of a constant vector is g zero vector.

* 13.7. DERIVATIVE OF A VECTOR FUNCTION IN TERMS OF ITS
COMPONENTS

Let P(x, y, z) be any point in space and its position vector with respect to the origin O be r
and let x, y, z be the function of scaiar variable ¢, then we have

-"\ N A
A A A v=xi+tyj+zk )
where 1, J, k are constant vectors. A
r+dr= (x+&x):+(y+8y);+(z+52)k oo : ~(2)

Subtract (1) from (2), we gct
A A
5r=5.n + 9y j + dzk.
Now divide this equation by 8¢ and taking the limit as 8¢ — 0, we have

8x4 Bya Bzb
m (Brt+5tj+ﬁrk)

de _dxt dyh deh
dt I-’rdr J+ rk

&r

» —— etcC.
ar

* 13.8. DERIVATIVE OF A VECTOR FUNCTION OF FUNCTION

Let r be a function of a scalar variable &, and u is also a scalar function of scalar variable 7.

Similarly,

. r = f(u) (D)
and u=g(). ~{2)
r + &t =z + Ou) e -3)
and u+du= g+ 8. . 3
Subtract (2) from (3), we get
8r = fue + Su) — f{u) ' -A5)
and subtract (2) from (4), we get
Su=g(t+ 5 - g(a). ()

Now divide (3) by &8¢, we have

Or _ flu+du) - l'(u) _ fu+8u) — (1) Bu

8 St Su Ot
glt' fu +5§2 - f(u) g+ SQ - g() (using, (6)]
Taking the limit 5: -0, when 8t — 0, Br — 0 and du — 0, we get



dr _di dg
dt du dt
Some important Theorems :

dr _
dt

dr du

du dt [ or=1u), u=g()]

Theerem 1. The vector a(t) has a constant magnitude if and only if a - ? 0.
Proof. Let us suppose a(f) has a constant magnitude. *
_ | a(#} | = a (constant)
or a.a=a’ (constant)
d da da da : e e .
dr(a-a) a- a't+dt ra=2a s [ a-b=b-a]
Since a-a=a’
4 4 o
dr(a°a)_dr(a )=0.
da da
-2'dr_0 or -dr_O.
Conversely, suppose a - P 0, then we get
d da  da da . B
dt(a-a)— -dt+dt-a—2a-dt [ a-b=b-a]
d
d!(a-a)—O or a-a=constant .
or |a = constant or |a|=constant, Hence proved.
Theorem 2. The vector function a(t) is constant if and only if %? =0
Proof. Let us suppose first a(z) is a constant vector. Let a(#) = ¢ where ¢ is a constant vector,
then .
a{r+on=c.
a(t+d)-a()=c—-¢c=0.
Dmde by &z and takmg the limit as 8t — 0, we get
a(r+ 8!! —a() _
={
5.--—>0
da_
dat
da
Conversely, suppose - 0.
A
Let alf)=a; (N ita, (t)_} +as(9) k
da_da, & dat da; o
&~ @' T el a ,
da;» day»r day ... da_
a ta it a ke T
L. . dﬂ] daz da3
. This implies - 0. @ =0, o =0.
Therefore a;, a,, a3 are all constant.
A0 A A
Hence a(?) =.a, i + a3 j + a3 k is a constant vector.
Theorem 3. If the vector a has a constant magnitude a, 'theqr a and P perpendicular,
provided i—? #0.
Proof. Since, we have that | a | = a (constant), then
a.a=|a|*=a’ (constant)
d da da - _ da
A .
4 4 o
and dt(a-a)—dr(a)—o.

Differentiation and Integration of Vectors
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da da ‘-
2a.—/—=0 or a-—=0. ™~
dt dt
C . . da . da
This implies vector a is perpendicular to a provided o #0. -

Theorem 4. If a vector a is a differentiable vector function of ¢, then
L] s

dt dt s

Proof. Since, we have that

d db da
dt(aXb)_axdr+erb'

@)y d[da +£§'xd—a—axé+g§x-@—
dt dt|” " Tdt|dt| de T dt T g At odt

d'a { da _da
=ax—— SO X—

X — =0 {.e., cross product of two some
47 dr " dr P

veclor is zero]
Theorem 5, The vector a(t) has a constant direction if and only if

da
ax = 0. _ ) .
Proof. Suppose a(s) has a constant direction. Let @ be the unit vector along a(f) and
|a(r) | = a, then R
a(f) = aa.
d_d *
de = a9 A
@ _daj, do
dt 4t dr A
da da® da)_da__* da
ax dt —ax[dr a+ta dr]_ at axXg-+aax i
A
or ax da_ ax da (N
dar ¢ dr |’ '

‘ A a
v aXag=ax—=0
(1

. ' . . AL
Since a has a constant direction, then a is a constant vector, and thus we have

da_g,
dt
ax%:a{ax0)=0.
da
Conversely, suppose a X @ 0, then from (1)
da _da A da
a[axdr]wo or axdt—O or ax-{?t-—O WA{2)
. . [ a= u?x]
Since ¢ has a constant magnitude, then by theorem (1), page 234 '
A
A da
= 0. (3

From (2) and (3), we get

dr -
.. . AL . .
This implies g is a constant vector and hence a has a constant direction.

SOLVED EXAMPLES

142 Self-Instructional Material

A A A
Example 1, Ifr=02sint)i+ 3 cost)j+1k, find



. dr | d
() @ (&) F‘;
i}y — 2% I
( ) (iv) Py
A A A

Solution. Since we know thal i, j, k are constant vectors, s0
N

di_odi_  dk
& 0, p” =0 and & =0.
A A A
Qi) r=Q2sing)i+@3cosnj+ek
dr A N
E—(Ecosr)i—(3smr)1+k.

(i) |§f =V(dcos?r+9sin’r+1) = V5 (1 +sin 7).

oo AT _dfdry d A A L aen A
(iii) . dr(dt) m(Zcos: _3sm;+k)— 2 sin ti = 3 cos .
(iv) % =\!(4 sin? 1+ 9 cos® 1) 2\[(4+5coszt).

t

A
Example 2. If r be a unir vector in the direction of v, prove that

1% Q‘_\ -1 rx dr
dar ;2 dt
. . AL .
Solution. Since 7 is a unit vector along the vector r, so we have
A

» where |r|=r.

r=rr (1)
[x]|=r.
leferentlatmg w.r.t. 7 of both sides, we get
dae d
dr dt )
dr_. dr dr (2)
dt drt dt
Now rxvgi—rx rd—?+£?
dt dt  dt
=T X dn+d—rxr r{rr xﬂ+£rﬁx? (. r—rﬁ
dt  dt dr  dt T
= rx g +0 (" Cross product of same vector
. A A
iszeroie., rxr=10)
s
d"_ dt-
a_dr 1 dr
dr_1 . ar ed.
rx ,-z:xdt ) Hence prov
Example 3. Ifr=(cosnt) i+ (s‘:'n nt) j, where n is a constant and t varies, show that
L
X—=nk.
rXx_ =n

A A

A A ;
Solution. Since i and j are constant vectors so %} =0, %:— =0and

A A
r = (cos af) i + (sin nd) j.
Differentiating (1} w.r.t. ‘¢, we get

dr A A
2o (sinnt) i +n{cosnr)j ..(2)

dr A A
Now er=rx[—n(sinnt)i+n(cosm)fj

(1)

Differemiation and Integrotion of Vectors
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= [(cos nr) ?+ (sin m)_;'\] X [- # (sin nr) ?+ n (cos m‘)}\)] [From (1)]
=(n cos’ nt)i x; n (sin n:)_}\x ?

=n{(cos’ n!)k+n(sm nz}k [ jxi=—kandixj=4]

—(cos nt + sin® nt)nk—nk (. cos® nt +sin” nr = 1)
A

Hence,- rx£=nk.
dt

TEST YOURSELF-1

2
1. Ifr=(+ 1)1+(r +t+l);+(r +F +t+l)k ﬁndﬂ d—2
dr
2. If a, b are constant vectors, W is a constant and r is a vector function of the scalar variable
¢ given by
r=coswsa+sinwsb.
Show that
(i) %+m2r=0 (ii) rx%=ma xb.
3. (i) If r is a unit vector, then show that
rx9r dr dr
dt dr|

A
{i1) If r Xdr =90, show that r = constant.
4.  If r is the position vector of a moving point and r is the modulus of r, show that

S. If r is a vector function of a scalar variable ¢ and a is a conslant vector, differentiate the
foliowing with respect to ¢ :

. : dr L EXa .3 dr
(i) rxa (")rxdr (iti) (1\.#).rr+a><dr
where [r]=r.
A AA 2
6. Yr=sinti+cost)+rk find | & x%E
. dt d;z
ANSWERS
A A
N N SN i SRR,
dt rz
&r
5. ~xa i) rXx—
0 i) rx 3
dr dr
—xa ‘a 2
dt 3 dr dr
rxa iv) 3r —r+ +ax—
(r a);( ) (iv) 7 P o

* 13.9. INTEGRATION OF A VECTOR FUNCTION
Let F() be a differentiable vector function and let f(s) be its differential coefficient, then
< F) = 10) D

Therefore the integral of f(¢) is F(z). Consequently we can say that integration is the reverse
process of differentiation.

[ £e) de = Feo. )

This is an indefinite integral and the function f(r) which is being integrated is known as
integrand. '




Moreover, let ¢ be a constant vector which is independent of ¢, then (1) can also be written Differentiation and Integration of Vectors

as
d _
P {(F() +c} =K.
[ 80 dr = F(t) + .

(3
()

This constant vector ¢ is called constant of integration, since this vector ¢ is taken to be

arbitrary so the integral given in (2) and in (4) is therefore indefinite, integrals. .
If f(z) is defined over the closed interval [a, 5], then the integral given in (5)

b .
_[ () dr =[F() + <), =F(b) - Fa)

is called the definite integral and a and b are called limits of mregmnan

REMARK
> IR =f()i+f1] +f () k, then
[ty de=i[f @ de+i [0 der k[ £ ) de

Some important Results :

db da
l.J.ad+drb}dtab+c

where, ¢ is a constant of integration.

(_db da
2. I axX—+-—-XxXb|dt=(axb)+c
dr  dt ( )
where c is a constant vector.

3. I h-@]dr=az+c.
L dt

Here, c is a scalar quantity.

4. I(ax%}dr—[axj—?}+c

Here, ¢ is a constant vector of integration.

s. I[ax—}ﬁ_[ax%}ﬂ.

Here, ¢ is a constant vector of integration.

G.I[ax%Jdt:(axb)Jrc.

Here, ¢ is a constant vector which is constant of integration.
7. If ¢ is a constant scalar and a is a vector function of ¢, then

Icadr=cjadx.

A5)

¢« SOLVED EXAMPLES

Example 1. Interpret the relations

dr dr
rdSOandrxd =0

Solution. For r. ar _ =0 = 2r-. L =
ds ds
Integrating w.r.t. s, we get

ar) ,
I(Zr-ds)ds—JOds

or : r’=g (constant) = r has constant magnitude.

Thus r describes a circle.
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Again, for r x P 0 = r and 75 e paraliel.
s

dr . .
Also 2 52 unit vector along tangent.

r has constant direction that the tangent at every point is along r.
Thus r describes a straight line.

. A A !
Example 2. {ff(r)=(:+l)i+{:2+1+l)j+(13+r2+t+l)k,fmdjo £(1) dt.
A A A
Solution. Since f(f) = (¢ + 1} i+ (+1+ 1) j+ (£ + £ + 1+ 1) k, then

1 i A A A
L f(7) .:ir=-|‘0 [+ )i+ @ +e+1)j+(+2 41+ 1)kt

—:I (r+1)dr+JI (¢ +t+l)dt+kJ. (r +7 +:+1)dr

_:\[ﬁﬂ]u;[uﬂ]‘ +z[ﬁ+ﬁ+f_;,]‘
2 - 0 3 2 0 4 3 2 0
11" 25 %

34
A AR

A
Example 3, [fr= 50+ rj -7 k, then prove that

j [rx— dt-——l4l+75j—15k
1 dr?

A A A
Solution. Since r=5/i+¢j—1 k, then

A A A
é—l::lOt:‘+j—3t2k
dt
&r
again 10:-6tk
5 ar
d‘.’. ,.F\ A A
rx——(Sr z+:,r £ k)X (10i— 6t k)
dr

A A AA 3!\ A

==308 ixk+ 100j % i — 62 ) x k- 100k x
38 AP I 3% 2 37 o
=30 j-10tk-61"i—10r j=—06¢i+20¢ j - 10t k.

2 d2 2 A A A
Nowj-] (rx;]dr L (- 624207 j - 10t k) dt

A A AN ’ A A A
=[-2Ps+5t“j—5:2k]2 =-14i+75j- 15k
1 .

* STUDENT'S ACTIVITY

1. If 7 be a unit vector inthe dtrectlon of 7, 'prove that

A d? 1_.;(_1—{_
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2.

A
If 72 5%+ f — £k, then prove that

2 2 oA
I (r—k -d—g"] dt=— 141+ 757 - 15k
1

dr

SUMMARY

Vector Function : £() = £, () T+£ 0 ]+ £ () k.

Differentiation of Rr), W.ILL, 1 :

—
O fimFle+ 80 - Fly
dt 9 —0

Integration of _(r) w.rt ¢t o
2
i) J. [ ax i—b dr=ak % +c, if @ls constant

82

(ii) I ( ax %)J dt=(ax B) +c, if @’is constant vector.

TEST YOURSELF-2

P NEATI: SARA
Iff)=(—¢)i+2r j-3k, find

2
0 [ 5w ar (i) L (7) dr.

&r
Integrate a X —; = b, where a and b are constant vectors.

dr

2

. e 4
Find the value of r satisfying the equation d—; =fa +b where a and b are constant vectors.

!

A A A
Given that p={ 3ITATEIE . 122
tven tha FO=147-27+3% , 1=3
3
show that J. [r.ﬂjdml(}.
2 at
oA g h A
Find . J‘D (€ i+e *j+tk)dt

A2 A TP
Ifr=ti-t"j+(¢t— 1)k and s =2t i + 6t k, evaluate

2 2
(1) j r.sdt (i1) J. rXsdt.
0 0

Differentiation and Integration of Vectars .

1
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Algebﬂra, Trigonometry and Vectors ANSWERS

2 3 4
[ A A AR ALS A
1. —+= —=i+—=
(i) { +3]£+2J 3rn+c (i) l+2j 3k
2, axr=1t2b+:c+d 3 r=lr33+lr2b+rc+d
2 6 2
AL a A LA
5. (e l)s—z(e l}_;+2k -
A 40A 644 s
6. () 12 (i) —24:~19; %k ﬁl
OBJECTIVE EVALUATION
> FILL IN THE BLANKS :
d db
1. dt(axb)—axdr+ .......... .
2. The derivative of a constant vector is equal to the .. . 2Bigic.
3. If a has constant length and ‘; # 0, then a and % are ..........
may rinc
4,  The vector a{r) has constant magnitude iff a - %‘} is equal to cee.eee .
> TRUE OR FALSE :
Write ‘T’ for true and ‘F’ for false statement :
1. Ifa. da_ 0, then | a | is constant.
dt (T/F)
da . .
2. If |a|=constant, thenax—=0.
dt : (T/F)
3. Ifr—cos3n+sm3r;.lhen rx—’
(T/F)
I[Zr —]dt—r +c. :
(T/F)
> MULTIPLE CHOICE QUESTIONS :
Choose the most appropriate one :
1.  If ¢ is not a function of z, then — (¢a) equatls :
e} a0 da da,
@ — a (b) & (c) ¢' dr (d) &t
2, If|a|=constant, thena. % is equal to :
(a) 1 (by 0 (c) 2 d -1
3. If|a|=a,thena-%cquals:
da da
(a) a & (b) a (c) &t (d) None of these.
. 4. If|a|=constant, then a x % is equal to :
(a) O by -1 () 1 (d} a. -
ANSWERS
Fill in the Blanks ; .
da . . A A A
1. & xb 2., Null vector 3. Perpendicular 4. 0 §, - 14i+75;- 5%
True or False :
1. T 2. T 3T 4.T
Multiple Choice Questions : . )
1. © 2. 3. (a) 4. (a) : DDD
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U N I T . Gradient, Divergence and Curl /

{
14 ‘

GRADIENT, DIVERGENCE AND CURL

'LEARNING OBJECTIVES : _

Partial Derivatives of Vectors

Vector Differential Operator ¥
Gradient of a Scalar Field

Some Formulae Related to Gradient
Solved Examples BhaLs & f
@ Test Yoursetf-1

Divergence of a Vector Field

Cuirl of a Vector Field

Laplacian Operator

Solved Examples

@ Student Activity

@ Summary

@ Tost Yourseli-2

LEARNING OBJECTIVES - .~ ‘

After going through this unit you will leam :

About the partial derivatives of the vectors.

Differentiation operator

How to calculate gradient of scalar, divergence of vectors and curd of vectors.

* 14.1. PARTIAL DERIVATIVES OF VECTORS

Let v =1(x,y,2) be a vector function of three scalar variables x, y, z. The first order partial
derivative of T with respect to x is given by

i {im fx + 8, 3, 2) ~ f(x, 5, 2) ' xf this limit exists.
dx x>0 8&x

Similarly we can find first order partial derviatives of r with respect to y and z respectively
dr dr

and are denoted by = 3y

. . ar . .
During the differentiation if y and z are treating as constant, then 3, s 1e garded as ordinary
derivative. Likewise we can find higher order partial derivatives.

. 14.2. VECTOR DIFFERENTIAL OPERATOR V
The vector differential operator is defined by the formula
a dh gn
V= : +5 3 J + = k
Obviously, V is a vector quanmy. ThlS vector V is read as nabla or del,
¢ 14.3. GRADIENT OF A SCALAR FIELD

Let fix, y, 2) be a scalar point function which is defined over some region R in space and also
differentiable at each point (x, y, z) in R, then the gradient of fx, y, 2} is defined as

A a A
gradf— *'[ az

Geometry and Vectors
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Yoo

_0 9 _ . _
3 —O,a 0 (- fay2)=0)
Vf_-[?+§ ;+—£E =0?+0f+03 =0.
¢ Conversely, suppose Vf =0. Thcn we havc
Vf= ?+ 5—’:}\+ % =0.
. i 0¥ o
dx 0. dy 0. dz
Hence, fx, ¥, 2) = ¢ (constant).
REMARK
» V(f-g)=Vf-Vg
»  V(cf) = cVf, where c is a constant.
> V[%}:—%f! wherrI:faéO Yix,v.2)€ R
» SOLVED EXAMPLES
Example 1. Jfr=|r|wherer= x?+ y;\+ zkA, prove that
(H VAN=F'(nVr @) Vr=—
(iii) VR xr =0 (v) V@ =n" ",
Solution, (i} Since we know that
l;‘+§£j‘+§i D
TP SN I |
U0 = A0+ R+ 3 (o
or™ ,, .orn . ord
or VAN =S 55 S0 5 ik
o o ar
VAr) f'(r)1: . i+ j+az k}
VAN =f'(r) Vr [using (i)] [Remember]

or’h drh orf
a I+a—yj+-azk

A A A
r=xi+yjt+zk

|r|2=):2+yz+z2

ar rz—x +y +z

or xar

(i) Vr= (by definition of gradient)

Since

k——(xa+y;+zk) or Vr=

"'!l|"l.

(i) VA =) Vr

—rn ¥

=f(n ;

Now
VAN =f'(r) Vr.

fin="".

\Zd =nr"_1\7r=nr"‘][%)
=n"" %y
or V=n"1r,

Example 2. If fx, v, 2) = 3x%y ~ y°2’, find grad f and | grad f| at (1, - 2, - 1).
Solution. Since we know that

(iv) Since
Let

Vf(r)xr=£?-lrxr=0 B C

¢ Irl=n

[from (i)]
.[from (ii)]

rxr=0)

[from (1))

[

Gradient, Divergence und-Curl
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Fn Un
gradf=Vf=-a-'§;+§'§;+§'£k

_gd AT 9 a2 32% @ g 3ah
—ax‘(3x2y yz);+ay(3xy yz)j+az(3xy yz) k

A 2 2.2, 8 347
=6xyi+(3x"~3y2)j+(-2y°) k
At(l,-2,-1) A A A
grad=—12i-9;—- 16k
and | grad f| = Y144 + 81 + 256 = V481 .

3

A A A
Example 3. If ¢(x,y,2)=xy*z and f(x,y, 2} =xzi—xy j+ytk, show that 2
A A X0z
2, ~1,1)is 4i +2]. . ) R

Solution. o =x5%2 i -y + o' k.

A A A

a% O =252 i - X j + 2%z k
& : A A P
505, 0D =402 i =207+ 2k
3

ox* 3z

A A
N =4y’2i-2y° j.

At(2,-1,1)

3 A
OO _ 12 yi-2(- 13 ] =4i+2)
dx* 0z

TEST YOURSELF-1

1. Hdé(xy2) =x2_,» + yzx +22, find Vé at the point (1, &, 1).

2 _2..h 30, 24 PSR 1A 9
« I f(x,y,2)=xyzi-2xz" j+xzk, O(x,y,2)=2zi+yj—x"k, find the value Of_axay Ixd)

at (1,0, -2). A A A
3. If|r|=rwherer=xi+yj+zk, prove that
. Iy r .. _r I D
(i) V[-;]——rs ' (u)Vlogr—? iy Vr °=-3r"r.
ANSWERS
A A A A A
1. 3i+3j+2%k 2. -4i-§

14.5. DIVERGENCE OF A VECTOR FIELD

Let V (x,y, 2) be a differentiable vector function, where x, y, 7 are cartesian co-ordinates in
space and let V|, V,, V3 be the components of V, then the function
i av, . oV, oV,
divVs= —a"; + E + oz
is called the divergence of V.
Since we have that the differential operator

(D)

_ar an as

V_ax1+ay_;+azk

A A A

and the vector V=V, i+ V,j+ Vs k
R TAAl R4S AL (2
Then V.V 8x+8y+az 2

- From equation (1) and (2), we get
divV=V.V.

Hence, divergence of a vector function V can also be written as V- V. Consequently
divergence of a vector function is scalar because dot product of V and V gives a scalar quantity.

of) ar -



* 14.6. CURL OF A VECTOR FIELD y

Let V(x,y,2) be a vector function of x, y,z where X, ¥; 2 are nghr handed cartesian

co-ordinates in space and let - - .

Vny =V (x.y.z)w ViGe,y, 97+ Vs @y ok 1

be a differentiable vector function. Then the function (8 \1 -7V =inx1 .o =}
A A . 1
| i Ao P TP Y S
R I
curl V=V xV=|5— 5= 5 fe s -
ox dy 9z n T er gl
Vi Vz €Y o o
N . 8V3 0 Vz 3V1 ) Vil A 2 Vz 8 V] A
=] — I+l - j + k-
dy oz dz  ox I 9y |
' P O A N T S TR NS -
is called the curl of the vector fuﬂctwn V or the curl of the vector ﬁefd defined by Curl V is a
vecior quantity. 6 P RRTRE e A iz i-

* 14. 7 LAPLAClAN OPERATOFI .
If the function fix, y.2) is a twice differentiable scalar function, then we have
gradf——'i£+ 3 J,_,,ka“‘* St

A

- > Y a

Since grad fis a vector functlon then h

A af A3V ANrti, fhu
div (grad f) = :+; J+ f—)i —-fﬂ é-f vl Mot 20 ¢t .
B : LR L Jﬁtslq”
¥, a%f-a2 - 'a2 Fed Vo e
e e -t o] ~ .
W o 3 |\ox PR B saan. Y "
S -7 2 IR B, |
div (grad f) = Vf (1)
Thus R.H.S. of (1) 1s thé Laplaéian of - Consequemly thie' Laplactan is deﬁned as .
2 2 2
vi=|9_ .9 d 8 . oL
P Bz - \
Hence V° is a Laplacian operator.
Laplace Equation : The equanon v f Qs caﬂed ‘Laplace’s. equauon.

e SOLVED EXAMPLES BN Y ‘_' .7
Example 1. Prove the followings : S AR gy
() divr=3 (5 curlr=0 S e m
A A A n t" - v LRl L
wherevr=xi+yj+zk. -
Solution. (i) Since divr=V.r x _{
A " d 3 . k
(a ;+a 3% J (.“+-.{+rz )
i ot
_Q'.x.. @z az . Y .
E a+a -l+l+L—3 i "'Z

ii =VX
(ii) Curlr r Unli‘?’\:'\'ﬁ )

A A Il

S P B
T e g - [az a]+ [ax az}”[a “axJ w1
o [oxydy oz dys- 0z |9z ox ox Syl

Sy oz 2. T serd b

AN "eA A ho L

=i (0=0)+; (O=0)+k(0=0)20. . "=} 7 Vru
Example 2. If a is a constant vector, find | ':.-
(i) dw (rxa) @0 curl{rxa). . e

wherer = x:+y}+zk

A A A b PR | {
Solution. Let a = a; i + a, j + a3 k be a constant vector, then ]

o Gradient, Divergence and Curl
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”, - lr n- ) ” — 2
=2 TRLARE S SASQAL,
=2py e LSO gy 2 gy,

Hence, V) =100+ 210, . 0

Example 8. Prove that It is an irrotational-vector-for any value of n bui.is solencidal if
n+3=0.
Solution. Since we know that if a is irotational, then . -

Vxa=0
Vx(/’r)=(gmdr")xr+r"\curlr _ ‘ :
. ) . A . " T3 o Tt o T B |
=(m’""gradr)><r+0 R [.7 curlr=0)
= n,ﬁ_ll xXr oot . ."'[‘futéﬁfd-r: !]
r . r
=a""rxr=0 {. vector f:roduc( of two same vectors is zero)
Hence, /v is irrotational for any value of n. :
Further since if a is solenoidal, then V.a =0
V(" D=(grad ). r+/ V. ) e v 2
=(n"" ' grad r) . r + 37" o [ V.r=3]
=(m”"-r-]-r+3r" ' [ gradr=£:|
r . 1 r
o A
. =af"tr.r+3 L
Ll -2 (EEEE R I A 2
=n"" 2+ 3/ - T _ [ rir=r%)
=n+3 =7 (n +3). STy T A
If n+3=0, then V. (/r) = 0, and hence /'r is solenoidai! a AR .
* STUDENT'S ACTIVITY \ .
1. Ifr:iﬂ.?gx?+yf+zkﬂ.lhchf(r)(f'(r)=Vr. ‘_ : TR
LI 4 P f
‘h ¢ ?
e T T R o
2, Profelhat:V.(Ekb_)’=b_’.(VxE)'—i-a_’.(ngj’. . ‘ .
s ﬂj f r
i LUNEETS 3 AR o LAY T
* - :-"-'3’
a" '!: < 4 -
1 .
-7 1 ) - PR WA T
* 31
' - H v . ! 1 !




SUMMARY .

Gradient of a scalar field :
o, ¥,
gradf vf ax1+ayj+azk
Divergence of vector field
Ty P Y dvy
divvV=V.V= i + & + &
A .
where ?= Vi i+ Vz? + Vak
Curl of a Vector field

A A A
A I
dvrid *0"
curl ?= VX 7= ax % oz
Vi Vi W

- A
V=Vii+ Vol + Vik

TEST YOURSELF-2

2.

A A A
If £=x% i — 2xzj + 2yz k, find
(i) divf
Gi) curl f
(iii) curl curl £,

28 2 B 2%
If £ = xy® i + 2x°yz j — 3yz° k, then at the point (1, - 1, 1) find

er 4(i) divf : (i) curl f

3.

4.

If £ = grad (+* + y° + 2° - 3xyz), find
(i) divf (i) cur f.
(i) Determine the constant A so that the vector
f=(x+3y) ?+ (y- 2z)_?+ (x+A.z)2
is solenoidal. .
(ii} Find the constants a, b, ¢ so that the vector

A N A A
f=(x+2y+az)i+{bx-3y—-2)j+{dx+cy+22)k
is irrotational i.e., curl f=0.
A A A
Show that the vector f=(siny + z) i + (x cos y — 2) j + (x — ¥) k is irrotational.

2l

Show that V*
3

\ ANSWERS

L G) 29x+1). (i) (x+22)i-(+20k i) (2x+2)]
2. () divf=9 (i) curl f=~1-2%

3. @) div.f=6(x+y+2) Gi) curl =0

4. (i) A=-2 (i) a=4,b=2,¢c=—1.

OBJECTIVE EVALUATION
> FILL IN THE BLANKS :

1.
2.

A A A
Vsii+ij+%kisavector ......... .

ox dy

If | ¢ | = 7, then Vris equal to ............

> TRUE OR FALSE :
Write ‘T’ for true and ‘F’ for false statement :

1.

2.
3.

VRu)=f"(u) Vu.
Vo - dr = do.
I V is solenoidal, then curl V=0.

(T/F)
(T/F)
(T/F)

Gradient, Divergence and Curl
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4, If V is irrotational, then div ¥V =0.

> MULTIPLE CHOICE QUESTIONS :
Choose the most appropriate one :
1. Gradient of a constant scalar field is equal to :

(a o (b) 1 ©-1
2. Vi is equal to : '
(@ r (b) 2r {c)3r
3. If|r|=rthen rV risequal to:
(a) - r (b) 2r ©r
4. If ais a constant vector, then grad (r - a) is equal to :
ar {b) —a ©0
ANSWERS

Fill in the Blanks :

1. Differential operator 2. V (fz)
True.or False :

1. T 2.T J.F 4.F

*  Multiple Choice Questions :

L. @ 2@® 3 4@

{(d) None of these.

(d) -2r.

@ 0.

(d) a. .

(T/F)

|

(I I
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GAUSS’S, STOKE’S THEOREMS
| LEARNING OBJECTIVES .

QOriented Curves

Line, Surface and Volume Integrals
Solved Examples

@ Test Yourself-1

Gauss Divergence Theorem
Solved Examples

@® Test Yourseli-2

Stoke’s Theorem

Solved Examples

@ Student Activity

@ Summary

@ Tes! Yourseli-3

LEARNING OBJECTIVES '

After going through this unit you will leam :
® About Gauss’s and Stoke’s Theorem.

@® How to caiculate the value of the integral using Gauss's and Stoke's Theorem.

e ORIENTED CURVES

Let us consider a curve C in space and orient the curve C by choosing one of the two directions
along C as the positive direction, and the opposite direction along C is then called the negative
direction. . '

Let A be the initial point and B the terminal
point of C under the chosen orientation.
Therefore we may now represént the curve C by
a parametric equation

A A A
r(sy=x(s) i +y(s)j+z(s) k
where s is the arc length of C and for the point C
A, s=a and for the point B s=b, hence
asssh

(i) Closed curve. If the point A and B

coincide as shown in fig. 1 (b), then the curve is A

closed. @) ®)

(ii) Smooth curve. Ifr(s) is continuously .
differentiable and its first derivative is different Fig. 1
from zero vector for all values of s and the curve C has a unique tangent at each of its points,
then the curve C is called smooth curve.

B

G

.("l

Fig. 2

Gauss’s, Stokes Thevrem
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(iii) Piecewise smooth curve. A curve C which is the composition of a finite number of
smooth curve, is called piecewise smoath curve.

In the adjoining fig. 2 the curve is composed of four smooth curves C,, Co, C3 and C4 hente
the curve is piecewise smooth.

(iv) Smooth surface. A surface S over each of its points a unique normal may drawn and ,
the direction of each normal depends only on the point at which it is drawn, is called smooth
surface. g

(v) Piecewise smooth surface. A '
surface which is composed of a finite , O _
number of smooth surface, is' called J
pizcewise smooth surface. O Q B

(vi) Simply connected domain. A e
region (or domain) in which every closed
curve can be shrunk to a point with out
crossover the boundary of the region, is (@) Simple Connected (b) Multiply Connected
called simply connected domain. Orherwise :
the region is called multiply connected
domain. '

* LINE, SURFACE AND VOLUME INTEGRALS

(i) Line integrals. Let f(x, y, z} be a given function which is defined at each point of the
curve C and fix, y, 2) is continuous function of s and let P be a point on C
with co-ordinates (x(s), y(s}, z(s)). Thus fix,y, z) is written as fP). Now
divide the curve C into n parts in an arbitrary way and letting Py = A,
Py, Py, ...,P,_, P,= B where A and B are the end points of the curve C.

Let us divide in the interval @ < s € b such that

. ﬂ=${]{sl(-§2(...‘¢.§u=b.

Now choose an arbitrary point between each portion i.e., between A
and Py, Py and P, and so on. Let Q, be that point between 4 and P,, O,
between P, and P, etc. and form the sum

Fig. 3

Sa= I AQn) Asp, where As, =5, — 5, _ .
1

ms=

Now for n'=2,3, 4, ..., and the greatest As,, — 0 as n — oo, we get a
sequence of real numbers §,, S4, 84, ... . The limir of this sequence (s, ) is Fig. 4
lled the line integral of f along the curve C from A to B is denoted by ’
c Axy.2)ds. -
In most cases the representation of C will be of the the form
A A A
) =x(@i+yO)j+zHk y<e<y,
then we have
b
J.Cﬂx9y| z)ds:‘lA f[x(‘f)§y(5)! Z(S)] ds ' <(I)
a
b 1 dS
and L Fx(s), y(s). z(s)] ds _=_|: flx(t) y(0, 2], . w(2)
0

In particular, suppose r(#) is the position vector of {x. y, z}, then
A A A

r()=xi+yj+zk
and let t=1y at A and ¢ =, at B and suppose

A A A
Fx,y,2}=fii+foj+frk
is a vector function and continuous along C. Let s be the arc length of the curve C
i.e., s=arc AP, then
dr _
ds
is a unit tangent vector at the point P(x,y,z). Thus the component of f along this tangent is

f. gs! Therefore, we have



8 B
J. [f-ﬂstz-l. l'-dr=j f-dr.
A ds A C

Icf-dr=-[c (fy dx + fody + f3 d2). (3)

Since x = x(1), y = y(t), 2= z(¢), then

“fodx dy ,d
. = -_ ay az )
Icf dr J:o |:f, & +5 at +f dfjldr' ] (4)
Hence (2} and (4) are equivalent.
REMARK
» If the curve C is simple closed curve, then the integral JC f-dr is known as the
circuiation.

(ii) Surface integral (doubie integral). Let S be a surface of finite area and let f{x, y, 2) be
defined over this surface § which is single valued function. Now divide the whole surface § into
n surface elements of areas AS), AS,, ..., AS,, ..., AS,. Let us take an surface element of area AS,,
and choose an arbitrary point P,, inside AS,, and form the sum

f n

n
Jo= X AP AS,.
m=1
Now taking the limit as n — oo in such a way that AS,, — 0,
then this linut if exists is called the surface integral of f over § and
is denoted by

Hs flx.y,2) dS.

It can be shown that the sequence { J, ) converges and its limit
ts independent of the choice of subdivisiors and corresponding point
P

m

In particular, let § be a piecewise smooth surface and
f(x, y, 2) is a vector function which is continuous and defined over S.
Let us consider a surface element of area 45 enclosing a point £ and let n be the unit vector drawn
at P outward to the element dS and normal to it which is shown in fig. 5.

Thus £+ n is the normal component of f at P. Therefore the integral of £+ n over § can be
written as '

Fig. 5

[[; t-nas=[[ t.as ()
where dS=nds.

A A Fa)
Ifn=1!i+mj+nk, where !, m, n are the direction cosines of normal which makes the angles
0, § and y with the positive axis f.e., | =cos o, m=cos 3, n = cos Y.

A A A
Letf(x.y.2)=fii+ f1j+ fs k, then .
Hs fon dS=HS (ficosa+fcos§+ 1) dS.
Since we have cos & dS =dy dz, cos B ds = dz dx, cos v dS = dx dy.
[ly t-nds=[[ (fdvde+sfrdzdc+fsdsay)

(iii) Volume integral. Let V be a volume enclosed by a surface § and let fx, y, z) be a poini
function defined over V. Now divide the volume V into # subvolume element of volumes
AV, AV,, ... AV, _,, AV, and choose an arbitrary point P, {x,.. ... 2,,) in each of elements AV,,
such that AP,,) = fixms Yms 2m) and form the sum

n
o= 2 AP,) AV,
m=1
forn=2,3,4, ..., an taking greatest AV,, — 0 as n — =. Then we get the sequence J,, J3, J,, ... .
if the Limit of this sequence (J,) exists, then this limit is called the volume integral of f over the
volume V which is denoted by

JIl, fxv0av.

This limit is independent of the choice of the subdivision of V, if V is piecewise smooth
volume. Therefore we can take the volume elements in the form of urboids whose edges are parallel
to the co-ordinate axis. Then dV = dx dy dz, hence

Gauss’s, Stoke’s Thearent
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HL, R y,2) dV=mv ﬁx'. ¥, 2) dx dy dz.

REMARK
» If f(x, y, 2} is & vector function, then the volume integrat of f(x, y, z) over Vis

_”_[ f(x, y. 2) dV.

* SOLVED EXAMPLES

Example 1. Evaluate jc xy3 ds, where C is the segment of the line y =2x in the xy-plane

fromA(-1,-2,0)t0 B(1,2,0).

Solution. Taking the curve C in the following form veoaa
A

r(f) =t1'+2t;'\,'(— 1<¢t<1).

ar » A

o i+2j.

ds dr dr A A A A

@ V(E'E] =\[[(!+2J)'(t+2;)] =5,

-; On'C, xy* =1 (21)> = 8¢* and therefore
1 s
I xy2d;=st_J. r‘dr:S\f?[‘—] =@.
-1

Example 2. Evaluate _[F dr along the curve C: x +y = 1, z=1 in the positive direction
Sfrom (0, 1, )70 (1,0, 1), where

F(x,y,2)= (2x+yz)t+xzj+(xy+22)k
Solution. Let A (0, 1, 1) and B (1, 0, 1) be the points on the curve C :
A ) A
C+y'=1, z=1 and r=xi+yj+zk

A A A A A A
Feodr=[(2x+v2)i+xzj+(xy+20k) - {dxi+dyj+dzk)
=(2x+yz)dx+xzdy+ (xy +22) dz.

B
‘[CF-a'r=L [(2x + yz) dx+ xz dy + (xy + 22) dz]

1 0

=Jo (2,1c-+-y)c2'.x¢+j1 xdy (- z=1=dz=0)
1 0 '

=_[0 (2x+'\‘l—xz)dx+‘|‘] V1 - y? dy ' (o 4y =D
1 1 1

=_[0 2):dx+j0 Vl—xzdx-ju Vi —-y? dy

: Lb fx)de=- J.: fx) dx

- [lel) -1 . ,Lb Ax) dx =J-: i) a’f-

A A
Example 3. Eva!uarej F.dr, where F= 3xyi—y2j and C is the curve y=2x° with

xy-plane from (0, 0) to (1, 2).
Solution. The parametric equations of the given curve i.e., the parabo]a y = 2x° can be taken

asx=r,y—21‘.
At the point {0, 0), x =0 and so r =0 and at the point ({,2), x=1 and so ¢ = 1.

Again b =1 and @ =4t

d dt



A A

’ A A ’ ’ '
and . dr=dxi+dyj [r=xit+yj]

Y P
ICF-dr=JC Gxyi—y ). (dxi+dy))

1
dx . d
Je (3xyﬁ—y2dy)=£_0(3n zl]dr

E_y dr

1
I 0(34.,2?.1—4;‘*.4:)(1':
i=

1 , 5 /A 151
=J:=D(63 — 166 di = 6.;—16.EL0

A A A A Py 3A
Example 4. Eva{uare'[c F.dr where F=xyit+yzj+wkandcurve Ciscv=ti+t j+t k

and—1<t<1.
e

. . AT RN R AT A A A - 2 3
Solution. Sincer=¢i+1" j+ 1 kisgivenbutr=xi+yj+zk then x=¢ y=1°2=¢

dr » A A
and dr—:+2t;+3r2k.
_[ F-dr—Il F- 44 ' ' (1)
c = 1 |4t
’ A A A 3)\ N 4,‘\ .
and . _ F=xyi+yzj+zk=t i+t5j+r k.

A A A A A A
F'%=(x3i+r"’j+t4k)'(f+2‘f+3t2k)

=P +28+385=>+56
From (1)

J F-dr—_[l @+ 5 dt = fosl 1
c “Ja 47 7 _1'|4

TEST YOURSELF-1

+

~|3

10
7

B

A A
Evaluate -[C F.dr, where F=x%; +y3j and curve C is the arc of the parabola y =x% in the

xy-plane from {0, 0) to (1, 1).

A A A I
2. I F=0x+6y)i— l4yzj +20xz% k, then evaluate _[C F - dr from (0, 0,0) to (L, 1, 1) along
the curve C '
A A x:f‘y:tz‘z:!:"_
3. IfF=yi-xj, evaluate IC F . dr from (0, 0) to (1, 1) along the following paths C :
(i) The parabola y = x%.

{(i1) The straight lines from (0, 0} to (I, 0) and then to (1, 1)
{iii) The straight line joining (0, 0) and (1, 1).
A A A

4. Evaluate -[C F.dr, where F=yzi+zxj+xyk and the curve C is the portion of the curve

A A A
r=acosritbsintj+terkfromr=0tor=n/2.
ANSWERS
oL 25 3 () -4 G -L GO0 40
T . . 3 , i ;

Gauss s, Stoke s Theorem
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15.3. GAUSS DIVERGENCE THEOREM

Theorem. Let V be the volume enclosed by a closed and bounded piecewise smooth surface
S and let F(x,y,2) be a vector function which is continuous and has continuous first partial

| derivatives in V. Then

Il sveav=[f Fonas .

where n is the ourward unit normat vector the surface S.

A A A
Cartesian form of (1). Let F = F, i + £, j + F3 k and suppose the outward unit normal vector
n makes the angle o, B and ¥ with the positive axes of x, y, z respectively. Then cos &, cos § and
cos ¥ are the direction-cosines of n, we have
A A A
n=cosci+cosPj+cosyk.
F.n=F cos 0+ F5cos f+ Fycosy

oF, BFE 0F;
and divF= o ay +— oz and dV=dxdydz.
Thus {1) becomes
oF BF oF
J.J.J. [ Li—2+ a;}dxdydz J-'[ (Fy cos ot + Fy cos B + F3cosy) dS. «{2)
Proof of divergence theorem. We shall first prove the theorem for a special volume V which
is bounded by a piecewise smooth za

oriented surface § and has the property
that any straight line drawn para'lel to any
one of the co-ordinate axes and
intersecting V has only one point {or one
segement) in common with V.
Then V can be represented by

fx, ) $z28g(xy) -(3)
where (x,y)€ R. This R is the
orthogonal projection of V in the o
xy-plane. Obviously z = f{x, ¥) represents
the lower part §; of S and z=g(x,y)
represents the upper part §; of § and there
may be a remaining vertical part Sy of
§ has shown in fig. 15. ¥

First we prove that Fig. 7

J.J. 3 dx dy dz = J‘J. Fycos ¥ dS. ..(4)
v 0z

Since F(x, v, 2) is continucusly differentiable in V and using (3), we have

z=8(x ¥ Fy
J-J.J. %drd dz = J:[ I a—dz dx dy
R |de=fiy) Oz
{x y)
Faya]
Jf o] e

m Lavayae=[[ By s dxdy—ﬂR Pyl y fiepldidy.  (5)

\P

Now, we have
”s FycosydS= Hs, FycosydS+ HSE FiycosydS + -Us, F3cosyds. ...(6)

Since on the portion §; of § the outward drawn unit normal vector makes an angle /2 with
z-axis, then cos Y=0 on §;. Thus

Il Ficosyas=][; 0.as=0. o



_ On the portion S; of S the outward drawn unit normal makes an acute angle ¥ with positive
z-axis and the equation of §, is z = g(x, ). Then
cos Y dS = dx dy.

[, Frcosyas=[f, Fitey.amaxay ®

and on the portion S, of § the outward drawn unit normal vector makes obtuse angle y with’

positive z-axis and the equation of S is z=f{x, y). Then

cosydS=—dxdy.
HS: FycosydS=- HR F3[x, y, fix, y)] dx dy. (9
Using (7}, (8) and (9) the equation (6) becomes
[, Fycosyds=[[. Filny ety - [[, Aty fieldrdy.  .0)

From (5) and (10), we obtain

”I aF3dxdydz ﬂ Fy cos Y dS. 1D

Similarly taking the projection of S on the other co-ordinate planes, we have

—'dxa'ydz FycosadS .(12)
11, o]

BFZ
.and J.J.J.V % —=drxdydz= I F, cos B dS. .(13)
Now adding (11), (12) and (13), we get

9F an 3F3
J‘J‘J. a dxdydz = I (Fy cos o+ Fy cos B+ Fycos Y) 48

or [[l, divEav= HS F.nds.

Hence proved the theorem for special region V.
Gauss Divergence Theorem for any Region V .

Let V be any volume which is not a special volume but can be subdivided into finitely many
special volumes by drawing auxiliary surfaces. Now apply above theorem to each special volume
and adding the result for each part. On the left hand side of this result we obtain the sum of volume
integral over parts of V and which gives the volume integral over V. On the right hand side we
obtain the sum of surface integral over auxiliary surfaces plus the sum of the remaining surface
integral. In this side the surface integral over auxiliary surfaces cancel in pairs and the
remaining surface integrals give the surface integral over the whole boundary § of V.

e« SOLVED EXAMPLES -

Example 1. If ¢ and y both are two harmonic scalar point functions and are continuously
differentiable in V enclosed by S. Then

Il [“’ “’anJ =0

Solution. From cxamplc 1, we have

HI © Vay -y V) av= [, 0 Vy -y Vo) nds.

Since Vo = n, Vy = QIE n. Then we have

J‘J.s [¢ an Y an}dS=J.,Uv © Vi - yV'o) dV. (- n-n=1)

Further since ¢ and y both are harmonic so that V2¢ =0= Vzw hence we obtain

[

Gauss s, Stoke’s Theorem
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Example 2. Prove that [[[, voav=][ ounds.

Solution. From Gauss’s divergence theorem, we have
[l], dvFav=[[ Fenas. .
Now assuming F = ¢a, where a is a constant vector, then
divF=V.{¢a)=Vd-a+¢V.a=Vd.a (. V.a=0)

and F.n=(%a).n.
From (1), we have

I, ve-aav={[ g2~ ndS
or a-J[f voav=a.[[ onds
or a[”jv vodv-[{ on dS]=0.

Since a is an arbitrary so we get

HL, Vo dV=fL on ds.

Example 3. Using Gauss's divergence theorem evaluate
Hs [((x+2)dydz+ (y +2) dzdx + (x + y) dx dy]

where S is the surface of the sphere 24 y2 +7° =4,
Solution. By Gauss’s divergence theorem, we have

Hs [(x+2ydydz+ (y+ 2y dzdx+ {(x+y) dx dy)

g - d 3 :
=J-.|-J-v[a(x+z)+$U+z)+§(-’f+y)]dxdydz:”L 2I{ixdyd:
=2 HJ-V dV, where V is the volume of the sphere x” + y* - F=4
oA |8
_2[3 “(2)}—_ 3

TEST YOURSELF-2

1.  For any closed surface §, prove that
' ”s curl F-nd§=0.

2. IfF=V¢and V2¢ ={, show that for a closed surface S

JIl, #av=[[  oF.nas

3. If ¢ and y are harmonic in V and 9 _dy on S, then ¢ =y + ¢ in V where C is a constant.

on  On
4. For any closed surface S, show that !
M [f; nas=o, i) ff, rxnds=o.

4.  Using the divergence theorem, show that the volume V of a region bounded by a surface § is
V=”s xdy dzz”s yde dx=_[_|.s zdxdy

=2 dydz+ydide+zdxdy).

15.4, STOKE’S THEOREM

Let § be a piecewise smooth oriented surface in space bounded by a piecewise smooth simple
closed curve C. Let F(x,y,z) be a continuous vector function having continuous first partial
derivatives in a region of space in which § lies interior. Then

Hs (curlF}-ndS=ICF-dr LA

where C is taken in counterclockwise direction and n is a outward drawn wnit normal vecror v

S.



Proof. We shall first prove Stoke’s theorem for a surface S which represented simultaneously
in the forms of
z=fx. ), y=g(x 2}, x=h(y, 2)
where f, g, i are continuous functions and having continuous first order partial derivatives.
Let A N A
n=cosQi+cosfj+cosyk
be cutrward drawn unit normal to the. surface § which makes the ang]es o, B,y with positive
co—ordmalc axes respcctlvely, and let

F=F i+ Fy)+Fyk

AoK A
i J -
_|2 2 3} _ndF o aF. KA
VXF= 15 dy 0Oz “‘[a}, % 17 e ¥k FrEY
F, F, Fy
_ aF3 aF2 aFl 8F3 an a_Fl
and (VXxF).n= (ay azjcosa+[az cos p+ 3 |

Let P(x, y, z) be any pomt on C whose position vector is
r=xi + y_; + z k

A
dr=dxr+dyj+dzk.
Thus F-dr=Fidv+Fdy+F;dz
Now the equation (1) becomes

o OR) (O OF) o (0F OF
-U [[ z]cosa-{—[az 0 cos B+ ax 3y Cos Y
=], (Fidct Frdy + Fydo). {2)

First, we shall prove that

Ij (ﬂcosﬁha—?cow] J. F| dx. . (3)

Let R be the arthogonal projection of § in the xy-plane and " be its boundary which is }

oriented in positive direction as shown in fig. 8.

CZA

Fig. 8
Usn ng the representation z = fix, y) of §, we may write the line 1ntegral over C as a line integral
over C* as follow :

[ Fenoa=] e Fimy s de=[ s (7 oy oo de+0dy)

We now apply Green's theorem in the plane to the functions F, [x, y, fx, y}] and 0. Then we
have '

Gausy's, Stake s Theorem
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The proof of this theorem can be extended to a surface § which .d-oes not satisfy above
conditions but can be decomposed into finitely many surfaces Sy, $3, ..., S, whose boundary are
Cy, Cy, ..., C,. To each surface this theorem is applied as follows :

[, Fear=[], (vxF).nds ..
Jo, Fear=[f (@xF)-nas,

o Foae=(]. 7xPonas
On adding, we get
Fodet [ Feodes.+]  Feodr

[of
—H (VxF)- ndS+H (VxF}-mdS+.. +H (VXF)-ndS

or ICF-dr:_US (VX F)-nds.
Hence Stoke’s theorem is proved for any surface S enclosed by a closed curve C.

« SOLVED EXAMPLES

Example 1. Prove that I ¢ dr= H ds x V.
Solution. Let F = ¢a, where a be any arbitrary constant vector. Then by Stokes s theorem

fc F-dr—ﬂs (VxF).nds.
.[C (¢a)-dr=Hs (Vx(¢a))-ndS
_:_US (Voéxa+oVxa)-nd§
:Hs (Véxa)-ndS o
=Jf; voxa).as.
" ,[Ca-(¢dr)=ﬂsa-(d8xv¢}
or "'UC ¢df—jstxV¢]=

Since a is an arbitrary constant vector, then

[ oar=][ asxve.

Example 2, Using Stoke'’s theorem prove that :

(@) diveurlF=0, (i) curlgrad ¢ =10.
Solution. (i) Let Vbe any volume enclosed by a closed surface $. Then by Gauss’s ¢. i zence

| Vxa=0)

theorem
HL div (curl F) dV = f J s (curl F) . nds.

Now divide the surface § into S, and S; in a closed curve C. Then
Hs (curl F). ndS = ,US. (curl F) - ndS; + Hsz (curl F) » n d3,.

Using Stoke's theorem, we get
([, cwlP.nas=[ F.ar-[ F.ar |
(Negative sign is taken because positive direction

=0.
along the boundaries of two surfaces are opposite)

Thus the equation (1) becomes -
y div (curl F) dv=0. . . (2}

D)

Since the equation (2) is true for all volume V, hence

Gauss'’s, Stoke s Theorem
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divcewrt F=0.
(i) Let S be any surface enclosed by a simple closed curve C. Then by Stoke’s theorem

JI; @iy nas=[_ F.ar.

Let F=grad ¢.
' Hs (curl grad ¢) '-ndS=_{C grad ¢ - dr. WD
A A A h
Since r=xi+yj+zk
A A A
o dr=dxi+dyj+dzk i
A A
Now grad ¢ - dr—(—q 4907 %‘3 J (dxi+dyj+dzk)
—ﬂdxﬁ»@dy aﬁ db.
-[c grad ¢ . dr-":J‘C ap=0 (- Cisclosed curve)
Thus the equation (1) becomes
I {curl grad ) -ndS =0. .(2)

Since S is an arbitrary surface, and the equation (2) holds for any S. Then we have
curl grad ¢ = 0. i

* STUDENT ACTIVITY

1.

2,

Using Gauss’s thearem, prove that

_[Hv Vo dvzﬂs b nds.

Using Stoke’s theorem, prove that

J‘Cq:dF*:_USdeW:




SUMMARY -

Line, Surface and Volume Integral :

b
@ j frr s j NCICRIORIOT

(ii) ”S Flids = ﬂs (f,dydz + f; dzdyx + fudxdy)

] penac-[f] P’

Gauss’s Theorem 3 Let V be the volume enclosed by a closed and bounded piecewise smooth
surface § and let F (x, y, z) be a vector function which is continuous and has continuous find
partial derivative in V. Then

m div?dv=ff F.ds
v - S

where 7is the outward unit normal vector to the surface S.
Stoke’s theorem : LetSbea piecew_i§é smooth oriented surface in space bounded by a piecewise
smooth simple closed curve C. Let F (x, y, z) be a continuous vector function having continuous
first partial derivatives in a region of space in which § lies interior. Then

HS (curl F} . w48 = IC F.dr

where C is taken in antidark wise direction and i1s the outward unit vector normal to the surface
g

TEST YOURSELF-3

N

3.

Prove ,lhatf et dr=0Q.
Prove thatJ-C OVy.dr= Hs [Vdx Vy] - ndS.

Prove thatjc ¢Vw-dr=—jc Y Vo -dr.

OBJECTIVE EVALUATION
> FILL IN THE BLANKS :

1.

2.

3.

The integral Ic F - driscalled ...........

1f V% =0, V2 =0, then J]S [¢%‘f—w§—f} dS= .

If § is a closed surface, then Hs curt F.ndS=......

» TRUE OR FALSE : )
Write ‘T’ for true and ‘F’ for false statement :

1.

2.

3.

4,

The value of the integral Hs r-nds, where S is.a closed surface is 3V, where V is enclosed
by S. : (T/F)
¥ ¢ is harmonic in V, then ﬂ 622 45— HI | Vo |? av.
s on %
(T/F)
Jl; @omas=[[[aivFav -
Any integral which is evaluated along a curve is called surface integral. (T/F}

» MULTIPLE CHOICE QUESTIONS :
Choose the most appropriate one :

1.

The formula J.Hv V.Fdv= ”s F.nds is governed by :

Gauss’s, Stoke's Theorem
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Algebra, Trigonometry and Vectors (a) Stoke’s theorem ‘ (b) Gauss’s theorem
(¢) Green's theorem (d) None of these.

A LA A
2. If §is any closed surface enclosing a volume V and F = x i + 2y j + 3z &, then the value of the
integral -”s F.nds§is equal to :
(@ 3v ‘(b) 6V Y

() 2v (d) 6s. ' J
ANSWERS : °

Fill in the Blanks :
1. circulation 2.0 3.0
True or False :
1. T 2. T 3T 4.T ST
Multiple Choice Questions :

L & 2.0)

]
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