
• T

L_r

SYLLABUSX

OBJECT ORIENTED PROGRAMMING AND C+4

SECTION A

OOP paradigm, Advantages of OOP, Comparison between functional programming and OOP
approach, characteristics of Object oriented Language objects. Class, Inheritance,
Polymorphism, and abstraction, encapsulation. Dynamic Binding, Message passing.
Introduction to C++, Indetifier and keywords, constants, C++ Operators, Type conversion,
variable declaration, Statement, expressions. User defined data types. Conditional expression
(For, While, Do-while) loop statements, breaking control statements (Break, Continue).

SECTION B

Defining a function, types of functions, Inline functions. Call by value and Call by reference.
Preprocessor, Header, files and stand^d functions, Structures, Pointers and structures. Unions,
Enumeration. '

SECTION C

Classes, Member functions, Objects, Array of objects. Nested classes, Constructors, Copy
constuctors. Destructors, Inline member functions, Static class member, ftiend functions.
Dynamic memory allocation.
Inheritance: Single inheritance. Multi-level inheritance, Hierarchical, Virtual base class,
Abstract classes, Consdnjctbrs in Derived classes, Nesting of classes.

SECTION D

Function overloading, Operator overloading. Polymorphism, Early binding. Polymorphism with
pointers, Virtual functions. Late binding. Pure virtual functions, Opening and closing of files,
Stream member functions. Binary file operations. Structures and file operations, classes and file
operations. Random access file processing.

OOP Paradigm and
Introduction to C++SECTION A

OOP PARADIGM AND

INTRODUCTION TO C++
UNTTl

NOTES

★ LEARNING objectives *
• Object-Oriented Programming Paradigm
• Benefits of OOP

• Characteristics of Object-Oriented Language
• Introduction to C++

• Identifier, Keyboards and Constants
• Variable Declaration
• C++ Operators
• Statement and Expressions -

• User Defined Data Types

• Conditional Expression

• Loop Statements
• .Breaking and Control Statements

OBJECT-ORIENTED PROGRAMMING PARADIGM

Introduction

Software products should always be evaluated carefully for their quality
before .they are delivered and implemented. Some of the quality issues
that must be considered for critical evaluation are:

• Correctness

- • Maintainability
• Reusability
• Openness and interoperability
• Portability
• Security
• Integrity
• User friendliness

'O

It.*

Self-Instructional Material 1

Object Oriented
Programming in C++

To build today’s complex software,, it just not enough to put together
a sequence of programming statements and seta of procedures and
modules; we need to incorporate sound construction techniques
and program structures that are easy to comprehend, implement
and modify.NOTES

Object-Oriented Programming Paradigm ^
Object oriented programming treats data as a critical element in the
program development and does not allow it to flow freely around the
system. It ties data more closely to functions that operate on it and
protects it from accidental modifications from outside functions. OOP
allows decomposition of a problem into a number of entities called
objects and then builds data and function around these objects.^ The
data of an object can be accessed only by the functions associated
with that object. However, a function of one object can access the '
function of other objects.
Some of the striking features of OOP are:

• Emphasis is on data rather than procedure
• Programs are divided into what we know as objects
• Data structures are designed such that they characterize the

objects
• Functions that operate on the data of an object are tied together

in the data structure
• Data is hidden and cannot be accessed by external functions
• Objects may communicate with each other through the functions
• Follows bottom-up approach in program design.

BENEFITS OF OOP
1. Through, inheritance, we-can eliminate redundant code and

extend the use ,6f existing classes.
2. We can build programs from the standard working modules

that communicate with one another, rather than having to start
writing code from scratch. - -

3. The principle of data hiding helps the programmer build secure
programs that cannot be invaded by code in other parts of the
program.

4. It is possible to map objects in the problem domain to those in
the program. '

5. It is easy to partition work in a project-based on objects.

Comparison between Functional Programming and OOP
Approach

Procedure-Oriented Programming
Conventional programming using high-level languages such as COBOL,
FORTRAN and C is commonly known as procedime-oriented programming.
Here, the problem is viewed as a sequence of things to be done such
as reading, calculating and printing. A number of applications are
written to accomplish these tasks. The primary task is 'a function.
The technique of hierarchical decomposition is used to specify the
tasks to be completed for solving a problem.

OOP Paradigm and
Introduction to C++

NOTES

Main program

Function-3Function-2Funetion-1

Functior-5Function-4

Fig. 1

Procedure-oriented programming consists of writing a list of instructions
(or actions) for the computer to follow, and organizing these instructions
into groups known as functions. We normally use a flowchart to
organize these actions and represent the flow of control from one
action to another. While we concentrate on the development of functions,
very little attention is given to the data.
In a multifunction program, many important data items are placed as
global so that they may. be accessed by all the functions. Each function
may have its own local data.

Global dataGlobal data

Function-2 Function-3Function-1

Local data .Local dataLocal data

Fig. 2

Some characteristics exhibited by procedure-oriented programming
include:

• Emphasis is on doing things (algorithms)

Self-Instructional Material 3

• A collection object is an object of a collection, e.g., array, list,
set, and bag. A collection holds members. Sample collectioni
objects are listOfStudents and setOfCourses. For example,
listOfStudents = (studentl, student21. f

Object Oriented
Programming in C++'

NOTES
Classes
A class is a description of a group of objects with similar attributes,
common operations, common relationships (association, aggregation,'
interaction, and generalization specialization) and a common semantic
purpose. In S/W a class is a module. An attribute is a characteristic
or property of an object. An attribute typically holds an atomic object,
e.g., an integer, a float, a character, etc. For example, an attribute of
a car is gasQuantity which is a float. However, an attribute can hold
a structured object or collection object to implement a relationship.
For example, an attribute of a car could be currentPassengers which
holds a set of current passenger objects. An attribute can hold a set
of literals, e.g., a string of characters. An operation is a function,
action or set of actions. For example, an operation of a car is to “set
gas quantity” and “start”. A relationship is a connection or link
between classes or between objects. The primary relationships are
association (“has a”), aggregation (“part or), generalization specialization
(“is a”), and interaction (“calls or communicates”). For example, the
Car Class has an association relationship with the Passenger ClassV
The Car Class has a generalization specialization relationship with
the Vehicle Class. The Car Class has an aggregation relationship
with the Motor Class. An interaction relationship (messages) exists
between objects of the Car Class and objects of the Motor Class. The
semantic purpose of a class is the reason for being or existence of
objects of the class. For example, the semantic purpose of objects of
the Car Class is to provide transportation to carry users from one
location to another. We model a class with a class diagram and a class
specification. Objects are variables of the type class.

Data Abstraction and Encapsulation
The wrapping up of data and functions into a single unit (called
class) is known as encapsulation. The data is not accessible to the
outside world and only those functions that are wrapped in the class
can access it. These functions provide the interface between the object’s
data and the program. This insulation of the data from direct access
by the program is called data hiding or information hiding.
Abstraction refers to the act of representing essential features without
including the background details or explanations. Classes use the
concept of abstraction and are defined as a list of abstract attributes
such as size, weight and cost, and functions to operate on these attributes.

6 Self-Instructional Material

k.

OOP Paradigm and
Introduction to C++

They encapsulate all the essential properties of the objects to be
created. The attributes are sometimes called data members. The
functions that operate on these data are som*etimes called methods.
Since classes use the concept of data abstraction, they are known as
Abstract Data Types (ADT) NOTES

Inheritance
The process by which objects of one class acquire the properties of
objects of another class. In OOP, the concept of inheritance provides
the idea of reusability. This means that we can add additional features
on existing class without modifying it.

Polymorphism
An operation may exhibit different behaviors in different instances.
The behaviour depends upon the types of data used in the operation.
The process of making an operation to exhibit different behaviour in
different instances is known as operator overloading. Using a single
function name to perform different types of tasks is known as function
overloading.
Pol3rmorphism plays an important role in allowing objects having different
internal structures to share the same external interface. This means
that a general class of operations may be accessed ihxthe same manner
even though specific actions associated with each operation may differ.
Polymorphism is used extensively to implement inheritance.

Dynamic Binding*
Binding refers to the .linking of a procedure call to the code to be
executed in response to the call. Dynamic binding (also known as late
binding) means that the code associated with a given procedure call
is not known until the time of the call at run time. A function call
associated with a polymorphic reference depends on the dynamic
type of that reference.

Shape

Draw()

-Circle object
Draw (circle)

Box object
Draw (box)

Triangle object
Draw (triangle)

Fig. 4

Self-Instructional Material 7
• -' / ■

i

Object Oriented
Programming in C++

Message Passinĝ . I

An object-oriented program consists of a set of objects that communicate
with each other. The process of programming in an object-oriented'
language, therefore, involves the following basic steps:

1. Creating "classes that define objects and their beh'aviour
2. Creating objects from class definitions
3. Establishing communication among objects

Objects communicate with each other by sending and receiving information
much the same way as people pass messages to one another.
A message for an object is a request for execution of a procedure; and
therefore will invoke a function (proced^e) in the receiving object
that generates the desired result. Message passing involves the specification
of the name of the object, the name of the function (message) and the
information to be sent.

NOTES

€•

Object-Oriented Languages
The language should support several of the OOP concepts to claim it

, is object-oriented. Depending upon the features it supports, they can
be classified into the following two categories:

• Object-based programming languages, and
• Object-oriented programming languages.

Object-based programming is the style of programming that primarily
supports encapsulation and object identity. Major features that are
required for object-based programming are:

‘ 1
-i', • Data encapsulation

• Data hiding and access mechanisms •
• Automatic initialization and clear-up of objects
• Operator overloading

Languages that support programming with objects are said.to be object-
based programming languages. They do not support inheritance and
dynamic binding. For, example, Ada.
Object-oriented programming incorporates all of object-based programming
features along with two additional features, namely inheritance and
dynamic binding.

/ t

Examples include C-t-t-, Smalltalk and Java.

/

/

xt' '

INTRODUCTION TO C++
In early days of computer programming, programmers v/orked with
the most primitive computer instructions say machine language. These
instructions were represented by long strings of ones and zeroes.;

8 Self-Instructional Material

Soon, assemblers were invented to map machine instructions to human-
readable and manageable mnemonics, such as ADD and MOV. Mean
time, higher-level languages evolved, such as BASIC, COBOL, C. These
languages allow people to work with something approximating words
and sentences, such as I = S + 100. These instructions were translated
back into machine language by interpreters and compilers. Most of
the procedural languages like C was not able to solve real world
problems using an entity as object and software development process
was costly too. As object-oriented analysis, design, and programming
began to attract the software industry, Bjarne Stroustrup took the
most popular language for commercial software development, C++,
and extended it to provide the features needed to facilitate object-
oriented programming. He created C++, and in less than a decade it
has gone from being used by only a handful of developers at AT&T to
being the programming language of choice for an estimated one million
developers worldwide soon. Now C++ is a predominant language for
commercial software development. While it is true that C++ is a
superset of C, and that virtually any legal C program is a legal C++
program, the leap from C to C++ is very significant. C++ benefited
from its relationship to C for many years^ as- C programmers can
easily start programming in C++.
C++ is a extension of C, but it does not mean that you should learn
C first. It is unnecessary to learn C first one can easily start C++
programming because C++ allow you to write code in C style. You can
learn C++ without prior experience of C. Even if you have no programming
experience of any kind you can be a good C++ programmer.

OOP Paradigm and
Introduction to C++

NOTES

IDENTIFIER, KEYWORDS AND CONSTANTS
A programmer used C++ tokens to write a C++ program. You can
compare it with writing a English sentence there you need noun,
verbs, punctuations, symbols to write a proper sentence same is true
with a C++ program. You will use C++ tokens to write a program.
C++ uses the following types of tokens: .

• Identifiers
• Keywords
• Constants
• Operators

Identifiers in C++
An icl'.ntifier is a user defined name , given to various data items in
a program like empname, sturoilnumber, bookno etc.. If you want to
use an identifier in a program use following rules:

Self-Instructional Material 9

Object Oriented
Programming in C++

void main{)

int numl
int num2;
cout<<enter values of numl and num2

NOTES

cin>>numl;
cin>>num2;
cout<<"first number is:"<<numl;
cout<<"second number is:"<<num2;
cout«"sum of numbers is :"<< numl+num2;
}

Float Data Type
The floating-point number is another data type in the C-I-+ language.
Unlike an integer number, a floating-point number contains a decimal
point. For instance, 7.01 is a floating-point number; so are 5.71 and
-3.14. A floating-point number is also called a real number. A floating
point number is specified by the float keyword in the C+-i- language.
Like an integer number, a floating-point number has a limited range.
The ANSI standard requires that the range be at least plus or minus
1.0*10e37. Normally, a floating-point number is represented by taking
32 bits. Therefore, a floating-point number in C++ is of at least six
digits of precision. That is, for a floating-point number, there are at
least six digits (or decimal places) on the right side of the decimal
point.
Declaring Floating-Point Variables
The following shows the declaration format for a floating-point variable:

float variablename;
Similar to the character or integer declaration, if you have more than
one variable to declare, you can either use the format like this:

float variablenamel;
float' variablename2 ;
float variablenameS;

or like the following one;
float variablenamel, variablename2, variablenamel;y V..

•y.-' Program
Printing out floating(decimals)numbers on the screen.
/* Printing out float numbers */
ttinclude <iostraem.h> 1

14 Self-Instruclicnal Material

OOP Paradigm and
Introduction to C++

void main(>

{
• - ifloat numl

float num2;
cout<<"enter values of numl and num2 with decimals

like 2.3";

NOTES

cin>>numl;
cin>>num2;
cout<<"first number is:"<<numl;
cout<<"second number is:"<<num2;
cout<<''sum of numbers is numl+num2;

)

Double Data Type
In the C++ language, a floating-point number can also be represented
by another data type, called the double data type. In other words, you
can specify a variable by the double keyword, and assign the variable
a floating-point number.
The difference between a double data type and a float data type is
that the former normally uses twice as many bits as the latter. Therefore,
a double floating-point number is of at least 10 digits of precision,
although the ANSI standard does not specify it for the double data
type.

C++ OPERATORS

Operators In C++
An operator is a symbol that instructs C++ to perform some operation,
or action, on one or more operands. An operand is something that an
operator acts on. In C++, all operands are expressions,

c = a + b;
Here + is an operator, while a and b are operands.
C++ offers following operators:

The assignment operator

Mathematical operators

Relational operators

Logical operators

Address of operator (&)

Like

1.
2.

3.

4.

5.

Self-Instructional Material 15

■ Object Oriented
•Programming in ■€++

6. Scope Resolution operator (: :)

7. Bitwise operators
I

Assignment Operator
The assignment operator is the equal sign (=). Its use in programming
is somewhat different from its use in regular math. If you write

NOTES

X y ;
560;

in a C++ program, it doesn’t mean “x is equal to y.” Instead, it means
“assign the value of y to x.” In a C++ assignment statement, the right

• side can be any expression, and the left side must be a variable name.
Thus, the form is as follows:

variable = expression;
When executed, expression is evaluated, and the resulting value is
assigned to variable.

a

Mathematical Operators
'A C++ mathematical operators perform mathematical operations such
■as addition and subtraction. C++ has two unary mathematical .operators
(++, - ■) and five binary mathematical operators (+,-,*,/, %).
Program

/* Demo of .unary operators */

#include <iostream.h>

int a, b;
void main()
{

/* Set a and b both equal to 5 */

b = 5;a
/* Print them, decrementing each time. */
/* Use prefix mode for b, postfix mode for a */

cout<< a- -b;<<

-b;cout<<a <

a«- -b;cout<<-

}

Use of Binary Operators in C++ program

Program
Binary Operators, in C++ program *//* Use of

#include <iostream.h>

16 Self-Instructional Material

OOP Paradigm and
Introduction to C++

void main()

{ •
int x;
int y;
int a, b, c , d, e ;
cout«''enter values of x and y ";

cin>>x>>y ;

NOTES

a=x+y;
b=x-y;
C=x*y ;
d=x/y;
e=x%y;
cout<< • a.;
cout<< b;
cout<< c;
cout<< d;

.cout<< e;

}
if x=50 and y=3 then

a = 53
b=47
c = 150
d=16
e=2

Relational Operators
C++ relational operators are used to compare expressions, asking
questions such as, “Is a greater than 10?” or “Is y equal to 0?” An
expression RELATIONAL OPERATOR alse (0). C++ has six relational
operators:

ExampleOperator

Equal

Greater than

Symbol

x==y

■X > y>

Less than

Greater than or equal to
\ '■

Less than or equal to

Not equal,

X < y<

X >= y>=

<= X <= y

x!= y

Self-Instructional Material 17

Object Oriented
Programming in C++

Program

/* Demo of relational expressions */

#include <iostream.h>
int x;

void main()
NOTES

{

x= (7 7) ; /* Evaluates to 1 */

cout<<"\n a={7==7)\n a="<<x;
x=(7!=7); /* Evaluates to 0 */

\n a=(7!=7)\n a="<<cout«’' x;

x={12==12)+(7!=l); /* Evaluates to 1+1 */

cout<<"\na= {12 = = 12) + (7 ! =1) \na=:\n'’<<x;
}

Logical Operators

Sometimes you might need to use more than one relational question
at once. For example, “If x is Male, have age more than 40 and not a
graduate”, C++ logical operators allow you to combine two or more
relational expressions into a single expression that evaluates to either
true or false.

4 .Operator

AND
Symbol Example

a=5 && b=7

x=56 I I y=80

!c=’s’

&&
OR I I
NOT

Conditional Operators

The conditional operator is C++ only ternary operator, meaning that
it takes three operands. Its syntax is:

expl ? exp2 : exp3;

If expl evaluates to true (that is, non-zero), the entire expression
evaluates to the value of exp2. If expl evaluates to false (that is,
zero), the entire expression evaluates as the value of exp3. For example,
the following statement assigns the value 1 to x if y is true and
assigns 100 to x if y is false:

X. = y ? 1 : 100;

Likewise, to make z equal to the larger of x and y, you could write

(x > y> ? X : . y;

Perhaps you’ve noticed that the conditional operator functions somewhat
like an if statement. The preceding statement could also be written
like this:

z

18 Self-Instructional Material

OOP Paradigm and
Introduction to C++

if (x > y)

X;z

else '

z y; NOTES
The conditional operator can’t be used in all situations in place of an
if...else construction, but the conditional operator is more concise.
The conditional operator can also be used in places you can’t use an
if statement, such as inside a single cout.
Statement.

cout<<"The larger value is = "<<({x > y) ? x, : y)) ;

STATEMENT AND EXPRESSIONS

C++ Statement
A statement is a complete direction instructing the computer to carry •
out some task. In C++, statements are usually written one per line,
although some statements can use multiple lines. C++ statements
always end with a semicolon (except for preprocessor directives such
as #define and #include). Some of C++ statement for examples are:

2 + 3;
sum=numl+num2+num3;

is an assignment statement. It instructs the computer to add 2 and 3
and to assign the result to the variable x.

X

White Space
The term white space refers to spaces, tabs, and blank lines in your
source code. The C++ compiler isn’t sensitive to white space. When
the compiler reads a statement in your source code, it looks for the
characters in the statement and for the terminating semicolon, but it
ignores white space. Thus, the statement

x=2+3;
is equivalent to this statement:

2 + 3;X

Null and Compound Statements

Null Statements

If you place a semicolon by itself on a line, you create a null statement-+
a statement that doesn’t perform any action. This is perfectly legal in
C++.

Self-Instructional Material 19

Compound Statements
A compound statement, also called a block, is a group of two or more
C++ statements enclosed in braces. Here’s an example of a block:

if (x>3)

Object Oriented
Programming in C++' i

NOTES
{

cout<<"Hello\n'' ;

cout<<"world!";

)

In C++, a block can be used anywhere a single statement can be used.
It’s a good idea to place braces on their own lines, making the beginning
and end of blocks clearly visible. Placing braces on heir own lines
also makes it easier to see whether you’ve left one out.

USER DEFINED DATA TYPES
In C++, you can use user defined data types like:

• Arrays
'• Structures
• Pointers

_• Union
. Enumeration

CONDITIONAL EXPRESSION
If A student will score 50% marks in each subject he or she will be
declared pass in University exam or If your age is 18 years or more
you can use your vote to elect your MP or PM. This type of real life
situation need conditional programming or decision making. The if
statement enables you to test for a condition (such as whether your
percentage of marks >50 or not) and branch to different parts of your
code, to process other parts.
The simplest form of an if- statement is this:

if (expression)

statement;
Examples

B) if{Age>=l8)A) if(marks>=50)
{{

char .result = char vote= 'y' ;'P' ;
}}
elseelse

20 Self-Instructional Material

OOP Paradigm and
Introduction to C++..

{ {

char result= 'F' ; char vote= 'n';

})

c NOTESStart

Yes
/s Condition True? •

Process
Statement

Stop

• Fig. ‘5 Flow chart of If

You can use multiple statements, as in following example:
if{expression)
{

statementl;
s tatement2;
statements;

)
if(basic>=8000)
{
da={basic*67) / 100;
hra=(basic*25) /lOO
net =basic+da+hra;

} f
If.. Else •
You can also ask the compiler to check a condition; if that condition
is true, the compiler will execute the intended statement. Otherwise,
the compiler would execute alternate statement. This is performed
using the syntax:

if(Condition)
Statementl;

else
Statement2;

Self-Instructional Material 21

Object Oriented
Programming in C++ ■ Start

NOTES
YesNo Is Condition True? •

Statement 1Statement 2

)c stop

Fig. 6 Flow chart of nested if

C++ program to compute netsalary of an employee, netsalary is a
sum of basicsalry, da and hra of employee. An employee getting basic
salary more than or equal to 8000 will get 67% da, 25% hra on his
basic salary otherwise he will get 50% da, 18% hra on his basic salary.
Program

/* Use of ,if -else in C++ program */
#include <iostream.h>

void main()
{

int basic ;
float da, hra, netsalary;
cout<<"enter basic salary of employee ";

cin>>basic;
if (basic> = 80 0 0)

{

da= basic*67/100;

hra=basic *2 5/100;

netsalary=basic + da+hra;
)

else

{

da= basic*50/100;

hra=basic * 18/10 0;
netsalary=basic+da+hra;
}

22 Self-Instructional Material

OOP Paradigm and
Introduction to C++

cout<<"Netsalary is"<<netsalary;

>

Sometimes, your program will need to check many 'more than that.
The syntax for such a situation is:

if(Condition!)
Statement!;

else if(Condition2)

Statement2;

An alternative syntax would add the last else as follows:

if(Condition!)

Statement!;

else if(Condition2)

5tateinent2;

else if{Conditionj)

Statements;

NOTES

else
Statement-n;

The compiler will check the first condition. If Conditionl is true, it
will execute Statementl. If Conditionl is false, then the compiler will
check the second condition. If Condition2 is true, it will execute
Statement2. When the compiler finds a Condition-n to be true, it,will
execute its corresponding statement. It that Condition-n is false, the
compiler will check the subsequent condition. This means you can
include as many conditions as you see fit using the else if statement.
If after examining all the known possible conditions you still think
that there might be an unexpected condition, you can use the optional
single else.

Program
//program to check a character input by keyboard

for vowel (a,e,i,o,u)
•/* Use of if -else-if

#include <iostream.h>
in C++ program */ \

void main()

{
char alpha;
cout<< " enter a character " •

cin>>alpha;

if (alpha=='a')

{

Self-Instructional Material 23

Object Oriented
Programming in C++

cout<< "A Vowel
I

)
else if , (alpha- = 'e')
{NOTES
cout<< "A Vowel
}

'i')else if (alpha
{

cout<< "A Vowel ";
}

'o'}else if (alpha
{

cout<< "A Vowel
)
else if (alpha 'u')

(
cout<<- "A Vowel

}
else

cout<< "Not a Vowel
}

Program
#include <iostream.h>

void, main ()
{

char Answer;
cout « "Are you more than 18 (y-Yes/n=No)?

cin >> Answer;
if(Answer 'y')
{

cout << "\n You are mature now
cout << "\nYou can vote in election \n";

}
else // Any other answer
cout << "XnWait for more years \n";

)

24 Self-Instructional Material

Multiple Condition with if

In many programming problems like result of a students, there can
be multiple conditions to allot grade based on percentage of marks
secured by the student. In C++ to join multiple conditions you can
use && (and) operator or you can use I I (or) operator. && is used
when both conditions are true while I I is used when anyone of condition
is true. && and I I also known as logical operators.

Example.
if { temp<=35 && temp >=15)

iftalpha = =’a’ I I alpha = = ‘e’ I I alpha = = ‘i I I alpha = = ‘o’ II alpha
= = ‘u’)

Program

OOP Paradigm and
Introduction to C++

NOTES

// both must be true

/* Use of 1 I operator with if -else in C++ program */

tinclude <iostream.h>

void main()
{
char alpha;
cout<< " enter a character- H ,

cin>>alpha;
if (alpha =='a'||alpha =='e'||alpha =='i|| alphas

= 'u')alpha= ='0'

{

cout<< "A Vowel ";

}

else

{

cout<< "Not a Vowel ";
I

)

)

Program
operator with if -else in C++ program *//* Use of

#include <iostream>h>
void main()
{
int percentage ;
cout<< "Enter percentage of student (1-100) ";
cin>>percentage;
if (per <=40)

Self-Instructional Afo/ma/ 25

Object Oriented
Programming in C++ {

char grade='F';

}
else if (per>40 && per <=50)NOTES
{
char grade='D';
>

else if (per>50 && per <=60)

{
char grade='C'j

}
else if (per>60 && per <=70)

{

char grade='B';

}

else-.:

{

char grade='A';

)

cout<< "Grade of student is "«grade ; }

Conditional Operator (?:)

In C ++, the conditional operator (?:) can be used in place of if-else
statement to check conditions. This is only one operator in C++ which
uses three operands. Syntax is

Condition? expression! : expression2

X > y ? 10 : 50

Example

/* Use of

"iiinclude <iostream. h>

void main()

in C++ program */? :

(

int X, y ;

cout<< "Enter- two numbers

cin>>x>>y;
int z = X > y?

cout<< "The bigger number is "<<
X y ;

2;

}

26 Self-Instructional Material

OOP Paradigm and
Introduction to C++LOOP STATEMENTS

Sometimes you want to perform an action again and again,- like you
want to print first 100 even numbers, then loop concept of C++ will
help to dp it in less numbers of line of codes. In examination processing
system same logic has to repeated for n numbers of students. In a
clock seconds, minutes and hours needles make a loop of 60 cycles.
Looping, also called iteration, is used in programming to perform the
same set of statements over and over until certain specified conditions
are met.
Three statements in C++ are designed for looping:

1. The for statement
2. The while statement
3. The do-while statement

NOTES

For Loop
The for statement is typically used to count a number of items. At its
regular structure, it is divided in three parts. The first section specifies
the starting point for the count. The second section sets the counting
limit. The last section determines the counting frequency. The syntax
of the for statement is:

for (expression!; expression2; expressions)

statementl;
)

Example
/* Squre & Cube froml to 15 numbers */

#include <iostream.h>

void main{)
(
cout<<"Number"<< "Squre "<<" ,Cube\n ";

for (int i=l; i<=15; i++)
{

cout<<i<<i*i<<i*i*i ;

cout<<"\n";

}

}

Multiple Values in a for Loop

Example

/* Multiple expressions in for loop */

Seif'/nsCructional Material 27

Object Oriented
Programming in G++

♦include <iostream.h>

void main()
{'

int i ,• j ;
for (i = 0’, j = 8; i<8;- i++,

c6ut<<i<< j<<i +j^-

NOTES

}

; Nested for Loop
I

A for statement can be executed within another for statement. This
is called nesting. By nesting for statements, you can' solve complex

' programming problems.

Example
/* Dem of nesting two for statements */

♦include .<iostream.h>

void' inybox(. int, int)

void' main ()
{

mybox{ 5, 25);

}

void mybox (■ i-nt row, int column)

(

int col;
for (; row > 0; row—)

{

column-; col > 0; col—)'for (col

{
« * « .'cout<<

)

cout<<"\n”;

}

}

While Loop
The while statement, also known as while loop, executes a block of'/
statements as long as a specified condition is true. The while statement
has the following syntax;

I

' 28 Self-Instructional Material

OOP Paradigm and
Introduction to C++

while (condition) while(x<=10)

, { {

statement;
statement;
increment;

cout<<x;
x=x+2; NOTES
}

}
Example

simple while statement *//* Demo of
#include <iostream.h>
int count;
void main()
{

Start

Statement

/

c Stop

Fig. 7 While Loop!
/* Print the numbers 1 through 25 */

//

1;count
while (count <= 25)
{ /

cout<<"Number="<<count; \
. I/

/!

gelf-Instructiohal Material 29

Object Oriented
Programming in C++

count++;

}

}

ExampleNOTES
#include <iostream.h>

int number;

void main()

{ I

yint X = 1;

cout<<’’enter the number";
cin>>number;
while (x < 10)

{

number=number * x

cout<<number<<"\n");

X++ ;

}

Do-While Loop

One more loop in C++ is do...while loop, which executes a block of
statements as long as a specified condition is true. The do...while
loop tests the condition at the end of the loop rather than at the
beginning, as is done by the for loop and the while loop.

The syntax,of do...while loop is:

do

{
statement;
increment / decrement in loop ;
} while (condition);
int x=20;

do
(.

COUt<<x;

2;X X

) while (x > = 2);

3t) Self-Jnstruclional Material

OOP Paradigm and
Introduction to C++

Start

♦

NOTESStatement

True

Fig. 8 Do..while loop

Example
do.. . .while statement *//* Demo of

#include <iostream.h
void main(}
{
int selection

cout<<"You chose Menu Option \n"<<selection;
0;

do
{

cout<<"Nn";
cout<<"\nl
cout<<"\n2

cout<<"\n3

cout<<"\n4

cout<<"Xn";
cout«"\nEnter a selection: " ;
cin>>selection ;
while (selection < 1 || selection > 4);

Add a record";
Change a record";
Delete a record";
Quit";

}
}

The For, The While, or The Do...While
If you look at the syntax provided, you can see that any of the three
can be used to solve a looping problem. Each has a small twist to

Self-Instructional Material 31

what it can do, however. The for statement is best when you know
that you need to initialize and increment in your loop. If you only
have a condition that you want to meet, and you aren’t dealing with
a specific number of loops, while is a good choice. If you know that
a set of statements needs to be executed at least once, a do...while
might be best. Because all three can be used for most problems, the
best course is to learn them all and then evaluate each programming
situation to determine which is best.
Example

Object Oriented
Programming-in C++

NOTES

#include <iostreain. h>

void main(}
{

int sam;
long lar;
const int MAX=65535;'
cout << "Enter a small number: M ,

cm >> sam;
cout << "Enter a large number:
cin >> lar;

M •

cout << "small: " << sam<<
while (sam < lar && lar > 0 •&& sam < MAX)
{

if (sam % 5000 = = 0} // write a*atevery 5000 lines
cout << " •*
sam++;
lar lar 2-;

}

cout << "\nSmall: " << sam << " Large: " << lar
<< endl;

}

Infinite Loop
The condition you use for testing in a while loop can be any valid
C++ expression. As long as that condition remains true, the while
loop will continue. You can create a infinite loop that will never end
by using the number 1 for the condition to be tested. Since 1 is always
true, the loop will never end, unless a break statement is reached,
like:

/

32 Self-Instructional Material

OOP Paradigm and
Introduction to C++

Example
.#include <iostreain. h>

void main()

{ NOTES
int counter .= 0;

//infinite loop.while (1)

{

counter .+ +;

if (counter •> 25)

break; //break condition

}

cout << "Counter: ” << counter << "Vn";

Ou.tput: Counter: 26

While vs Do .. While Loop

It is possible that the body of a while loop will never execute. The
while statement checks its condition before executing any of its statements,
and if the condition evaluates false, the entire body of the while loop
is skipped. The do...while loop. executes the body of the loop before
its condition is tested and ensures that the body always executes at
least one time.

Example
,N

// Demonstrates do while

<iostr‘eam.h>
' 'XO:

•#include

void main() 'V .

{

int counter;
cout << "How many hellos in loop you want ?

cin >> counter;

" •

do

{

•cout ■•<< '"Hel'lo Friend Vn";

counter—;

while (counter .>0) ;
cout ■<< "Value of Counter is: " << counter <<
}

endl ;

}

Self-Instructional Material S3

I

Object Oriented
Programming in C++

Output: How many hellos in loop you want ? 2
Hello

Hello

Value of Counter is: 0

In above program the user is prompted for enter a starting value,
which is stored in the integer variable counter. In the'do...while loop,
the body of the loop is entered before the condition is tested, and
therefore the body of the loop is guaranteed to run at least once even
the condition can be false.

NOTES

Switch statement
For decision making based programs, you have seen the use of if and
if/else statements. These can become quite confusing when if nested
too deeply, but in C++ we have an alternative. Use switch statement,
unlike if, which evaluates one value, switch statements allow you to
branch on any of a number of different values. The general form of
the switch statement is:

switch (condition / expression)
{

case One: statement;

break;

case Two: statement;
break;

case N; statement;
break;

default: statement;
}

Example
// -Demonstrates■switch statement

#include <iostream.h>
void mainO
{

int number;
cout << "Enter a number between 1 and 7:
cin >> number;
switch (number)

•

{
case 0:

Haldwani -List of courses!";
cout << "Amrapali Institute

34 Self-Instructional Material

break;

case 6:

OOP Paradigm and
Introduction to C++

cout << "B.Tech!Xn" ;
cout << "MCA!\n";
cout << "MBA!\n";
cout .<< "BBAlXn";
cout « "BCAINn";
cout << "BHMCT!Xn" ;

case 5
case 4 NOTES
case 3
case 2
case 1

break;
default: cout « "Please enter value l-6!Xn";

break;
}

cout « "XnXn";

}
Output: Enter a number between 1 and . 6:3
BBA!
BCA!
BHMCT!
Enter a number between 1 and 6: 8
Please enter value 1-5!

BREAKING AND CONTROL STATEMENTS
Break and Continue
Any times in a loop if there is a need to return to the top of the loop
before the entire set of statements in the loop is executed. The
continue statement jumps back to the top of the loop. On the other
hand, if you may want to exit the loop before the exit conditions are
met. The break statement immediately exits the while loop, and program
execution resumes after the closing brace.

Loop (condition) while (x<=10)
{ {
statement1 ;
if (condition)

cout<<x;
if{x=5)
{
V

continue ;
statement2;

continue ;
cout<<x+5;

>

} }
Statements ; cout«"end of loop";

Self-Instructional Material 35

Object Oriented
Programming.in C++

}}

while •(-x< = iO)Loop { condition .)

.{

.s.tatementl

i'f { condition)
co,ut<<x-;NOTES

•if {x=5}

{{

break ;break ;
statertient2 ;

*

cout<<x+5;

};)
cout<<"end of loop";Statements ;

}

36 Self-Instructional Material .

OOP Paradigm and
Introductionio C++STUDENT ACTIVITY

1. What is Object Oriented model of programming?

2. What happens if you create a loop that never ends?

/

Self-Instructional Material 37

object Oriented
Programming in C++

SUMMARY

Object-oriented programming treats data as a critical element '
in the program development and does not allow it to flow freely
around the system.
Object-oriented programming attempts to respond to these needs,
providing techniques for managing enormous complexity, achieving
reuse of software components, and coupling data with the tasks
that manipulate that data.
Objects take up space in the memory. When a program is executed,
the objects interact by sending messages to one another.
A structured object is an object of a class with attributes,
operations, and relationships.
C++ is a extension of C, but it does not mean that you should
learn C first. It is unnecessary to learn C first one can easily
start C++ programming because C++ allow you to write code
in C style.
A constant is a data storage lochildjon, constants don’t change ■
their values in a program.
C++ statements always end with a semicolon (except for
preprocessor directives such as #define and #inciude).

NOTES

SELF ASSESSMENT QUESTIONS

1. What is Object-oriented programming? How is it different from
the procedure-oriented programming?

■ 2. Distinguish between the following terms:
(a) Objects and classes
(b) Data abstraction and data encapsulation
(c) Inheritance and polymorphism

3. What is the difference between procedural vs object-oriented
programming?

4. Explain the features of object oriented programming languages.
5. Why we should write reusable source codes and how- C++ is

helpful to write reusable codes?
6. What is a class and an object?
7. What is the difference between an integer variable and a floating

point variable?
What are the differences between an unsigned short int and a
long int?

8.

38 Self-Instructional Material

OOP Paradigm and
Introduction to C++

9. What are the advantages of using a s3TnboIic constant rather,
than a literal constant?

10. What are the advantages of using the const keyword rather
than #define?

11. What are rules for a good or bad variable name?
12. What is an expression?
13. Is X = 15/5 an expression? What is its value?
14. What is the value of 201/4? (if you will use integer)
15. What is the value of 201 % 4? '
16. If myAge, a, and b are all int variables, what are their values

after:

NOTES

myAge = 39;
a = myAge++;
b = ++myAge;

17. What is the value of 8+2*3?
18. What is the difference between x = 3 and x == 3?
19. Do the following values evaluate to TRUE or FALSE?

(a)0
ih) 1
(c) -1
(d) X = 0

20. What is Conditional decision making, how it is important in
logical design development in a program?

21. Is if (5 + 7 >11) is a valid if statement? What will be the return
value of it?

22. What is nested if, describe with the help of an example?
23. What are common operators, used to design multiple conditions

in if statement state some examples?
24. If myAge, a, and b are all int variables, what are their values

after:
myAge = 39;
(а) = myAge++;
(б) = ++myAge:

25. How do you initialize more than one variable in a for loop?
26. Why is goto avoided?
27. Is it possible to write a for loop with a body that is never

executed?
28. Is it possible to nest while loops within for loops?
29. Is it possible to create a loop that never ends? Give an example.

Self-Instructional Material 39

'■ ' Object Oriented
Programming in C++ SECTION B

FUNCTIONS, STRUCTURES,

POINTERS AND UNIONS
UNIT 2NOTES

it LEARNING OBJECTIVES ★

• Defining a Function

• Types of Functions

• Call by Value and Call by Reference

• Preprocessor

• Header Files and Standard Functions

• Pointers and Structures

• Unions

DEFINING A FUNCTION
A function is a block of statements with a name. In your mobile set
you have several functions like ball a number, send a SMS or read a
message. Any time you can use that without deflnin|r that, this is true
with G++ functions. Once a function has. been designed you can call
it to perform your task. Each function has a unique name. By using
that name in another part of the program, you can execute the statements
contained in the function. This is known as calling the function. A\
function can be called from within another function. Axfunction is
independent. A function can perform its task without interference
from or interfering with other parts of the program. A function performs
a specific task like send your photo to your girlfriend using MMS
services of your handset. This is the easy part of the definition. A task
is a discrete job that your program must perform as part of its overall
operation, such as sending a line of text to a printer, sorting an array
into numerical order, or calculating a cube root. A function can return
a value to the calling program like your message has been delivered.
When your program calls a function, the statements it contains are
executed. If you want them to, these statements can pass information
back to the calling program. ' f

40 Seif-Jnstructional Material

If you want to define a functions in C++, you should use the following
steps:'

(а) prototype the function'

//int sum (int int):

(б) define- the function'
/7±nt sum{ int x,. int y)’

Functions, Structures,
Pointers and Unions

NOTES

{

X + y ;z

return z ;

}

(c)- use' or call the functions'

// z=sum(a,b);

Example
/* Demo of function for sum */

#include <iostream.h>

int s'umCint , int)•;

int X , y , z ;

void rriain^)■

// function prototype

{

cout«”Enter twO' numbers

cin>>x>>y;

z = sum (x, y) ;

cout<<"The Sum of numbers is\n’'<<z;

//function^ call

// function definition

int sum (int x, int y)
(

return x+y;

}

TYPES OF FUNCTIONS
There are three main types of function in C++

1. C style functions

2. Inline functions •

3. Friend functions

Selfrinstructional Material ' 41

Inline Function
When you define a function, normally the compiler creates just one
set of instructions in memory. When you call the function, execution
of the program jumps to those instructions, and when the function
returns, execution jumps back to the next line in the calling function.
If you call the function 5 times, your program jumps to the same set
of instructions each time. This means there is only one copy of the
function, not 5. There is some performance overhead in jumping in
and out of functions. It turns out that some functions are very small,
just a line or two of code, and some efficiency can be gained if the
program can avoid making these jumps just to execute one or two
instructions. The program runs faster if the function call can be avoided.
If a function is declared with the keyword inline, the compiler does
not create a real function: it copies the code from the inline function
directly into the calling function. No jump is made; it is just as if you
have written the statements of the function right into the calling
function. To declare a function inline use the keyword inline before
the type of function.

Object Oriented
Programming in C++

NOTES

Inline returntype functionname(passing parameter)

inline int double(int);
An-inline'"function is a function whose code gets inserted into the
caller’s code stream. Like a #define macro, inline functions improve
performance by avoiding the overhead of the call itself and (especially!)
by the compiler being able to optimize through the call.
Example

// inline function two compute square and cube of
integer numbers

-#include <iostream.h>

inline double square(int);
inline double cube(int)

void mainO
5

{
int num;
double sq,cub;
cout « "Enter a number";.
cin >> num;
cout « "Nn";

square(num);
cout << "Square is :"<<sq << endl;
cub

sq

cube(num);

42 Self-Iristructional Material

Functions, Structures,
Pointers and Unions

cout « "Cube is : " « cub « endl;.

} -

double- square(int num)

{ NOTES
return nxim*nuin;

>

double cube(int num)

{

return nvun*num*nuin ;

}

CALL BY VALUE AND CALL BY REFERENCE

Call by value

When you will use call by value style in a function you will pass
actual variables to the function, and you can declare variables within
the body of the function. This is done using value of variables, so
named because they exist within the function itself.

The parameters passed into the function are real values of variables
and can be used exactly as if they had been defined within the body
of the function.

Program
#include <iostream.h>

float Convert(float);
int mainO
{

float TempFer;
float TempCel;
cout << "Ple'ase enter the temperature in

Fahrenheit: " •! .

cin >> TempFer;

TenpCel Convert (TempFer) ;

' cbut « "VnHere's the temperature in Celsius: " •, /

cout « TempCel « endl;
return 0; -

I

/.
}

float Convert (float TeitpFer)

Self-Instructional Material 43
)

Object Oriented
Programming in C++

(
float TempCel;
TempCel
return TempCel;

((TempFer - 32) * 5} '/ 9;

NOTES
}

Call by Reference
When declaring a reference variable you must also make it refer to
something at the same time, lb declare on you simply make a variable
of the type you are going to be referring to, make up your own name,
and put an ampersand (&) in front of it;

int S:ref;

That creates a reference variable called ref of type integer. Of course
this doesn’t do anything because you can’t assign references to other
variables at any other time than declaration. So to make ref refer to
something we have to do it in the declaration:

int &ref = x;
This is all assuming we have a variable called x and that it is also an .
integer (int). But after doing this, anything we do to ref will effect x.
Try this source code (cut and paste).
Program

#include <iostreain.h>

void main()
{

II create integer variableint X 10;
called X

U make a reference variableint &ref
that refers to x

x;

cout "X is " X " and ref is " ref endl;
cout "Now we change ref to equal 25 ... " endl;
ref = 25;
cout "And now x is " x " and ref is " ref endl;

/
}

Using Reference Variables in Functions
The previous section was an intro into reference variables. But to be
quite honest if you use them like that then they’re not really necessary.
Reference variables come into shine when it comes to functions. The
point of reference variables and functions is that you can pass a

44 Self-Instructional Material

variable as a parameter and have the variable changed in the function.
Like in the following code snippet.

Pro^am

Functions, Structures,
Pointers and Unions

#include <iostreain.h>
NOTES

void times2 (int £:x) ; // function prototype
void main(}
{

// declare var as integer variable

10; // put value of 10 in var

cout << "var is " << var «endl;
times2 (var) ; // call 'times2()' with var as parameter

cout « "var is now " « var «endl;

int var;

var

)

void tiines2(int &x)

{

X * 2;X

}

With references you could get multiple values, like in the following.

Program

#include <iostream.h>

void times2(int &vl, int &v2); //function prototype

void main!)
{

int x,y;

10;X

y = 15;

cout « "X is "x" and y is "«y <<endl;
i

times2(x,y);

cout << "X is now "x" and y is now " << y. << endl;
}

void times2 (int &vl, int &v2)

{

vl, = vl .* 2;

v2 * 2';v2

Self-Instructional Material- 45

Object Oriented ■
Programming in 0++ PREPROCESSOR

Preprocessor directives are lines included in the code of our programs
that are not program statements but directives for the preprocessor.
These lines are always preceded by a pound sign (#). The preprocessor
is executed before the actual compilation of code begins, therefore
the preprocessor digests all these directives before any code is generated
by the statements. These preprocessor directives extend only across
a single line of code. As soon as a newline character is found, the
preprocessor directive is considered to end. No semicolon (;) is expected
at the end of a preprocessor directive. The only way a preprocessor
directive ^an extend through more than one line is by preceding the
newline character at the end of the line by a backslash (\).

#define

To define preprocessor macros we can use #define. Its format is;

#define identifier replacement

#define TRUE 1

When the preprocessor encounters this directive, it replaces any occtirrence
of identifier in the rest of the code by replacement. This 'replacement
can be an expression, a statement, a block or simply anything. The
preprocessor does not understand C++, it simply replaces any occurrence
of identifier by replacement.

#define TABLESIZE 100

int tablel[TABLESIZE];

int table2[TABLESIZE] ;

After the preprocessor has replaced TABLE_SIZE, the code becomes
equivalent to:

int tablel[100];

int table2[100];

NOTES

' \

/

I

Example
II Use of #define to develop a function getminO to

find minimum in two numbers
include <iostreaiii.h>
#define getmin{a,b) ((a)<{b)?(a):(b))

void mainO

{

int x=5, y=8;

y= getmin{x,y);

cout « y « endl;

)

\
46 Material

#AND # # Functions, Structures,
Pointers and Unions

Function macro definitions accept two special operators (# and ##)'in
the replacement sequence. If the operator # is used before a parameter
is used in the replacement sequence, that parameter is replaced by
a string literal (as if it were enclosed between double quotes), The
operator ## concatenates two arguments leaving no blank spaces between
them. Like:

NOTES

#define str(x) #x

cout << str(test);
output will be "test"

#define join(a,b)

join(c,out)<<"test"

output will be cout« "test"

a ## b

#undef
If you have defined some value using #define you can erase it using
#undef in a program. Like:

#de£ine TABLESIZE 100

int tablel[TABLESIZE] ,

#undef TABLESIZE

#define TABLESIZE 200

int table2[TABLESIZE]

You will get
tablel[100]

table2[200] •

HEADER FILES AND STANDARD FUNCTIONS
Every implementation of C++ includes the header files and standard
library functions, and most include additional libraries as well. Libraries
are sets of functions that can be linked into your code. You’ve already
used a number of standard library functions and classes, most notably
from the iostreams.h library.

To use a library, you typically include a. header file in your source
code, much as you did by writing #include <iostream.h> in many of
the examples in this book. The angle brackets around the filename
are a signal to the compiler to look in the directory where you keep
the header files for your compiler’s standard libraries. There are
dozens of libraries, covering everything from file manipulation to
setting the date and time to math functions.

Self-Instructional Material 47

Object Oriented
Programming in C++

The main header files are :

lostream.h
Conio. h
Math.hNOTES
Graphics.h
String.h
lomanip.h
Time.h
Fstream.f
Using of time.h header file

tinclude <time.h>

♦include <iostreain.h>

int mainO
{

currentTime;
// get and print the current.time
ctime {¤tTime) ; // fill now with the current

time_t

time

cout << "It is now " << ctime (¤tTime) « endl;

struct tm * ptm= localtimef¤tTime) ;

cout « "Today is " «-({ptm->tm_mon}+1) «

cout « ptm->tm_mday «

cout « ptm->tm_year « endl;

cout « "\nDone.";

return 0;

1

It is now Mon Mar 31 13:50:10 1997Output:
Today is 3/31/97

POINTERS AND STRUCTURES
To declare a pointer in a program, write the type of the variable or
object whose address will be stored in the pointer, followed by the
pointer operator (*) and the name of the pointer. For example,

int * point = 0; •

48 Self-Instructional Material

Functions, Structures,
Pointers and Unions

Tb assign or initialize a pointer, prepend the name of the variable
whose address is being assigned.with the address of operator (&). For
example,
int theVar = 5;

int * point = & theVar;
Tb dereference a pointer, prepend the pointer name with the dereference
operator (*). For example,
int theValue = *point
you’ve seen step-by-step details of assigning a variable’s address to a
pointer. In practice, though, you would never do this. After all, why
bother with a pointer when you already have a variable with access
to that value? The only reason for this kind of pointer manipulation
of an automatic variable is to demonstrate how pointers work. Pointers
are used, most often, for following tasks:

• Managing data on the free store.
• Accessing class member data and functions.
• Passing variables by reference to functions.

NOTES

Reference Variable
A reference is work as an alias for an object, when you create a

, reference, you initialize it with the name of another object. From that
moment on, the reference acts as an alternative name for the target
object, and anything you do to the reference is really done to the
target object.
You can create a reference by writing the type of the target object,
followed by the reference operator (&), followed by the name of the
reference. References can use any legal variable name. If you have an
integer variable named m3dnt, you can make a reference to that variable
by writing the following:

int & myref = myint;
m}Tef will act as a reference variable for myint in the wholenow

program.

Example
// show the use of reference variables

// Demo of References

#include <iostream.h>

void main()
{

int aone;
int &ref = aone;

Self-Instructional Material 49

Object Oriented
Programming in C++

15;aone

cout « "AOne: " « abne '« endl;
cout « "ref: " << ref << endl;
ref 74;NOTES
cout « "AOne: " « aone << endl;
cout << "ref: " « ref « endl;

}
Example

//Use of Address of Operator

#include <iostream.h>

void main()

on References.Sc

int intone;
int &SotneRef
intOne = 5;
cout « "intone: " « intOne « endl;
cout « "SomeRef: " << SomeRef « endl;
cout « "&intOne: " « &intOne « endl;
cout << "&SomeRef: " ^<<. &SorrieRef << endl;

intone;

}■

Reference to Objects
You can create a reference to an object, but not to a class. You can
not write this: .

int Sc intref = int;
You must initialize intref to a particular integer value, such as this:

int bignumber = 1200;
int & intref = bignumber;

In the same way, you don’t initialize a reference to a class like:

// wrong

student & rstu = student;
You must initialize rstu to a particular student object first to set
reference like:

student nitinpadlia;
student & rstu = nitinpadlia ;

// wrong

Example
#include <iostream.h>
class scat

60 Self-Instructional Material

'Functions, Structures,
Pointers and Unions

{
public:

scat (int age, int weight);
-SCatO {}

int GetAge{) { return itsAge; }
int GetWeightO { return itsWeight; }

private: '
int itsAge;
int itsWeight;

NOTES

};
scat::scat(int age, int weight)
{

itsAge'= age;
itsWeight = weight;

}
void main()
{

scat juli (15,3);
scat & rCat = juli;

cout « "juli is: ";
cout « .juli. GetAge 0 « " years old. \n";
cout « "And juli's weight is :
cout « rCat.GetWeight() « " Kg. \n";

}

UNIONS
Unions are similar to structures. A union is declared and used in the
same ways that a structure is. A union differs from a structure in that
only one of its members can be used at a time'. The reason for this is
simple. All the members of a union occupy the same area of memory.
They are laid on top of each other.

Defining, Declaring, and Initializing Unions
Unions are defined and declared in the same fashion as structures.
The only difference in the declarations is that the keyword union is
used instead of struct. To define a simple union of a char variable and
an integer variable, you would'write the following:

Self-lnstructiorud MaikHaV .51

Object Oriented
Programming in C++

union shared
I

(

char c;

int i ;NOTES
} ;

This union, shared, can be used to create instances of a union that
can hold either a character value c or an integer value i. This is an
OR condition. Unlike a structure that would hold both values, the
union can hold only one value at a time.

52 Self-Instructional Material
f

Functions, Structures,
Pointers and Unions

STUDENT ACTIVITY

1. Define Inline functions.

2. Name four preprocessor derivatives with examples.

Self-Instructional Material 63

object Oriented
Programming in C++

SUMMARY
»,• A function can return a value to the calling program like your

messege has been delivered. '
• An inline function is a function whose code gets inserted into

the caller’s code stream.
• The point of reference variables and functions is that you can

pass a variable as a parameter and have the variable changed
in the function. ...

• Preprocessor directives are lines included in the code of our
programs that are not program statements but directives for
the preprocessor.

• If you have defined some value using #define you can erase it
using #undef in a program.

• A reference is work as an alias for an object, when you create
a reference, you initialize it with the name of another object.

• Unions are similar to structures. A union is declared and used
in the same ways that a structxire is.

NOTES

/ ■SELF ASSESSMENT QUESTIONS

1. What do you mean by preprocessor derivatives?
2. How do you use #define to set values of constants in your

program?
3. What is the difference between #define debug 0 and #undef

debug?

64 Self-Instructional Material

Classes, Inheritance and
ConstructorsSECTION C

CLASSES, INHERITANCE

AND CONSTRUCTORS
UNITS NOTES

★ LEARNtNG OBJECTIVES ★
• Classes
• Member Functions
• Objects
• Array of Objects
• Constructors
• Copy Constructors
• Destructors
• Inline Member Functions
• Static Class Member Functions
• Friend Functions
• Dynamic Memory Allocation
• Inheritance
• Virtual Base Class
• Abstract Classes
• Constructors in Derived Classes
• Nesting of Classes

CLASSES
Programs are usually written to solve real-world problems, such as
keeping track of employee records in an organization like Amrapali
Institute or simulating the workings of a heating system. Although it
is possible to solve complex problems by using programs written with
only integers and characters data types, but it is more easier to solve
large, complex problems if you can create objects using base classes.
In other words, simulating the workings of a heating system is easier
if you can create variables that represent rooms, heat sensors, thermostats,

Self-Instructional Material 55

Object Oriented
Programming in C++

and boilers. The closer these variables correspond to reality, the easier
it is to write the program. To solve real world problems there is a
need to create new data types also known as user defined data types,
a class help us to design a new data type with attributes and operations
or functions in a single unit. A class defines a data type, much like a!
struct C. In a computer science sense, a type consists of both a set of
states and a set of operations which transition between those states.
You can make a new data type by declaring a class. A class is just a
collection of variables often of different types combined with a set of
related functions. One way to think about a car is as a collection of
wheels, doors, seats, windows, and so forth. Another way is to think
about what a car can do: It can move, speed up, slow down, stop,
park, and so on. A class enables you to encapsulate, or bundle, these
various parts and various functions into one collection, which is called
an object.

NOTES

I

CAR class

wheels

doors

seats

windows

Functions

Move

Start
Stop

Park
Fig. 1 a CAR class

CAR cl, c2;
Two objects of CAR, having same attributes and functions
Encapsulating everything you know about a car into one class has a
number of advantages for a programmer. Everything is now in one
place, which makes it easy to refer to, copy, and manipulate the data
using objects of class.
Example
A class employee with following attributes empno, empname, empdept,
empsalary and functions join', computesalary, printdata, printsalary.

Class employee
Empno - integer

Empname ~ string

Empdept - string

Empsalary - integer

56 Self-Instructional Material

Classes, Inheritance and
Constmctors

Functions
JoinO

ComputesalaryO
PrintdataO

PrintsalaryO
NOTES

Example
A class bankaccount with following attributes

}. openamount, closicgamount and functions open, deposit, withdrawal,
checkbalance, close.

accno, custname, custadd.

Glass bankaccount

Accno - integer

Custname - string

Custadd - string

Openamount - integer

Closingamount - integer

Functions

OpenO

DepositO

WithdrawaK)

CheckbalanceO

CloseO

Wember functions^ _____________ _vou
\ class caa consist of any combination of the variable

varilte akr
'iables representing the seats, windows, doors, tees etc. Member
'ables also known as data members, are the variables a vow class,

■ber variables are part of your class, just like the wheels
S are part of your car class. The functions in the class typically
^late the member variables. They are referred, to as member

\s or methods of the class. Methods of the Car class

3tart{) and StopO. Member functions, also known
\nctions in your class. Member functions are as mucU part
\s as the member variables. They determine what tbe^^^
V can do.

tito'
-,ei

and

Slight

\

\

'ed programming languages like C++, 'objJ usually
\ce of a clasa.” Thus a class defines the bft'iour of

^^If-Inst
Material 57

^ Object Oriented
P'vgramming in C++ possibly many objects. You can t

instance of a class. You can define

you define an integer variable.
®Qy now an object is an individual

object of your new cla?'^ \ asan
I-ike.-Car Cl,notes

/ / One ot)jectEn^loyeg
el,e2,

// iVoStudent objectss2,s3
// Three a

CAR

the.

SB ■ Self-In$tructional MaUrial

t

Classes, Inheritance and
Constructors

Functions
JoinO

ComputesalaryO
PrintdataO

PrintsalaryO
NOTES

Example
A class bankaccount with following attributes accno, custname, custadd,
openamount, closingamount and functions open, deposit, withdrawal,
checkbalance, close.

Class bankaccount

Accno - integer

Custname - string

Custadd - string

Openamount - integer

Closingamount - integer

Functions

OpenO

DepositO

WithdrawalO

CheckbalanceO

CloseO

MEMBER FUNCTIONS
A class can consist of any combination of the variable types and also
other class types. The variables in the class are referred to as the
member variables or data members. Like a Car class might have member
variables representing the seats, windows, doors, tires etc. Member
variables, also known as data members, are the variables in your class.
Member variables are part of your class, just like the wheels and
engine are part of your car class. The functions in the class typically
manipulate the member variables. They are referred, to as member
functions or methods of the class. Methods of the Car class might
include StartO and StopO. Member functions, also known as methods,

the functions in your class. Member functions are as much a part
of your class as the member variables. They determine what the objects
of your class can do.

are

OBJECTS
In object oriented programming languages like C++, “object” usually
means “an instance of a class.” Thus a class defines the behaviour of

Self-Instructional Material 67

• Object Oriented
Programming in C++

possibly many objects. You can say now an object is an individual
instance of a class. You can define an object of your new class just as
you define an integer variable. Like:
Car cl,
Employee el,e2,
Student sl,s2,s3

// One object of Car class

// Two objects of, Ert^jloyee class

// Three objects of student class
CAR class
wheels
doors
seats
windows
Functions
Move
Start
Stop
Park

NOTES

CAR cl;
Class
Data members
Wheels
Doors
Seats
Windows

Object
Functions
Move.
Start
Stop
Park

N.

Class Declaration
Tb declare a class, use the class keyword followed by an opening
brace, and then list the data members and methods of that class. End
the declaration with a closing brace and a semicolon. Here’s the declaration

-of a class called Car:
class Car
(

int doors;'
int wheels;

//member variable

Start{};

StopO ;

//member function

};

Declaring this class doesn’t allocate memory for a Car. It just tells
the compiler what a Car is, what data it contains (wheels and doors),,
and what it can StartO and StopO. It also tells the compiler the size

6S ' Self-In»tructional Material

of a Car in bytes, to know how much bytes the compiler must set
aside for each Car object that you will create in future. In this example,
if an integer is two bytes, a Car is only foxir bytes big: doors is two
bytes, and wheels is another two bytes. StartO and StopO takes up
no bytes, because no storage space is reserved for member functions.

Classes, Inheritance and
Constructors

NOTES

Public Vs Private
Some more keywords are used in the declaration of a class. Two of
the most important are public and private. All members of a class
data and methods are private by default. Private members can be
accessed only within methods of the class itself. Public members can
be accessed through any object of the class. This distinction is both
important and confusing. To make it a bit clearer, consider an example
from earlier in this chapter:

class Car

1

\

{

int doors;
int wheels;
Start();

Stop();
1 :

in this declaration, doors, wheels, StartO and StopO are all private,
because all members of a class are private by default. This means
that unless you specify otherwise, they are private. However, if you
now declare object of Car class like:

Car cl;
.. cl.wheels=6; // error!

/

can't access private dataj

the compiler will show this as an error. Because you cannot access
private data values uirectly.
Now change the class declaration as:

class Car
{

public:
int doors;
int wheels;
Start();

Stop{);
};

Example

#include <iostreaiti.h>

cl'ass Car // declare the class object

: Self-Instructional Material, 59

f
Object Oriented

Programming in C++
•{

//'-members which follow are publicpublic:
int wheels;
int doors;NOTES

>/

void mainO
{

//Object declaration

4; //assign to the member variable

is a car which has";
cout << maruti .wheels « " Wheels\h";

Car maruti; .
maruti.wheels

t
cout « "Maruti

}
Example

//add and subtract two numbers using classes and
object's

tinclude <iostream.h>

class-addsub

{
int x;
int y; //private data members

public:
void-- twosumO ;
void twosub();

// public member function

// class defined

// define member function
} ;

void addsub: : twosum()

{

cin>>x;

cin>>y;

int z=x+y;

cout<< "Sum is ="<<2;

void addsub: .-twosiibO

{

cin>>x;

cin»y;

int z=x-y;

60 Self-Instructional Material

Classes, Inheritance and
Constructors

cout« "Subtraction is ="«z;

}
void main(>

{ NOTES
// object declaration of addsub class

s.twosum(); // calling member function with object
s.twosub();

addsub s;

}
Example

//multiply and divide two numbers using classes and
obj ects

#include <iostream.h>
class addsub

{
int X;
int y;
public:
void twomultO // public member function inside class

// private data members

{
cin>>x;
cin>>y;
int z=x*y;
cout« "Product is ="«z;

}
void twodivO

{
cin>>x;
cin>>y;
int z=x-y;
cout« "Division is--' ="«z;

)
// class defined} ;

void main{)
\{

addsub ■ s''/, //object declaration of addsub
class

Self-Instructional Material . 61

s.twomult(); // calling member function with object

s.twodiv();

Object Oriented
Programming in C++

}

NOTES
ARRAY OF OBJECTS
Any object, whether built-in or user-defined, can be stored in an array.
When you declare the array, you tell the compiler the type of object
to store and the number of objects for which to allocate room. The
compiler knows how much room is needed for each object based on
the class declaration. The class must have a default constructor that
takes no arguments so that the objects can be created when the array
is defined.

©©©© ©©©©©© © © © © © ©
Fig. 2 An array of faces

SACHINTE NDULKAR
Fig. 3 An array of characters

An array is a collection of similar data values in a single unit.
Accessing member data in an array of objects is a two-step process.
You identify the member of the. array by using the index operator
([]), and then you add the member operator (.) to access the particular
member variable. Like:

• int x[10];
• float y[12]; // array of 12 float data types

// array of 5 child class objects.

// array of 10 integer data types

• child c[5];
Example

// Demo - An array of objects

#include <iostream.h>

class CHILD ,

{
public:

1; itsWeight=5; }CHILD 0 { itsAge
-CHILD 0 (}

int GetAgeO const { return itsAge;)
int GetWeight() const { return itsWeight; 1
void SetAge(int age) { itsAge = age;)

private:

62 Self-Instructional Material,

Classes, Inheritance and
Constructors

int itsAge;
int itsWeight;

};
void main(> NOTES
{

CHILD suhani[5]; // array of objects of CHILD
class

int i;
for (i 0; i,< 5; i++)

suhani[i].SetAge(2*i +1} ;
= 0; i < 5; i++)for (i

{
cout << "Child #" << i+l<<

cout « suhani [i] .GetAge () « endl;

" •

}
)

Array of Pointers
The arrays of objects usually store all their members in a stack. Usually
stack memory is severely limited, whereas free store memory is far
larger. It is possible to declare each object on the free store and then
to store only a pointer to the object ini the array. This-dramatically
reduces the amount of stack memory used and fasten the processing
speed. As an indiaimcaion of the greater memory that this enables,
the array in next example extended from 5 to 500.
Example

// demo of An array of pointers to objects

#include <iostream.h>
class AIMCA

{
public:

AIMCA{) { itsAge = 1; itsWeight=5; }
-AIMCA 0 {}
int GetAgeO const { return itsAge; }
int GetWeightO const { return itsWeight; }
void SetAge(int age) • {' itsAge = age; }

// destructor

private:

int itsAge;

Self-Instructional Material 63

Object Oriented
Programming in C++

int itsWeight;

} ;
void main(}

{NOTES
AIMCA * Family.[500] ;
int i ;
AIMCA * pAimca;
for (i 0; i < 500; i++)

{

pAimca = new AIMCA;
pAimca->SetAge(2*i +1) ;
Family[i] = pAimca;

}
0; i < 500; i++)for (i

{
cout « "Aimca #” « i+1 «

cout « Family [i]->GetAge () « endl;

}
}

CONSTRUCTORS
There are two ways to define an integer variable. You can define the
variable and then assign a value to it later in the program. For example,

// define a variable

// other code here

// assign it a value

int Weight;

Weight = 7;
Or you can define the integer and immediately initialize it. For example,

// define and initialize to 7int Weight = 7;
Initialization combines the definition of the variable with its initial
assignment. Nothing stops you from changing that value later. Initialization
ensures that your variable is never without a meaningful value. How
do you initialize the member data of a class? Classes have a special
member function called a constructor. The constructor can take parameters
as needed, but it cannot have a return value—not even void. The
constructor is a class method with the same name as the class itself.
Whenever you declare a constructor, you’ll also want to declare a
destructor. Just as constructors create and initialize objects of your
class, destructors clean up after your object and free any memory you

64 Self-Instructional Material

Classes, Inheritance and
Constructors

might have allocated. A destructor always has the name of the class,
preceded by a tilde (~). Destructors take no arguments and have no
return value. Therefore, the Cat declaration includes
~cat();

NOTES,¥■

Default Constructors and Destructors
If you don’t declare a constructor or a destructor,.the compiler makes
one for you. The default constructor and destructor take no arguments
and do nothing. What good is a constructor that does nothing? In
part, it is a matter of form. All objects must be constructed and destructed,
and these do-nothing functions are called at the right time. However,
to declare an object without passing in parameters, such as

// Rags gets no parameters

you must have a constructor in the form

Cat();
When you define an object of a class, the constructor is called. If the
Cat constructor took two parameters, you might define a Cat object
by writing

Cat Reena(5,7);
If the constructor took one parameter, you would write

Cat Reena(3);
In the evetit that the constructor takes no parameters at all, you
leave off the parentheses and write

Cat Frisky;
This is an exception to the rule that states all functions require parentheses,
even if they take no parameters. This is why you are able to write
Cat Reena;
which is a call to the default constructor. It provides no parameters,
and it leaves off the parentheses. You don’t have to use the compiler-
provided default constructor. You are always free to write your own
constructor with no parameters. Even constructors with no parameters
can have a function body in which they initialize their objects or do
other work. As a matter of form, if you declare a constructor, be sure
to declare a destructor, even if your destructor does nothing. Although
it is true that the default destructor would work correctly, it doesn’t
hurt to declare your own. It makes your code clearer.
Now rewrite the Cat class to use a constructor to initialize the Cat
object, setting its age to whatever initial age you provide, and it
demonstrates where the destructor is called.
Program

Cat Reena;

// Parameterized constructor

// for cout#include <iostream.h>

class Cat // begin declaration of the class

Self-Instructional Material 65

Object Oriented
■ Programming in C++

private;
// one data field: ptr to allocated string

char *str;

};NOTES
Concerning this interface we remark the following;

The class contains a pointer char *str, possibly pointing to allocated
memory. Consequently, the class needs a constructor and a destructor. ;
A typical action of the constructor would be to set the str pointer to 0.
A typical action of the destructor would be to release the allocated
memory. For the same reason the class has an overloaded assignment
operator. The code of this function would look like:

String const & String::operator=(String const & other) .

{

if (this != & other)

(

delete str;
strdupnew(other.str);str

)

return (*this>;

)
The class has, besides a default constructor, a constructor which expects
one string argument. Typically this argument would be used to set
the string to a given value, as in:

String a{"Hello World!\n");

The only interface functions are to set the string part of the object
and to retrieve it. let’s consider the following code fragment. The
statement references are discussed following the example:

String a ("Hello World\n"), b, c

int mainO

a;

{

b c;

return (0);

>

Statement 1. This statement shows an initialization. The object a is
initialized with a string “Hello World”. This construction of the object
ai .therefore uses the constructor which expects one string argument.
It should be noted here that this form is identical to

String "Hello World\n";a

68 Self-Instructional Material

Classes, Inheritance and
Constructors

Even though this piece of code uses the operator =, this is no assignment:
rather, it is an initialization, and hence, it’s done at construction time
by a constructor of the class String.
Statement 2. Here a second String object is created. Again a constructor
is called. As no special arguments are present, the default constructor
is used.
Statement 3. Again a new object c is created. A constructor is therefore
called once more. The new object is also initialized. This time with a
copy of the data of object a.
This form of initializations has not yet been discussed. As we can
rewrite this statement in the form

String

NOTES

c (a) ;

it suggests that a constructor is called, with as argument a (reference
to a) String object. Such constructors are quite common in C++ and
are called copy constructors. More properties of these constructors
are discussed below.
Statement 4. Here one object is assigned to another. No object is
created in this statement. Hence, this is just an assignment, using the
overloaded assignment operator.
The simple rule emanating from these examples is that whenever an
object is created, a constructor is needed. All constructors have the
following characteristics:

• Constructors have no return values.
• Constructors are defined in functions having the same names

as the class to which they belong.
Therefore, we conclude that, given the above statement (3), the class
String must be rewritten to define a copy constructor:

// class definition

class String
{

Xpublic:

String(String const & other);

};

// constructor definition
String::String(String const & other)
{

strdupnew{other.str);str

}

Self-Instructional Material 69

Object Oriented
Programming in C++

need them is when you use dynamic memory allocation, mess with
things that need to be set back when your done, etc.
To declare a destructor function is similar to declaring a constructor
function. The destructor’s name should be exactly the same as the
name of the class (like a constructor), however it should also be preceded
by a tilde (~). So for our class Cat the destructor prototype would be:
-Cato ;
The biggest difference between constructors and destimctors is that
the latter cannot have any parameters.
Program

NOTES

♦include <iostream.h>
int num_date_objects;

keep track of the number
class date

// global variable to
// of 'date' objects

(

public:
// constructor!
date (int y, int m, int d)
{

year = y;
month= m;
day = d;

// add one to the number of datenum_date_objects + +;
objects, this

// number will be THIS object's id niimber

num_date_obj ects;id

cout <:< "Calling constructor, creating date object
#" id << endl;W I ft

)

// destructor!
~date()

{

cout << "Calling destructor! •AWOOGA* *AWOOGA*!
date object #"

<< id <<" has perished!" <<endl;-
)

int year, month, day, id;

72 Self-Instructional Material

Classes, Inheritance and
Constructors) ;

void mainO

{

num^date_obj ects

date neil_dob(1979,8,19);
date joey_dob(1976,11,28);

0; NOTES

)

INLINE MEMBER FUNCTIONS
The way to implement inline functions leaves a class interface intact,
but mentions the ke3nvord inline in the function definition. The interface
and implementation in this case are as follows:

class Person
{

public:•

char const *getnaine (void) const;

} ;
inline char const *Person::getname() const

{

return (name);

}

Again, the compiler will insert the code of the function getnameO
instead of generating a call. However, the inline function must still
appear in the same file as the class interface, and cannot be compiled
to be stored in, e.g., a library. The reason for this is that the compiler
rather than the linker must be able to insert the code of the function
in a source text offered for compilation. Code stored in a library is
inaccessible to the compiler. Consequently, inline functions are always

I

defined together with the class interface.

When to use inline functions
When should inline functions be used, and when not? There is a
number of simple rules of thumb which may be followed:
Defining inline functions can be considered once a fully developed
and tested program runs too slowly and shows ‘bottlenecks’ in certain
functions. A profiler, which runs a program and determines where
most of the time is spent, is necessary for such optimization. Inline

Self-Instructional Material 73

Object Orientea
Programming in C++

}

// class B: tries to touch

// A's private parts
class B

{NOTES
public:

void touch{A &a)
{ a.value++; }

} ;

This code will not compile, since the classless function decrementO •
and the function touchO of the class B attempt to access a private
datamember of A. We can explicitly allow decrementO to access A’s
data, and we can explicitly allow the class B to access these data. To
accomplish this, the offending classless function decrementO and the
class B are declared to be frieiids of A:

class A

{

public:

// B's my buddy, I trust him

// decrementO is

friend class B;

friend void decrement(A
also a good pal

&what);

• n-, ■■

Friendship is not mutual by default. This means that once B is declared
as a friend of A, this does not give A the right to access B’s private
members. Friendship, when applied to program design, is an escape
mechanism which circumvents the principle of data hiding. Using
friend classes should therefore be minimized to those cases where it
is absolutely essential.
If friends are used, realize that the implementation of classes or
functions that are friends to other classes become implementation
dependent on these classes. In the above example; once the internal
organization of the data of the class A changes, all its friends must be
recompiled (and possibly modified) as well.

DYNAMIC MEMORY ALLOCATION
In C++ you can use two keywords new and delete for dynamic memory
allocation.

76 Self-Instructional Material

Use of new
To allocate memory for objects or variables you can use the new keyword.
New is followed by the type of the object that you want to allocate so
that the compiler knows how much memory is required. Therefore,
new unsigned short int allocates two bytes in the free store, and new
long allocates four. b3^e8. The return value from new is a memory
address. It must be assigned to a pointer. To create an unsigned short
on the free store, you might write

unsigned short int * myp;
myp = new unsigned short int;

You can, of course, initialize the pointer at its creation with
unsigned short int .* myp=new unsigned short int;

In either case, myp now points to an unsigned short int on the free
store. You can use this like any other pointer to a variable and assign
a value into that area of memory by writing

*myp
This means, “allocate 56 at the value in myp,” or “Assign the value 56
to the area on the free store to which myp points.’Tf new cannot
create memory on the free store (memory is, after all, a limited resoxirce)
it returns the null pointer. You must check your pointer for null each
time you request new memory.

Classes, Inheritance and
Constructors

NOTES

56;

f

Use of delete
When you are finished with your area of memory, you must call delete
on the pointer. Delete returns the memory to the free store. Remember
that the pointer itself—as opposed to the memory to which it points—
is a local variable. When the function in which it is declared returns,
that pointer goes out of scope and is lost. The memory allocated with
new is not freed automatically, however. That memory becomes
unavailable—a situation called a memory leak. It’s called a memory
leak because that memory can’t be recovered until the program ends.
It is as though the memory has leaked out of your computer. To
restore the memory to the free store, you use the keyword delete.
For example,

delete myp;
Program

//Creating and deleting objects using new and delete,
ttincltude <iostream.h>

class mycat
{
public:

Self-Instructional Material 77

Object Oriented
Programming in C++

rtiycai. \ i ;

~inycat () ;

private:

int Age;NOTES
};

mycat::mycat()

{

cout « "Constructor called.\n";

Age = 1;
, }

mycat::-mycat()

{

cout « "Destructor called.\n";

}

void mainO

{ •

cout << "mycat jul-i \n";

mycat juli;
cout << "mycat *pcat = new mycat \n";
mycat * peat new mycat;
cout << "delete peat .An";
delete peat ;

\'
cout << "check where is juli \n";

}

INHERITANCE
When you create a class and uses objects to work with class, with a
set of' attributes and functions, you have created something that is
ready to pass these qualities on to it’s children or subclass for reuse
the main class to save your time and efforts on coding. This is called
inheritance, every super class (parent) gives its qualities to its subclass
(child). Inheritance in programs made possible to reuse the attributes
and functions of a parent class into a child class.

The Family Inheritance

With all family trees we inherit the characteristics of our parents,
grand parents and great grand parents. We can inherit that beautiful

i

7S Selfjinstructicnal Material

nose from our mothers side of the family, the buck teeth from our Classes, Inheritai^ and
Constructors. ■father, the long black hair from our great grandfather etc.

Inheriting Functions and Attributes
The functions and attributes of a class are the combination of two
things, its own functions and attributes and the functions r and attributes
of all its super classes. A class which adds new functionality to an
existing class is said to derive or inherited from that original class.
The original class is said to be the new class’s base class.

NOTES

Benefits of Inheritance
• You can reuse your base class functions and attributes in child

class, without redifne or retype.
• You can merge functions of multiple classes in a single class,

and you will get a new mixed class.
• Your new mobile handset carry many functions of your old one,

thus we have to add just few new functions in old handset
class.

• In case of windows operating system, all OS uses base classes
as inherit class.

COMPUTERS

ANALOG DIGITAL HYBRID

MICRO MAINFRAME SUPER

PC MULTIMEDIA PC

Fig. 4 Example of Inheritance

Now from figure you can say a PC inherit the features of MICRO
computer, while a MICRO computer inherits the features of a DIGITAL
computer and the parent class for all is COMPUTERS.

Types of Inheritance
You can design four type of Inheritance in C++

(Parent - Child)
(Grandparent - Parent - Child)

(Many parents - one child)
(Mixture of multiple and multilevel)

1. Single level
2. Multilevel
3. Multiple
4. Hybrid

Self-Instructional Material 7^

Obje^ Oriented
Programming in C++ MULTIPLESINGLE MULTI LEVEL

Class A Class X Class ab Class caClass ac

NOTES
JClass B Class Y Class abc

Class Z

Class Zabc
HYBRID

Fig. 5 Types of inheritance

Single Level Inheritance
To use single level inheritance in a program you should design a base
class or parent class and then child class will inherit it. When you
declare a class, you can indicate what class it derives from by writing
a colon after the class name, the type of derivation (public or other),
and the class from which it derives like:

Class child : public parent // syntax

Class MCA : public amrapali // exait^le

The class from which you derive must have been declared earlier, or
you will get a compiler error.
Program

//Creation of parent class

class institute
{
char name[251;
int telno;
public :
void getdataO

void showdata();
>;

//Creation of child class

class student : public institute
{

int rollno;

char sname [25];
public :

so Self-Instructional Material

Classes, Inheritance and
Con'stntctorsvoid readdataO?

void displaydata();

};
//member function ’ofvoid institute::getdata()

parent class
NOTES

{

cin>>name;

cin>>telno;

}
//member function ofvoid student :: readdataO

child class
{
cin>>sname;
cin>>rollno;

)
//member function ofvoid institute::showdata()

parent class

{
cout<<name;
cout<<telno;

}
//member function ofvoid student: :displaydataO

child class

{
cout<<sname;
cout«rollno;

}
// Creation of class objects and function calling

void main

{
student s;
s.getdataO //function of parent class used by child

class object
s.'readdataO;
s.showdata0; //function of parent class used by

child class object
s.displaydata();

}

Self-Instructional Material 81

■ Object Oriented
Programming in C++

Access Specifiers
. There are, in total, three access specifiers:

• public .
• protected

• private

All three can be used by a derived class. If a function has an object
of your class, it can access all the public member data and functions.
The member functions, in turn, can access all private-data members
and functions of their own class, and all protected data members and
functions of any class from which they derive. However, private members
are not available to derived classes. Protected data members and
functions are fully visible to derived classes, but are otherwise private.

NOTES

Visibility Modes

Accessible from
$

\

Outside the ClassBase Class Derived ClassAccess Mode
YYPublic Y
NY NPrivate
NYProtected Y

Fig. 6 Thble for visibility modes

Multilevel Inheritance

In some situations classes can be derived more than one level, and
we can form of a chain of classes derived by each others.

Class win3.ll Win 3,11
{

}
I

Win 95class win95:public win3.ll

{

}

;
class win98:public win95

Win 98
{

}

82 Self-Instructional Material

.C'~sscs, Inheritaiux and
Constructors

class win2000 rpublic win98
Win 2000

{

NOTES
}

Fig. 7 Multilevel inheritance in Windows OS ■

example and figure shows multilevel inheritance, in that win2000
derived from win98, and win98 is derived from win95 and the parent
for all is win3.ll class. That shows 'win2000 will get the features of
earlier parent classes.

Multiple Inheritance
The most common inheritance consists of an object deriving its foundation
from another object. This is referred to as single inheritance. C++
allows an object to be based on more than one object. This is called
refered to as multiple inheritance. When a class inherits properties
or features of more than one base classes, it is known as multiple
inheritance. Like:

Class a
{

int x,y;

public :

' start();

siim()

getdata (.)

}

class b

{

•int r,1;
public:
move();

setdata();
)

class c
{
float area;
public;
show();

Self-Instructional Material 83

Object Oriented
Programming in C++

stop();

}

class d ipublic a , public b , private c
inheritance '

//multiple

NOTES
{

start{>;

move(};

stop();

final();

}

Class cClass b Class b

stop 0move {)start 0

Class d
start 0
move 0
stop 0

Fig. 8 Multiple inheritance

VIRTUAL BASE CLASS
class Truck: public Auto

{

public:

// constructors

Truck(};

Truck(int engine_wt, int sp, char const *nm,
int trailer_wt) ;
// interface: to set two weight fields

void setweight(int engine_wt, int trailer_wt);

// and to return combined weight

84 • Self-Instructional Material

int getweightO const;
private:

Classes, Inheritance and
Constructors

II data

int trailer_weight; NOTES
);

// example of constructor

Truck::Truck(int engine_wt, int sp, char const *nm,
int trailer_wt)

Auto(engine_wt, sp, nm)
{

trailer_weight trailer_wt;
}
// example of interface function

int Truck::getweight(} const

{
return
(// sum of:

Auto::getweight() + // engine part plus
// the trailertrailer_wt

}

ABSTRACT CLASSES
In object-oriented programming, classes are used to group related
variables and functions. A class describes a collection of encapsulated
instance variables and methods (functions), possibly with implementation
of those types together with a constructor function that can be used
to create objects of the class.
An abstract class, or abstract base class (ABC), is one that is designed.
only as a parent class and from which'c/ijW classes may be derived,
and which is not itself suitable for instantiation. Abstract classes are
often, used to represent abstract concepts or entities. The incomplete
features of the abstract class are then shared by a group of sibling
subclasses which add different variations of the missing pieces. In
C++, an abstract class is defined as a class having at least one pure

Self-Instructional Material ' 85

Object Oriented
Programming in C++ .

virtual method, i.e., an abstract method, which may or may not possess
an implementation.
Abstract classes are superclasses which contain abstract methods and
are defined such that- concrete subclasses are to extend them by
implementing the methods. The behaviours defined by such a class
are “generic” and much of the class will be undefined and imimplemented.
Before a class derived from an abstract class can be instantiated, it
must implement particular methods for all the abstract methods of
its parent classes.

!

NOTES

CONSTRUCTORS IN DERIVED CLASSES
When a derived class object is created, his base constructor is called
first, creating a parent. Then the derived class constructor is called,
completing the construction of the derived class object. When derived
class object is destroyed, first the derived class destructor will be
called and then the destructor for the parent class will be called.
Each destructor is given an opportunity, to clean up after its own
part of derived class object.

Constructor of Base/parent class

Constructor of Derived /child class

Destructor of Derived/child class

Destructor of Base/parent class

NESTING OF CLASSES
Classes can be defined inside other classes. Classes that are defined
inside other classes are called nested classes. A class can be nested
in every part of the surrounding class: in the public, protected or
private section. Such a nested class can be considered a member of
the siirrounding class. The normal access and visibility rules in classes
apply to nested classes. If a class is nested in the public section of a
class, it is visible outside the surrounding class. If it is nested in the
protected section it is visible in subclasses, derived from the surrounding
class, if it is nested in the private section, it is only visible for the
members of the surrounding class. The sxirrounding class has no privileges
with respect to the nested class. So, the nested class still has full
control over the accessibility of its members by the surrounding class.

86 Self-Instructional Idaterial

For example, consider the following class definition;
class Surround

Crosses, Inheritance and
Constructors

{
public: NOTES

class FirstWithin

{
pioblic:

FirstWithin0;

int getVarO const

{
return (variable);

}
private:

int variable;

);

private:
class SecondWithin
{

public:
SecondWithin0;

int getVarO const

{
return (variable) ;

}
private:

int variable;

};
// other private members of Surround

} ;
In this definition access to the members is defined as follows:
The class FirstWithin is visible both outside and inside Surround.
The class FirstWithin has-therefore global scope. The constructor
FirstWithinO and thb memberfunction getVarO of the class FirstWithin
are also globally visible. TheNint variable datamember is only visible
for the members of the class FirstWithin. Neither the members of
Surround nor the members of SecondWithin can access the variable
of the class FirstWithin directly. The class SecondWithin is visible
only inside Surrhund. The public members of the class SecondWithin

Self-Instructional Material 87

Object Oriented
Programming in C++

can also be used by the members of the class FirstWithin, as nested
classes can be considered members of their surrounding class. The
constructor SecondWithinO and the memberfunction getVar<) of the
class SecondWithin can also only be reached by the members of Surround
(and by the members of its nested classes).
The int variable datamember of the class SecondWithin is only visible
for the members of the class SecondWithin. Neither the members of
Surround nor the members of FirstWithin can access the variable of
the class SecondWithin directly. If the surrounding class should have
access rights to the private members of its nested classes dr if nested
classes should have access rights to the private members of the durroionding
class, the classes can be defined as friend classes.
The nested classes can be considered members of the surrounding
class, but the members of nested classes are not members of the
surrounding class. So, a member of the class Surround may| not access
FirstWithin;;getVar() directly. This is understandable considering the
fact that a Surround object is not also a FirstWithin or SecondWithin
object. The nested classes are only available as typenames. They do
not imply containment as objects by the surrounding class. If a member
of the surrounding class should use a (non-static) member of a nested
class then a pointer to a nested class object or a nested class datamember
must be defined in the surrounding class, which can thereupon be '
used by the members of the surrounding class to access members of
the nested class.
For example, in the following class definition there is a surrounding
class Outer and a nested class Inner. The class Outer contains a
memberfunction callerO which uses the inner object that is composed
in Outer to call the infunctionO memberfunction of Inner;

class Outer

NOTES

{

public:

void callerO

{

inner.infunction();

}
private:

class Inner
{

public; .
void infunctionO;

}•;

88 Self-Instructional Material

Classes, Inheritance and
■- Constructors'

Inner inner;

};

Also note that the function Inner::infunction() can be called as part of
the inline definition of Outer::caller(), even though the definition of
the class Inner is yet to be seen by the compiler.
Inline functions can be defined as if they were functions that were
defined outside of the class definition: if the function Outer::caller()
would have been defined outside of the class Outer, the full class
definition (including the definition of the class Inner would have
been available to the compiler. In that situation the function is perfectly
compilable. Inline functions can be compiled accordingly and there is,
e.g., no need to define a special private section in Outer in which the
class Inner is defined before defining the inline function callerO.

NOTES

Defining Nested Class Members
Member functions of nested classes may be defined as inline functions.
However, they can also be defined outside of their surrounding class.
Consider the constructor of the class FirstWithin in the example of
the previous section. The constructor FirstWithinO is defined in the
class FirstWithin, which is, in turn, defined within the class Surround.
Consequently, the class scopes of the two classes must be used to
define the constructor. E.g.,

Surround::FirstWithin::FirstWithin()
{

variable = 0;

}

Static (data) members can be defined accordingly. If the class FirstWithin
would have a static unsigned datamember epoch, it could be initialized
as follows:

Surround::FirstWithin::epoch = 1970;
\

Furthermore, both class scopes are needed to refer to public static
members in code outside of the surrounding class:

void showEpochO
{

cout « Surround:,;FirstWithin::epoch = 1970;
}

Of course, inside the members of the class Surround only the FirstWithin::
scope needs to be mentioned, and inside the members of the class
FirstWithin there is no need to refer explicitly to the scope. What
about the members of the class SecondWithin? The classes FirstWithin
and SecondWithin are both nested within Surround, and can be considered

Setf-Jnstructionoi ilfateriai 89

Object Oriented
■ Programming in C++

members of the surrounding class. Since members of. a class may
directy refer to each other, members of the class SecondWithin can
refer to (public) members of the class FirstWithin. Consequently, members
of the class SecondWithin could refer to the epoch member of FirstWithin
asNOTES

FirstWithin::epoch

Declaring Nested Classes
Nested classes may be declared before they are actually defined in a
surrounding class. Such forward declarations are required if a class
contains multiple nested classes, and the nested classes contain pointers
to objects of the other nested classes. For example, the following
class Outer contains two nested classes Innerl and Inner2. The class
Innerl contains a pointer to Inner2 objects, and Inner2 contains a
pointer to Innerl objects. Such cross references require forward declarations:

class Outer
{

private:

class Inner2;
class Innerl

// forward declaration

(

private:
Inner2

*pi2; // points to Inner2 objects
. };

class Inner2
{

private:
Innerl

// points to Inner! objects*pil;
};

};

Access to Private Members in Nested Classes
In order to allow nested classes to access the private members of the
surrounding class or to access the private members of other nested

90 Self^JnsirucUonal Material
mei
r*

classes or to allow the surroundmg class to access the private members
of nested classes, the friend keyword must be used. Consider the
following situation, in which a class Surround has two nested classes
FirstWithin and SecondWithin, while each class has a static data
member int variable:

class Surround

Classes, Inheritance and
Constructors

NOTES

{

public:
class FirstWithin

{

piiblic:

int getValue<);

private:

static int

variable;

};

int getValueO;

private:

class SecondWithin

{

public:

int getValue();

private:

. static int variable;

};

static int variable;

};

If the class Surround should be able to access the private members of
FirstWithin and SecondWithin, these latter two classes must declare
Surround to be their friend. The function Surround::getValue() can
thereupon access the private members of the nested classes. For example,
(note the friend declarations in the two nested classes);

class Surround

{

public:

class FirstWithin

{

friend class Surround;'

Self-Instructional Material 91

Object Oriented
Programming in 0++

public:

int getValue();

private:
static intNOTES

variable;
};
int getValue{)

{ /
FirstWithih: ivariable = SecondWithin: :yariable.;

return (variable);
\

} •\

private:
class SecondWithin

{

friend class Surround;

public:

int getValueO;

private:

static int

variable;

};

static int .

variable;

};

Now, in order to allow the nested classes to access the private members
of the surrounding class, the class Surround must declare the nested
classes as friends. The friend keyword may only be used when the
class that is to become a friend is already known as a class by the
compiler, so either a forward declaration of the nested classes is
required, which is followed by the friend declaration, or the friend
declaration, follows the definition of the nested classes. The forward
declaration followed by the friend declaration looks like this:

class Surround

{

class FirstWithin;

class SecondWithin;
frielad class FirstWithin;
friend class SecondWithin;

I

/

92 Self-lnstructional Material

Classes, Inheritance and
Constructors

public;

class FirstWithin

... (etc)

Alternatively, the friend declaration may follow the definition of the
classes. Note that a class can be declared a friend following its definition,
while the inline code in the definition already uses the fact that it
will be declared a friend of the outer class. Also note that the inline
code of the nested class uses members of the surrounding class which
have not yet been seen by the compiler. Finally note that the variable
that is defined in the class Surround is accessed in the nested classes
as Surround::variable:

class Surround

NOTES

{
public:

class FirstWithin

{
friend class Surround;
public:

int getValue()

{
Surround::variable = 4;
return (variable);

}
private:

static int
variable;

};
friend class FirstWithin;
int getValue(}

{
FirstWithin::variable = SecondWithin::variable;

return (variable);

)

private:
class SecondWithin

{
/■

friend class Surround;
[j public: ;/•

I
I

Self-instructional Material 93

Okiect Oriented
Programming in C**

int getValue()
{

Surroxmd::variable
return .(variable) ;

40; •

NOTES
}

private:
static int

variable;'
};
friend class SecondWithin;

static in'.
varip-r'le;

Finally, we want to allow the nested classes to access each other’s
private members. Again this requires some friend declarations. In
order to allow FirstWithin to access SecondWithin’s private members
nothing but a friend declaration in SecondWithin is required. However,
to allow SecondWithin to access the private members of FirstWithin
the friend class SecondWithin declaration cannot be plainly given, in
the class FirstWithin, as the definition of SecondWithin has not yet
l^n given. 4r;forward declaration of SecondWithin is required, and
this forwa^:^.^{aration mxist be given in the class Surround, rather
than in ttie ciaas FirstWithin. Clearly, the forward declaration cleiss
SecondWithin in the class FirstWithin itself makes no sense, as this
would refer to an external (global) class FirstWithin. But the attempt
to provide the forward declaration of the nested class SecondWithin
inside FirstWithin as class Surround::SecondWithin also fails miserably,
with the compiler issuing a message like ‘Surround’ does not have a
nested type named ‘SecondWithin’ The right procedure to follow here
is to declare the class SecondWithin in the class Surround, before the
class FirstWithin is defined. Using this procedure, the friend declaration
of SecondWithin is accepted inside the definition of FirstWithin. The
following class definition allows full access of the private members of
all classes by all other classes:

class Surround
{

clasa SecondWithin;
public:

class FirstWithin
{

; friend class Surround;

M Se^Inetruetional Material

Classes, Inheritance and
CoTistructors

fri'end class SecondWithin; .
public:

int getValue()
• /

NOTES
Surround::variable = SecondWithin::variable;

return (variable);
}

private:
static int

variable;
};
friend class FirstWithin;

int getValue(>
{

FirstWithin::variable
return (variable):

SecondWithin::variable;

}
p:ivate:

class SecondWithin
{

friend class Surround;
friend class FirstWithin;

public:
int getValue()
{

Surround::variable
FirstWithin::variable;

return (variable);
}

private:
static . int

variable;
};
friend class SecondWithin;

static int
variable; ..

};

Self-InstructiomU Material 95

Object Oriented
Programming in C++

STUDENT ACTIVITY

1. What are different types of inheritance, describe with examples?

X

X

\ \

2. How can you create a virtual copy constructor?

'v
X

/

96 Self-Instructional Material

Classes, Inheritance and
Constructors

SUMMARY

Member functions are as much a part of your class as the
member variables. They determine what the objects of your
class can do.
The constructor is a class method with the same name as the
class itself. ’ .'
Consequently, inline functions' are always defined together with
the class interface.'
Inline functions can be used when member functions consist of
one very simple statement (such as the return statement in
the function Person;;getname()). '
The static functions can therefore address only the static data
of a class; non-static data are unavailable to these functions.
Delete returns the memory to the free store. Remember that
the pointer itself—as opposed to the memory to which it points—
is a local variable.
Inheritance in programs made possible to reuse the attributes
and fnnctions of a parent class into a child class.
The functions and attributes of a class are the combination of
two things, its own functions and attributes and the functions
r and attributes of all its super classes.
Abstract classes are superclasses which contain abstract methods
and are defined such that concrete subclasses are to extend
them by implementing the methods.

NOTES

X

',4

SELF ASSESSMENT QUESTIONS

1. ’ What is inheritance?
2. How do you show the declaration of a multiple class inheritance?
3. How do you invoke a base member function from a derived

class in which you’ve overridden that function?
4. How do you invoke a base member function from a derived

class in which you have not overridden that function?
5. If a base class declares a function to be virtual, and a derived

class does not use the term virtual when overriding that class,
is it still virtual when inherited by a third-generation class?

Self-Instructional Material 97

Object Oriented
Programming in C++ SECTION D

FUNCTION OVERLOADING

AND POLYMORPinSM
UNIT 4

NOTES

★ LEARNING OBJECTIVES ★
Polymorphism

Function Overloading

Operator Overloading

Early Binding

Polymorphism with Pointers

Virtual Functions
Late Binding and Pure \flrtual Functions

Opening and Closing of Files

Stream Member Functions

Binary File Operations

Structures and File Operations

Classes and File Operations

Random Access File Processing

/_

POLYMORPHISM
The word polymorphism has been deriyed from the greek word
Polsrmorphons. Polus means (Many) and Morphous means (forms), so
the meaning of polymorphism is many forma. You can relate polymorphism
with synonyms of English language a single word can have multiple
meanings. In C language you have already used function, but if you
have multiple functions in a C program to perform same type of task
you should think individual name for each functions. Using polymorphism
C-f+ solved this problem, now a programmer can define same name
functions in a program. Like you want to compute area of a rectangle,
circle, triangle you can use areaO name for each function, like:

// function for rectangle

// function for circle

// function for triangle

• area(int length, int width)
• area(int radius)
• . area(int base, int height)

now you can see that in C++ same name functions can be used to
perform different tasks.
In C++ two most popular forms of polymorphism are:

Self-Inttructional Material

t

(a) Function Overloading
(b) Operator Overloading

r unction Overloading
and Polymorphism

FUNCTION OVERLOADING NOhs
In function overloading a same name functions can be used in a program
to perform various tasks like:

• Print (int x)
• Print (char s)
• Print (float y)
• Print (emp e)

The PrintO function is overloaded here.
• area(int length, int width)
• area(int radius)
• areaCint base, int height)

// function for rectangle

II function for circle

II function for triangle

The area function is overloaded here. You can use area() function to
compute area of different shapes like circle or triangle. On the other
hand the meaning of operator overloading is use of single operator
like (+ or ») for different operations. Like:

//add two integer values

Name3=snaine+fname; // concat two strings
//use of . operator for.decimal place

X=a+b;

2.35
3.67

en:p.name= "rnksharma" //use of.operator for object.
Program

// fxmction overloading example

#include <i6stream>
// Rectangle
double MomentOfInertia(double b, double h)
{

return b*h*h*h/3;

}

// Semi-Circle

double MomentOfInertia(double R)
{

const double PI ='3.14159;
return R*:R*R*R* PI/ 8;

}

Self-Instructional Material 99

Object Oriented
Programming in C++

// Triangle
double MomentOfInertia(double b, double h, int)

{
return b*h*h*h/ 12;

NOTES
}
void main()

{
14.38, radius7.74, heightdouble base

12.42;
cout « "Rectangle\n"« "Moment of inertia with

regard to the X axis:
" « MomentOfInertia(base, height)cout « "I

« "mmNnXn" ;
cout «—"'5emi-Circle\n" « "Moment of- inertia

with regard to the X axis: ";
<< MomentOfInertia{radius) «"Icout <<

"inm\n\n";
cout << "Enter the dimensions of the triangleXn";

cin >> base;
cout « "Height: "; cin » height;
cout « "XnTriangleXn" « "Moment of inertiawith

regard to the X axis: ";
cout « "I

1) « "mm\n\n";

W •cout << "Base:

" « MomentOfInertia(base, height.

>

Program
//C++ program to overload function showO, to show

different values using the sh'owO function

#include <iostraem.h>
void show(int val)

{
cout<<val;

}
void show(double val)

{
cout<<val;

}
void show(char *val)

100 Self-Instructional Material

Function Overloading
and Polymorphism

{
cout<< val;

)

void . main() NOTES
{
show(12);

show{3.1415);
show{"Hello World\n!");

)

OPERATOR OVERLOADING
Operator overloading allows C/C++- operators to have user-defined
meaning in user defined class. Overloaded operators are part of C++
polymorphism. If you want to overload a defined operator like + or
* to'perform some user defined action then, the syntax is:

return type operator + (value, values);

return type operator * (value , value);

example:

oload operator + (oload, oload); // overloading + operator

bload operator * (oload, oload); // overloading * operator
Program

class oload •

{

IJublic:

// Without operator overloading:
oload add(oload, oload);
oload mul(oload, oload);

oload f(oload a, oload b, oload c)
{

return add(add(mul (a,b) , mul(b,c)), inul(c,a));

)

// With operator overloading:
oload operator + (oload, oload);
oload operator * (oload, oload);

oload f(oload a, oload b, oload c)
{

Self-Instructional "Material 101

Object Oriented
Programming in C++

return a*b + b*c + c*a;

}

Benefits of Operator Overloading
By overloading standard operators on a class, you can exploit the
intuition of the users of that class. This lets users program in the
language of the problem domain rather than in the language of .the
machine.

Examples of operator overloading

Few of examples of operator overloading:
• myString + yourString might concatenate two string objects

• • myDate++ might increment a Date object
• a * b might multiply two Number objects
• a[i] might access an element of an Array object
• X = *p might dereference a “smart pointer” that actually “points”

to a disk record

Overloaded operators

The following operators can be overloaded:

NOTES

* / % A & I+
I < > <= >=

&&++ « ' »
*_ A— 1 =+ =
G 0 ->* delete

However, some of these operators may only be overloaded as member
functions within a class. This holds true for. the =’, the ‘[]’, the ‘0’ and
the operators.

->«= »SS new

EARLY BINDING
When a C++ program is executed, it executes sequentially, beginning
at the top of main(). When a function call is encountered, the point
of execution jumps to the beginning of the function being called. How
does the CPU know to do this?
When a program is compiled, the compiler converts each statement
in your C++ program into one or more lines of machine language.
Each line of machine language is given it’s own xmique sequential
address. This is no different for functions — when a function is encountered,
it is converted into machine language and given the next available
address. Thus, each function ends up with a unique machine language
address.

102 Self-Instriictional Material

Function Overloading
aad Polymorphism.

Binding refers to the process that is used to convert identifiers
(such as variable and function names) into machine language addresses.
Although binding is used for both variables and functions, in this
lesson we’re going to focus on function binding.

Early binding

Most of the function calls the compiler encounters will be direct
function calls. A direct function call is a statement that directly calls
a function.
Direct function calls can be resolved using a process known as early
binding. Early binding (also called static binding) means the compiler
is able to directly associate the identifier name (such as a function or
variable name) with a machine address. Remember that all functions
have a unique machine address. So when the compiler encounters a
function call, it replaces the function call with a machine language
instruction that tells the CPU to jump to the address of the function.
Let’s take a look at a simple calculator program that uses early binding:
#include <iostreGim>

int Add(int nX, int nY)

NOTES

{

return nX + nY;
}

int Subtract(int nX, int nY)
(^ ■

return nX - nY;
}

int Multiply{int nX, int nY)
{

return nX * nY;
}

int main ()
{

1 ■int nX;
\ '

cout « "Enter a number: " •

cin >> nX;' \
int nY;
cout << "Enter another number:

Self-.Instructional Material 103

Object Oriented
Programming in C++

cin » nY;

int nOperation;

do
NOTES

{

cout << "Enter an operation (0=add, l=subtract,
2=multiply):

cin >> nOperation;
} while (nOperation < 0 |1 nOperation > 2};

int nResult =, 0;
switch (nOperation)

case 0: nResult = Add(nX, nY); break;
Subtract(nX, nY); break;

case 2: nResult = Multiply(nX, nY); break;
case 1: nResult

/.)

cout << "The answer is: " « nResult « endl;

return 0;

}

Because Add(), SubtractO, and MultiplyO are all direct function calls,,
the compiler will use early binding to resolve the Add(), SubtractO,
and MultiplyO function calls. The compiler will replace the Add()
function call with an instruction that tells the CPU to jump to the
address of the AddO function. The same holds true for SubtractO and
MultiplyO.

/

POLYMORPHISM WITH POINTERS
In next program the main program defines pointers .to the objects
rather than defining the objects themselves in shown below:
vehicle *uhicycle;

*sedan_car;
*trailer;

-‘sailboat;
Since we only defined pointers to the objects, we find it necessary to
allocate the objects before using them by using the new operator in
shown below:

car
truck

boat
^ ■

104 Self-Instructional Material

Function Overloading
and Polymorphism

unicycle = new vehicle;

sedan car new car;

NOTES
trailer = new truck;

sailboat = new boat; ,
• Upon running the program, we find that even though we^are

using pointers to the objects, we have done nothing different
than what we did in the first program.

• The program operates in exactly the same manner as the first
program example. This should not be surprising because a pointer
to a method can be used to operate on an object in the same
manner as an object can be directly manipulated.

• Be sure to compile and run this program before continuing on
to the next program example. In this program you will notice
that we failed to check the allocation to see that it did allocate
the objects properly, and we also failed to deallocate the objects
prior to terminating the program.

• In such a simple program, it doesn’t matter because the heap
will be.cleaned up automatically when we return to the operating
system. ...

• In real program development you have to implement this allocation-.
checking and the deallocation.^^As shown in the previous Module,
if we do not deallocate, there will be garbage left.

Program
1. //Pol3Tnorphism with pointers
2. #include <iostreani.h>
3. #include <stdlib.h>
4.

//—base.class declaration

//—and implementation part—

class vehicle

5.
6.
7.
8. I
9. int wheels;

10. float weight;
11. public:
12. void message(void)
13. //first messaged)

Self-Instructional Material 105
N

{cout«“Vehicle message, from vehicle, the base classXn”;)Object Oriented
Programming in C++

14.
15. };
16.
17. //—derived class declaration and implementation part—
18. class car : public vehicle
19. 1
20. int passengerjoad;
21. public:
22. void message(void) //second message!)
23. {cout«“Car message, from car, the vehicle derived classXn”;}
24. };

NOTES

25.
26. class truck : public vehicle
27. {
28. int passenger_load;
29..:. float payload;
30. public:
31. int passengers(void) {return passengerjoad;}
32. I;
33.
34. class boat : public vehicle
35. {
36. int passenger_load;
37. public:
38. int passengers(void) {return passenger_load;}

//third message!)39. void message(void)
40. {cout«“Boat message, from boat, the vehicle derived class\n”;|
41. };
42.

•the main program43. //-------------
44. int main!)
45. {
46. vehicle *unicycle;
47. car *sedan_car;
48. truck *trailer;
49. boat ^sailboat;

106 Self-Instructional Material

Function Overloading
and Polymorphism

50.
cout«“Omitting the virtual ke5Tvord. UsingXn”;
cout«‘‘pointer variables, and new ke5Tvord\h”;
cout«“

51.
52.

\n”;53. isrotES
54.
55. unicycle = new vehicle;
56. unicycle->message();
57. sedan_car = new car;
58. sedan_car->message();
59. trailer = new truck;
60. trailer->message{);
61. sailboat = new boat.;
62. saiIboat->message();

. 63.
64. unicycle = 8edan_car;
65. unicycle->message();
66.
67. -
68. systeni(“pause”);
69^ return 0;
70. }

VIRTUAL FUNCTIONS
A virtual function is a function that makes sure that, in an inheritance
scenario, the right function is. called regardless of the expression
that calls the function. The late or,dynamic binding is achieved in
C++ with virtual functions. A function becomes virtual when its declaration
starts with the keyword virtual. Once a function is declared virtual
in a base class, its definition remains virtual in all derived classes; •
even when the keyword virtual is not repeated in the definition- of
the derived classes. Like;

1

virtual double AreaO const;
• virtual void show() const;
virtual void setweightCint wt);

Program
// C++ program! to show the use of virtual function.

,''„Glass Vehicle

, Self-Indtructidiidl Material 107

Object Oriented
Programming in C++

public:
VehicleO; // constructors

Vehicle(int wt); // interface., now virtuals!
virtual int getweightO const;
virtual void setweight(int wt);
private:

int weight ;

i

NOTES

}
// Vehicle's own getweightO function:

int Vehicle::getweight() const
{

return (weight);

}
class Land: public Vehicle
{

}
class Auto: public Land

}
class Truck: public Auto

{
public:

Truck 0; // constructors
) Truck(int engine_wt, int sp, char const *nm,

int trailer_wt);
// interface: to set two weight

fields
void setweight(int engine_wt, int trailer_wt);

// and' to return combined weight
int getweightO const;

private:
int trailer_weight;

);

^8 Self-Instructional Material

Function Overloading
and,^lymorphism

II Truck's own getweight() function

int Truck::getweight() const

{
return .-(Auto::getweight () + trailer_wt}; NOTES

}

Note that the keyword virtual appears only in the definition of the
base class Vehicle; it need not be repeated in the derived classes. The
effect of the late binding is:

Vehicle
// vehicle with weight 1200

Truck t(6000, 115,"Sawrajmazda", 25000);
Vehicle *vp;
int main{)

v{1200);

{ //one
'vp = &v ;
cout<<vp->getweight(); •
//two

Set;

cout<<vp->getweight();

cout«vp->getspeed{) ;

vp

}

Since the function getweightO is defined as virtual, late binding is
used here: in the statements above, just below the one tag, Vehicle’s
function getweightO is called. In contrast, the statements below tag
two use Truck’s function getweightO.

> X

LATE BINDING AND PURE VIRTUAL

FUNCTIONS
In some programs, it is not possible to know which function will be
called until runtime (when the program is run). This is known as late
binding (or dynamic binding). In C++, one way to get late''binding is
to use function pointers. To review function pointers briefly, a function
pointer is a type of pointer that points to a function instead of a
variable. The function that a function pointer points to can be called
by using the function call operator (()) on the pointer.
For example, the following code calls the Add() function:
int Add(int nX, int nY)
{

Self-Instructional Material 109

Object Oriented
Programming in C++

return nX + nY;

}
I

int main()NOTES
{

// Create a function pointer and make it point to the
Add function

int (*pFcn)(int, int) = Add;
cout << pFcn{5, 3) << endl; // add 5+3

return 0;

}

Calling a function via a function pointer is also known as an indirect
function call. The following calculator program is functionally identical
to the calculator example above, except it uses a function pointer
instead of a direct function call:

#include <iostream>

using namespace std;

int Add(int nX, int nY)

{ .

return nX + nY;

}

int Subtract(int nX,' int nY)

{

return nX - nY;

;

int Multiplydnt nX, int nY)

{

return nX * nY;

}

int main()

{

int nX;
/ ■

110 Seif-'Insjructional. Material

Function Overloading
and Polymorphism

cout << "Enter a number: « .

cin >> nX;

int nY;
cout << "Enter another number:

NOTES" •

cin >> nY;

int nOperation;
do
(

cout << "Enter an operation (0=add, l=subtract,
2=multiply): « •

cin >> nOperation;
} while (nOperation < 0 nOperation > 2);

// Create a function pointer named pFcn (yes, the
syntax is ugly) .

int (*pFcn)(int, int); ,

// Set pFcn to point to the function the user chose

switch (nOperation)

{
case 0: pFcn = Add; break;
case 1: pFcn = Subtract; break;
case 2: pFcn = Multiply; break;

)

// Call the function that pFcn is pointing to with nX
and nY as parameters

cout << "The answer is: " << pFcn(nX, nY) << endl;

return 0; .

}•
In this example, instead of calling the AddO, SubtractO, or MultiplyO
function directly, we’ve instead set pFcn to point at the function we
wish to call. Then we call the function through the pointer. The compiler
is unable to use early binding to resolve the function call pFcn(nX,
nY) because it cannot tell which function pFcn will be pointing to at
compile time!

/
Self-Instructional Material 111v>

Late binding is slightly less efficient since it involves an extra level
of indirection. With early binding, the compiler can tell the CPU to
jump directly to the function’s address. With late binding, the program
has to read the address held in the pointer and then jump to that
address. This involves one extra step, making it slightly slower. However,
the advantage of late binding is that it is more flexible than early
binding, because decisions about what function to call do not need to
be rriade until run time.

Object Oriented
Programming in C++

NOTES

Implementing Pure Mrtual Functions
Typically, the pure virtual functions in an abstract base class are
never implemented. Because no objects of that type are ever created,
there is no reason to provide implementations, and the ADT works
purely as the definition of an interface to objects which derive from
it. It is possible, however, to provide an implementation to a pure
virtual function. The function can then be called by objects derived
from the ADT, perhaps to provide common functionality to all the
overridden functions.
In this example, the additional functionality is simply an additional
message printed, but one can imagine that the base class provides a
shared drawing mechanism, perhaps setting up a window that all
derived classes will use.

//Implementing pure virtual functions1
'2.

3. #include <io8tream.h>
4.
5. enum BOOL (FALSE, TRUE J;

> 6.
7; class Shape
8. {
9. public:

10. -ShapeOU

11; .-^ShapeOII
1^ • -wrtual long GetAreaO = 0; // error

13. virtual long GetPerim()= 0;
14'. virtual void DrawO = 0;
15. private:
16. }; " „

- 17.
18;'.void. Shape::DrawO

112 Self-Instructional Material

Function Overloading
and Polymorphisrn

19. {
20. cout « “Abstract drawing mechanism!\n”;
21. }
22. NOTES
23. class Circle : public Shape
24. {
25. public;
26. CircleCint radiu8):itsRadius(radius)U
27. -CircleO!}
28. long GetAreaO { return 3 * itsRadius * itsRadius;)
29. long GetPerimO 1 return 9 * itsRadiu‘;;)
30. void DrawO;
31. private:
32. int itsRadius;
33. int itsCircumference;
34.);
35.
36. void Circle::DrawO
37. {
38. cout « “Circle drawing routine herelXn";
39. Shape::DrawO;
40.)
41.
42.
43. class Rectangle : public Shape
44. {
45. public:
46. RectangleCint len, int width):
47. itsLength(len), itsWidth(width)!)
48. -RectangleOli
49. long GetAreaO { return itsLength * itsWidth; }'
50. long GetPerimO {return 2*itsLength\+ 2*itsWidth; |
51. virtual int GetLengthO 1 return itsLength; }
52. virtual int GetWidthO (return itsWidth; }
53. void DrawO;
54. private: 'v\\

\"

Self-Instructional Material 113

Ob^t Oriented
Progmmming in C++

55. int itsWidthj
56. int itsLength;
57. .
58.

NOTES
void Rectangle::Draw()59.

60. {
for (int i = 0; i<itsLength; i++)61.

62. I
63. for (int j = 0; j<itsWidth; j++)
64. cout « “x
65.

cout « “\n”;66.
67.)
68. Shape::Draw();
69. I
70.
71.
72. class Square : public Rectangle
73. I
74. public:
75. Square(int len);
76. Squarednt len, int width);
77. -SquareOn
78. long GetPerimO. {return 4 * GetLength();)
79. };

\

80.
81. Square::Square(int len):
82. Rectangleden.len)
83. {}
'84.
85. Square:;Square(int len, int width):
86. Rectahgleden,width)
87.
88. I

89. if (GetLengthO != GetWidthO)
90. cout « “Error, not a square... a Rectangle??\n”;

114, Self-Instructional Material

Function Overloadiiig
and Polymorphism

91. , I
92.
93. int mainO
94. {
95. int choice;
96. BOOL fQuit = FALSE;
97. Shape * sp;

NOTES

98.
99. while (1) '

100. {
101. cout « “{l)Gircle (2)Rectangle (3)Square (O)Quit:”;
102. cin », choice; \

103.
104. switch (choice)
105. I

\

106. case 1; sp = new Circle(5);
107. break;
108. case 2: sp = new Rectangle(4,6);
109. break;
110. case 3: sp = new Square (5);
111. break;
112. default: fQuit = TRUE;
113. break;
114. }
115. if (fQuit)
116. break;
117.
118. sp->Draw();
119. cout « “\n”;'
120.)
121. return 0;
122.)

OPENING AND CLOSING OF FILES

File Streams
File Stream provide a uniform way of dealing with data coming from
the hard disk and going out to the screen or printer or coming

Seif-IriECructiomU Material 115

Object Oriented
Programming in C++

from the keyboard and going to hard disk. In either case, you can use
the insertion and extraction operators with file stream objects with
related functions. To open and close files, you have ofstraem, ifstream
and fstream objects.

• Ofstraem

• Ifstream
• Fstream

NOTES : to write into files

: to read from files

: both read and write

Ofstream and Ifstream

The ofstream used to read from or write to files are called ofstream
objects. These are derived from the iostream objects you’ve been using
so far. To get started with writing to a file, you must first create an
ofstream object, and then associate that object with a particular file
on your disk. To use ofstream objects, you must be sure to include
fstream.h in your program.

While the ifstream is used read data values from a file. To get started
to read from a file, you must first create an ifstream object, and then
associate that object with a particular file on your disk. To open the
file m3dile.txt with an ofstream object, declare an instance of an ofstream
object and pass in the filename as a parameter:

ofstream fout(“myfile.txt”);

Opening this file for input works exactly the same way, except it uses
an ifstream object:

ifstream fin(“myfile.txt”);

Program

#include <fstream.h>

void mainO
{

char fileName[80];
char buffer[255]; // for user input
cout << "Enter File name: W •

cin » fileName;
ofstream £out(fileName); // open for writing

fout « "This line written directly to the
file. \n" ;

cout << "Enter text for the file: " •

// i^ore the newline aftercin.ignore{1,'\n');
the file name

cin.getline(buffer,255); // get the user's input

116 Self-Instructional Material

fout << buffer- « ''\n"; Function Overloading
and Polymorphism

// and write it to the
file

fout.closeO ;
ready for reopen

ifstream £in(fileName);

• // close the file.

NOTES// reopen for reading
cout « "Here's the contents of the filerXn";
char ch;
while (fin.get(ch))
cout << ch;
cout << "\n***End of file

fin.close();

* * * \n'';
// close -the file stream

}

File Opening Modes
The default behaviour upon opening a file is to create the file if it
doesn’t yet exist and to truncate the file or delete all its contents if
it does exist. If you don’t want this default behaviour, you can explicitly
provide a second argument to the constructor of your ofstream object.Valid
arguments include:

• ios:;api>—Appends to the end of existing files rather than
truncating them.

• ios::at—Places you at the end of the file, but you can write
data anywhere in the file.

• iosutrun—The default. Causes existing files to be truncated.
• ios::nocreat—If the file does not exist, the open fails.
• iosnnoreplac—If the file does already exist, the open fails.

Note that app is short'for append; ate is short for at end, and trunc
is short for truncate.
Program

// program to show the Appending
of data at the end of a file

#include <fstream.h>
void main{)

{
char fileName[80];
char buffer[255]

cout << "Please re-enter the file name:";
cin >> fileName;
.ifstream fin(fileName);

SeiflfistructsonoJ Moteriai 117

Object Oriented
Programming in C++

// already exists?if (fin)
{

cout « "Current file contents:\n";
char ch.-
while (fin.get(ch)) _

cout << ch;
cput << '’\n***End of file contents .** *\n";

NOTES

}
fin.clo^e() ;
cout « "XnOpening" « fileName « " in append

mode...\n";
ofstream fout(fileName,ios::app);
if (!fout) .

cout << "Unable to open " << fileName « for
appending.Xn";

return(1);

}
cout << "XnEnter text for the file:";

cin.ignore{1,'Xn');

Cin.getline(buffer,255) ;

fout « buffer « "Xn";

fout.close();
fin.open(fileName); // reassign existing fin object!

if (!fin)

{
cout .« ."Unable to open" << fileName << " for

reading.Xn";
return(1);

)

cout << "XnHere's the contents of the filerXn";

char ch;
while (fin.get(ch))

cout << ch;
cout << "Xn***End of file contents. Xn";* * if

fin.close() ;

)

118 Self-instructional Material.

Function Overloading
and PolymorphismSTREAM MEMBER FUNCTIONS

Every C++ program that includes the iostream classes has four objects
that are created and initialized. When iostream class library is added
to your program you can use all the functions to put the appropriate
include statement at .the top of your program listing. Like:
cin: handles input from the standard input, the keyboard,
cout: handles output to the standard output, the screen.
Cer: handles un buffered output to the standard error device, the
screen. Because this is un buffered, everjd^hing sent to cerr is written
to the standard error device immediately, without waiting for the
buffer to fill or for a flush command to be received.
clog: handles buffered error messages that are output to the standard
error device, the screen. It is common for this to be “redirected” to
a log file, as described in the following section.

NOTES

Read Data Values
The object cin is responsible for read or input data values and is

. made available to your program when you include iostream.h. Using
the overloaded extraction operator (») cin can put data into your
program’s variables. Like:

int someVariable;
cout « “Enter a number:”;
cin » someVariable;

You should learn now that cin can overloaded the extraction operator
for a great variety of parameters, among them int&, short&, long&,
double&, float&, char&, char*, and so forth. When you write:

cin » someVaAable;
the t3T)e of someVariable is assessed. In the example above, someVariable
is an integer, so the following function is called:

istream & operator» (int &) ,
Note that because the parameter is passed by reference, the extraction
operator is able to act on any type of C++ original variable like:
Program

#include <iostream.h>
void main()

{

int myint;
long myLong;

double myDouble;

Self-Instructional Material 119

Object Oriented
Programming in C++

float myFloat;
unsigned int rttyUnsigned;

cout « "int:";

cin >> mylnt;
cout << "Long:";
cin >> myLong;

cout << "Double:";
cin >> myDouble;
cout « "Float:";

cin >> myFloat;
cout << "Unsigned:";

cin >> myUnsigned;
cout « "\n\nlnt:\t" «'inylnt « endl;
cout << "Long:\t" « myLong << endl;
cout << "Double:\t" << myDouble << endl;

cout « "Float:\t" «- myFloat « endl;
cout << "Unsigned:\t" << myUnsigned << endl;

NOTES

}

String Handling Problem
Using cin, when you will try to enter a full name into a string, cir
believes that white space is a separator. When it sees a space or j
new line, it assumes the input for the parameter is complete, and ir
the case of strings it adds a null character right then and there anc
you cannot input two strings separated using simple cin like “ml
sharma”. In above example you can check it^
Example

// string problem using cin
#include <iostream.h>
void mainO

{
char YourName[50];
cout « "Your first name: « •

cin >> YourName; .
cout << "Here it is: " << YourName << endl;
cout « "Your Full name:";

cin >> YourName;
cout << "Here it is: "'<< YourName << endl;

}

120 Self-In$tructional Material

Output: Your first name: Mahesh

Here it is; Mahesh
Your Full name: Mahesh Kumar Sharma

Here it is: Mahesh Kumar Sharma

Function Overloading
and Polymorphism

NOTES

GetO with Cin
The cin Operator » taking a character reference can be used to get
a single character, multiple characters or strings from the standard
input. That you will check in given examples:
Example

.v

•e.s

>
#include <iostream.h>?■

void mainO
{

char ch;
while ((ch = cin.getO) != EOF) /

9.^ {
cout « "ch: " « ch « end!:

}
' V cout « "\nDone1\n";

}
to exit this program, you must send end of file from the keyboard. On
DOS /windows computers use Ctrl+Z .

World

ch: W

ch: o

ch: r

ch; 1
ch: d

I

ch:
(ctrl-z)
Done!

Example
// Read multiple characters with cin

void 'main()

{ \
char a, b, c;

cout « "Enter three letters:";

Self-Instructional Material 121

a-Object Oriented
Programming in C++

cin.get{a)-.get(b) .get(c) ;
cout « "a: " « a « "\nb: " « b « "\nc: " « c «

.
4

endl;
}

NOTES Output: Enter three letters: inks
a: m

a*.b: k
c: s

Example ‘25

//Read strings with cin ■ C
void main()

{
char stringOne[256)-;
char stringTwo[256];

cout « "Enter string one: ";

cin.get(stringOne,256);
cout « "StringOne: " « stringOne « endl;

cout « "Enter string two: "; '
cin » StringTwo;

cout « "StringTwo:" « stringTwo << endl;

rt

I
U
•1

X?

t

} r
Output: Enter string one: My name is mks

stringOne: My name is mks .
Enter string two: What is yours

StringTwo: What

■tf

-*•

getllneO, putlineO
When a user want to enter a string, and that string can be read by
getlineC). Like get(), getlineO takes a buffer and a maximum number ^
of characters. Unlike get(), however, the terminating newline is read +
and thrown away. With get() the terminating newline is not thrown
away. It is left in the input buffer. You can use putlineO to print the •»
string on screen with spaces.
Example

,#include <iostream.h>

void mainO
4

•Ji

{

122 Self-Instructional Material

Function OveHoading
and Polymorphism

char sOne[256];
char sTwoI256);

char sThree[256];
cout « "Enter string one:*;

cin.getline(sOne,256) ;
cout « 'stringOne:* << sOne << endl;

cout « “Enter string two:
cin » sTwo;
cout « "stringTwo:" « sTwo « endl;
cout « “Enter string three:';

cin.getline(sThree,256);
cout << "stringThree:' << sThree « en'dl;

I

NOTES

)

Output; Enter string one; one two three

stringOne: one two three

Enter string two: four five six

stringTwo; four
Enter string three: stringThree: five six

gnoreO, peekO and putfoackO
Vny times you want to ignore the remaining characters on^' line
antil you hit either end of line (EOL) or end of file (EOF). The member
function ignoreO serves this purpose. IgnoreO takes two parameters,
the maximum number of characters to ignore and the termination
character. If you write ignore(80,’\n’), up to 80 characters will be
thrown away until a newline character is found. The input object cin
has two additional methods that can be used in some programs peek(),7

■ which looks at but does not extract the next character, and putbackO,
which inserts a character into the input stream.
Program (

. /
j

' 1
/

#include <iostream.h>

void mainO /
{

char ch;
cout « "enter a phrase.-";
while { cin.get(ch))

I
, f*

Self-Inetructioncl MaUfwl 123V
t #

Object Oriented
Programming in C++

if (ch == '!')
--cin.putback('$') ;

else
cout ■<< ch;

while {cin.peekO ==

cin.ignore(1,'#');

NOTES
'#')

}
)t
Output: enter a phrase: Now!is#the!timetfor!fun#!
Now$isthe$tiineforfun

putO, write ()

You have used cout along with the overloaded insertion operator («)
to write strings, integers, and other numeric data to the screen. It is
also possible to format the data, aligning columns and writing the
numeric data in decimal and hexadecimal. Just as the extraction operator
can be supplemented with get() and getlineO, the insertion operator
can be supplemented with put{) and writeO. The function put() is
used to. write a single character to the output device. Because put()
returns an ostream reference, and because cout is an ostream object,
you can concatenate put() just as you^ do the insertion operator.
Example
// use of put with'cout
#include <iostreain.h>

void main()

(

{

cout.put('H').put('e') .put('1') .put('1').put('o') .put('\n');
}

output: Hello
Example

II program to show the use of .write () function
with cout

ttinclude <iostream.h>

#include <stfing.h>

void main()
/

{

A24 . ■'Self-InsCructional ■ Material

Function Overloading
and Polymorphism

"India is my land";char One[1
int fullLength = strlen(One);
int tooShort = fullLength -7;

int tooLong = fullLength +5;

cout.write(One,fullLength) << "\n";

cout .write (One, tooShort) « "\h",;
cout.write(One,tooLong) << ”\n";

NOTES

>
Output: India is my motherland

India is
India is my motherland i?!.! •

widthO, fillO

The default width of your output will be just enough space to print
the-number, character, or string in the output buffer. You can change
this by using width(). Normally cout fills the empty field created by
a call to widthO with spaces. At times you may want to fill the area
with other characters, such as asterisks or +. To do this, you call filK)
and pass in as a parameter the character you want used as a fill
character. Like;
Example

#include <iostream.h>

void mainO \

{
cout << "aimca >";
cout.width(25);
cout « coursei. « "< MCA\n"; /I

■cout << "aimca >";
cout.width(25);
cout.fill(
cout « courses « "< MBA\n";

^ * /

}
courses< MCAOutput: aimca >

aimca >* * *^********* * *courses< MBA

Self-Instructional Material 125

The iostream objects keep track of their state by using flags; You can
set these flags by calling setfl]) and passing in one or another of the
predefined enumerated constants. For example, you can set whether
or not to show trailing zeroes (so that 20.00 does not become truncated
to 20). To turn trailing zeroes on, use setftiosxshowpointj.You can
turn on the plus sign (+) before positive numbers by using iosiishowpos.
You can change the alignment of the output by using ios::left, ios::right,
or ios::internal.Finally, you can set the base of the numbers for display
by using ios::dec (decimal), ios::oct (octal—base eight), or ios;:hex
(hexadecimal—base sixteen). Like:

Example

Object Oriented
Programming in C++ I

NOTES

#include <iostream-rh>

#include <iortianip. h>

void main()

(
185;const int-number

cout « "The number is" « number « endl;
cout << "The number' is" << hex <<

cout.setf(ios::showbase);
cout « "The number is" « hex «

cout << "The number is";

niimber << endl;

number << endl;

cout.width(10);

cout << hex << number « endl;
cout << "The number is";
cout.width(lO) ;
cout.setf(ios::left) ;
cout << hex << number « endl;
cout << "The number is";

cout.width(10) ;

cout.setf(ios::internal);

cout << hex << number << endl;
cout << "The number is:" << setw(lO) << hex <<

number « endl;

}

BINARY FILE OPERATIONS
Operating systems, such as DOS or Windows, distinguish between
text files and binary files. Text files store everything as text large

<•

126 Self’Instructional Material

numbers such as 54, 325 are stored as a string of numerals (‘5’, ‘4’,
‘3’, ‘2’, ‘5’)- This can be inefficient, but has the advantage that the text
can be read using simple programs such as the DOS command type
or Unix command cat or in Windows using notepad. Today there is a
need to store images, sounds, video in a file form. To help this file
system distinguish between text and binary files, C++ provides the
ios::binary flag to create binary files. On many systems, this flag is
ignored because all data is stored in binary format. Binary files can
store not only integers and strings, but entire data structures or
class can be write or read at once in a binary file using writeO and
readO methods. Like in a class employee to write or read an object
you can use:

fout.write(char* &name of object .‘^izeof (object));

fout.write(char* &emp,sizeof (emp));

fout.read(char’*‘ &iianie of object ,slzeof (object));

fout.read(charf &emp,sizeof (emp));
Each of these functions expects a pointer to character, however, so
you must cast the address of your class to be a pointer to character.
The second argument to these functions is the number of characters
to write, which you can determine using sizeofi) function.
Example
// program to write and read data of an employee in text
file
#include <fstream.h>
#include <iostream.h>
#include <string.h>

void main ()

Function Overloading
and Polymorphism

t f
y y

NOTES

{
char FileName[201;
char EName[40], Address[50], City,[20], State[32I,
pinCodellO];

cout « "Enter the Following pieces' of informationXn";
cout << "Employee Name:";
cin.getline(EName, 40);
cout << "Address:
cin.getline (Address, 50) -;
cout « "City:
cin.getline(City, 20);
cout « "State: •
cin.getline(State, 32) ;

\

. ■;

» .

■m
'-Vs?'

Self-Instructional Material 127

Object Oriented
Programming in C++

Icout « "Pin Code:";
cin.getline{pinCode, 10);
cout. « "\nEnter the name of the file you want • to

create:";
NOTES

cin » FileName;
ofstream ErtplRecords (FileName, ios;:out);

EnplRecords << EName « "\n" « Address « "\n" << City

« "\n" « State « "\n" « ZIPCode;
cout << "Enter the name of the file you w^t to

open:";
cin >> FileName;
ifstream EmplRecords(FileName);
EmplRecords.getline(EName, 40, '\n');

EmplRecords.getline(Address,. 50);
EmplRecords.getline(City, 20);
EmplRecords.getline(State, 32);
EnpIRecords.getline(ZIPCode, 10);
cout << "\n -=- Errployee Information -=

cout << "\nErtpl Name: " << EName;
" << Address;

" « City;

" « State;

" « ZIPCode;

r ■

cout << "\nAddress:
cout << "\nCity:

cout « "\nStabe:
cout « "\nZIP Code:
cout « "\n\n";

)

Example
//program to write a block of class object and read with
the help of write() and read function

#include <fstream.h>
class Animal

{
public:
Animal(int weight, long days):itsWeight(weight),
itsNumberDaysAlive{days){}

. ~Animal(){} // use of destructor

int ,^GetWeight () const { return itsWeight;)

//constructor defined

128 Self-Instructional Material

Function Overloading ■
and Polymorphism

void SetWeight(int weight) { itsWeight = weight;}
long GetDaysAliveOconst { return itsNumberDaysAlive;}

void SetDaysAlivedong days) { itsNumberDaysAlive
= days; }

NOTESprivate:
int itsWeight;

long itsNvunberDaysAlive;

);

void mainO
{

char fileName[80];
char buffer[255];
cout « "Please enter the file name:";
cin >> fileName;
ofstream fout(fileName,ios::binary);
if (!fout)
{

cout << "Unable to open" << fileName << "for
writing.\n";

return(1);
. }
Animal Dog(50,30};
fout .write ((char* > £cDog,sizeof Dog) ;

f out. close () ;

ifstream fin(fileName,ios::binary);
if (!fin)

cout << "Unable to open " << fileName « " for
reading.\n" ;

return(1);
}
Animal DogTwo(l,l);

cout « "DogTwo weight:" << DogTwo.GetWeight(}. .
<< endl;

cout « "DogTwo days:" « DogTwo.GetDaysAliveO-
« endl';

V.

fin.read((char*) &DogTwo, ‘sizeof DogTwo);

Self-Instructional Material 129

Object Oriented
Programming in C++

cout « "DogTwo weight:" « DogTwo.GetWeight()
« endl;

cout « “DogTwo days:" « DogTwo.GetDaysAliveO
endl;

NOTES fin.close();
}

STRUCTURES AND FILE OPERATIONS
C++ File I/O with binary files using fstream class is a simple task.
fstream class has the capability to do both Input as well as Output
operations i.e., read and write. All types of operations like reading/
writing of characters, strings, lines and not to mention buffered I/O
are supported by fstream. Operating systems store the files in binary
file format. Computers can deal with only"binary numbers. But binary
files are not readable by humans. Our level of comfort lies only with
proper ASCII or UNICODE characters. This article deals with how
C++ File I/Oxlass fstream can be used for reading and writing binary
files. For ASCII file operations in C++, refer to C++ Text file I/O
article. For our C++ File I/O binary file examples, now assume a
struct WebSites with two members as follows.

// Struct for C++ Pile I/O binary file sairple

struct Websites
{ . >■’ '

/ •

I■j

/

' char.' SiteName 1100] ;
int Rank;

);

Write operations in C++ Binary File I/O
There are some important points to be noted while doing a write
operation. -

The file has to be opened in output and binary mode using the
flags io3.::out (output mode) and ios;:binary(binary mode)
The function u;rite takes two parameters. The first parameter
is' of type char * for the data .to' be written and the second is
of type ,mi''asking for the size of data to be-written to the
binary file. -
File has to be closed at the end.

•t'.

/
■;

// Sa^le for C++ .File I/O binary file write

void wlrite_to_binary_file (Websites p_Data)

130 Self-lnilTixctionol Material

Function Overloading
and Polymorphism

i.

. .i

f stream fc>inary_f ile {"c \ test. dat' ,
ios : : put (ios : : binary | ios : :.app) ;

binary_file.write(reinterpret_cast<char
*>(&p_Data),sizeof(Websites));

binary_fiie.close();

NOTES

}

The above C++ File I/O binary sample function writes some data to
the function. The file is opened in output and binary mode with ios::out
and ios::binary. There is one more specifier ios::app, which tells the
Operating system that the file is also opened in append mode. This
means any new set of data will be appended to the end of file. Also
the write function used above, needs.the parameter as a character
pointer type. So we use a type converter reinterpret_cast to typecast

;the structure into char* type.

Read Operations in C++ Binary File VO

This also has a similar flow of operations as above. The only difference
is to open the file using i08::in, which opens the file in read mode.

\// Sample for',C++ File I/O binary file read
I
I

void read_frpm_binary_file0
{

Websites p_Data;
f stream binary_f ile ("crWtest.dat*,

ios t :binary 1 ios: : in.) ;
. -

binary_file.read(reihterpret_cast<char
*>{&P_Data),sizeof(Websites));

binary_£ile.close() ;
cout<<p_pata. SiteName«endl;

. cout«"Rank : "« p_Data.'Rank«endl;

}

CLASSES AND FILE OPERATIONS
Writing a class to a file

1. #include <fstream.h>
2.
3. class Animal

Self-Instruction<d Material 131

Object Oriented
Programming in C++

4. { . .
5. public:
6. AnimaUint weight, long days):it8Weight{weight),

itsNumberDaysAlive(days)l}
7. ~Animal(){}

!
f,

Noras
8.
9. int GetWeightOconst.{ return itsWeight; }

10. void SetWeight(int weight) { itsWeight = weight;)
11.
12. long GetDaysAliveOconst { return itsNumberDaysAIive; }
13. void SetDaysAlivedong days) { itsNumberDaysAIive = days; }
14.
15. private:
16. int itsWeight;
17. long itsNumberDaysAIive;

18. 1;
19. -
20. int mainO // returns 1 on error

21. 1
22. char fileName[80];

23. char buffer[255];

24.
25. cout « “Please enter the file name:”;—

26 cin » fileName;
27. ofstream fout(fileName,ios::binary);

28. if (Ifout)
29. {
30. cout <<. “Unable to open” « fileName « “ for writing.Nn”;

31. return(l);

32. i
33.

34. Animal Bear(50,100);
35. fout.write((char*) &Bear,sizeof Bear);

36.

37. fout.closeO;

132 Self lnstruetiorial Material

Function Overloading
and Polymorphism

.38.

39. ifstream fin(fileName,ios::binary);^

40. if(!fin)

41 I - _ .
42. cout « “Unable to open” « fileName « “ for reading.\n”;

43. return(l);
44. }

45. .

46. Animal BearTwo(l,l);

NOTES

47.
cout « “BearTwo weight:” « BearTwo.GetWeightO « endl;

cout « “BearTwo days:” « BearTwo.GetDaysAliveO « endl;
48.
49.

50.

51. fin.read((char*) &BearTwo, sizeof BearTwo);

52.
53i fin.closeO;
54.‘ return 0;

.55. }

RANDOM ACCESS FILE PROCESSING
A binary file is a file of any length that holds bytes with values in the
range 0 to Oxff. (0 to 255). These bytes have no other meaning. In a
text file a value of 13 means carriage return, 10 means line feed, 26 ,
means end of file. Software reading or writing text files has to deal
with line ends. In Linux these are just separated by line feeds but
Windows uses carriage returns and line feeds.
In modern terms we can call a binary file a stream of bj^es and more
modern languages tend to work with streams rather than files. The
important part is the data rather than where it came from! This
example shows that you can write text to a binary file.
RandomAccess ra(filename) ;

if (ra.OpenWriteO)

{

if (!ra.Write(mytext })

Self-Instructional Material 138

' ~r'

Object Oriented . .
Programming in C++

cout « "Failed to write to file " « filename << endl ;

1

ra.CloseO ;NOTES
(

}

else

cout « "Failed to open" « filename << " fior writing"
« endl;
This uses the class RandomAccess to open a binary file for writing, '
then writes a string into it. The RandomAccess class uses a FILE to
do the main work. It’s opened in “wb “ mode (refer to the C tutorial
for more information on that) and then writes the text to the file. It’s
actually writing sequentially though it could be made to write anjm^here
in the file.

. '!
I

I'
134 Self-Instructional Material

Function Overloading
and Polymorphism

STUDENT ACTIVITY

1. What are the common operators for overload?

/

I

{

f'it' , I

l,

2. What is a ofstream object?

I

Self-Instructional Material 135

Object Oriented
Programming in ,C++ SUMMARY

• The word polymorphism has been derived from the greek word
Polymorphous.

• Operator overloading allows C/C++ operators to have user-
defined meaning in user defined class.

• Early binding (also called static binding) means the compiler
is able to- directly associate the identifier name (such as a
function or variable name) with a machine address.

• A virtual function is a function that makes svire that, in an
inheritance scenario, the right function is called regardless of
the expression that calls the function.

• The ofstream used to read from or write to files are called
ofstream objects.

• Binary files can store not only integers and strings, but entire
data structures or class can be write or read at once in a
binary file using writeO and read() methods.

NOTES

SELF ASSESSMENT QUESTIONS

1. When you overload member functions, in what ways must they differ?
2. What is the difference between function and operator overloading,

describe with the help of example?
3. When is the destructor called?
4. How does the copy constructor differ from the assignment operator

('=)? ■ ■ ■

5. -'What-is the this pointer?
6. How do you differentiate between overloading the prefix and

postfix increment operators?
7. Can you overload the operator+ for short integers?

' \
8. Is^it legal in C++ to overload the operator++ so that it decrements

a value in your class?
9. What return value must conversion operators have in their

declarations?
10. What is a stream, how can you differ input stream and output

stream?
11. What is fstream, and what does it do?

" 12. What are the three forms of cin.getO, and what are their differences?
13. What is the difference between cin.readO and cin.getlineO?
14. What are the different file opening modes?
15. Write about command line parameters.
16. What does'the ios::app.argument do?

-/ \

./■

/

18S 8elf-In*tructional Material

