iy,

-1 *

CONTENTS

N =

Chapters Page No.h _
Da\tabase‘concepts 1-26
Database Development 27-146
Data Administration 147-178

“Database Applications 179-210

DATABASE MANAGEMENT SYSTEM

SECTION A

. Database Concepts: What is Database? Need of Database, Function of the Databese, Types
Database ; Relational Database Management System, Relational Model - Key Conr‘ept :
Domain Constraint, Integrity Constraints; Foreign Key. .

SECTION B

Database Development Process, Database Modeling & Database Design.

E-R Model, Attributes, Relationship, Logical Database Design, Normalization, First Form,
Second Normal Form, Third Normal Form, Translatlng E-R.Diagram to’ Relatlons Physical
Database De31gn : \‘

SECTION C .

Relational Algebra & SQL Relational Database Commands.

Data-types, Create Table, Drop Table, Alter Table, Insert Into, Delete From, Update, General
Query Syntax (Select), Create View, Drop View, Set Operators - Union, Intersect, Minus,
Functions, Group Functions, Jom Sub Queries. ~ .

SECTION D

Data Administration, Client / Server and Distributed Databases.

Data . Administration Functions, Data Administration Tools - Rep051tor1es CASE Tools,
Concurrency Control, Database Security, Database Recovery. '
Database Applications: Financial Systems, Marketing System Forelgn Trade, Inventory
Information Systems. .

" CHAPTER 1

DATABASE CONCEPTS

LeEARNING OBJECTIVES

After going through this chapter, you should appreciate the following:
* Primary Key '
* What is Database?
* Need of Database.
+ Function of the Database
* Types of Databases .
*+ Relational Database Management System
* Relational Model - Key Concept
* Integrity Constraints
*» Foreign Key '

 Database Systems

NOTES

- 2 Self Instfuctional Material

!

PRIMARY KEY

A basic unit called in a database is called a Table that organizes the data. Rows are
related. The columns in the table classify the nature of the data items that are related
by virtue of row membership. The Name column identifies that whatever appears at
this position in any row is a person’s name. The Address column identifies that whatever
appears in this position in an address. Membership in a row that has columns makes
the data items in the row belong to a set.

In fact, a database table is a conceptual representation of the set theory we all struggled -
with in grade school mathematics. Columns also play a special classificatory role in a
database; they identify the type of the data stored in them. Data type is the means by
which data storage is interpreted.

You must remember the following:
O Data is stored in tables. | S -

Q Tables have rows that group related data items together and columns that.
classify the data as to its type and its role in the world.

Tables

A table is the place in the database where all the data is sto.red. Every piece of

information that gets loaded into an Oracle database must be placed inside an Oracle .

table. In fact, all the information needed by an Oracle database to manage itself ‘is
stored in a series of tables that are commonly known as the data dictionary. Think of
the data dictionary as table about tables. The data dictionary tables tell the database
what kind of data is stored in the database, where it is Iocated and how the database
can work with it,

A table is made up of columns. Each column must be given a unique name within
that table and assigned a data type (such as varchar2, date or number) with an associated
width (which could be predetermined by the data type, as in date). Each table column
can also be designated as null or not null. Not null means the column data is mandatory
for that column. In other words, for rows of data to be entered into that table, all
columns assigned not null destination must contain valid data values,

To enforce defined business rules (integrity constraints) on a table’s data, Oracle9i
allows you to associate integrity constraints and triggers for a table,

Aftribute

Within a database for example, you have names. These names would be there in your
office records but you can assign various attributes to it too. These attributes are the
additional information you need to keep for example, your job title.

Tuple/Rows

Nobody calls them by the old names, i.e., Tuples, everybody now calls them rows.
As mentioned above a database actually consists of columns and rows. A row is-a
record of the data in the database. For example, in a school database, a record may
contain the information related to a student, like his enrolment number, name, address,
class, section, phone number, etc. A row compnses of fields that contain data. This
record in turn belongsto a table

Field : L ~
It is the other side of the record, i.e., column. It specifies a-pzirticular data in a database.
It also corresponds to the name given to it. Every database must consist of a column.

Data T~

It is the raw information which is fed into the database. It could be in the form of
information collected from various sources. Like in the school database, the
information about the student is collected from the form which he has filled up.

Concept of String

A string is a simple concept: a- bunch of things in a line,.like houses, popcorn or
pearls, numbers, or characters in a sentence. Strings are frequently encountered in
managing information. Names are strings of characters, as in Sachin Tendulkar. Phone
numbers are strings of numbers, dashes, and sometimes parentheses, as in a telephone
number, (011)-2551 6754. Even number, such as 5516754 can be considered as either
a number or a string of characters.

Strings can include any m1xture of letters numbers, spaces and other symbols {such
as punctuation marks and spec1a1 characters) are called character strings, or just
character for short.

~There are two string data types 111 Orac]e

CHAR strings are always a ﬁxed length If you set a value to a string with a length
less than that of a CHAR column, Oracle automatically pads the string with blanks.

When you compare CHAR strings, Oracle compares the strings by padding them out

to equal lengths with blanks. This means that if you compare “character” with
“character” in CHAR columns, Oracle considers-the strings to be the same.

VARCHAR?2- data type is a varymg length string. The VARCHAR datatype is
synonymous with VARCHAR?2, but this may change later, so you should avoid using
VARCHAR.

. Use CHAR for ﬁxed length character strmg fields and VARCHAR? for all other
character string fields.

- Number Values

In Oracle NUMBER stores any type of number For example,
NUMBER (MAX LENGHT)

You may specify a NUMBER’s data precision with the following syntax:
NUMBER -(precision, ' scale) '

Sﬁbtypes: DEC, DECIMAL, DOUBLE PRECISION, INTEGER, INT, NUMERIC,
REAL, SMALLINT, FLOAT PLS_INTEGER defines column that may contain
integers with a sign, sueh as negative numbers.

Date values

This 1s there to keep track of date variable.

Data type and Data integrity

There are various type of data inserted into tables. There are two aspects to it. Once
is to make sure that the data which is being.entered is of the right type and then we

Darabase Concepts

.NOTES

Self Instructional Material 3

Database Systems

NOTES

4 Self Instructional Matertal

have to make sure that the data which is being entered is accurate. First we would see
how the integrity of the data matters. - ’

Domam Integrity

As discussed the primary key of the tablé must have the unique values, whlch identify
the each row. So, if any row is having the value NULL for the primary key. The rule
of primary key violate that is the primary key must be unique. This is the reason to
follow the entity integrity rule according to which primary key will not accept the:
null value. This rule state that if attribute A of relation R is a prime attribute of R,
then A cannot accept NULL values.

Referential integrity

It is the assurance of consistent and accurate data within a database. Referential
integrity simply means that the values of one column in a table depend upon the
values of a column in another table, For instance, in order for a customer to have a
record in the ORDERS table, there must first be a record for that customer in the

CUSTOMERS table. In order for data to be in the EMPLOYEE_PAY table, there
must first be a corresponding personnel record in the EMPLOYEES table.

Types of Keys

Keys are the ways of connecting tables. These help you in creating relation between -
_ them. There are 4 type of keys.

Candidate key

We all know that in a table, every row must be different. There should be at least one
attribute that can uniquely identify the row. These attributes are called Candidate
keys.

Alternate key/Surrogate

It is used in case there is no p0351b111ty of naming a primary key. Then in that case
you assign a another key as the primary key.

Primary key

A primary key for a uniquely identifies each row in a table and cannot be null. Oracle
tables must have only one primary key defined.

- Foreign keys

In a table, a foreign key, normally a single field, directly references a primary key in
another table to enforce referential integrity.

WHAT IS DATABASE

Database means base of the data. It is based on the information given by you. It can
be catalogued, stored and used. For all this information, database is used. Any
collection of related information grouped together as a single itém is a database. A
metal filling cabinet containing customer records, a card file of names and phone
numbers, and notebook containing a listing of a store inventory, all are databases.

~ Any coh’ectzon of related information grouped together as a smgle :tem isa
database. :

However, a file cabinet or a notebook does not itself make a database. Containers,
like cabiners, notebooks, or computer programs like FoxPro, are only aids in organizing
- Information.

In Database, data is stored in the form of rows and columns.

Database uses the table format of rows and celumns to store the information, as
shown here. A database, or a FoxPro database file, may cons1st of one such table or
several ones. .

In the example shown next you will notice that each row contains a name, an address,
a phone number and a customer number. Each row is related ro the others because rkey all
contain the same types of information in the same placés.

A mailing list, for example, contammg a similar type of data. about'various people, is
a good example of a database.

Name Address City State Pin ° Ph.No. Cust.No.

R.Dayal F-19, Sec-20 Noida WP 201301 8531642 0005
Sachin G-478, Sakurpur Delhi Delhi 110034 2454312 0001
Rahul 12, Asaf AliRoad ~ Delhi Delhi 110002 3255582 (002
Saurav 14, Asaf Ali Road Delhi Delhi 110002 3266698 0004
Anil 21, Kinari Bazar Delhi Delhi 110006 3280816 0006
Yuvraj 345, Surya Nagar Ghazi UP 201204 8876543 0003

Rows in a database table are called records, and columns are-called fields.

The figure here illustrates this idea by c_ompariﬁg a simple one-table database to an
address filling system kept on 3x5 file cards. Each category of information on a card
18 a field.

Fields can contain any type of r
information, as long as each ['
field always contains the same _
type of information. In the _l

card box, each record contains I
six fields: a name, address, city,

PIN code, and phone number. mame R.Dayal ' —
Since every card in the box Jgggs| [Address : F-19, Sector 20 —
®% | City : Noida ~ State : UP a

has the same type of
information, the card box is a
database.

L_F’fn 1 201301 Phone : 8531642

A computerized database provides speéd, compactness and flexibility. It is also
easier to locate a particular record in computerized database.

Databases and database technology are having a major impact on the growing use of
Computers, It is fair to say that databases play a critical role in almost all-areas where
computers are used, including business, electronic commerce, engmeenng, medicine,
law, education, and library science, to name a few.

The precedmg definition of database is quite general; for example, we may consider
the collection of words that make up this page of.text to be related data and hence to

Database Concepts

NOTES

Self Instructional Material 5

Database Systems

NOTES

6 Self Instructional Material

- and update the data as needed.

constitute a database. However, the common use of the term database is usually
more restricted. '

A database has the following implicit properties:

+ A database represents some aspect of the real world, sometimes called the
miniworld or the universe of discourse (UoD) Changes to the mmlworld are
reflected in the database.

+ A database is a logically coherent collection of data with some inherent
meaning. A random assortment of data cannot correctly be referred to as a
database.

» A database is designed, built, and populated with data for a specific purpose.
It has an intended group of users and some preconceived applications in Wthh
these users are interested.

We will use the word data as both singular and plural, ‘as is common in database
literature; context will determine whether it is singular or plural. In standard English,
data 1s used only for plural; datum is used for singular. -

Database Systems

- A database can be of any size and of varying complexity. For example, the list.of

names and addresses referred to earlier may consist of only a few hundred records,
each with a simple structure. On the other hand, the computerized catalog of a large
library may contain half a million entries organized under different categories—by
primary author’s last name, by subject, by book title—with each category orgamzed
in alphabetic order.

A library database may contain name of book, author’s last name, subject, book
title in alphabetical order.

‘A database of even greater size and complexity is maintained by the Internal Revenue

Service to keep track of the tax forms filed by taxpayers. If we assume that there are
100 million taxpayers and if each taxpayer files an average of five forms with
approximately 400 characters of information per form, we would get a database of
100 x 10° x 400 x 5 characters (bytes) of information. If the revenue department
keeps the past three returns for each taxpayer in addition to the current return, we
would get a database of 8 x 10" bytes (800 gigabytes). This huge amount of
information must be organized and managed so that users can search for, retrieve,

A database may be generafed and maintained manually or it may be computerized.
For example, a library card catalog is a database that may be created and maintained
manually. A computerized database may be created and maintained either by a group
of application programs written specifically for that task or by a database management
system. Of course, we are only concerned with computerized databases in this book.

NEED OF DATABASE

~

Information from the database, stored in the form of a computerized filling system,
can be stored and retrieved quite easily. Tasks that would be time-consuming to

- accomplish manually, are easily done with the aid of a computer. In principle, a database

in a computer is not different from a database recorded on paper and filled in cabinets. But the

- computer does the tedious work like maintaining and searching through a database,

and it does so quickly. A computerized database that can do all of this is known as a
DataBase Management System, or DBMS for short..) ’

Storing massive amounts of information into written directories and Silling
cabinets can consume a great deal of space and time,

Manual database systems are usually not fool-proof, A telephone book, for example,
is fine for finding telephone numbers, but if you have an address and not the name of
the person who lives there, the telephone directory becomes useless for finding that
person’s telephone number. A similar problem plagues conventional office filling
systems: if the information is organized by name and you want to find all the clients
located in a particular area, you could be in for a tedious search. In addition, storing
massive amounts of information into written directories and filling cabinets can
consume a great deal of space.

A manual database can also be tedious to modify. For example, inserting a new phone

number into a list and rearranging the list. Or, if the phone company were to assigna

new area code, someone would have to search for all phone numbers having the old
area code, and replace it with the new one. It is very easy to eliminate these type of
problems, if you are using the computer for your database. Advaxmtages of using the
Database can be listed as following:

- A computerlzed database provides spee&; finding a phone number from
among a thousand entries or putting the file in alphabetical order takes just
.seconds with the database management system.

» A computerized database is compact; a database with thousands of records
can be stored on a single floppy CD.

« A computerized database is flexible: it has the ability to examine information
from a number of angles, so you can search for a phone number by name, by
address, or by pin code and then name. ,

Of course, these are just few of them.” -

A manual database can also be tedious to modify.

FUNCTION OF THE DATABASE

Computer programmers who have written programs for other applications know how
much a database programming differs from the traditional programming. Here the
database programming is quite different from the traditional approach of programming
with files. In traditional file processing, each user defines and implements the files
. needed for a specific software application as part of programming the application.

 Programming for database is quite different from traditional programming,

For example, for one user, the grade reporting office, may keep a file on students and
their grades. Programs to print a student’s franscript and to enter new grades into the
file are implemented as part of the application. For second user, the accounting office,

Database Concepts

NOTES

Self Instructional Materiaf 7

Database Systems _ may keep track of students fees and their payments. Although both users are interested
in data about students, each user maintains separate files—and programs to manipulate .
these files—because each requires some data not available from the other user’s files,
This redundancy in defining and storing data results in wasted storage space and in
redundant efforts to maintain common data up to date. In the database approach, a
single system of data is maintained that is defined oncé and then is accessed by
various users. The main characteristics of the database approach versus the file-
processing approach are the following: . ' :

NQTES

L

* Self-describing nature of a database systeni'
"« Insulation between programs and data, and data abstraction
« Support of multiple views of the data
Sharmg of data and multluser transaction processing
Let us study each one of rhem separately
Self-Describing Nature of a Database System

A fundamental characteristic of the database approach is that the database system
contains not only the database itself but also a complete definition or description of
the database structure and constraints. This definition is stored in the DBMS catalog,
which contains information such as the structure of each file, the type and storage
format of each data item, and various constraints on the data. The information stored
in the catalog is called meta-data, and it describes the structure of the primary database.

The catalog is used by the DBMS software and also by database users who need this
information about the database structure. A general-purpose DBMS software package
1s not written for a specific database application, and hence it must refer to the ‘catalog
to know the structure of the files'in a specific database, such as the type and format
of data it will access. The DBMS software must work equally well with any number
of database applications—for example, a university database, a banking database, or
a company database—as long as the database definition is stored in the catalog.

In traditional file processmg, data definition is typlcally part of the application
programs themselves. Hence, these programs are constrained to work with only one -
specific database, whose structure is declared in the application programs. For example,
an application program written in C++ may have struct or-class declarations, and a
COBOL program has Data Division statements to define its files. Whereas file- .
processing software can access only specific databases, DBMS software can access
diverse databases by extracting the database definitions from the catalog and then
using these definitions.

In the example, shown next, the DBMS catalog will store the definitions of all the
files shown. These definitions are specified by the database designer prior to creating
the actual database and are stored in the catalog. Whenever a request is made to
access, say, the Name of a STUDENT record, the DBMS software refers to the
catalog to determine the structure of the STUDENT file and the position and size of
the Name data item within a STUDENT record.

STUDENT file Name . Number Class Course
'~ Sachin 10 1 Phd .
_ . Rahul - 44 2 Phd
8 Self Instructional Material L

COURSE file Name Number .Hours Dept.
Visual Basic VBIO 5 Phd
RDBMS RDIO 4 . Phd
Computer Sc. CS10 2 CS
SECTION file Section Course Semester Year Teacher
88 VB10 IInd - 2005 Tony
90 ' RDIO Ist . 2005 Greg '
112 CS10 11Ird 2005 Tom
120 MIC10 IInd 2005 Bob
GRADE_REPORT Number . Section Grade
10 90 A
44 88 B
PREREQUISITE Course Per. Number
| " VBI0 ©s10
RD10 - MIC10

By contrast, in a typical file-processing application, the file structure and, in the extreme
case, the exact location of Name within a STUDENT record are already coded within
each program that accesses this data item.

DBMS software can access diverse databases by extracting the database
~ definitions from the catalog and then using these definitions.

Insulation between Programs and Data, and Data Abstraction

In traditional file processing, the structure of data files is embedded in the application
programs, so any changes to the structure of a file may require changing all programs
that access this file. By contrast, DBMS access programs do not require such changes
in most cases. The structure of data files is stored in the DBMS catalog separately
from the access programs. We call this property program-data independence.

For example, a file access program may be written in such a way that it can access
only STUDENT records of the structure, If we want to add another piece of data to
each STUDENT record, say the BirthDate, such a program will no longer work and
must be changed. By contrast, in a DBMS environment, we just need to change the

description of STUDENT records in the catalog to reflect the inclusion of the new.

data item BirthDate; no programs are chang..: The next time a DBMS program

refers to the catalog, the new structure of ST ENT records will be accessed and -

used.

Darabase Congepts

NOTES

Self Instructional Material 9

Database Systems -

NOTES -

10 Seif Instructional Material |

—
Data Itemn Name Starting Position in Record Length in Characters (bytes)

Name 31 30
' StudentNumber . 33 : .8
Class, 37 8
Major 39 8

In some types of database systems, such as object-oriented and object-relational
systems, users can define operations on data as part of the database definitions. An
operation (also called a function or method) is specified in two parts. The interface
(or signature) of an operation includes the operation name and the data rypcs of its
arguments {or parameters).

The implementation (or method) of the operation is speciﬁed separately and can be
changed without affecting the interface. User application programs can operate on
the data by. invoking these dperations through their names and arguments, regardless
of how the operations are implemented. This may be termed program-operation
independence.

The characteristic that allows program-data independence and program-operation
independence is called data abstraction. A DBMS provides users with a conceptual
representation of data that does not include many of the details of how the data is
stored or how the operations are implemented. Informally, a data model is a type of
data abstraction that is used to provide this conceptual representation.

The data model uses logical concepts, such as objects, their properties, and their

interrelationships' that may be easier for most users to understand than computer
storage concepts. Hence, the data model hides storage and 1mplementat10n details
that are not of interest to most database users.

- The characteristic that allows program-data independence and program-
operation independence is called data abstraction.

The internal implementation of a file may be defined by its record length—the number
of characters (bytes) in each record—and each data item may be specified by its
starting byte within a record and its length in bytes. The STUDENT record would
thus be represented. But a typical database user is not concerned with the location of
each data item within a record or its length; rather, the concern is that when a reference
is made to Name of STUDENT, the correct value is returned. A conceptual representation
of the STUDENT records is shown earlier. Many other details of file storage
orgamzatlon—-such as the access paths specified on a file—can be hidden from
database users by the DBMS.

In the database approach, the detailed structure and organization of each file ate
stored in the catalog. Database users and application programs refer to the conceptual
representation of the files, and the DBMS extracts the details of file storage from the

- catalog when these are needed by the DBMS file access modules. Many data models

can be used to provide this data abstraction to database users.

In object-oriented and object-relational databases, the .abstraction process includes
not only the data structure but also the operations on the data. These operations
provide an abstraction of miniworld activities commonly understood by the users:

For example, an operation CALCULATE_GPA can be applied to a STUDENT object

to calculate the grade point average. Such operations can be.invoked by the user

queries or application programs without having to know the details of how the.

operations are implemented. In that sense, an abstraction of the miniworld activity is
made available to the user as an abstract operation,

TRANSCRIPT Name Transcript
Number Grade Semester Year Section
VBI0 C Fall 99 - 119
Smith T
' VBI0 B . Fall = 99 112
RDI0 A ~ Fall 98 85
MIC10 A Fall 98 92
Brown '
RDI10" B Spring 99 102
, MIC10 A Fall 99 135
PREREQUISITES CName CNumber Pre.
RDI10
Database DBI0 VBIO
- Computer
- Sc. .MIC10 MIC20

Support of Multiple Views of the Data

A database typically has many users, each of whom may require a different perspective

or view of the database. A view may be a subset of the database or it may contain

virtual data that is derived from the database files but is not explicitly stored. Some .

users may not need to be aware of whether the data they refer to is stored or derived.

-A multiuser DBMS whose users have a variety of distinct applications must provide

facilities for defining multiple views. For example, one user. of the database may be
interested only in accessing and printing the transcript of each student; the view for
this user is 'shown in the above first table. A second user, who is interested only in
checking that students have taken all the pre-requisites of each course for which they
register, may require the. view shown in the second table above.

Some users may not.need to be aware of whether the data they refer to is stored
‘or derived,

Sharing of Data and Multiuser Transaction Processing

A multiuser DBMS, as its name implies, must allow multiple users to access the
database at the same time. This is essential if the data for multiple applications is to
be integrated and maintained in a single database. The DBMS must include
concurrency control software to ensure that several users trying to update the same
data can do so in a controlled manner and the result of the updates is correct. For
example, when several reservation clerks try to assign a seat on an airline flight, the

. DBMS should ensure that each seat can be accessed by only one clerk.at a tfime for

' Database Concepts

NOTES

Self Instructional Material lII

Database System

STUDENT ACTIVITY 1.1

"

1. What is a database?

2. What do you understand by Multiple Views of the database?

12 Self mtructional Material

3. Why do we.need database? Database Concepts

4. What are Primary and Foreign Keyé?_

Sélf ntructional Material 13

Database Systems

NOTES

14 Seif Instructional Material

assignment to a passenger. These types of applications are generally called OnLine
Transaction Processing (OLTP) applications. A fundamental role of multiuser DBMS
software is to ensure that concurrent transactions operate correctly.

The concept of a transaction has become central to many database applications. A
transaction is an executing program or process that includes one or more database
accesses, such asreading or updating of database records. Each transaction is supposed
to execute a logically correct database access if executed in its entirety without
interference from other transactions. The DBMS must enforce several transaction
properties. The isolation property ensures that each transaction appears to execute in
isolation from other transactions, even though hundreds of transactions may be
executing concurrently. The atomicity property ensures that either all the database
operations in a transactton are executed or none are. '

Each transaction is supposed to execute a logically correct database access if
executed in ifs entirety without interference from other transactions.
The preceding characteristics are most important in distinguishing 2 DBMS from
traditional file-processing software. '

TYPES OF DATABASES

The DBMS, on which the database system is based can be classified according to the
number of users, the database site locations(s) and the expected type and extent of
use.

The number of users determines whether the DBMS is classified as single — user or
multiuser. A single-user DBMS supports only one user at a time. In other words, if
user A is using the database users B and C must wait until user A has completed his/
her database work. If a_single-user database runs on a personal computer, it is also
called a desktop database. In contrast, a multiuser DBMS supports multiple users at
the same time. If the multiuser database supports a relatively small number of users
(usually fewer than fifty) or a specific department within an organization, it is called
a work group database. If the database is used by-the entire organization, it is called
a workgroup database. If the database is used by the entire organization and supports
many users {more than fifty, usually hundreds) across many departments, the database
is known as ai: enterprise database.

The database site location might also be used to classify the DBMS. For example, a
DVMS that supports a database located at a single site is called a centralized DBMS.
A DBMS that supports a database distributed across several different sites is called a
distributed DBMS.

Perhaps the types of use and the extent of such use yield the most relevant and
currently favored DBMS classification. For example, transactions such as product or
service sales, payments and supply purchases reflect critical day-to-day operations.
Such transactions are time-critical and must be recorded accurately and immediately
- the sale of a product must be recorded and reflected in the inventory immediately.

i
A DBMS that powers a database primarily designed to support such “immediate
response” transactions is classified as a transactional DBMS or a production DBMS.
In contrast a decision support database focuses primarily on the production of .

information required to make tactical or strategic decisions at middle and high
management levels. Decision support, provided by a decision support system (DSS),
typically, requires extensive “Data messaging” (data manipulation) to extract
information from historical data to formulate pricing decisions, sales forecasts, market
positioning and so on. Because most DSS information is based on historical data, the
data retrieval time factor is not likely to be as critical as it is for the transactional

database. Additionally, the DSS information tends to be based or1 compiex data derived

from many sources.

To make such complex data more easily retrievable, the DSS database structure is
quite different from that of a transaction - oriented database. In fact, the term data
warehouse is used to describe the database design favored by DSSs.

Quite clearly, properly database design requires the database designer to precisely
identify the database’s expected use. Designing a transactional database emphasizes
data integrity, data consistency and operational speed. The design of a decision support
database recognizes the use of-historical and aggregated data. Designing a database
to be used in centralized, single-user environment requires a different approach from
that used in the design of a distributed, multiuser database.

RELATIONAL DATABASE MANAGEMENT SYSTEM

A DataBase Management System (DBMS) is a collection of programs that enables
users to create and maintain a database. The DBMS is hence a general-purpose software
system that facilitates the processes of defining, constructing, manipulating, and
sharing databases among various users and applications. Defining a database involves
specifying the data types, structures, and constraints for the data to be stored in the
database.

Definition: 4 DataBase Management System (DBMS) is a collection of
programs that enables users to create and maintain a database.

Constructing the database is the process of storing the data itself on some storage
medium that is controlled by the DBMS. Manipulating a database includes such
functions as querying the database to retrieve specific data, updating the database to
reflect changes in the miniworld, and generating reports from the data. Sharing a
database allows multiple users and programs to access the database concurrently.

Other important functions provided by the DBMS include protecting the database
and maintaining it over a long period of time. Protection includes both system
protection against hardware or software malfunction (or crashes), and security
protection against unauthorized or malicious access. ’

A typical large database may have a life cycle of many years, so the DBMS must
be able to maintain the database system by allowing the system to evolve as
requirements change over time.

It is not necessary to use general-purpose DBMS software to implement a
computerized database. We could write our own set of programs to create and
maintain the database, in effect creating our own specific-purpose DBMS software,
in either case—whether we use a general-purpose DBMS or not—we usually have to

Database Concepts

NOTES

Self Instructional Marerial 15

Database Systems

NOTES

16 Self Instructional Material

deploy a considerable amount of complex software. In fact, most DBMSs are very
complex software systems.

' ’

RELATIONAL MODEL - KEY CONCEPT

The database is used to store information useful to an organization. To represent this
information, some means of modeling is used. The -components used in modeling
»are limited to the objects of interest to the organization and the relationships among
these objects. One category of objects of concern to any organization is its personnel,

and one relationship that exists within this category of objects is that of supervisor to
employees. Another area in which the definition, management, and manipulation of
a considerable amount of data is required is in computer-aided design (CAD) and
computer-aided manufactunng (CAM). The objecs in these apphcatnons consist of
the specifications of various components and their interrelationships.

A database model is a collection of logical constructs used to represent the data
structure and the data relationships found within the database. Database models can
be grouped into two categories: conceptual models and implementation models.

- The conceptual model focuses on the logical nature of the data representation.
Therefore, the conceptual model is CODCEI\'nEd with what is represented in
the database, rather than with how 1t is represented.

_- In contrast to the conceptual model, an implementation model places the
emphasis on how the data are represented in the database or how the data
structures are implemented tc represent what is modeled. Implementation
models include the hierarchical database model, the network database model,
the relational database model and the object-oriented database model.

File Based or Primitive Models

Entities or objects of interact are represented by records that are stored together in
-files. Relationships between objects are represented by using directories of various
kinds. L

Traditional Data Models

Traditional data models are the hierarchical, network and relational models. The
hierarchical model evolved from the file-based system and the network model is a’
superset of the hierarchical model. The concept of data models evolved about the
same models. as the proposal of the relational model. You were introduced to
Hierarchical and Network models in the last chapter. Relational model will be discussed
in the next chapter.

The concept of data models evolved about the same models as the proposal of
the relational model.

Semantic Data Models

This class of data modes was influenced by the semantic networks developed by
artificial intelligence researchers. Semantic networks were developed to organize and
represent general knowledge. Semantic data models ‘are able to express greater
interdependecies among entities ‘of interest. These interdependecies consist of both.

b

inclusion and exclusion, enabling the models to represent the semantics of the data
in the database.

INTEGRITY CONSTRAINTS

A database usually contains groups of entities that are similar. For example, a company
employing hundreds of employees may want to store similar information concerning
each of the employees. These employee entities share the same attributes, but each

entity has its own value(s) for each attribute. An entity type defines a collection (or _

set) of entities that have the same attributes. Each -entity type in the database is
described by its name and attributes.

The following figure shows two entity. types, named EMPLOYEE and COMPANY,
and a list of attributes for each. A few individual entities of each type are also illustrated,
along with the values of their attributes. The collection of all entities of a particular
entity type in the database at any point in time 1s called an entity set; the entity set is
usually referred to using the same name as the entity type. For example, EMPLOYEE
refers to both a type of entity as well as the current set of all employee entities in the
database.

EMPLOYEE : " COMPANY

Name, Age,-Salary‘ | | Name, Headquarters, President
(Sachin, ;2, 5000)I (PMG, Mm-:nbai, Sunil)
(Rahul, ;0,‘4000) | (DNA, Bang;l;)fe, Srinath)

(V'irendra,- 26, 4000) | (TTR, Ne;v D;lhi, Mohinder)

An entity type is represented in ER diagrams as a rectangular box enclosing the
entity type name. Attribute names are enclosed in ovals and are attached to their
entity type by straight lines. Composite attributes are attached to their component
attributes by straight lines. Multivalued attributes are displayed in double ovals.

An entity type describes the schema or intension for a set of entities that share the

same structure. The collection of entities of a particular entity type are grouped into .

an entity set, which is also called the extension of the entity type.

Key Attributes of an Entity Type

An important constraint on the entities of an entity tyﬁe is the key or uniqueness
constraint on attributes. An entity type usually has an attribute whose values are
distinct for each individual entity mn the entity set. Such an attribute is called a key
attribute, and its values can be used to identify each entity uniquely. For example, the

Database Concepts

NOTES

Self Instructional Material 17

Database Systems

NOTES

18 Self Instructional Material

Name attribute is a key of the COMPANY entity type in the last figure, because no
two companies are allowed to have the same name.

For the PERSON, entity type, a typical key attribute is SocialSecurityNumber.
Sometimes, several attributes together forma key, meaning that the combination of
the attribute values must be distinct for each entity. If a set of attributes possesses
this property, the proper way to represent this in the ER model, that we describe here,
is to define a component attribute and designate it as attribute of the entity type.

Notice that such a composite key must be minimal; that is, all component attributes
must be included in the composite attribute to have the uniqueness property. In ER

diagrammatic notation, each key attribute has its name underlined inside the oval.

'Specifying that an attribute is a key of an entity type means that the preceding

uniqueness property must hold for every entity set of- the entity type. Hence, it is a
constraint that prohibits any two entities from having the same value for the key
attribute at the same time. It is not the property of a particular extension; rather, it is
a constraint on all extensions of the entity type. This key constraint, or for that even
the other constraints, is derived from the constraints of the miniworld that the database

represents.

It is a constraint that prohibits any two entities from having the same value for
the key attribute at the same time.

Some entity types have more than one key arn*ibﬁte‘. For example, each of the Vehicle
ID and Registration attributes of the entity type car (see following figure) is a key in
its own right. '

The Registration attribute is an example of a composite key formed from two simple
component attributes, RegistrationNumber and State, neither of which is a key on its
own. An entity type may also have no key, in which case it is called a weak entity

type.

. CAR

Registration (RegistrationNumber, State), VehcileID, Make, Model, Year,
(Colour)

(123, DELHI), DLA4CJ4759, Hundai, Santro, 2000, (Blue)

(123, DELHI), DL7SB7713, Bajaj, Super, 1999, (Yellow)

(123, DELHI), DI.7SA0009, Escorts, Yamaha, 1997, (Grey)

Value Sets (Domains) of Attributes

Each simple atfribute of an entity type is_associated with a value set (or domain of
values), which specifies the set of values that may be assigned to that attribute for
each individual entity. In earlier figure, if the range of agesallowed for employees is

between 16 and 70, we can specify the value set of the Age attribute of EMPLOYEE .

to be the set of integér numbers between 16 and 70.

Similarly, we can specify the value set for the Name attribute as being the set of
strings of alphabetic characters separated by blank characters, and so on. Value sets
are not displayed in ER diagrams, value sets are typically specified using the basic
data types availabie in most programming languages, such as integer, string, boolean,
float, enunw.aicd type, subrange, and so on. Additional data types to represent date,
time, and other concepts are also emvloyed.

Mathematically, an attribute A of entity type E whose value set is V can be defined
as a function from E to the power set P(V) of V

A:E>P (V)

We refer to the vél_ue of attribute A for entity ¢ as A(e). The previous definition
covers both single-valued and multivalued attributes, as well as nulls. A null value is
represented by the empty set. For single-valued attributes, A(e) i$ restricted to being

a singleton set for each entity e in E, whereas there is no restriction on multivalued

attributes. For a composite attribute A, the value set V is the Cartesian product of
P(V), P(V)) ... , P(V), where V,, V. ... , V_are the value sets of the simple
component attributes that form A: : : .

V=P(F)xP(V)x..xP(V)

Relatmnshlp among Elltltles

The quest for better data management has led to several different ways of solving the

file system’s critical shortcomings. The resulting theoretical database constructs are
represented by various database models. A database model is a collection of logical
-constructs used to represent the data structure and the data relationships found within
the database. Database models can be grouped into two categories: conceptual ‘models
and implementation models.

- The conceptual model focuses on the logical nature of the data representation.
Therefore, the conceptual model is concerned with what is represented in
the database, rather than with how it is represented.

- In contrast to the conceptual model, an implementation model places the
emphasis on how the data are represented in the database or on how the
data structures are-implemented to represent what is modeled.
Implementation models include the hierarchical database model, the network
database model, the relational database model and the obJect oriented
database model.

Conceptual models use three types of relationship to describe associations among
data: one-to-many, many-to-many and one-to-one, Database designers usually use
the shorthand notations 1:M, M:N, and 1:1 for them, respectively. :

The following examples illustrate the distinctions among the three,
One-to-many relationship ‘

A painter paints many different paintings, but each one of them is painted by only
that painter. Thus the painter (the “one”} is related to the paintings (the “many”).

Database Concepts .

NOTES

#lf Instructional Material 19

Database Systems

§

NOTES

20 Self Instructional Mateﬁhl

_relationships between cntlty types.

Therefore, database designers label the relationship “PAINTER” paints “PAINTING”
as 1:M. Similarly, a customer account (the “one”) might contain many invoices, but
those invoices (the “many”) are related to only a single customer account. The
“CUSTOMER?” generates “INVOICE” relationship would also be labeled 1:M.

Many-to-many relationship

An employee might learn many job skills and each job skill might be leamed by
many employees. Database designers label the ‘relationship “EMPLOYEE learns-
SKILL” as M:N. Similarly, a student can take many courses and each course can be
taken by many students, thus yielding the M:N relationship label for the re]anonshlp
expressed by “STUDENT takes COURSE "

One-to-one relationship

A retail company’s management structure may require that each one of its stores be
managed by a single employee. In turn, each store manager — who is an employee —
only manages a single store, Therefore, the relationship “EMPLOYEE manages
STORE” is labeled 1:1. ’

Database designers use a conceptual database model as the ba51s for the database
blueprmt

Because each database model is evolved ffom its predecessors we will examine all
the different models briefly in this section. Experiencé has taught us that you will
gain a better understanding of current database design, implementation and
management issues once you have introduced to the rudiments of each database
model’s conceptual framework. In fact, you will discover that many of the “new”
database concepts and structures bear a remarkable resembles to some of the “old”

- database concepts and structures.

Consider the following figure, there are several implicit relationships among the various
entity types. In fact, whenever an attribute of one entity type refers to another entity
type, some relationship exists. For example, the attribute Manager of DEPARTMENT
refers to an employee who manages tile department; the attribute

. ControllingDepartment of PROJECT refers to the department that controls the

project; the attribute Supervisor of EMPLOYEE refers to another employee (the
one who supervises this employee); the attribute Department of EMPLOYEE refers
to the department for which the employee works; and so on. In the ER model, these
references should not be represented as attributes but as relationships, which are
discussed here. In the initial design of entity types, rel'ationships are typically captured
in the form of attributes. As the design is refined, these atmbutes get converted into

Wher:ever an attribute of one entity type refers to another entity type, some
relattonskrp exists.

| DEPARTMENT .
Name, Number, {Locations}, Manager, ManagerStartDate

PROJECT

 Name, Number, Location, ControllingDepartment

EMPLOYEE
Name (FName, Mlnit, LName), SSN, Sex, Address, Salary,
BirthDate, Department, Supervisor, {WorksOn (Project, Hours)}‘

DEPENDENT
rmployee, DependentName, Sex, BirthDate, Relationship

Degree of a Relationship Type

The degree of a relationship type is the number of participating entity types. Hence,
the WORKS_FOR relationship is of degree two. A relatlonshlp type of degree two is
called binary, and one of- degree three is called ternary. An example of a ternary
relationship is SUPPLY, where. each relationship instance associates three entities—a
supplier s, a part p, and a project j— whenever s supplies part p to project j, relationships
can generally be of any degree, but the ones most common are binary relationships.
.Higher-degree relationships are generally more complex than binary relationships.

Relationships as Attributes .

It is sometimes convenient to think of a relationship type in terms of attributes.
Consider the WORKS_FOR relationship type, one can think of an attribute called
Department of the 'EMPLOYEE entity type whose value for’ each employee entity
is (a referénce to) the department entity that the employee works or, Hence, the
value set for this Department attribute is the set of all DEPARTMENT entities,
which is the DEPARTMENT entity set.

However, when we think of a binary relationship as an attribute, we always have two

options. Employees of the entity type DEPARTMENT whose values for each -

department entity is the set of employee entities who work for that department.

The value set of this Employees attribute is the power set of the EMPLOYEE entity
set. Either of these two attnbutes—Department of EMPLOYEE or Employees of
DEPARTMENT—can represent the WORKS_FOR relationship type, if both are
represented, they are constrained to be inverses of each other.

Role Names and Recursive Relationships

Each entity type that participates in a relatlonshlp type plays a particular role in the
relationship. The role name signifies the role that a participating entity from the entity
type plays in each relationship instance, and helps to explain what the relationship
- means. For example, in the WORKS_FOR relationship type, EMPLOYEE plays the

role of employee or worker and DEPARTMENT plays the role of department or

employer.

Role names are not technically necessary in relationship types where all the
participating entity types are distinct, since each participating entity type name ‘can
. be used as the role name, However, in some cases the same entity type participates
more than ‘'once in a relationship type in different roles. In such cases the role name
becomes essential for distinguishing the meaning of each participation. Such
relationship types are called recursive relationships.

Database Concepts

* NOTES

Self Instructional Material 21

Database Systems

NOTES

22 Self Instructional Material

FOREIGN KEY

Refer to page 4 of the chapter.

SUMMARY

13.

14.
15.
16.

* independence is called data abstraction.
17.
18.
19.
20.
21.
22.
23,
24,

25.

Amy collection of related information grouped together as a single item is a database.

2. Database uses the table format of rows and columns fo store the information.
. Fields can contain any type of information, as long as each field always contains the same

type of information. _
A database is a logically coherent collection of data with some inherent meaning,
A database may be generated and maintained manually or it may be computerized.

A DataBase Management System {(DBMS) is a collection of programs that enables users
10 create and maintain a database.

. Manipulating a database includes such functions as querying the database to retrieve

specific data, updating the database to reflect changes in the miniworld, and generating
reports from the data.

Information from the database, stored in the form of a computerized filling system, can be
stored and retrieved quite easily.

. Manual database systems are usually not fool-proof.
10.
11.
12.

A manual database can also be tedious to modify.
A computerized database is flexible.

In the database approach, a single system of data is maintained that is deﬁned once and
then is accessed by various users.

A fundamental characteristic of the database approach is that the database system contains
not only the database itself but also a complete definition or description of the database
structure and constraints.

The DBMS software must work equally well with any number of database applications.
DBMS access programs do not require such changes in most cases. .
The characteristic that allows program-data independence and program-operation

<+

In the database approach, the detailed structure and organization of each file are stored in
the catalog. '

In object-oriented and object-relational databases; the abstraction process includes not
only the data structure but also the operations on'the data,

A view may be a subset of the database or it may.contain virtual data that is derived from
the database files but is not explicitly stored.

A multiuser DBMS, as its name u-nphes must allow mulnple users to access the database
at the same time.

A transaction is an executing program oOr process that includes one or more database
accesses, such as reading or updating of database records.

In traditional software development utilizing file processing, every user group maintains
its own files for handling its data-pricing applications.

DBMS should have the capability to control. this redundancy so as to prohibit
inconsistencies among the files.

‘When multiple users share a large database, it is likely that most users will not be authonzed
to access all information in the database.

Databases can be used to provide persistent storage for program objects and data structures.

26.

.27:

28.

29.

30.

31.
32,
33.

34.

35.

36.

‘for choosing appropriate structures to represent and store this data.

"These persons are typically called “workers behind the scene,”

Traditional database systems often suffered from the so called impedance mismatch
problem. '

In spite of the advantages of using a DBMS, there are a few situations in which such a
system may involve unnecessary overhead costs that wouldnot be mcurred in traditional
file processing, .

Many persons are involved in the design, use, and maintenance of a large database with
hundreds of users.
Database designers are responsible for identifying the data to be stored in the database and

End users are the people whose jobs require access to the database for querying, updating,
and generating reports,

Naive end users need to learn very little about file facilities provided by the DBMS.
Casual users learn only a few facilities that they may use repeatedly.

Sophisticated users try to leam most of the DBMS facilities in order to achieve their
complex requirements. :

System analysts determine the requirements of end users, especially naive and parametric
end users, and develop specifications for canned transactions that meet these requirements.
‘DBMS system desighers and implementers are persons who design and implement the
DBMS modules and interfaces as a software package.

In addition to those who design, use, and administer a database, others are associated with
the design, development, and operation of the DBMS software and system environment.

N

e B e N S B

SELF ASSESSMENT QUESTIONS

Which is RDBMS?

‘Write a short note on Database Approach,

What do you understand by Multiple Views of the database?

What is meant by sharing of Data and Multiuser Transaction Processing?
What are the advantages of using RDBMS?

Who is Database Administrator?

‘What work is performed by Database Designers? ' .
Who are Application Programmers?

Multiplefhbice Questions '

. A system where you deal with more than one databases, whlch are linked to each other is -

called :

(a) Relational Database System
(b) Database System

(c) Database

. Data is information : . .
(a) raw / (b) polished () computer output -
. Data administrator grants you the permission to use database :

(a) True ' (b) False

A database is a collection of data :

(@) meaningful (b) not required data (¢) programs
Data in the database canbe : . L '
(a) retrieved (b} updated (¢) both

. The characteristic_that allows program -data mdependence and program-operation

independence is called ~
(@) data administration (b) database (c) dataabstraction

- Database Concepts

NOTES

Self Instrucrional Material 23

Da.tabase Systems

NOTES

24 Self Instructional Material

10.

i ol B A U ol e

- 10.

. Inthe database approach, the detailed structure and organization of each file are stored in

the :
(&) box : (b) catalog (c) magazine
. Traditional database systems often suffered from the so called impedance problem:
{a) mismatch ' - (b) match . - () nomatch
_are the people whose jobs require access to the database :
(@ System Analysts (b) Endusers ° (¢) Programmers
determine the iequirements of end users :
(@) Programmers . {b) Users (c) System Analysts

True/False Questions - _
Database uses the table format of rows and columns to store the information.
A database-is a logically coherent collection of data without some inherent meaning,.
A database may be generated and maintained manually or it may be computerized.
Manual database syétems are usually fool-proof,
A manual database can also be tedious to modify.
A computerized database is not flexible.
The DBMS software must work equally well with any number of database applications.
DBMS access programs do not require such changes in most cases.

A multiuser DBMS, as its name implies, must allow multiple users to access the database at
the same time.

DBMS should have the capability to contro] the redundancy so asto prohibit inconsistencies

" among the files.

il.

12.
13.

Databases cannot be used to pr0v1de persistent storage for program objects and data
structures. p

Traditional database systems often suffered from the so called impedance mismatch problem.

Many persons are involved in the design, use, and maintenance of a large database with
hundreds of users.

. Naive end users need to learn very littie about file facilities pr0v1dcd by the DBMS

Casual users learn only a few facilities that they may use repeatedly. -

Sophisticated users try to learn most of the DBMS facilities in order to achwve their
complex requirements. :

DBMS system designers and 1mplementers are persons who design and 1rnplement the
DBMS modules and interfaces as a software package,

Short Questions with Answers “d
What is a database? '
Any collection of related information groupeci together as a single item 1s a database.
What are rows and columns of the database called?
Rowsina da.tabase table are called records, and columns are called ficlds. _
What are the advantages of using the database?

Following are the advantages of using the database: A computerized database provides
speed; finding-'a phone number from among a thousand entries or putting the file in
alphabetical order takes just seconds with the database management system; A computerized
database is compact; a database with thousands of records can be stored on a single floppy
CD and; A computerized database is flexible; it has the ability to examine information
from a number of angles, so you can search for a phone number by name, by address orby
pin code and then name, . ;

F .

F o

F o

F o

co

10.

11.

‘What is data abstraction?

The characteristic that allows program-data 1ndependence and program- 0perat10n
independence is called data abstraction.

‘What is multiuser database systcm?

A muttiuser DBMS, as its name 1mphes must allow multiple users to access the database at
the same time. This is essential if the data for multiple applications is to be Integrated and

maintained in a single database. The DBMS must include concurrency control software to

ensure that several users trying to update the same data can do so in a controlled manner and
the result of the updates is correct.

How secure is the database?

A DBMS should provide a security and authonzanon subsystem, which the DBA uses to
create accounts and to specify account restrictions.

‘What are the main disadvantages of using RDBMS?

Disadvantages of using RDBMS are: High initial investment in hardware, software, and
training; The generality that a DBMS provides for defining and processing data; Overhead
for providing security, concurrency control, recovery, and integrity; and Additional
problems may arise if the database designers and DBA do not properly design the database
or if the database systems applications are not implemented properly.

‘Who are Database designers? '

Database designers are reSponsiblé for identifying the data to be stored in the database and
for choosing appropriate structures to represent and store this data. Where tasks are mostly
undertaken before the database is actually implemented and populated with data, it is the

- responsibility of database designers to communicate with all prospective database users in

order to understand their requirements, and to come up with a design that meets these
requirements. ' :

Who are end users7

There are several categories of end users: Casual end users occasionally access the databasc
but they may need different information each time, They use a sophisticated database query
language to specify their requests and are typically middle or high-level managers or other
occasional browsers. Naive or parametric end users make up a sizable portion of database

. end users. Their main job function revolves around constantly querying and updating the

database, using standard types of queries and updates—calléd canned transactions—that
have been carefully programmed and tested. The tasks that such users perform are varied:
Bank tellers check account balances and post withdrawals and deposits and Reservation

-clerks for airlines, hotels, and car rental companies check availability for a given rcquest '

and make reservations.

Whao are system analysts?. . _ -

System analysts determine the requirements of end users, especially naive anid parametric .

end users, and develop specifications for canned transactions that meet these requirements.
Application programmers implement these specifications as programs; then they test, debug,
document, and maintain these canned transactions. Such analysts and programmers—
commonly referred to as software engineers should be familiar with the full range of
capabilities provided by the DBMS to accomplish their tasks.

Who are the workers behmd the scene?

‘Workers behind the scene are: DBMS system designers and implementers are persons who
design and implement the DBMS modules and interfaces as a software package. A DBMS
1s a very complex software system that consists of many components, or modules, including
modules for implementing the catalog, processing query language, processing the interface,

Database Concepts

NOTES

Self Instructional Material- 2§ -

Database Systems

NOTES

26 Seif Instructional Marterial

12.

accessing and buffering data, controlling concurrency, and handling data recovery and
security. The DBMS must interface with other system software, such as the operating
system and compilers for various programming languages. Tool developers include persons
who design and implement tools—the software packages that facilitate database system
design and use and that help improve perforrance. Tools are optional packages that are
often purchased separately. They include packages for database design, performance
monitoring, natural language or graphical interfaces, prototyping, simulation, and test data -
generation, In many cases, independent software vendors develop and market these tools. -
Operators and maintenance personnel are the system admiinistration personnel who are

* responsible for the actual running and maintenance of the hardware and software environment

for the database system.
Who is database administrator?

The DataBase Administrator (DBA) is responsible for authorizing access to the database, .
for coordinating and monitoring its use, and for acquiring software and hardware resources
asneeded. The DBA is accountable for problems such as breach of security or poor system
response time. In large organizations, the DBA is assisted by a staff that helps carry out
these functions. ' :

ANSWERS

Multiple Choice Questions .) .
1. a 2. a 3. a) 4.
5. ¢ 6. ¢ 7. b 8. a
9. b , 100 ¢

True False Questions
1. T 2. F 3.T 4. F
5.T 6. F 7. T 8. T
9. T 10.-T 11. F 12. T
13. T 4. T 15. T 16. T
17. T '

CHAPTER 2

DATABASE DEVELOPMENT

‘ ~ LeEarnING OBUECTIVES |

After going through this chapter, you should appreciate the following:
* Development Process
* Modeling & Database Design
* Planning' . - °
e Analysis '
» Design and Implementation
» E-R'Methods and Diagrams * - .
* Attributes '.
* Relationship
* Logical Database Design
+ Normalization
* First Normal Form
» Second Normal Form
». Third Normal Form
* BCNF
* Translating E-R Diagrams to Relations
* Physical Database Design '
* Relational Algebra & SQL Relational Databse Commands

* Data types
* Create Table
* Drop Table
* AlterTable

s “Insertinto

¢ Delete From

* Update

* General Query Syntax (Select)

-« Create View

* Drop View _
» Set Operators - Union, Intersect, Minus
. Functions_ J

¢ Group Functions ’
» _Join

* Sub queries.

Database Systems

‘ " NOTES

28 +Self Instructional Material

DEVELOPMENT PROCESS

_The process of doing database desigr. generally’ conmsts of a number of steps which

will be carried out by the database designer. Not all of these steps will be necessary in
all cases. Usually, the designer must:

» Determine the data-to be stored in the database
* Determine the rélationships between the different data elements

. Superimpose a logical structare upon the data on the basis of these
relationships.

Within the relational model the final step can generally be broken down into two '

1 . further steps, that of determining the grouping of information within the system,

generally determining what are the basic objects about which information is being
stoted, and then determining the relationships between these groups of information,
or objects. This step is not necessary- with an Object database.

‘The tree structure .of data may enforce a hierarchical model organization, with a

parent-chiid relationship table. An Object database will simply use a one-to-many
relationship between instances of an object class. It also introduces the concept of a
hierarchical relatlonshlp between object classes, termed mhentance

MODELING

In computer science, data modeling is the process of creating a data model by applying
a data model theory to create a data model instance. A data model theory is a formal

~ data model description. See database model for a list of current data model theories.

Managing large quantities of structured and unstructured data is a primary function
of information systems. Data models describe structured data for storage in data
management systems such as relational databases. They typically do not describe
unstructured data, such as word processmg documents, email rnessages pictures,
digital audio, and video.

“Types of Data Model

A data model instance may be one of three kinds (according to ANSI in 1975[1]):

1. A conceptual schema {(data model) describes the semantics of a domain,
being the scope of the model. For example, it may be a model of the interest
area of an organization or industry. This consists of entity classes (representing
kinds of things of significance in the domain) and relationships (assertions
about associations between pairs of entity classes). A conceptual schema
specifies the kinds of facts or propositions that can be expressed using the
model. In that sense, it defines the allowed expressions in an artificial 'language'
with a scope that is limited by the scope of the model.

2. A logical schema (data model) describes the semantics, as represented by a
particular data manipulation technology. This consists of descriptions of tables
and columns, object oriented classes, and XML tags, among other things.

3. A phyéical schema (data model) describes the physical means by which data |
are stored. This is concerned with partitions, CPUs, tablespaces, and the like.

The significance of this approach, according to ANSI, is that it allows the three
perspectives to be relatively independent of each other. Storage technology can change
without affecting either the logical or the conceptual model. The table/column
structure can changé without (necessarily) affecting the conceptual model. In each
case, of course, the structures must remain consistent with the other model. The
table/column structure may be different from a direct translation of the entity classes
and attributes, but it must ultimately carry out the objectives of the conceptual entity
class structure. Early phases of many software.development projects emphasize the

-demgn of a conceptual data model. Such a design can be detailed into a logical data |’

model. In later stages, this model may be translated into physical data model. However,
it is also possible to implement a conceptual model directly.

A contextual data model (list) identifies enrity classes (representing things of
significance to the organization).

Conceptual Schema

A conceptual data model (semantics) defines the meaning of the things in an
organization. This consists relatlonshxps (assertions about associations between palrs
of entity classes).

Logical Schema

Logical schema |logical data model (schema) describes the logic representation of
the properties without regard to a particular data manipulation technology. This consists
of descriptions of the attributes (role a data element plays in relation to the thing
{entity) it represents.

Physical Schema

Physical schema |physical data model (blueprint) describes the physical means by
which data are stored. This is concerned with partitions, CPUs, tablespaces, and the
like.

A data definition (configuration) This is the actual language codmg of the database
schema in the chosen development platform.

A data instantiation holds the values of properties applied to the data'in the schema.

The significance of this approach is that it allows the six perspectives to be relatively
independent of each other and have different conttibutors, andiences and purposes.
In each case, of course, the structures must remain consistent with the other model
instances although the details change. The table/column structure may be different
from a direct translation of thé entity classes, relationships and attributes, but it must
ultimagely carry out the objectives of the contextual entity class structure and
-conceptual relationship structure, Each perspective a separate and distinct vantage
point of the data: his view is not a methodology but rathér a way- of classifying the
parts, however development projects and software tools often proceed from Contextual
list, to conceptual data model, followed by the Logical schema |logical data model.
In later stages when the data platform is known (whether it be database software or
filing cabinets), this model may be translated into a Physical schema | physical data
model followed by the data definition. When the database actually stores values and
18 operational data manipulation can take place.

Database Development

NOTES

Self Instructional Material 29

Database Systetns

NOTES

30 Seif Instructional Material

Data structure

A data model describes the structure of the data within a given domain and, by
implication, the underlying structure of that domain itself. This means that-a data
model in fact specifies a dedicated grammar for a dedicated artificial language for
that domain.

A data model represents classes of entities (kinds of things) about which a company
wishes to hold information, the attributes of that information, and relationships among

" those entities and (often implicit) relationships among those attributes, The model

describes the organization of the data to some extent irrespective ot’ how data-might
be represented in & computer system.

The entities represented by a data model can be the tangible entities, but models that
include such concrete entity classes tend to change over time. Robust data models
often identify abstractions of such entities. For example, a data model might include
an entity class called "Person”, representing all the people who interact with an
organization. Such an abstract entity cfass is typically more appropriate than ones
called "Vendor" ar "Employee”, which identify specific roles played by those people.

When designing a data model it is useful[citation needed] to make a distinction
between transaction data and reference data, where the transaction data refers to one
or more entities of reference data.

A proper conceptual data model describes the semantics of a subject area. It is a
collection of assertions about the nature of the information that is used by one or
more organizations. Proper entity classes are named with natural language words
instead of technical jargon. Likewise, properly named relationships form concrete
assertions about the subject area.

There are several versions of this. For example, a relationship called "is composed
of” that is defined to operate on entity classes ORDER and LINE ITEM forms the
following concrete assertion definition: Each ORDER "is composed of" one or more
LINE ITEMS.! A more rigorous approach is to force all relationship names to be
prepositions, gerunds, or participles, with verbs being simply “must be” or "may be".
This way, both cardinality and optionality can be handled semantically. This would
mean that the relationship just.cited would read in one direction, "Each ORDER
may be.composed of one or more LINE ITEMS” and in the other "Each LINE
ITEM must be part of one and only one ORDER."

Note that this illustrates that often generic terms, such as 'is composed of, are defined
to be {imited in their use for a relationship between specific kinds of things, such as

"an order and an order line. This constraint is eliminated in the generic data modeling
methodologies.

Generié data model

Generic data models are generalizations of conventional data models. They define
standardised general relation types, together with the kinds of things that may be
related by such a relation type. This is similar to the definition of a natural language.
For example, a generic data model may define relation types such as a 'classification
relation’, being a binary relation between an individual thing and a kind of thing (a
class) and a ‘part-whole relation’, being a binary relation between two things, one with
the role of part, the other with the role of whole, regardless the kind of things that are

related. Given an extensible list of classes, this allows the classification of any
individual thing and to specify part-whole relations for any individual object. By
standardisation of an extensible list of relation types, a generic data model enables
the expression of an unlimited number of kinds of facts and will approach the
capabilities of natural languages. Conventional data models, on the other hand, have
a fixed and limited domain scope, because the instantiation (usage) of such a model
only allows expressions of kinds of facts that are predefined in the model.

Generic data models are developed as an approach to solve some shortcomings of
conventional data models. For example, different modelers usually produce different
conventional data models of the same domain. This can lead to difficulty in bringing
the models of different people together and is an obstacle for data exchange and data
integration. Invariably, however, this difference is attributable to different levels of
abstraction in the models and differences in the kinds of facts that can be instantiated
(the semantic expression capabilities of the models). The modelers need to
communicate and agree on certain elements which are to be rendered more concretely,
in order to make the differences less significant.

There are generic patterns that can be used to advantage for modeling business. These
include entity types for PARTY (with included PERSON and ORGANIZATION),
PRODUCT TYPE, PRODUCT INSTANCE, ACTIVITY TYPE, ACTIVITY
INSTANCE, CONTRACT, GEOGRAPHIC AREA, and SITE. A model which
explicitly includes versions of these entity classes will be both. reasonably robust and
reasonably easy to understand.

More abstract models are suitable for general purpose tools, and consist of variations
on THING and THING TYPE, with all actual data being instances of these. Such
abstract models are on one hand more difficult to manage, since they are not very
expressive of real world things, but on the other hand they have a much wider
applicability, especially if they are accompanied by a standardised dictionary. More
concrete and specific data models will risk having to change as the scope or environment
changes. :

One approach to generic data modeling has the following characteristics:

1. A generic data model shall consist of generic entity types, such as 'individual
thing', 'class’, 'relationship’, and possibly a number of their subtypes. -

2. Every individual thing is an instance of a generic entity called 'individual
~ thing' or one of its.subtypes.

3. Every individual thing is explicitly classified by a kind of thing ('class) using
"an explicit classification relationship.

The classes used for that classification are separately defined as standard instances of
the entity ‘class’ or one of its subtypes, such as 'class of relationship'. These standard
classes are usually called reference data'. This means that domain specific knowledge
is captured in those standard instances and not as entity types. For example, concepts
such as car, wheel, building, ship, and also temperature, length, etc. are standard
instances. But also standard. types of relationship, such as'is composed of and 'is
involved in' can be defined as standard instances. '

This way of modeling allows the addition of standard classes and standard relation
types as data (instances), which makes the data model flexible and prevents data
model changes when the scope of the application changes.

Database Developmen:

NOTES

Self Instructional Material 31

Database Systems

. NOTES

32 Self Instructional Material

A generic data model obeys the following rules:

+ Candidate attributes are treated as representing relationships to other entity
types.

» Entity types are represented, and are named after, the underlyihg nature-of a
thing, not the role it plays in a particular context. Entity types are chosen.

« Entities have a local identifier within a database or éxchange file. These should
be artificial and managed to be unique. Relationships are not used as part of
the local identifier. '

* Activities, relationships and event-effects are represented by entity types (not
- attributes).)

+ Entity types are part of a sub-type/super-type hierarchy of entity types, in
-order to define a universal context for the model. As types of relationships
are also entity types, they are also arranged in a sub-type/super-type hierarchy
of types of relationship. ' '

* Types of relationships are defined on a high (generic) level, being the highest
level where the type of relationship is still valid. For example, a composition
relationship (indicated by the phrase: 'is composed of') is defined as a
relationship between an ‘individual thing' and' another 'individual thing' (and
not just between e.g. an order and an order line). This peneric level means that
the type of relation may in principle be applied between any individual thing
and any other individual thing. Additional constraints are defined in the
'reference data’, being standard instances of relationships between kinds of
things.

Data organization

Another kind of data model describes how to organize data using a database
management system or other data management technology. It describes, for example,
relational tables and columns or object-oriented classes and attributes. Such a data
model is sometimes referred to as the physical data model, but in the original ANSI
three schema architecture, it is called "logical". In that architecture, the physical model
describes the storage media (cylinders, tracks, and tablespaces). Ideally, this model is
derived from the more conceptual data model described above: It may differ, however,
to account for constraints like processing capacity and usage patterns.

While data analysis is a common term for data modeling, the activity actually has
more in common with the ideas and methods of synthesis (inferring general concepts
from particular instances) than it does with analysis (identifying component concepts
from more -general. ones). {Presumably we call ourselves systems analysts because
no one can say systems synthesists.} Data modeling strives to bring the data structures
of interest together into a cohesive, inseparable, whole by eliminating unnecessary
data redundancies and by relating data structures with relationships.

A different approach is through the use of adaptive systems such as artificial neural
networks that can autonomously create implicit models of data.

DATABASE DESIGN

Database design is the process of producing a detailed data model of a database. This

logical data model contains all the needed logical and physical design choices and
physical storage parameters needed to generate a design in a Data Definition Language,
which can then be used to create a database. A fully attributed data model contains
detailed attributes for each entity.

The term database design can be used to describe many different parts of the design

of an overall database system. Principally, and most correctly, it can be thought of as

the logical design of the base data structures used to store the data. In the relational

model these are the tables and views. In an Object database the entities and
relationships map directly to object classes and named relationships. However, the
term database design could also be used to apply to the overall process of designing,
not just the base data structures, but also the forms and queries used as part of the
overall database application within the Database Management System or DBMS.

Design process

This was discussed in the first paragraph of the chapter.

Determining data to be stored

In a majority of cases, the person who is doing the design of a database is a person
with expertise in the area of database design, rather than expertise in the domain
from which the data to be stored is drawn e.g. financial information, biological
information etc. Therefore the data to be stored in'the database must be determined

in cooperation with a person who does have expertise in that domain, and who is

aware of what data must be stored within the system.

This process is one which is generally considered part of requirements analysis, and
requires skill on the part of the database designer to elicit the needed information
from those with the domain knowledge. This is because those with the necessary

domain knowledge frequently cannot express clearly what their system requirements -

for the database are as they are unaccustomed to thinking in terms of the discrete
data elements which must be stored. Data tn be stored can be determined. by
Requirement Specification.

Conceptual schema

Once a database designer’is aware of the data which is to be stored within the database,
they must then determine how the various pieces of that data relate to one another.
When performing this step, the designer 1s generally looking out for the dependencies
in the data, where one piece of information is dependent upon another, i.e., when one
piece of information changes, the other will also. For example, in a list of names and
addresses, assuming the normal situation where two people can have the same address,
but one person cannot have two addresses, the name is dependent upon the address,
because if the address is different then the associated name is different too. However,
the inverse is not necessarily true, i.e, when the name changes address may be the
. same.

A common misconception is that the relational model is so called because of the
stating of relationships between data elements therein. This is not true. The relational
model is so named such because it is based upon the mathematical structures known
as relations.

Database Development

NOTES

Se{f Instructional Material 33

Database Systems

NOTES

34 Self Instructional Material

Logically structuring data

Once the relationships and dependencies amongst the various pieces of information
have been determined, it is possible to arrange the data into a logical structure which
can then be mapped into the storage objects supported by the database management
system. In the case of relational databases the storage objects are tables which store
data in rows and columns. o

Each table may represent an implementation of either a logical object or a relationship
Joining one or more instances of one or more logical objects. Relationships between
tables may then be stored as links connecting child tables with parents. Since complex
logical relationships are themselves.tables they will probably have links to more than
one parent.

In an Object database the storage objects correspond directly to the objects used by
the Object-oriented programming language used to write the applications that will
manage and access the data. The relationships may be defined as attributes of the
object classes involved.or as methods that operate on the object classes.

* Physical database design

The physical design of the database specifies the physical configuration of the database
on the storage media. This includes detailed specification of data elements, data
types, indexinig options, and other parameters residing in the DBMS data dictionary.

PLANNING

Planning, in organizations and public policy is both the organizational process of
creating and maintaining a plan; and the psychological process of thinking about the
activities required to create a desired future on some scale. As such, it is a fundamental
property of intelligent behavior. This thought process is essential to the creation and
refinement of a plan, or integration of it with other plans, that is, it combines forecasting
of developments with the preparation of scenarios of how to react to them.

The term is also used to describe the formal procedures used in such an endeavor,
such as the creation of documents, diagrams, or meetings to discuss the important

"issues to be addressed, the objectives to be met,.and the strategy to be followed.

Beyond this, planning has a different meaning depending on the political or economic
context in which it is used. -

Two attitudes to planning need to be held in tension: on the one hand we need to be
prepared for what may lie ahead, which may mean contingencies and flexible
processes. On the other hand, our future is shaped by consequences of our own
planning and actions.

What should a plan be?

A plan should be a realistic view of the expectations. Depending upon the'activities,
a plan can be long range, intermediate range or short range. It is the framework within
which it must operate. For management seeking external support, the plan is the
most important document and key to growth. Preparation of a comprehensive plan
will not guarantee success, but lack of a sound plan wﬂl almost certamly ensure
failure. -

- Purpose of Plan

Just as no two organizations are alike, so also their plans, It is therefore important to
prepare a plan keeping in view the necessities of the enterprise. A plan is an important
aspect of business. It serves the following three critical functions: Helps management
to clarify, focus, and research their business's or project’s development and prospects.
Provides a consi“cred and logical framework within which a business can develop
and pursue business strategies over the next three to five years. Offers a benchmark
agamst which actual performance can be measured and reviewed.

Importance of the planning Process

A plan can play a vital role in helping to avoid mistakes or recognize hidden
opportunities. Preparing a satisfactory plan of the organization is essential. The
planning process enables management to understarid more clearly what they waant to
achieve, and how and when they can do it

A well-prepared business plan demonstrates that the managers know the business
and that they have thought through its development in terms of products, management
finances, and most importantly, markets and competition.

Planning helps in forecasting the future, makes the future visible to some extent. It
bridges between where we are and where we want to go. Planning is looking ahead.

~ ANALYSIS

The Analysis phase performs-three tasks:
1. It determines the point in the log at which to start the Redo pass.
2. It determines pages in the buffer pool that were dirty at the time of the crash.

3. It identifies transactions that were active at the time of the crash and must be
undone.

Analysis begin by examining the most recent begin_checking log record and initializing
the dirty page table and transaction table to the copies of those structures in the next
end_checkpoint record. Thus, these tables are initialized to the set of dirty pages and
active transactions at the time of the checkpoint.

Analysis then scans the log in the forward direction until it reaches the end of the log.

* If an end log record for a transaction T is encountered, T is removed from the
transaction table because it is no longer active. -

+ If a log record other than an end record for a transaction T is encountered, an
entry for T is added to the transaction table if it is not already there, Further,
the entry for T is modifiéd.

1. The lastLSN field is set to the LSN of this log record.

2. I the log record is a commit record, the status is set 1o C, otherwise it is set

> toU (mdu:atmg that it is to be undone).

+ Ifa redoable log record affecting page P is encountered, and P is not in the
dirty page table, an entry is inserted into this table with page id P and recLSN
equal to the LSN of this reloadable log record. This LSN identifies the oldest
change affecting page P that may not have been written to the disk.

Database Development

NOTES

Self Instructional Material 35

Database Systems

NOTES

36 Self Instructional Material

0g

3
:

At the the end of the Analysis phase, the transaction table contains an accurate list

. of all transactions that werc active at the time of the crash—this is the set of

transactions with status U. The dirty page table includes all pages that were dirty at-
the time of the crash but may also contain some pages that were written to disk. If an
end_write log record were written at the completion of each write operation, the
dirty page table constructed during Analysis could be made more accurate.

DESIGN AND IMPLEMENTATION

For this refer to Database Design refere to earlier pages of the chapter.

E-R METHODS AND DIAGRAMS

An cntity-relationship (ER) diagram is a specialized graphic that illustrates the
interrelationships between entities in a database, ER diagrams often use symbols to
represent three different types of information. Boxes are commonly used to represent
entities. Diamorids are normally used to represent relationships and ovals are used to
represent attributes.) '

An Enfitf-Rclationship Model (ERM) in software engineering is an abstract and
conceptual representation of data. Entity-relationship modeling'is a relational schema

@

{

{

!

L

¢

T

0y

database modeling method, used to produce a type of conceptual schema or semantic
data modecl of a system, often a relational database, and its requirements in 2 top-
down fashion.

"Diagrams created -using this process are called entity-relationship diagrams, or ER
diagrams or ERDs for shont.

Overview

The fitst stage of information system design uses these models during the requirements
analysis to describe information needs or the type of information that is to be stored
in a database. The data modeling technique can be used to describe any ontology (i.e.
. an overview and classifications of used terms and their relationships) for a certain
universe of discourse (i.c. area of interest). In the case of the design of an information
system that is based on a database, the conceptual data model is, at a later stage
(usually cailed logical design), mapped to a logical data model, such as the relational
" model; this in turn is mapped to a physical model during physical design. Note that
sometimes, both of these phases are referred to as “physical design”.

There are a number of conventions for entity-relationship diagrams (ERDs). The
classical notation is described in the remainder of this article, and mainly relates to
conceptual modeling. There are a range of notations more typically employed in
logical and physical database design, such as IDEF1IX.

»

Connection

An cntity may be defined as a thing which is recognized as being capable of an
independent existence and which can be uniquely identified. An entity is an abstraction
from the complexities of some
domain. When we speak of an
entity we normally speak of some artist | song
aspect of the real world which can .
be distinguished from other aspects
of the real world. :

Two refated entties

An entity may be a physical object such as a house or a car; an event such as a house
sale or a car service, or a concept such as a L.

customer transactton or order. Although the term
entity is the one most commonly used, following
Chen we should really distinguish between an An ently with an attribute

entity and an entity-type. An entity-type is a

category. An entity, strictly’ speakmg, is an instance of a given entity-type. There are
usually many instances of an entity-type. Because .

the term entity-type is somewhat cumbersome, /

most people tend to use the term entity as a @

synonym for this term.

employee SSN

Entities can be thought of as nouns. Examples: a - A retonsh wih an attribute

computer, an employee, a song, a mathematical
theorem. Entities are represented as rectangles.

A relationship captures how two or more entities are related to

one another. Relationships can be thought of as verbs, linking o
two or more nouns. Examples: an owns relationship between a Primeny key

Database Development

NOTES

Self Instructional Material 37

Database Systems

NOTES

38 Self Instructional Material

company and a computer, a supervises relationship between an employee and a
department, a performs relationship between an artist and a song, a proved relationship
between a mathematician and a theorem. Relationships are represented as diamonds,
connected by lines to each of the entities in the relationship.

Entities and relationships can both have attributes. Examples: an employee entity
might have a Social Security Number (SSN) attribute; the proved relationship may
have a date attribute. Attributes are represented as ellipses connected to their owning
entity sets by a line.

Every entity (unless it is a weak entity) must have a minimal set of uniquely identifying
attributes, which is called the entity’s primary key.

Entity-relationship diagrams don’t show single entities or single instances of relations.
Rather, they show entity sets and relationship sets.-Example: a particular song is an .
entity. The collection of all songs in a database is an entity set. The eaten relationship
between a child and her lunch is a single relationship. The set of all such chiid-lunch
relationships in a datdbase is a relationship set.

Lines are drawn between entity sets and the relationship sets they are involved in. If
all entities in an entity set must participate in the relationship set, a thick or double
line is drawn. This is called a participation constraint. If each entity of the entity set
can participate in at most one relationship in the relationship set, an arrow is drawn
from the entity set to the relationship set. This is called a key constraint. To indicate
that each entity in the entity set is involved in exactly one relationship, a thick arrow
is drawn.

ER diagramming tools.

There are many ER diagramming tools. Some of the proprietary ER diagramming
tools are Avolution, ConceptDraw, ER/Studio, ERwin, DeZign for Databases, MEGA
International, OmniGraffle, Oracle Designer, PowerDesigner, Rational Rose,
SmartDraw, Sparx Enterprise Architect, SQLyog, Toad Data Modeler, Microsoft Visio,
and Visual Paradigm. A freeware ER tool that can generate database and application
layer code (webservices) is the RISE Editor.

Some free software ER diagramming tools that can interpret and generate ER models,
SQL and do database analysis are StarUML, MySQL Workbench, and SchemaSpy.
Some free software diagram tools which can’t create ER diagrams but just draw the
shapes without having-any knowledge of what they mean or generating SQL are
Kivio, Dia. Although DIA diagrams can be translated with tedia2sql.

E-R Diagram Example
Example 1

A publishing company produces scientific books on vartous subjects. The books are
written by authors who specialize in one particular subject. The company employs
editors who, not necessarily being specialists in a particular area, each take sole
responsibility for editing one or more publications. A publication covers essentially
one of the specialist subjects and is normally written by a single author. When writing
a particular book, each author works with on editor, but may submit another work for
publication to be supervised by other editors. To improve their competitiveness, the
company tries to employ a variety of authors, more than one author being a specialist
in a particular subject.

Example 2

A General Hospital consists of a number of specialized wards (such as Maternity,
Paediatry, Oncology, etc). Each ward hosts a number of patients, who were admitted
on the recommendation of their own GP and confirmed by a consultant employed
by the Hospltal

On admission, the personal details of every patient are recorded. A separate register -

1s to be held to store the information of the tests undertaken and the results of a
prescribed treatment, A number of tests may be conducted for each patient. Each
patient is assigned to one leading consuitant but may be examined by another doctor,
if required. Doctors are specialists in some branch of medicine and may be leading
consultants for a number of patients, not necessarily from the same ward. |

Example 3

A database is to be designed for a Car Rental Co. (CRC) The mforma‘uon required
includes a description of cars, subcontractors (i. e. garages), company expenditures,
company revenues and customers. Cars are to be described by such data as: make,
‘model, year of production, engine size, fuel type, number of passengers, registration
number, purchase price, purchase date, rent price and insurance details. It is the
company policy not to keep any car for a period exceeding one year.

All major repatrs and maintenance are done by subcontractors (i.e. franchised garages),
with whom CRC has long-term agreements. Therefore the data about garages to be
kept in the database includes garage names, addressees, range of services and the like.
Some garages require payments immediately after a repair has been made; with others
CRC has made arrangements for credit facilities. Company expenditures are to be
registered for all outgoings connected with purchases, repairs, maintenance, insurance
etc. Similarly the cash inflow coming from all sources - car hire, car sales, insurance

claims - must be kept of file. .

* CRC maintains a reasonably stable client base. For this privileged category of customers -

special credit card facilities are provided. These customers may also book in advance
a particular car. These reservations can be made for any period of time up to one

month.

Casual customers must pay a deposit for an estimated time of rental, unless they
wish to pay by credit card. All major credit cards care accepted. Personal details
(such as name, address, telephone number, driving licence, number) about each
customer are kept in the database. '

A Y

Example 4

A database is to be designed for a college to monitor students’ progress throughout
their course of study. The students are reading for a degree (such as BA, BA(Hons)
MSc, etc) within the framework of the modular system. The college provides a number
of module, each being characterised by its code , title, credit value, module leader,
teaching staff and the department they come from. :

A module is co-ordinated by a module leader who shares teaching duties with one or
more lecturers. A lecturer may teach (and be a module leader for) more than one
module. Students are free to choose any module-they wish but the following rules
must be observed: some modules require pre-requisites modules and some degree
programmes have compulsory modules. The database is also to contain some

Database Development

NOTES

Self Instructional Material 39

Database Systems

NOTES _

40 Self Instructional Material

information about students including their numbers, names, addresses, degrees they
read for, and their past performance (i.e. modules taken and examination results).

Example 5

_h A relational database is to be designed for a medium -sized Company dealing with

industrial applications of computers. The Company delivers various products to its
customers ranging from a single application program through to complete installation
of hardware with customized software. The Company employs various experts,
consultants and supporting staff. All personnel are employed on long-term basis, i.e.
there are no short-term or temporary staff.

Although the Company s somehow structured for administrative purposes (that is, it
is divided into departments headed by department managers) all projects are carried
out in an inter-disciplinary way. For each project a project teamn is selected, grouping
employees from different departments, and a Project Manager (also an employee of
the Company) is appointed who is entirely and exclusively responsible for the control
of the project, quite independently of the Company’s hierarchy. The following is a
brief statement-of some facts and policies adopted by .the Company.

There are a variety of methods by which data is merged onto a network, a concept
referred to as the media access method. The media access method used depends on '
the way in which a particular technology such as Ethernet or Toker Ring
communicates. This section will.look at the three most popular methods — contention-
based, token passing, and polling.

Contention

Contention-based media access describes a way of getting data on to the network
whereby systems ‘contend for’ or share the media. On a contention-based network,
systems can only transmit when the media is free and clear of signals. In this way,
devices listen to the media, and if no other system is transmitting, they can go ahead .
and send data. In cases where more than one system finds the network free and

. attempts to transmit, a data coilision will occur, and systems will need to retransmit.

On-busy networks, the number of collisions can quickly get very high, adversely
affecting performance. Remember that in this scenario, only a single system truly has
access to the media at any given time, even though multiple systems may have data
to send. '

The best example of a contention-based network technology is Ethernet, which uses
a scheme called Carrier Sense Multiple Access with Collision Detection (CSMA/
CD). The fact that Ethernet is contention-based is a reason why many people thought
that the technology would never be a good solution for large -networks. As time

- passed, different techniques were developed to provide a way for contention-based

networks to scale to larger sizes. A great example is the use of switches to segment a
network, thus significantly reducing (or even eliminating) collisions.

Token Passing

| ' . .
A more orderly scheme for moving data between network systems is found when
token passing is used. In token-passing media access environments, a special frame
referred to as a token repeatedly circles the network, passed from system to system.
If a-system has control of the token, it can transmit data. If.it doesn’t, it must wait
for the token to become available again.

While this might sound like a very slow way to go about passing data, it's important
to understand that the token moves around the network at incredibly high speeds.
Understand also that because this method isn't contention based, there won’t be any
collisions, further increasing performance

Examples of technologies that use token-passing .media access include Token Ring
and Fiber Distributed Data Interface (FDDI), both of which will be descrlbed in
detail later in this chapter.

Polling

While contention and token-passing methods are by far the most popular ways in
which PCs'access LAN media, some technologies rely on a technique calted polling.
Polling is 2 deterministic way of allowing systems access to the network while also
avoiding collisions. When used, a device referred to as the master polls systems to
see if they have data to transmit. :

In this way, polling is similar to token passing, except that the central dévice controls
. the order in which systems are contacted. The downside of polling is that when the
master device fails, the network fails. Most popular in mainframe and minicomputer
environments, polling is a technique used in protocols such as Synchronous Data
Link Control (SDLC).

" The entity-relationship data model (E R Model) grew out of exercise of using
commercially available DBMSs to model application databases. Earlier commercial
systems were based on the hierarchical and network approach. The entity-relationship
model is a generalization of these models. It allows the representation of explicit
constraints as well as relationships.

Even though the E-R model has some means of describing the physical database
model, it is basically useful in the design and communication of the logical datdbase

model. In this model, objects of similar structures are collected into an entity set. -

The relationship between entity sets is represented by a named E-R relationship and
is 1:1, 1:M and M:N, mapping from one entity set to another. The database structure
employing the E-R model is usually shown using the entity-relationship (E-R) diagrams.

Conceptual modeling is a very important phase ‘in designing a successful database
application. Generally, the term database application refers to a particular database
and the associated programs that implement the database queries and updates. For
example, a BANK database application that keeps track of customer accounts would
include programs that implement database updates corresponding to customers
making deposits and withdrawals. .

These programs provide user-friendly graphical.user interfaces (GUIs) utilizing forms
and menus for the end users of the application—the bank tellers, in this example.
Hence, part of the database application will require the design, implementation, and
testing of these application programs. Traditionally, the design and testing of
application programs has been considered to be more in the realm of the software
engineering dornam than in the database domain. -

As database design methodologies include more of the concepts for specifying
operations on database objects, and as software engineering methodologies specify in
more detall the structure of the databases that software programs will use and access,
it is clear that these activities are strongly related.

Database Development

NOTES -

Self Instructional Material 41

Database Systems -

NOTES

42 Self Instructional Material -

. ATTRIBUTES AND ENTETIES

deitionaﬂy,‘the design and testing of application programs has been
considered to be more in the realm of the software engineering domain than in
the database domain.

-

The basic object that the ER model represents is an entity, which is a “thing” in the
real world with an independent existence. An entity may be an object with a physical
existence (for example, a particular person, car, house, or employee) or it may be an
object with a conceptual existence (for example, 2 company, a job, or-a university
course). Each entity has attributes—the particular properties that describes it. For
example, an employee entity may be described by the employee’s name, age, address,
salary, and job. A particular entity will have a value for each of its attributes. The -
attribute values that describe each entity become a major part of the data stored in

- the database. -

Each entity has attributes—the particular properties that describes it.

The following figure shows two entitiés and the values of their attributes. The employee
entity e, has four attributes: Name, Address, Age, and HomePhone; their values are
“Sachm ? “Mumbai,” “34,” and “022-7817854,” respectively. The company entity
¢, has three attributes:" Name,” Headquarters, and President; their values are “IMG ”

“Mumbal ” and “Sunil,” reSpectlvely '

Name: Sachin Name: IMG .
Address: Mumbai ' Headqﬁartere: Mumbai
Age: 34 . President: Sunil

HomePhone: 022-7817854

Several types of attributes occur in the ER model: simple versus composite, single-
valued versus multivalued, and stored versus derived. Let us first define these attribute
types and illustrate their use via examples. We will then introduce the concept of a
nuil value for an attribute. ’ ‘

Composite versus Simple (Atomic) Attributes

Composite attributes can be divided into smaller subparts, which represent more
basic attributes with independent meanings. For example, the Address attribute of .
the employee entity shown in the following figure, can be subdivided into
StreetAddress, City, State, and Pin, with the values “2396 Dalal Street,” “Mumbai,”
“Maharashtra,” and “400001.” Attributes that are not divisible are called simple or
atomic attributes.

Composite attributes can form a hierarchy; for example, StreetAddress can be further
subdivided into three simple attributes: Number, Street, and ApartmentNumber, in

the figure shown. The value of a composite attribute is the concatenation of tile
values of its constituent simple attributes.

Ad-dress'

StreetAddress - City’ State Pin

Number " Street ApartmentNumber

Composite attributes are useful to model situations in which a user sometimes refers
to the composite attribute as a unit but at other times refers specifically to its
components If the composite attribute is referenced only as a whole, there is no
need to subdivide it into component attributes. For example, if there is no need to
refer to the individual components of an address (pin code, street, and so on), then
the whole address can be designated as a simple attribute.

Single-‘Valued versus Multivalued Attributes

Most attributes have a single value for a particular entity; such attributes are called
single-valued. For example, Age is a single-valued attribute of a person. In some
cases an attribute can have a set of values for the same entity—for example, a Colours
attribute for a car, or a CollegeDegrees attribute for a person. Cars with one colour
have a single value, whereas two-tone cars have two values for Colours.

Similarly, one person may not have a college degree, another person may have one,
—and a third person may have two or ‘'more degrees; therefore, different persons can

mhave different numbers of values for'the CollegeDegrees attribute. Such attributes
—are called multivalued. A multivalued attribute may have lower and upper bounds to.

“onstrain the number of values allowed for each individual entity. For example, the
Colours attribute of a car may have between one and three values, if we assume that
=1 car can have at most three colours, .
. '
A multivalued attribute may have lower and upper bounds to constrain the
number of values allowed for each individual-entity.

witored versus Derived Attributes

n some cases, two (or more) attribute values are related—for example, the Age and

JirthDate attributes of a person. For a particular person entity, the value of Age can

€ determined from the current (today’s) date and the value of that person’s BirthDate.

'he Age attribute 1s hence called a derived attribute and is said to be derivable from
=ne BirthDate attribute, which is called a stored attribute.

ome attribute values can be derived from related entities; for example, an attribute

—umberOfEmployees of a department entity can be derived by countmg the number

Datgbase Development

NOTES

Self Instructional Material 43

Database Systems I

NOTES

44 Self Instructional Material

Null Values

In some cases a particular entity may not have an applicable value for an attribute.
For example, the ApartmentNumber attribute of an address applies only to addresses

" that are in apartment buildings and not to other types of residences, such as single-

family homes. Similarly a CollegeDegrees attribute applies only to persons with college
degrees. For such situations, a special value called null is created.

An address of a single-family home would have null for its ApartmentNumber
attribute, and-a person with no college degree would have null -for CollegeDegrees.
Null can also be used if we do not know the value of an attribute for a particular
entity—for example, if we do not know the home phone of “Sachin”. The meaning
of the former type of null is not applicable, whereas the meaning of the latter 1s
unknown. The “unknown” category of null can be further classified into two cases.

The first case arises when it is known that the attribute value exists but is missing—
for example, if the Height attribute of a person is listed as null. The second case
arises when it is not known whether the attribute value exists—for example if the
HomePhone attribute of a person is null.

Null can also be used if we do not know the value of an attribute for a
: particular entity. '

Complex Attributes

Notice that composite and ‘multivalued attributes can be nested in an arbitrary way.
We can represent arbitrary nesting by grouping components of a composite attribute
between parentheses () and separating the components with commas, and by displaying
multwalued attributes between braces { }. Such attributes are called complex
attributes.

For example if a person can have more than one residence and each residence can
have multiple phones, an attnbute AddressPhone for a person can be specified as
shown below.

‘{AddressPhone({pho’ne(AreaCode,PﬁoneNumber)},
{Address(StreetAddress(Number,Street, ApartmentNumber),
City,State,Zip)) }

RELATIONSHIP

The quest for better data management has led to several different ways of solving the
file system’s critical shortcomings. The resulting theoretical database constructs are

" represented by various database models. A database model is a collection of logica

constructs used to represent the data structure and the data relationships found withir
the database. Database models can be grouped into two categories: conceptual model
and implementation models. - :

- The conceptual model focuses on the logical nature of the data representation. .
Therefore, the conceptual model is concerned with what is represented in
the database, rather than with how it is represented.

/

- In contrast to the conceptual model, an implementation model places the
emphasis on how the data are represented in the database or on how the
data structures are ‘implemented to represent what is modeled.
Implementation models include the hierarchical database model, the network
database model, the relational database model and the object-oriented
database model,

Conceptual models use three types of relationship to describe associations among
data: one-to-many, many-to-many and one-to-one. Database designers usually use
the shorthand notations 1:M, M:N, and 1:1 for them, respectively.

The following examples illustrat¢ the distinctions among the three.
One-to-many relationship

A painter paints many different paintings, but each one of them is painted by oﬁly
that painter. Thus the painter (the “one”) is related to the paintings (the “many”).

Therefore, database designers label the relatlonshlp “PAINTER” paints “PAINTING”

as 1:M. Similarly, a customer account (the “one”) might contain many invoices, but
those invoices (the “many”) are related to only a single customer account: The
“CUSTOMER” generates “INVOICE” relationship would also be labeled 1:M.

Many-to-many relationship

An employee might learn many job skills and each job skill might be learned by
many employees. Database designers label the relationship “EMPLOYEE learns
SKILL” as M:N. Similarly, a student can take many courses and each course can be
taken by many students, thus yielding the M:N relationship label for the retationship
expressed by “STUDENT takes COURSE.”

One-to-one relationship

A retail company’s management structure may require that each one of its stores be

managed by a single employee. In turn, each store manager — who is an employee —

only manages a single store. Therefore, the relationship “EMPLOYEE manages
STORE?” is labeled 1:1. '

Database designers use a conceptual database model as the basis for the database
blueprint.

Because each database model is evolved from its predecessors, we will examine all
the different models briefly in this section. Experience has taught us that you will
gain a better understanding of current database design, implementation and
management issues once you have introduced to the rudiments of each database
model’s conceptual framework. In fact, you will discover that many of the “new”
database concepts and structures bear a remarkable resembles to some of the “old”
database concepts and structures.

Consider the following figure, there are several implicit relationships among the various
entity types. In fact, ‘whenever an attribute of one entity type refers to another entity
type, some relationship exists. For example, the attribute Manager of DEPARTMENT
refers to an employee who manages tile department; the attribute
ControllingDepartment of PROJECT refers to the department that controls the
project; the attribute Supervisor of EMPLOYEE refers to another employee (the
. one who supervises this employee); the attribute Department of EMPLOYEE refers

.

Database Development

Vi

NOTES

Self Instructional Material 45

Database Systems

NOTES

46 Self Instructional Material

-

to the department for which the employee ivorks; and so on. In the ER model, these
references should not.be represented as attributes but as relationships, which are
discussed here. In the initial design of entity types, relationships are typically captured -

* in the form of attributes. As the design is reﬁned these attributes get converted into

relatlonshlps between entity types.

Whenever an attribute of one entity type refers to another ent!:ty type, some
‘relationship exists.

DEPARTMENT

Name, Number, {Locations}, Manager, ManagerStartDate

. PROJECT
‘Name, Number, Location, ControllingDepartment

EMPLOYEE
Name (FName, MInit, LName), SSN, Sex, Address, Salary,
BirthDate, Department, Supervisor, {WorksOn (Project, Hours)}

~ DEPENDENT
En_nployee, DependentName, Sex, BirthDate, Relationship

Degree of a Relationship Type

The degree of a relationship type is the number of participating entity types. Hence
the WORKS_FOR relationship is of degree two. A relationship type of degree two is
called binary, and one of degree three is called ternary. An example of a ternary
relationship is SUPPLY, where each relationship instance associates three entities—a
supplier s, a part p, and a project j— whenever s supplies part p to project j, relationships
can generally be of any degree, but the ones most common are binary relationships.

. Higher-degree relationships are generally more complex than binary relationships.

. Relationships as Atiributes-

It is sometimes convenient to think of a relationship type in terms of attributes.
Consider the WORKS_FOR relationship type, one can think of an attribute called
Department of the EMPLOYEE entity type whose value for each employee entity
is (a reference to) the department entity that the employee works or, Hence, the
value set for this Department attribute is the set of all DEPARTMENT entities,
which is the DEPARTMENT entity set.

-However, when we think of a bmaty relationship as an attribute, we always have two

options. Employees of the entity type DEPARTMENT whose values for each
department entity is the set of employee entities who.work for that department.

The value set of this Employees attribute is the power set of the EMPLOYEE entity

set. Either of these two attributes—Department of EMPLOYEE or Employees of
DEPARTMENT—can represent the WORKS_FOR relationship type, if both are
represented, they are constrained to be inverses of each '_other.

Role Names and Recursive Relationships

Each entity type that participates in a relationship type plays a particular role in the
_relationship. The role name signifies the role that a participating entity from the entity
type plays in each relationship instance, and helps to ‘explain what the relationship
means. For example, in the WORKS_FOR relationship type, EMPLOYEE plays the
role of employee or worker and DEPARTMENT plays the role of department or
employer.

-

Role names are-not technically necessary in relationship types where all the
participating entity types are distinct, since each participating entity type name can
be used as the role name, However, in some cases the same entity type participates

more than once in a relationship type in different roles. In such cases the role name .

becomes essential for distinguishing the meaning of each partlclpatlon Such
relationship types are called recursive relationships.

LOGICAL DATABASE DESIGN

Most of the current commercial DBMSs use an impiementation data model—such
as the relational or te object-relational database model—so t+: conceptual schema is
transformed from the high-level data model into the implementation data model.
This step is called Logical Design or Data Model Mapping; its result is a database
schema in the implementation data model of the DBMS.

NORMALIZATION

The normalization process, as first proposed by Codd (1972a), takes a relation schema
through a series of tests to “certify” whether it satisfies a certain normal form. The
process, which proceeds in a top-down fashion by evaluating each relation again the
.criteria for normal forms and decomposing relations as necessary, can thus be
considered as relational design by analysis.

Im'ti;;;’{y, Codd proposed three normal forms, which he called First, Second, and
Third normal form. A stronger definition of INF—called Boyce-Codd Normal
Form (BCNF)—was proposed later by Boyce and Codd, b

All these normal forms are based on the functional dependencies among the attributes
of a relation. Later, a fourth normal form (4NF) and a fifth normal form (SNF) were
proposed, based on the concepts of multivalued dependencies and join dependencies,
respectively.

Normalization of data can be looked upon as a process of analyzing the given felation
schemas based on their FDs and primary keys to achieve the desirable properties of

(1} minimizing redundancy and

(2) minimizing the insertion, deletion, and update anomalies.

© Darabase Development

NOTES

Self Instructional Material 47

Database Systems

NOTES

48 Self Instructional Materiai

’

Unsatisfactory relation schemas that do not meet certain conditions—the normal
form tests—are decomposed into smaller relation schemas that meet the tests and -
hence possess the desirable properties. Thus, the normalization procedure provides
database designers with the following:

» A formal framework for analyzing relation schemas based on their keys and
on the functional dependencies among their attributes. :

"+ A series of normal form tests that can be carried out on individual relation
schemas so that the relational database can be normalized to any desired
degree.

The normal form of a relation refers to the highest normal form condition that it
meets, and hence indicates the degree to which it has been normalized. Normal forms,
when considered in isolation from other factors, do not guarantee a good database

design. It is generally not sufficient to check separately that each relation schema in '
the database is, say, in BCNF or 3NF. Rather, the process of normahzamon through
decomposition must also confirm the existence of additional properties that the
relational schemas, taken together, should possess. These would include two properties:

« The lossless join or nonadditive join property, which guarantees that the
spurious tuple generation does not occur with respect to the relation schemas
created after decomposition.

+ The dependency preservation property, which ensures that each funct;onal
dependency is represented in some individual relation resulting after
decomposition.

The nonadditive join property is extremely critical and must be achieved at any cost,
whereas the dependency preservanon property, although desirable, is sometimes
sacrificed.

Use of Normal Forms

Most practical design. projects acquire ex1stmg desngns of databases from previous
designs, designs in legacy models, or from existing files. Normalization is carried out
in practice so that the resulting designs are of high quality and meet the desirable
properties stated previously. Although several higher normal forms have been defined,
such as the 4NF and 5NF, the practical utility of these normal forms becomes
questionable when the constraints on which they are based are hard to understand or
to detect by the database designers and users who must discover these constraints.
Thus, database design as practiced in industry today pays partlcular attention to

normalization only up to 3NF, BCNF, or 4NFE

Another worth noting point is that the database designers need not normalize to the
highest possible normal form. Relations may be left in a lower normalization status,
such as 2NF, for performance reasons. The process of storing the join of higher
normal form relations as a base relation, which is in a lower normal form—is known
as denormalization.

Non-loss decomposition

The problem of database inconsistency and redundancy of data are similar to the
problems that exist in the hierarchical and network models. These problems are
addressed in the network model by the introduction of virtual fields and in the

 hierarchical model by the inroduction of virtual records. In the relational model, the
above problems can be remedied by decomposition. Thus, Decomposition can be
defined as following: :

Definition: The decomposition of a relation scheme R = (A Ay ... A)is
: its replacement by a set of relation schemes (R, R -R),
such that R, CRfor 1Si<mandR, U R, L. .. uRm =R.

A relation scheme R can be decomposed into a collection of relation schemes (R,

- R, R,, R) to eliminate some of the anomalies contained in the onginal relation .

R. Here the relation schemes R, (I €1 < m) are subsets of R and the intersection of
R, R, for 1+ j need not be empty Furthermore the union of R1 (1 1< m) is equal
to R, 1e R=R,u R2 ... UR.

The problems in the relation scheme STDINF can be resolved if we replace it with
the following relation schemes: :

STUDENT_INFO (Name, Phone_No, Major)
TRANSCRIPT(Name, Course, Grade) - '
TEACHER(Course Proof)

The first relation scheme gives the phone number and the major of each student and
such information will be stored only once for each student. Any change in the'phone
number will thus require a change in only one tuple of this rel~tion.

The second relation scheme stores the grade student in each course that the student 1s
or was enrolled in.

The third relation scheme records the teacher of each course.

One of the disadvantages of replacing the original relation scheme STDINF with the
three relation schemes is that the retrieval of certain information requires a natural
join operation to be performed. For instance, to find the majors of student who obtained
a grade of A in course 353 requires a join to be performed: (STUDENT_INFO <>
TRANSCRIPT). The same information could be derived from the original relation
STDINF by sélection and projection,

When we replace the original relation scheme STDINF ‘with the relation schemes '

STUDENT_INFO, TRANSCRIPT and TEACHER, the consistency and referential
integrity constraints have to be enforced.

The referential integrity enforcement implies that if a tuple in the relation
TRANSCRIPT exists, such as {(Jones, 353, in prog), a tuple must exist in
STUDENT_INFO with Name = Jones and, further more, a tuple must exist in
TEACHER = Course = 353. The attribute Name, which forms part of the key of the
relation TRANSCRIPT, is a key of the relation STUDENT_INFO.

Such an attribute (or a group of attributes), which establishes a relationship between
specific tuples (of the same or two distinct relations), is called a foreign key. Notice

that the attribute Course in relation TRANSCRIPT is also a foretgn key, since it is a-

key of the relation TEACHER.

Note that decomposition of STDINF into the relation schemes STUDENT(Name,
Phone_No, Major, Grade) and COURSE(Course, Prof) is a bad decomposition for
the following reasons:

Database Development

NOTES

Self Instructional Material 49

-

Database Systems

. NOTES

.50 Seif Instructional Material

1. Redundancy and update anomally, because the data for the attributes
Phone_No and Majors are repeated.

2. Loss of information, because we lose the fact.that a student has a given
grade in a particular course. -

Name Course - Phone No Major Prof Grade
Jones 353 237-4539 . Comp Sci Smith A
Ng 329 427-7390 Chemistry Turner B
Jones 328 237-4539 Comp Sci Clark B
Martin 456 388-5183 . Physics James A
Dullies 293 371-6259 Decision Sci’ Cook ~ C

- Duke - 491 823-7293 - Mathematics Lamb B ‘

" Duke 356 . - 823-7293 Mathematics Bond in prog.
Jones 492 237-4539 Comp Sci Cross in prog.

Baxter 379 T 839-0827 - English Broes C

F unctional dependencies

Earller we discussed the concept of umquely identifying an ent1ty within an entity
set by a key, the key being a set of attributes of the entity.

A relation scheme R has a similar concept, which can be explamed using ﬁ.lnctlonal
dependencies.

The first requirement indicates that the dependency of all attributes of R on K is
given explicitly in F or can be logically implied from F. The second requirement
indicates that no proper subset of K can determine all the attributes of R. Thus, the
key used here is minimal with respect to this property and the FD K — R is left
reduced. A superset of K can then be called a superkey. If there are two or more

. subsets of R 'sqch that the above conditions are satisfied, such subsets are called
.candidate keys. In such a case one of the candidate keys is designated as the primary

key or simply as the key. We do-not allow any attribute in the key of a relation to
have a null value.

Definition: Given a relation scheme R {4 A A, ...A} and a set of -

: Sunctional dependencies F, a key of R is a subset of R such that
K—>AAA,..A isinF and forany YCK,Y > A AA .. A4
is not in I,

Example)
If R(ABCDEH) and F = {A.— BC,CD - E,E - C, D - AEH, ABH — BD, DH

. = BC}, then CD is a key of R because CD — ABCDEH is in F* (since (CD)* under

F 1s equal to ABCDEH and ABCDH < ABCDEH) Other candidate keys of R are

. AD and ED.

Full Functional Dependency

The cbncept of left reduced FDs and fully functionally depend;ency is defined below
and ilustrated 'in the example given below.

Definition: Givenr a relational scheme R and an FD X — X, Y is fully
: Sunctionally dependent on X if there is no Z, where Z isa
proper subset of X such that Z — Y. The dependency X — Y is
left reduced, there being no extraneous atmbutes in the left-
hand side of the dependency

Example

In the relation scheme R (ABCDEH) with the FDs F = :{A — BC, CD —> E,E >C,
- CD — AH, ABH — BD, DH — BC}. The dependency A — BC is left reduced and
" BC is fully functionally dependent on A.

However, the functional dependency ABH — D is not left reduced, the attribute B
being extraneous in this dependency.

~ Prime Attribute and Nonprime Attribute

We defiried the key of a relation scheme earlier.

We distinguish the attributes that part1c1pate in any such key as indicated by the

following definition.
Example

IfR (ABCDEH)and F = {A -5 BC,CD - E, E —» C, AH — D3}, then AH is the
only candidate key of R. The attributes A and H are prime and the attributes B. C. D.
and E are nonprime,

Definition: 'An attribute A in a relation scheme R is a prime attribute or
simply prime if A is part of any candidate key of the relation.
If A is not a part of any candidate key of R, A is called a
nonprime attribute or simply nonprime.

Partial Dependency

~ Let us introduce. the concept of partxal dependency below and 111ustrate the same in
the example given next. :

" Definition: Gwea a relation scheme R with the functional dependencies F
defined on the attributes of R and K as a candidate key, if X is
a proper subset of K and if F |= X — A then A is said fo be
pamah'y dependent on K.

.- :]
Name| Course | Grade ‘Phone_No. Major | Course_Dept.

Example

(a) In the relation scheme STUDENT COURSE INFO(Name Course, Grade, .

Database Development

'NOTES

Self Instructional Material 51

Database Systems "

NOTES

52 Self Instructional Material .

*

Phone_No, Major, Course_Dept) with the FDs F = {Name —
Phone_NoMajor, Course — Course_Dept, NameCourse — Grade},
NameCourse is a candidate key, Name and Course are prime attributes. Grade
is fully functionally dependent on the candidate key. Phone_No, Course_Dept
and Major are partially dependent on the candidate key.

(b) Given R (A, B, C, D) and F = {AB — C, B — D3}, the key of this relation is -
AB and D is partially dependent on the key. :

Transitive Dependency

Another type of dependency which we have to recognize in database ' :sign is
introduced below and illustrated in the example next. '

" Definition: Given a relation scheme R with the functional dependencies F
' defined on the attributes of R, let X and Y be subsets of R and -
let A be attribute of R such that X @ ¥, A @ XY. If the set of
Sunctional dependencies {X —, Y — A} is implied by F (i.e. F
I=X>Y 3 Adand F[]— |= Y — X) then A is transitively
dependent on X.

Prof_Name| Department | Chairperson

|

Exampie

(a) In the relation scheme PROF_INFO(Prof_Name, Department, Chairperson)
" and the function dependencies F = {Prof Name — Department —
Chairperson}, Prof Name is the key and Chairperson is transitively dependent

.on the key since Prof Name — Department — Chairperson.

(b) Given R (A, B, C, D, E) and the function dependencies F = {AB ->C B>
D, C — E}, AB is the key and E is transitively dependent on the key since
AB— C > E. '

FIRST NORMAL FORM

-~

First normal form (1NF) is now considered to be part of the formal definition of a
relation in the basic (flat) relational model: historically, it was defined to disallow
multivalued attributes, composite attributes, and their combinations. It states that
the domain of an attribute must include only atomic (simple, indivisible) values and
that the value of any attribute in a tuple must be a single value from the domain of
that attribute. Hence, INF disallows having a set of values, a tuple of values, or a
combination of both as an attribute value for a single tuple. In other words, INF .
disallows “relations within relations” or “relations as attribute values within tuples.’
The only attribute values permitted by INF are single atomic (or indivisible) values,

Consider the DEPARTMENT relation schema shown here, whose primary key is
DNUMBER, and suppose that we extend it by including the DLOCATIONS attribute

as shown in next figure. We assume that each department can have a number of
locations. The DEPARTMENT schema and an example relation state are shown in

. EMPLOYEE v
ENAME | SSN | BDATE | ADDRESS | DNUMBER
DEPARTMENT
| DNAME | - DNUMBER |

DMGRSSN |

DEPT_LOCATIONS

[DNUMBER | DLOCATION |

PROJECT

[FNAME | PNUMBER | PLOCATON | DNUM |-

WORKS_ON

| SSN | PNUMBER

HOURS |

" next figure. As we can see, this is not in INF because DLOCATIONS is not an
atomiic attribute, as illustrated by the first tuple in the ﬁgure There are two ways we

can look at the DLOCATIONS attribute:

(a) DEPARTMENT

DMGRSSN

DNAME DNUMBER DLOCA}"I’ONS
(b) _DEPARTMENT
DNAME DNUMBERDMGRSSN DLOCATIONS

. Research 5 333445555 {Bellaire, Sugarland, Houston}
Administration 4 987654321 {Stafford}
Headquarters - 1 888665555 {Houston}
(¢ DEPARTMENT

DNAME DNUMBER DMGRSSN DLOCATIONS
Research 5 333445555 Bellalre
Research o5 333445555 . Sugarland
Research 5 333445555 Houston
Administration 4 987654321 Stafford
Headquarters 1 Houston

888665555

Database Development

NOTES

Self Instructional Material 53

" Database Systems

NOTES

54 Self Instructional Material

. » The domain of DLOCATIONS contains atomic values, but some tuples
.can have a set of these values. In this case, DLOCATIONS i3 not functionally
dependent on the primary key DNUMBER.

* The domain of DLOCATIONS contains sets of values and hence is
nonatomic. In this case, DNUMBER — DLOCATIONS, because each set.
is considered a single member of the attribute domain.

In either case, the DEPARTMENT relation of in figure is not in INF; in fact, it does
not even qualify as a relation according to our definition of relation. There are three
main techniques to achieve first normal form for such a relation:

1.-Remove the attribute DLO_CATIONS that violates 1NF and place it in a
separate relation DEPT_LOCATIONS along with the primary key
DNUMBER of DEPARTMENT. The primary key of this relation is the
combination {DNUMBER, DLOCATION, as shown in figure. A-distinct
tuple in DEPT _LOCATIONS exists for each LOCATION of a department.
This decomposes the non- INF ‘relation into two INF relations.

2. Expand the key so that there will be a separate tuple in the original
DEPARTMENT relation for each location of a DEPARTMENT, as shown’
in figure ¢. In this case, the primary key becomes the combination
{DNUMBER, DLOCATION}. This solution has the disadvantage of
introducing redundancy in the relation.

3. If a maximum number of values is known for the attribute, for example, if
it 1s known that at most three locations can exist for a department—replace
the DLOCATIONS attribute by three atomic attributes: DLOCATIONI,
DLOCATION2, and DLOCATION3. This solution has the disadvantage
of introducing null values if most departments have fewer than three
locations. It further introduces a spurious semantics about the ordering among
the location values that is not originally intended. Querying on this attribute
becomes more difficult; for example, consider how you would write the
query: “List the departments that have “Bellaire” as one of their locations”
in this design.

Of the three solutions above, the first is generally considered best because it does not

“suffer from redundancy and it is completely general, having no limit placed on a

maximum number of values. In fact. if we choose the second solution, it will be
decomposed further during subsequent normalization steps into the first solution.

First normal form also disallows multivalued attributes that are themselves
composite. These are called nested relations because each tuple can have a relation
within it. The next figure shows how the EMP_PROJ relation could appear if nesting
15 allowed. Each tuple represents an employee entity, and a relation
PROJS(PNUMBER, HOURS) within each tuple represents the employee’s projects
and the hours per week that employee works on each project. The schema of this
EMP_PRQ]J relation can be represented as follows: '

EMP_ PROJ(SSN, ENAME {PROJS(PNUNBER, HOURS)})

The set braces { } identify the attribute: PROJS as multivalued, and we list the
component attributes that form PROJS between parentheses {). Interestingly, recent
trends for supporting complex objects and XML data using the relational model
attempt to allow and formalize nested relations within relational database systems,
which were disallowed early on by INF.

(a) EMP_PROJ

PROJS
SSN . ENAME PNUMBER HOURS
(b) "'EMP_PROJ
SSN ~ ENAME ~ PNUMBER HOURS
123456789 Smith John B. 1 32.5
B 2 7.5
666777888 Naryana Ramesh 3 40.0.
453678325 - English Joyce A 1 20.0
| 2 20.0
. 765432219 Wong Franklin T 2 10.0
' 3 10.0
10 10.0
. 20 10.0
656789654 Zelaya Alicia J 30 30.0
' 10 10.0 .
969798989 Jabbar Ahmed B 10 35.0
o 30 5.0
876787678 Wallace Jennifer S 30 20.0
20 15.0
876545678 Borg James E 20 null
(c) EMP_PROJ1
SSN ENAME
EMP_PROJ2 -
SSN PNUMBER HOURS

Notice that SSN is the primary key of the EMP_PRO_J‘ in relation to above figures a

and b, while PNUMBER is the partial key of the nested relation; that is, within each
‘tuple, the nested relation must have unique values of PNUMBER. To fidrmalize this
into INF, we remove the nested relation attributes into a new relation and propagate
the primary key into it; the primary key of the new relation will combine the partial
. key with the primary key of the original relation. Decomposition and primary key

propagation vield the schemas EMP_PRQJ1 and EMP_PRQIJ2 as shown in ¢ part of .

the figure.

This procedure can be applied recursively to a relation with multiple-level nesting to |

unnest the relation into a set of INF relations. This is useful in converting an
unnormalized relation schema with many levels of nesting into, INF relations. The
existence of more than one multivalued attribute in one relation must be handled
carefully. As an example, consider the following non-INF relation:

Database Development

NOTES

Self Instructional Material 55

Database Systems

NOTES

~

56 -Self Tustructional Material

PERSON (SS#, {CAR LIC#}, {PHONE#})
This relation represents the fact that a person has multiple cars and multiple phonés_.,_ ;
If a strategy like the second option above is followed, it results in an all-key relati_bn:

PERSON IN INF (SS#, CAR_L1C#, PHONE#). -

To avoid introducing any extranecus rélﬁtidhship between CAR_LIC# and PHONE#,
all possible combinations of values are represented for every SS#, giving rise to
redundancy. This leads to the problems handled by multivalued dependencies and
4NF. The right way to deal with the two muitivalued attributes in PERSON above is

~ to decompose it into two separate relations, using strategy 1 discussed above:

P1(SS#, CAR_L1C#) and P2(SS#, PHONE#).

SECOND NORMAL FORM

Second normal form (2NF) is based on the concept of full functional dependency. A
functional dependency X ~» Y is a full functional dependency if removal of any
attribute A from X means that the dependency does not hold any more; that is, for
any attribute A € X, (X — {A}) does not functionally determine Y. A functional
dependency X — Y is a partial dependency if some attribute A € X can be removed
from X and the dependency still holds; that is,.for some A € X, (X - {A}) — Y. In the
next figure part b, {SSN, PNUMBER} — HOURS is a full dependency (aeither SSN -
— HOURS nor PNUMBER — HOURS holds). However, the dependency {SSN,
PNUMBR} — ENAME is partial because SSN — ENAME holds.

Definition: A relation schema R is in 2NF if every nonprime attribute A in
R is fully functionally dependent on the primary key of R.

The test for 2NF involves testing for functional dependencies whose left-hand side
attributes are part of the primary key. If the primary key contains a single attribute,
the test need not be applied at all. The EMP_PROJ relation in figure part b is in INF
but is not in 2NF. The nonprime attribute ENAME violates 2NF because of FD2, as

()
| EMP_DEPT : .
[ENAME [SSN [BDATE [ADDRESS [DNUMBER [DNAME | DMGRSSN |

1 | T T

(b)
_ EMP_PROJ ‘
. [sSN [PNUMBER | HOURS | ENAME [PNAME |PLOCATION |
FD1 | , r-' I
FD2 |

D R

do the nonprime attributes PNAME and PLOCATION because of FD3. The-

functional depenidencies FDZ and FD3 make ENAME, PNAME, and , PLOCATION
partially dependent on the primary key {SSN, PNUMBER} of EMP_ "PROJ, thus
violating the 2NF test.

If a relation schema is not in 2NTF, it can be “second normalized” or “2NF normalized”
into a number of 2NF relations in which nonprime attributes are associated only
with the part of the primary key on which they are fully functionally dependent. The
functional dependencies FD1, FD2, and FD3 in the figure part b hence lead to the
decomposition of EMP= PROJr into the three relation schernas EP1, EP2, and EP3
as shown in figure part a, each of which is in 2NF.

THIRD NORMAL FORM

Third normal form (3NF) is based on the concept of transitive dependency. A
functional dependency X — Y in a relation schema R is a transitive dependency if
there is a set of attributes Z that is neither a candidate key nor a subset of any key of
R, and both X — Z and Z — Y hold. The dependency SSN — DMGRSSN is transitive
through DNUMBER in EMP_DEPT of above figure part a because both the
dependencies SSN — DNUMBER and DNUMBER — DMGRSSN hold and
DNUMBER is neither a key itself nor a subset of the key of EMP_DEPT. Intuitively,
we can see that the dependency of DMGRSSN is undesirable in EMP_DEPT since
DNUMBER is not a key of EMP DEPT.

Definition: According to Codd’s original definition, a relation schema R is
' in 3NF if it satisfies 2NF and no nonprime attribute of R is
transitively dependent on the primary key.

The relation schema EMP_DEPT is not in 3NF because of the transitive dependency
of DMGRSSN (and also DNAME) on SSN via DNUMBER. We can normalize
'EMP_DEPT by decomposing it into the two 3NF relation schemas ED1 and ED2

NORMAL FORM) TEST REMEDY (NORMALIZATION)

First (1 NF) Relation should have no Form new relations for each non-

nonatomic attributes or atomic attribute or nested relation,
nested rejations. :

Second 2 NF) For relations where primary - Decompose and set up a new

key contains multiple relation for each partial key with
attributes, no nonkey its dependent attribute(s). Make
attribute should be sure to keep a relation with the
functionally dependentona original primary key and any
part of the primary key. attribute that are fully functionally dependent
on it.
Third (3 NF) Relation should nothavea - Decompose and set up a relation
. nonkey attribute that includes the nonkey attribute(s)
functionalty determined” that functionally determine(s) other

by another nonkey attribute nonkey attribute(s)
(or by a set of nonkey

attributes.) That is, there

should be no transitive

dependency of a nonkey

attribute on the primary key.

- Database Development

NOTES

13

Self Instructional Material 57

Database Systems

NOTES -

58 Self Instructional Material

(a).

| EMP_PROJ |
|SSN | PNUMBER [HOURS |ENAME | PNAME [PLOCATION |
U 2NF NORMALIZATION
EP1 EP2 . EP3

BsN IEMMER [HGURS | [SSN|ENAME |[ENUMBER |PNAME [PLOCATION

_ - EMP_PROJ
ENAME [SSN|BDATE | ADDRESS [DNUMBER | DNAME [DMGRSSN

T 1
[

Uy' 3NF NORMALIZATION .

-
e N
ED1 | ED2
[ENAME| $SN | BDATE | ADDRESS | DNUMBER|[DNUMBER [DNAME| DMGRSSN
S V'S

7

shown in next figure part b. Intuitively, we. see that ED1 and ED2 represent
independent entity facts about employees and departments. A NATURAL JOIN
operation on ED1 and ED2 will recover the original relation EMP_DEPT without
generating spurious tuples.

Intuitively, we can see that any functional dependency in which the left-hand side is
part (proper subset) of the primary key or any functional dependency in which the
left hand side is a nonkey. attribute is a “problematic” FD. 2NF and 3NF normalization
remove these problem FDs by decomposing the original relation into new relations.

In terms of the normalization process, it is not necessary to remove the partial

dependencies before the transitive dependencies, but historically, 3NF has been defined,
with the assumption that a relation is tested for 2NF first before it is tested for INF.

The next table informally summarizes the three normal forms based on primary

keys, the tests used in each case, and the correspondmg ‘remedy” or normalization .
performed to achieve the normal form.

Database Development

BCNF

Boyce-Codd Normal Form (BCNF) was proposed as a simpler form of 3NF, but it .
- was found to be stricter than 3NF. That is, every relation in BCNF is also in 3NF;
however, a relation in 3NF is not necessarily in BCNF. Intuitively, we can see the
need for a stronger normal form than 3NF by going back to the LOTS relation schema
of next figure with its four functional dependencies FD1 through FD4.

NOTES

LOTS
[PROPERTY_ID# [COUNTY_NAME [1.OT#] AREA| PRICE | TAX_RATE|
FD1 T b
FD2 !

FD3 : L -

FD4 ‘ I ,

Suppose that we have thousands of lots in the relation but the lots are from only two
counties: Dekalb and Fulton. Suppose also that lot sizes in Dekalb County are only .
0.5, 0.6, 0.7, 0.8, 0.9, and 1.0 acres, whereas lot sizes in Fulton County are restricted

- to 1.1, 1.2, . /., 1.9,-and 2.0 acres. In such a situation we would have the additional |
functional dependency. FDS: AREA — COUNTY_NAME. If we add this to the
other dependencies, the relation schema LOTS1A still is in 3NF because
COUNTY_NAME is a prime aftribute.

The area of a lot that determines the county, as specified by FD5, can be represented”

by 16 tuples in a separate relation RG(AREA, COUNTY_NAME), since there are

only 16 possible AREA values. This representation reduces the redundancy of

repeating the same information in the thousands of LOTSIA tuples. BCNF is a

" stronger normal form that would disallow LOTSIA and suggest the need for
decomposing it. :

Definition: A relation schema R is in BCNF if whenever a nontrivial
ﬁmmanal dependency X — A holds in R, then X is a superkey
of R.

The formal definition of BCNF differs slightly from the definition of 3NF. The only
difference between the definitions of BCNF and 3NF is that condition (b) of 3NF,
which allows A to be prime, is absent from BCNF. In our example, FD5 violates .
BCNF in LOTS1A because AREA is not.a superkey of LOTS1A. Note that FD5 ’
satisfies 3NF in LOTSIA because COUNTY_NAME is a prime attribute {(condition
b), but this condition does not exist in the definition of BCNF. We can decompose /
LOTSIA into two BCNF relations LOTS1AX and LOTS1AY, as shown next. This
'decomposmon loses the functional dependency FD2 because its attributes no longer
coex:st in the same relation after decomposition.

In practice, most relatlon schemas that-are in 3NF are also in BCNF. Only if X - A

holds ina relat1on schema R with X not being a superkey and A being a prime attrlbute
Self Instructional Material 59

Datobase Systems

NOTES

/ .

60 Self :;n’gbuc-rional Material -

(a) LOTS1A
[PROPERTY ID# | COUNTY_NAME | LOoT# | AREA|

FD1)
FD2
U BCNF NORMALIZATION
LOTS1AX
[PROPERTY_ID#[AREA LOT# | [AREA [COUNTY_NAME |
® o R
ENENEE
FDI | T
FD2

will R be in 3NF but not-in BCNF. The relation schema R shown in above figure part
b illustrates the general case of such a relation. Ideally, relational database design
should strive to achieve BCNF or 3NF for every relation schema. Achieving the

, normalization status of just 1INT- or 2NF is not considered adequate, since they were

developed historically as stepping stones to 3NF and BCNFE. _
As another example, consider the next figure, which shows a relation TEACH with
the following dependencies: :

FD1:{STUDENT, COURéE}—éINSTRUCTOR

FD2:INQ'I.‘RUCTOR — COURSE '

Note that {STUDENT, COURSE} is a candidate key for this relation and that the
dependencies shown follow the pattern in part b, with STUDENT as A, COURSE as

" B, and INSTRUCTOR as C. Hence this relation is in 3NF but not in BCNF.

Decomposition of this relation schema into.two schemas is not straightforward -
because it may be decomposed into one of the three following possible pairs:

1. {STUDENT, INSTRUCTOR} and {STUDENT, COURSE}.
2. {COURSE, INSTRUCTOR } and {COURSE, STUDENT}.
3. {INSTRUCTOR, COURSE } and {INSTRUCTOR, STUDENT} .
All three decompositions “lose” the functional dependency FDI. The desireable

decomposition of those just shown is 3, because it will not generate spurious tuples
after a join.

TEACH

STUDENT COURSE ' INSTRUCTOR
Narayan Database _ Mark
Smith : Databése Navathe
Smith Operating System Ammar
Smith . Theory Schulman .
Wallace - Database Mark
Wallace Operating System Ahamad
" Wong Database . " Omiecinski
Zelaya Database . Navathe

In general, a relation not in BCNF should be decomposed so as to meet this property,
while possibly forgoing the preservation of all functional dependencies in the
.decomposed relations, as is the case in this example. The above algorithm does that
and could be used above to give decomposition 3 for TEACH,

TRANSLATING E-R DIAGRAMS TO RELATIONS

Converting any E-R model to a set of tables in a database is followed by a specific set
of rules that govern such a conversion. The application of these rules requires
understanding the effects of updates and deletions on the tables in the database.
Before we discuss these rules in detail, let’s briefly review a simpler model, its schema
and the SQL commands used to generate the tables.

The model, the Artist database, conforms 1o the following condifions:

- A painter might paint many- paintings. To be considered a painter in the
artist database, the painter must have painted at least one painting. This

. business rule decreases that the cardinality is (1,N) in the relationship between
Painter and Painting.

- Each painting is painted By one (and only one) painter.

- A painting might {or might not) be exhibited in a gal]ery, that is, the Gallery
is an optional entity to the Painting entity. .

Given this description, we create a simple E- R model and some matchmg tables for.

the Artist database shown in figure.

Given these artist database structures, let us now examine the effect of the following '

actions:

1. Deleting a pamter (row) from the painter table. If we de]ete a row (painter)
; ,-from the painter table, the painting table will contain references to a painter
" who no longer exists, thereby creating a deletion anomaly. (A pamtmg does

" _not cease to exist just because the painter does.)

Given this situation, it 18 wise 1o restrict the ability to delete a row from a
table if there is a foreign key in another table that references it. In short, we

-
o

Damillase Development

NOTES -

 Self Instructional Material 61

Database Systems

NOTES

, 62 Self Instructional Material

should i Impose a delete restrict requirement on such a table. The restriction
means that we can delete a painter from the painter table only if there is no
foreign key in another table that requires the painters existence.

The practical effect of this limitation is simple. Suppose that we want to
delete painter PTr num = 123 from the artist database. The Delete restrict
clause requires that we must first delete all rows in the painting table that
use PTr_num = 123 as the foreign key value. We do this to make the user
aware of the consequences of deleting a painter.

The DBMS could also be instructed to delete all painting rows corresponding
to the deleted painter (delete cascade), but we chose not to do so for the
reasomns just stated.

Adding a painter (row) to the painter table. Addmg a painter does not
cause any problems, because the painter code does not have any dependencues
in other tables.

Making changes in painter table (primary key values). Changing a painter
key ‘causes problems in the database because some paintings in the painting
table may make reference to this key. The solution is simple: make sure that
a change in the painter’s ptr_num automatically triggers the require changes -
in the ptr_num key found in other tables. Because one change cascades
through the system, the process is called update cascade.

In other words, the requirement of update cascade means that all foreign
key references to a primary key are updated when the primary key 1s changed.

Deleting a gallery (row) from the gallery table. Deleting a Gallery row
creates problems in the database if there are rows in the painting table that
make reference to that gallery row’s primary.\key. '

Because gallery is optional to painting, we may set all deleted gallery gal_num
values to null. Or we may want the database user to be alerted to the problem
by specifying a delete restrict clanse in the gallery table. The delete restrict
clause means that the deletion of a gallery row is permitted only if there is
no foreign key (gal num) in another table that requires the gallery row’s

. eX istence.

. Adding a gallery (row) to the gallery table. Adding a new row does not

affect the database because the gallery does not have dependencies in other
tables. (The new row will not be referenced by any foreign key that points to
the gallery table.)

. Updating the gallery table’s primary key. Changing a primary key value in

a gallery row requires that all foreign keys making reference to it be updated,
as well. Therefore, we must use an update cascade clause.

PHYSICAL DATABASE DESIGN

See chapter 1.

RELATIONAL ALGEBRA & SQL RELATIONAL DATABSE

- COMMANDS

The name SQL is derived from Structured Query Language. Originally, SQL was
called SEQUEL (for Structured English Query Language) and was designed and
. implemented at IBM Research as the interface for an experimental relational database
system called SYSTEM R. SQL is now the standard language for commercial relational
DBMSs. A jont effort by ANSI (the American National Standards Institute) and ISO
(the International Standards Organization) has led to a standard version of SQL (ANSI
1986), calted SQL-86 or SQL1. A revised and much expanded standard called SQL2
(also referred to as SQL-92) was subsequently developed. The next version of the
standard was originally called SQL3, but now is called SQL-99.

SQL is a comprehensive database language. It has statements for data definition,
query and update. Hence, it is both a DDL and a DML. In addition, it has facilities
for defining views on the database, for specifying sécurity and authorization, for defining
integrity constraints, and for specifying transaction controls. It also has rules for
embedding SQL statemeénts into general-purpose programmmg language such as Java
or COBOL or C/C++. ~

Data Definition Language

‘These commands are used to create and miaintain a database.
CREATE)
Read about it later in the chapter.

ALTER |

Read about it later in the chapter.

DROP
'Read about it later in the chapter.
RENAME
Column Alias are used to rename a table’s columns for the purpose of a particular
query. The PRODUCTS_TBL illustrates the use of column aliases. -
SELECT COLUMN NAME ALIAS NAME
FROM TABLE NAME ;
The following example dlsplays the product dESCTIptIOIl twice, giving the second
column an alias named PRODUCT. Notice the column headers in the output. .
SELECT . PROD DESC
PROD_DESC PRODUCT
FROM PRODUCTS TBL

TRUNCATE

SQL offers two options, DELETE and TRUNCATE TABLE for deleting data. These
are the two most dangerous commands in SQL. So make. sure that you intend to. get

Database Development

NOTES

Self Instructional Material 63

- Database System

STUDENT ACTIVITY 2.1

1. What do.you understand by Data Modeling?

2. Describe Entity Relationship Model.

64 Self Intructional Material

Database Development

3. Describe the various stages of Information Engineering

4. How would you plan a model?

~ Self Intructional Material 65

Datrabase Systems

NOTES

66 Self Instructional Material I

'rid of the data you have described in these statements before you execute the

statements. There 1s no Undo button related to these two statements. Results are -
permanent and final.

Hmt: - Prior to andertaking deletion operation, you are advised to back
_ up your database.

" Assume that you have an entire table that needs to be cleared of data. You have two
options for undertakmg the delenon They look like this:

DELETE FROM authors
TRUNCATE TABLE authors

Both of these statements achieve the same purpose; they delete all the data in the
table whﬂe leaving intact the columin structure associated with the table. As a result,

. new data can easily be inserted after the deletion.takes place.
_ Difference between TRUNCATE and DELETE

First, DELETE is supported by all SQL databases, while TRUNCATE TABLE might
not be. In addition, DELETE is supported in all circumstances, TRUNCATE TABLE
might not function in all situations. For example, Microsoft’s SQL Server allows you
to use TRUNCATE TABLE in most circumstances. However, when you are using
the Data Transformation Services to copy a table from one database to another, you
cannot use TRUNCATE TABLE to clear the table in the target database of pre-
existing data. You must instead use DELETE. In addition, TRUNCATE TABLE

" undetakes only complete deletions of a table. You cannot -use it to delete selected

rows and leave others intact.
Data Manipulation Language (DML)
These commands are used for data manipulation.

Select Command

Read about them later in the chapter.

Column Heading Defa-ult

You can use * as the indicator for all fields. It is in fact more convenient to use, For
example, the above command can be given as :

SELECT * FROM STUDENT TBL;
This would result in list'mg- all the fileds of the table:

SACHIN 1022 MUMBAI
RAHUL 1033 BANGALORE
YUVRAJ 1044 DELHI

DILIP 1055 KOLKATTA

Using Arithmetic 0perators

You can use the various arithmetical operators like +(add1t10n) - (subtractlon) *
(multiplication), and / {divison), alongwith the SELECT statement to get the results

Let me give you examples of each and show how they are used.

Addition
* It is performed using the (+) symbol.
SELECT SALARY + BONUS FROM EMPLOYEE _TBL;

The SALARY column is added with the BONUS column for a total for each row of
data. You can extcnd this command to include the following:

SELECT +~ROM EMPLOYEE TBL WHERE SALARY - BONUS > “250007;

This would select all the employees whose SALARY and BONUS added together -

becomes more than 25,000,
Subtraction

It is performed using the (=) symbol.

SELECT SALARY -~ BONUS FRCM EMPLOYEE TBL;
The BONUS column is subtracted from the SALARY columsi for calculating the
difference. You can extend this command to include the following:

SELECT FROM EMPLOYEE TBL WHERE SALARY - BONUS > »25000";

This would select all the employees whose SALARY after deductmg BONUS

becomes more than 25, 000
Multiplication

It is performed using the (*) symbol.
SELECT SALARY *- 10 FROM EBIPLOYEETTBL:

The SALARY column will be multiplied by 10. You can extend this command to
include the following: _ N

v SELECT FROM EMPLOYEE TBL WHERE SALARY-* 10 > “25000”7;

This would return all rows where the product of the SALARY multlplled by 10 18
greater than 25,000.

Division

"1t is performed using the (/) symbol.
SELECT SALARY / 10 FROM EMPLOYEE TBL;

The SALARY column is divided by 10. You can extend this command to include the
following: .
SELEC‘I‘ FROM EMPLOYEE_TBL WHERE SALARY / 10 » '“250007;

This returns all rows where the SALARY divided by 10 is greater than 25,000."
Operator Precedence ‘

The BODMAS rule, as learned in earlier classes applies here too. So in this case the
order would be: :

Division
Multiplication
Addition and then

Subtraction’

* Database Developsment

NOTES

Self Instructional Material 67

Database Systems

NOTES

68 Self Instructional Material

This can be significantly demonstrated by the following example.

2 + 3 * 4 4+ 5
If you do this calulation on the calculator, this would gtve you the result as 25, which
1s wrong. The same if done with BODMAS rule would give you the result as 19,

which is the right result. Here keeping in mind the BODMAS rule, the multiplication
will take place first and then the addition and not the other way around.

Significance of NULL value

‘NULL is used where you have to specify that there is nothing in it. In SQL it is used

very often to check whether the column is blank or not. You can even add a NULL
value. You can search for a NULL value using the SELECT statement. '

For example,
SELECT NAME FROM EM'PLOYEE_TBZ WHERE ROLLNO. IS NULL

This would search for you the records which do not have a rollno. and gives their
names.

NULL values in Arithmetic Expressions

NULL when used in a numeric field signifies that the value is not there. Supposing
you are multiplying a field by a variable and by chance that field happens to be
NULL, then the result may become abstract. For this you use statement to-confirm
that the. value is not NULL. '

For example.-

SELECT EMP_NAME, SALARY, SALARY*1.5 FROM EMPLOYEE TBL WHERE
SALARY IS NOT NULL;

This would result in the following: .

EMP_NAME SALARY - SALARY1.5
. SACHIN 20000 3000
RAHUL - 10000 15000
YUVRAJ 12000 18000
DILIP 8000 12000

This has taken care that the SALARY field is not NULL.
Defining and using Column Alias

These are used to rename a table’s column for the purpose of a particular query. For
example, '

SELECT BOOK_NAME, BOOK_NAME ISEN FROM BOOKS TBL

As you know that each book has an ISBN number and a name. This option as
mentioned above gives you an option of knowing either one of them. If you know
the name of the book, then use BOOK_NAME or in case you know only the ISBN
number then use BOOK_NAME ISBN. Both will give you the same result.

Concatenation Operator (1)

1t is the process of combining the two separafe strings into one string. For example,
you can combine the name and last name of an individual using this method.

-

For example,
SELECT “SAC” + “HIN”

would result in SACHIN. It is quite useful in cases where you have to save space.
There you can combine two fields to club them into one. For example, in most cases
of address label printing, city and pin code are printed as one line instead of two
lines. This is do. using Concatenation Operator.

Duplicate rows and their Elimination (DISTINCT keyboard)

The DISTINCT option is used when you have to display only one of the duplicate
records. In our example of STUDENT_TBL if there are two records of SACHIN
then using the following command only one of them will be displayed.

SELECT DISTINCT (NAME) FROM STUDENT TBL; -
Only one SACHIN will be selected.
Limiting Rows during selection (using WHERE clause)

"WHERE command is used when you have to make selection based on some facts.

For example, 1if you have to select Names and that too when RollNo, is 1033, you -

will use the WHERE command. For example, the above can be displayed in the
form:

SELECT NAME FROM STUDENT TBL WHERE ROLLNO. = “1033~

Since there is only one name which has the student roll number as 1033, that name
will be selected. '

RAHUL 1033 BANGALORE
The full record will be selected unless you ask it not to do so.
Dates

Date is stored in the computer but the format of representation of the same can be
different from system to system. SQL also uses date in its own way. You can recall
the system date by using the command called GETDATE(} as shown here.

SELECT GETDATE()
This will give the output as:
June 30, 2003 .
You can perform various operations on Date, for example, ¢onverting it to character
string, adding time, converting it to picture, etc. ’ :
Boolean operators

These are also called the Conjunctive Operators. These are used when you have to
combine more than one condition for finding out the result. These operators are:

AND, OR and NOT.
Let us sce how they are used.
AND

This operator allows the existence of multiple conditions in an SQL statement’s
WHERE clause. For the action to be taken, all the conditions of the statement must
be TRUE. '

Database Development

NOTES

Self Instructional Muterial 69

Database; Systems.

NOTES

70 Self Instructional Material

For example, '

WHERE ROLLNO = “1033” AND - NAME =I“RAHUL"

This will select only the record which has roll number 1033 and name as RAHUL.
Both the conditions must be TRUE to get the record selected.

OR

This operator is used to combine multiple conditions in an SQL statement’s WHERE
clause. Here at least one of the condition should be TRUE for the statement to work.

For example,
WHERE ROLLNO = “10337” OR ROLLNO = “10307

Here at least one of the roll number, i.e., 1033 will match and the relativé record will
be selected. -

NOT

This is not just one operator. It has its own set of operators Yvhich can be used in
conjunction with this. They are: NOT EQUAL, NOT BETWEEN, NOT IN, NOT
LIKE, IS NOT NULL, NOT EXISTS, NOT UNIQUE. Did you notice anything?

They are just the negative conditions of the operators used earlier. These are just the
other side of those operators but they work in reverse. Instead of matching the
conditions, they make sure that the conditions are not matched.

I will not go through the details of each but just give an example to illustrate their
working. ’ ’

Not EQUAL

WHERE ROLLNO <> 10507
All records will be selected since there is no records which matches 1050,

Not BETWEEN |
WHERE ROLLNO NOT BETWEEN “1000” AND ™20007 .-

No record will be selected since all of them are between 1_(i00 and 2000. -

Not IN .
WHERE ROLLNC NOT IN (“10007”, ™12007, ™1300")

All records will be selected since there is no records which matches the figures given.

Not LIKE \ _
WHERE ROLLNO NOT LIKE “2000~”.

7

All records will be selected since there is no record starting with 2000. .

Is Not NULL _
WHERE. ROLLNO IS NOT NULL

All records will be selected since there is no records which has NULL value,

Not EXISTS

WHERE NOT EXISTS (SELECT ROLLNO FROM STUDENT_TBL WHERE
ROLLNO = “1033”) '

It searches to see whether the rpll number 1033 is not there in the table.

Not UNIQUE _ ' ' Database Development
WHERE NOT UNIQUE (SELECT ROLLNO FROM STUDENT TBL). ' |

It tests to see whether there are roll numbers in the table that are not UNIQUE. -

Logical Operator’s Precedence . . :
Like arithmetic operators, logical .operators too have a precedence. This is different NOTES
from arithmetic one. The following is the list of precedence: '

Arithmetic - Comparison Logical

Exponentiation (*) Equality (=) - Not
Negation (-) - Inequality (<>) And = .
Multiplication and division (*,/) Less than (<) Or -
Integer division (/) . ' Greater than (>)- , Xor
Modulus arithmetic (Mod) Less than or '

. o equal to (<=) Eqv
Addition and subtraction (+,-) Greater than or

~ equal to (>=) Imp

String concatenation (&) . Is &

h_ Group By Clause S . L -
This clause is used in collaboration with the SELECT statement to arrange identical '
data into groups. The GROUP BY clause follows the WHERE clause in a SELECT !
statement and’ precedes the ORDER BY clause.

The posmon of the GROUP BY clause in a query is as follows:
SELECT
FROM
WHERE -
GROUP BY
ORDER BY
The GROUP BY clause must follow the conditions in the WHERE clause and must

precede the ORDER BY clause if one is used. The followmg is the SELECT
statement’s syntax, including the GROUP BY clause:

. SELECT COLUMN1, COLUMN2 |
FROM TABLEl, TABLE2 “
WHERE CONDITIONS

GROUP BY COLUMN1, COLUMN2
ORDER BY COLUMN1, COLUMN2

The following sections give examples and explananons of the GROUP BY clause’s
use in a variety of situations.

Grouping Selected Data

- Grouping data is a simple process. The selected columns are the columns that can be
referenced in the GROUP BY clause. If a column is not found in the SELECT
statement, it cannot be used in the GROUP BY clause. If the column name has been

Self Instructional Material 71

- L

Database Systems

NOTES

72 Self Instructional Material

qualified, the qualiﬁed name must go into the GROUP BY clause. When grouping
the data, the order of the columns grouped does not have to match the column order
in the SELECT clause. -

Group Functions

Typical group functions — thiose that are used with the GROUP BY clause to arrange
data in groups — include AVG, MAX, MIN, SUM and COUNT. :

Creating Groups and Using Aggregate F u(lcﬁd{ls

There are conditions that the SELECT.clause has that must be met when using
GROUP BY. Specifically, whatever columns are selected must appear in the GROUP
BY clause do not necessarily have to be in the same order as they appear in the
SELECT clause. Should the columns in the SELECT clause be qualified, the quallﬁed
names of the columns must be used in the GROUP BY clausc

The following are some examples of syntax for the GROUP BY clause:”

For example _
SELECT . EMP_ID, CITY
FROM EMPLOYEE _TBL
GROUP BY CITY, EMP ID;
The SQL statement selects the EMP_ID and the CITY from the EMPLOYEE _TBL

and groups the data returned by the CITY and then RMP_ID. Note the order of the
column selected, versus the order of the columns in the GROUP BY clause.

For example.
SELECT EMP_ID, SUM(SALARY)
FROM EMPLOYEE PAY TEL
GROUP BY SALARY, EMP _ ID

This SQL statement returns the EMP ID and the total of the salary groups, as well
as groups both the salaries and employee IDs.

For example. _
SELECT SU_M (SALARY)
FROM EMPLOYEE PAY TBL;

This SQL statement feturns the total of all the salaries from the
EMPLOYEE_PAY_TBL.

For example,
SELECT SUM(SALARY)
FROM EMPLOYEE PAY TBL
GROUP BY SALARY;

This SQL statement returns the totals for the different groups of salaries.

In this first example, you can see that there are three dlstmct cities in the
EMPLOYEE_TBL table.

For example,
SELECT CITY

FROM EMPLOYEE TBL;

This would result in:
CITY
GANGANAGAR
IMPHAL
NAINITAL
IMPHAL
IMPHAL
IMPHAL
6 rows selected.
In the following example, you select the city and a count of all records for each city.

. You see a count on each of the three dlSl’.lnCt cities because you are usmg a GROUP
BY, clause.

. SELECT CITY, COUNT(*)
FROM EMPLOYEE TBL
GROUP BY CITY;

This would give the following result:

CITY - COUNT (*)
GANGANAGAR 1
IMPHAL 4
NAINITAL 1«

3 rows gselected.
!
The following is a query from a temporary table created based on EMPLOYEE_TBL
and EMPLOYEE_PAY TBL
SELECT *
- FROM EMP_PAY TMP;
This is what you get as an output:

PAY RATE SALARY

CITY LAST_NAM FIRST NAM
GANGANAGAR SHARMA POONAM 30000
IMPHAL > PANDIT ‘LALI 14.75
NAINITAL 'GANJU - BABY 400000
IMPHAL GANJU JOHN 20000
IMPHAL WALIA MARY . 11
IMPHAL SANGAR TARUN 15

6. rows selected. -

In the following ekample; you retrieve the average pay rate and salary on each distinct
city using the aggregate function AVG. There is no average pay rate for

GANGANAGAR or NAINITAL, because no employees living 'in those cities are -

paid hourly.

For example,

Database Development

NOTES

Self Instructional Material 73,

Database Systems

NOTES

74 Self Instructional Material

SELECT CITY,. AVG(PAY;RATE), AVG(SALARY) FROM EMP PAY TMP
GROUP BY CITY: '

This would give the following result:’ ‘

CITY AVG (PAY RATE) AVG (SALARY)
GANGANAGAR _ 30000
IMPHAL 13.5833333 20000
NAINITAL

40000
3 rows selected. '

In the next example, you combine the use of multiple components in a query to
return grouped data. You still want to see the average pay rate-and salary, but only for
IMPHAL and NAINITAL. You group the data by CITY, of which you have no-
choice because you are using aggregate functions on the order columas. Lastly, you
want to order the report by 2, and then 3, which is the average pay rate and then
average salary. . : -
Study the following details and output. For example,

SELECT CITY, AVG(PAY RATE}, LVG (SALARY)

FROM EMP_PAY TMP

WHERE CITY IN (‘IMPHAL’, ‘NAINITAL’)

GROUP BY CITY

ORDER BY 2,3;

This would result in the following:

CITY ACG (PAY RATE) AVG (SALARY)
IMPHAL 13.5833333 20000 f
NAINITAL 40000 .

Values are sorted before NULL values; therefore, the record for IMPHAL was
displayed first. GANGANAGAR was not selected, but if it were, its. record would
have been displayed before NAINITAL'’s record because GANGANAGAR’s average
salary is Rs.30,000 (the second sort in the ORDER BY clause was on average salary).

" The last examplé in this section shows the use of the MAX and MIN aggregate

functions with the GROUP BY clause.

For example,
SELECT CITY, MAX(PAY RATE), MIN (SALARY).
FROM EMP_PAY TMP
GROUP BY CITY;

This would result in the following:

CITY MAX (PAY RATE) . MIN (SALARY)
GANGANAGAR 30000
IMPHAL 15 20000
NAINITAL S 40000

3 rows selected-.

Representing Columns Names with Numbers

Unlike the ORDER BY clause the GROUP BY clause cannot be ordered by using an
integer to represent the column name — except when using a UNION and the column
names are different.
The following is an example of representing columns names with numbers:

SELECT EMP_ID, SUM(SALARY)

FROM EMPLOYEE PAY TBL

UNION .

SELECT EMP_ID, SUM(PAY RATE)

FROM EMPLOYEE PAY TBL

GROUF BY 2, 1;
This SQL statement returns the employee ID and the gréup totals for the salaries.
When using the UNION operator, the results of the two SELECT statements are

merged into one result set. The GROUP BY is performed on the entire result set. The
order for the groupmgs is 2 representing sa.lary and 1 representmg EMP_ID.

GROUP BY versus ORDER BY

You should understand that the GROUP BY clause works the same as the ORDER
BY clause in‘that both are used to sort data. The ORDER BY clause is specifically
used to sort data from a query; the GROUP BY clause also sorts from a query to
properly group the data. Therefore, the GROUP BY clause can be used to sort data
the same as ORDER BY.

There are some differences and disadvantages of using GROUP BY for sorting
operatlons

Q All non-aggregate columns selected must be hsted in the GROUP BY clause.

Q Integers cannot be used in the GROUP BY to represent columns after the
SELECT keyword, similar to using the ORDER BY clause.

_d The GROUP BY clause is geﬁerally not necessary unless using aggregate
functions.

An example of performing sort operations utilizing the GROUP BY clause in place
of the ORDER BY clause 1s shown next:

SELECT LAST NAME, FIRST NAME, CITY

FROM EMPLOYEE TBL

GROUP BY LAST NAME;

~

This would result in the following: |
SELECT LAST NAME, FIRST NAME, CITY
ERROR at 1line 1:
ORA - 00979: not a GROUP BY expression

In this example, an error was received from the database server stating that

FIRST_NAME is not a GROUP BY expression. Remember that all columns and
expressions in the SELECT must be listed in the GROUP BY clause, with the exceptiQn
of aggregate columns (those columns targeted by an aggregate function).

- Database Devélopment

NOTES

1
Self Instructional Material 75

Database Systems

NOTES

[
N

e

76 Self Instructional Material

" In the next example, the‘preﬁous problem is solved by adding all expression in the
SELECT to the GROUP BY clause:
For example, 1
SELECT LAST NAME, FIRST_NAME, CITY
FROM EMPLOYEE_T.BL
GROUP BY LAST NAME, FIRST NAME, CITY:

This would result in the following:

LAST NAM . FIRST NAM CITY:
GANJU . ' BABY NAINITAL
GANJU ' JOHN - IMPHAL
PANDIT LALI IMPHAL
* SANGAR " TARUN IMPHAL
SHARMA POONAM . GANGANAGAR

WALIA ‘ MARY IMPHAL

6 rows selected. '
In this example, the same columns were selected from the same table but all columns
in the GROUP BY clause are listed as they appeared after the SELECT keyword.
The results were ordered by LAST_NAME first, FIRST_NAME second and CITY
third. These results could have been accomplished easier with the ORDER BY clause;

however, it may help you better understand how the GROUP BY works.if you can
visualize how it must first sort data to group data results

The following example shows a SELECT from EMPLOYEE_ TBL and uses the
GROUP BY to order by CITY, which leads into the next example.

SELECT CITY, LAST NAME '

FROM EMPLOYEE TBL

GROUP BY CITY, LAST NAME;

. This would result in the following:

CITY LAST NAM
. GANGANAGAR SHARMA

IMPHAL ‘ GANJU

IMPHAL ' PANDIT .
IMPHAL - SANGAR

IMPHAL WALIA

NAINITAL GANJU

6 rows gelected.

Notice the order of data in the previous results, as well as the LAST_NAME of the
individual for each CITY.

All employee records in the EMPLOYEE - TBL table are now counted and the results
are grouped by CITY but ordered by the count on each city first.-

For example,”

SELECT CITY, COUNT (*) R

FROM EMPLOYEE_ TBL _ - o Database Development
GROUP BY CITY ' :
ORDER BY 2,1;

This would result in the following: .

CITY COUNT (*} . } : NOTES
GANGANAGAR 1
NAINITAL 1

IMPHAL 4

Notice the order of the results. The results were first sorted by the count on each city
(1-4) and then by city. The count for the first two cities in the output is 1. Because the -
count is the same, which is the first expression in the ORDER BY clause, the city is
then sorted; GANGANAGAR is placed before NAINITAL.

Although GROUP BY and ORDER BY perform a similar function, there is one
major difference. The GROUP BY is designed to group identical data, while the
ORDER BY is designed merely to put data into a specific order. GROUP BY and
ORDER -BY can be used in the same SELECT statement, but must follow a specific
order. The GROUP BY clause Is always placed before the ORDER BY clause in the
SELECT statement. -

h The GROUP BY clause can be used in the CREATIVE VIEW statement to sort
data, but the ORDER BY clause is not allowed in the CREATE VIEW statement.

Like operator

The LIKE operator is used to compare a value which is similar to values given bj; the
wildcards. There are 2 wildcards which are used here. They are”

The percent sign (%)
" The underscore sign {_)

Here the percent represents zero, one, or multiple characters. The underscore represents
a single number of character. Both can be used together. If we use the LIKE command
with the following options, we would get the results as shown.

WHERE ROLLNO LIKE “100%” o

It finds the roll number that start with 100. ‘
WHERE ROLLNO LIKE “%100%”

- Tt finds the roll number that have 100 in any position,
WHERE ROLLNO LIKE “ 00~

It finds the roll number that have 00 in the second and third position.
WHERE ROLLNO LIKE “2 % %"

It finds the roll number that starts with 2 and are at least 3 characters in length.
WHERE ROLLNO LIKE %“%2”

It finds the roll number that ends with 2.
WHERE ROLLNO LIKE " 2%3”
_E

It finds the roll number that have a 2 in the second position and end with a 3.

Self Instrucrional Material 77

Database Systems

NOTES

78 Self Instructional Material

-

WHERE ROLLNO LIKE “2_ 3"

It ﬁnds the roll number in five digit format that start with 2 and end up w1th 3.

Insert _
Read about it later in the chapter.
Update

Read about it later in the chapter.

Delete

Read about it later in the chapter.

DATA TYPES.

Both PL/SQL and Oracle have their foundations in SQL. Most PL/SQL data types
are native to Oracle’s data dictionary. Hence, there is a very easy integration of PL/
SQL code with the Oracle Engine.

The default data typés that can be declared in PL/SQL are number (for storing numeric
data), Char (for storing character data), date (for storing date and time data), Boolean
(for storing TRUE, FALSE or NULL), number, char and date data types can have
NULL values.

The % TYPE attribute provides for further integration. PL/SQL can use the %TYPE -
attribute to declare variables based on definitions of columns in a table. Hence, if a
column’s attributes change, the variable’s attributes will change as well. This provides
for data independence, reduces mamtenance costs and allows programs to adapt to
changés made to the table. :

% TYPE declares a variable or constant to have the samé data type as that of a
previously defined variable or of a column in a table or in a view. When referencing
a table, user may name the table and column or name the owner, the table and column.

NOT NULL causes creation of a variable or a constant that cannot have a null value.
If an attempt is made to assign the value NUL to a variable or a constant that has
been assigned a NOT NULL constraint, Oracle senses the exception condition
automatically and an internal error is returned. -

Variables

Variables in PL/SQL blocks are named variables. A variable must begin with a
character and can be followed by a maximum of 29 other characters.

Reserved words cannot be used as variable names unless enclosed within double
quotes. Valjiab]es must be separated from each other by at least one space or by a
punctuation mark.

Case is insignificant when declaring variable names. A space cannot be used in a
variable name. A variable of any data type either native to the Oracle Engine such as
number, char, date and so on or native to PL/SQL such as Boolean (i.e. logical variable
content)} can be declared.

Assigning Values to variables
The assigning of a value of a variable can be done in two ways
* . . Using the assignment operator : = (i.e. a colon followed by an equal to sign).

- Selecting or fetching table data values into. variables.

Constants .

Declaring a constant is similar to declaring a variable except that the keyword constant
must be added to the variable name and a value immediately assigned. Thereafter, no
further assignments to the constant are possible, while the constant is within the
scope of the PL/SQL block.

Raw

“Raw types are used to store binary data. Character vanabies automatically converted
between character sets by Oracle, if necessary. These are similar to ‘char variables,
except that they are not converted between character sets. It is used to store fixed
length binary data. The maximum length of a raw variable is 32,767 bytes. However,
the maximum length of a database raw column is 255 bytes. '

- Long raw is similar to long data, except that PL/SQL will not convert between

character sets. The maximum length of a long raw variable is 32,760 bytes. The
maximum length of a long raw column is 2 GB. '

Rowid

This data type is the same as the database Rowid pseudo-column type. It can hold a
rowed, which can be considered as a unique key for every row in the database. Rowids
are stored internally as a fixed length binary quantlty, whose actual fixed length values
. depending on the operating system.

Various DBMS_ROWID functions are used to extract information about the ROWID
pseudo-column, Extended and Restricted are two rowed formats. Restricted is used
mostly to be backward compatible with previous versions of Oracle. The extended
format takes advantages of new Oracle features.

The DBMS_ROWID package has several procedures and functions to interpret the-

. ROWID:s of records. The following table shows the DBMS_ROWID functions.

Function Description

ROWID_VERIFY © Verifies if the ROWID can be‘extended; 0 = can be

converted to extended format; 1 = cannot be
. converted to extended format

ROWID_TYPE 0 = ROWID, 1 = extended

ROWID_BLOCK _NUMBER The block number that contains the record, 1 =
extended ROWID

ROWID_OBJECT The object number of the ob_]ect that contains the
record.

. ROWID_RELATIVE_FNO The relative file number confains the record
ROWID_ROW_NUMBER The row number of the record.

Database Development

NOTES

Self Instructional Material 79

Datrabase Systems

NOTES

80 Self Instructional Material

ROWID_T O_ABSOLUTE_FNQO The absolute file number; liSC need to input
rowid_val, schema and object; the absolute file
number is returned.

ROWID TO _EXTENDED Converts the ROWID from restricted to extended;
: user need to input restr_rowid, schema_l; object; the
extended number is returned.

ROWID TO _RESTRICTED Converts the ROWID from extended to restricted.

ROWID is a pseudo-column that has a unique value associated with each record of
the database :

The DBMS _ROWID package is created by the

ORACLE_HOME/RDBMS/ADMIN/DBMSUTIL. SQL script. This scrlpt is .
automatically run when the Oracle instance is created.

LOB Types

A company may decide that some comments about each of its vendors must be
stores along with their details. This must be stored along with all the other details that
they have on a particular vendor. Thls can be done in Oracle with the help of LOB

types.

The LOB types are used to store large objects. A large object can be either a binary or
a character value upto 4 GB in size. Large objects can contain unstructured data,
which is accessed more efficiently than long or long raw data, with fewer restrictions.
LOB types are manipulated using the DBMS_LOB package. There are four types of
LOBs: ‘

- BLOB (Binary LOB) - this stores unstructured bmary data upto 4 GB in
length. A blob could contain video or picture information.

- CLOB (character LOB) — this stores single byte characters upto 4GB in length.
This might be used to store documents.

-

- BFILE (Binary File) — this stores a pomter to read only bmary data stored as
an external file outside the database.

Of these LOBs BFILE is an external to the database. Internal objects store a locator
in“the Large Object column of a table. Locator is a pointer that specifies the actual

‘ locatlon of LOB stored outside the database. The LOB locator for BFILE is a pointer

to the location of the binary file stored by the operating system. Thé BDMS_LOB
package is used to manipulate LOBs. Oracle supports data integrity and concurrency
for all the LOBs except BFILE as the data 1 Is stored outside the database

Storage for LOB data

The area required to store the LOB data can be specified at the time of creation of
the table that includes the LOB column. The create table command has a storage
clause that specifies the storage characteristics for the table. The Syntax for this is :

CREATE TABLE <tablename> (<columnname> <datatype> <size()>
: <columnname> <datatype> <size()>, <columnname>
CLOB,...): :

7

Logical C‘omparisons

PL/SQL supports the comparison between variables and constants in SQL and PL/
SQL statements. These comparisons, oftea called Boolean expressions, generally
~_consist of simple expressions separated by relational operators (<, >, =, <>, >=, <=)
that can be connected by logical operators (AND, OR, NOT). A Boolean expression
will always evaluate to TRUE, FALSE or NULL. '

Variable Declarations

- Communication with the database takes place through variables in the PL/SQL block.
. Variables are memory locations, which can store data values. As the program runs

the contents of variables can and do change. Information from the database can.be

assigned to a variable or the contents of a variable can be inserted into the database.
- AN

.Variables can also be modified directly by PL/SQL commands. These variables are
declared in the declarative section of the block. Every variable has a specific type as
well, which describes what kind of information can be stored in it. .

Declaration Syntax
Variables are declared-in the declarative section of the block The general syntax for
declaring a variable is

Variable name type [CONSTANT] [NO'I‘ IQ'ULL] [:= valuel; - ‘
Where variable_name is the name of the variable, type is C.e type and value is the
initial value of the variable. For example, the following are legal variable declarations:

* DECLARE

V Description VARCHAR2(50) ;

V_NumberSeats NUMBER := 45;

V_Counter BINARY INTEVER := 0; '

Any legal PL./SQL idenriﬁel; can be used as a variable name. VARCHAR2, NUMBER

and BINARY_INTEGER are valid PL/SQL types. In this example, v_NumberSeats

and v_Counter are both initialized to 45 and 0, respectively. If a variable is not
initialized, such as v_Description, it is assigned NULL by default. If NOT NULL i1s
present in the declaration the variable must be initialized as it is defined. Furthermore,

it is illegal to assign NULL to a variable constrained to be NOT NULL, either when

it is declared or in the executable or exception section of the block. The following
‘declaration is iltegal because v_TempVar is constrained to be NOT NULL, but is not
initialized:

DECLARE

V_TempVar N‘UM:BER NO NULL;

We can correct this by assigning a default value to v_TempVar, for example
DECLARE
V_TempVar NUMBER NOT NULL := 0;

If CONSTANT is present in the variable declaration, the varidble must be initialized
and its value cannot be changed from this initial value. A constant vanable is treated

as read-only for the remainder of the block. Constants are often used for values that

are known when the block is written, for example:

Database Development

NOTES |

Self Instructional Material 81

Database Systems

NOTES

82 Self Instructional Material

DECLARE.
C_MinimumStudentID CONSTANT NUMBER(5) := 10000;

If desired, the keyword DEFAULT can be used instead of := as well;
DECLARE ’ .
V_NumberSeats NUMBER DEFAULT 45;
V_Counter BINARY INTEGER DEFAULT 0;
V FirstName VARCHAR2 (20) DEFAULT ‘Scott’;

There can be only one variable declaration per line in the declarative section. The
following section is illegal, because two variables are declared on the same line:

DECLARE _
V _FirstName, v_LastName VARCHAR(20):

The correct version of this block would be
DECLARE .
V PirstName VARCHAR(20};
V- _LastName _FARCHAR (20);

Variable Initialization

Many 1anguageé do not define what uninitialized variables contain.' As a result,
uninitialized variables can contain random of unknown values at runtime. In these
languages, leaving uninitialized variables is not good programming style. In general, it
is best to initialize a variable if its'value can be determined. '

PL/SQL however, does define what an uninitializd variable contains - it is assigned
NULL. NULL simply means “missing or unknown value.” As a result it is logical
that NULL is assighed by default to any uninitialized variable. This is a unique feature
of PL/SQL. Many other programming languages (C and Ada included) do not define
the value for uninitialized variables. Other languages (such as Java) require that all
variables be initialized.

Displaying User Messages On the VDU Screen

Programming tools require a method through which messages can be displayed to
the user on the VDU screen.

DBMS_OQUTPUT is a package that includes a number of procedures and functions
that accumulate information in a buffer so that it can be retrieved later. These
functions can also bé used to display messages to the user.

PUT_LINE puts a piece of information in the package buffer followed by an end-of-
line marker. It can also be used to display a message to the user. Put_line expects a
single parameter of character data type. If used to display a message, it is the message
string. ’ ' .

To display message to the user, the SERVEROUTPUT should be set to ON,
SERVEROUTPUT is a SQL * PLUS environment parameter that displays the

information passed as a parameter to the PUT_LINE function. The Syntax for this
18: a

Set ServerOutput [ON/OFF]

-Comments

A comment have two forms, as:

- The comment line begins with a double hyphen (—). The entlre line will be

treated as comment.

- The comment line begins with a slash followed by an asterisk (/*) till the

" occrence of an asterisk followed by a slash (*/). All lines within are treated
as comments. This form of specifying comments can be used to span across
multiple lines. This technique can also be used to enclose a section of a PL/
SQL block that temporarily needs to be isolated and ignored. '

Control Structure ‘

The flow of control statements can be classified into the following categories:
- Conditional Control
- Tterative Control
- Sequential Control

Conditional Control

PL/SQL allows the use of an If statement to control the execution of a block of
code. In PL/SQL the IF — THEN - ELSEIF — ELSE — END IF construct in code
blocks allow specifying certain conditions under which a specific block of code should
be executed. The Syntax for this 1s :

IF <condition>. THEN

" <Action>

'ELSEI_'F <condition> THEN
<Action>

ELSE '
<Action>

END IF;

Example:
Write a PL/SQL gode- block that will accept a Client_no from the user and adds the

amount of Rs. 100 to the Bal_due column if the Bal-due column has a minimum

balance of Rs. 5000. The process is fired on the Client_Master table.
DECLARE . '

/* Declaration of memory variables and constants to be
used in the Execution section.*/

Bal due number(ll,2};

mClient no varchar2(7):

add amt number(4) := 100;

MIN BAL constant number(7,2) := 5000.00;

BEGIN ‘
/* Accept Client no from the user*/

Database Development

NOTES

Self Instructional Material 83

Database Systems

NOTES

© 84 Se;ffnsmcrional Material

mClient no := &mClient no; -

/* Retrieving the balance from the Client Master table
' where the Client no in the table is equal to the
Client no entered by the |user.*/

SELECT Bal due
FROM Client Master
WHERE Client no = mClient no;

/* Checking if the resultant balance is greater than or
equal to the minimum balance of Rs. 5000. If the
condition is satisfied an amount of Rs. 100 is
added in the balance due of the corresponding
Client no.*/ '

IF Bal due »>= MIN BAL THEN
UPDATE Client Master
SET Bal due = Bal due "+ add amt
WHERE Client no = mClient no;
END IF; '
END;

Iterative Control

Iterative control indicates the ability to repeat or skip sections of a code block. A
loop marks a sequénce of statements that has to be repeated. The keyword loop has
to be placed before the first statement in the sequence of statements to be repeated,
while the keyword end loop is placed immediately after he last statement in the
sequence. Once a loop begins to execute, it will go on forever. Hence a conditional
statement that controls the number of times a loop is executed always accompanies
loops. ')

PL/SQL supports the following structures for iterative control:
Sir}zp!e Loop

In simple loop, the key word loop should be placed before the first statement in the

-sequence and the keyword end loop should be written at the end of the sequence to

end the loop. The Syntax for this is:
Loqp '
<Sequence of gtatements>

~End loop:

Example:
DECLARE
i ‘number := 10
BEGIN
LOOP

i := 1 + 2-
EXIT WHEN I = 10
END LOP
dbms_output.put_line(to_char(i));
END;
The wi.lE loop
Syﬁtax:
WHILE <condition>
Loop
' <Action>

End loop:
Example:

Write a PL/SQL code block to calculate the area of a circle for a value of radius
varying from 3 to 7. Store the radius and the corresponding values of calculated area
in an empty table named Areas, consisting of two columns Radius and Area.

Table Name : Areas

Radius Area
DECLARE .

/* Declaration of memory variables and constants to be
used in the Execution section. */

pi constant number(4,2) := 3.14;

radius number (5)-;

area number(14,2); - N
BEGIN

/* Initialize the radius to 3,. since calculations: are
required for radius to 3 to 7 */

radius :=3;

/* Set a loop so that it fires till the radius value
reaches 7 */

WHILE radius <= 7
LOOP .
/* Area calculation for a circle */

area := pi * powef(radius,zi;

/* Insert the value for the radius and its corresponding
"~ area.calculated in the table */ '

INSERT INTQO areas VALUES (radius, -area);

/* Increment the value of the variable radius by 1 */

Database Developmient

NOTES

Self Instructional Material 85

~

Database Systems

' NOTES

. 86 Self Instructional Material

radius := radius + 1: T .
END LOOP; .

_ END; | ' o
The above PL/ SQL code block initializes a variable radius to hold the value of 3.
The area calculations are required for the radius between 3 and 7. The value for area |
is calculated first with radius 3 and the radius and area are inserted into the table
Areas. Now, the variable holding the value of radius is incremented by 1, i.e. it now
holds-the value 4. Since the code is held within a loop structure, the code continues to

fire till the radius value reaches 7. Each time the value.of radius and area is inserted
into the areas table. ' '

After the loop is completed the table will now hold the following:
Table name : Areas .
Radius Area .
$28.26

3 N
4 s024
5 78.5
6 113.04
7. 153:86 ’
- The FOR Loop R

The Syntax for this is:
FOR variable IN ([RESERVE] start..end T
Loop) ‘
<Action>
END LOOP;

Example:

Write a PL/SQL block of code for inverting a number 5639 to 9365.

DECLARE’

" /* Declaration of memory variables and constants to be
used in the Execution section. */

given number varchar(5) := '5639";
str_length number(2);
inverted_number varchar(5);

‘BEGIN
/* Store the length of the g;yen'number */
str length := length(giveﬁ_number);
/* Initialize the loop such that it repeats for the number
of times equal to the length of the given number.
Also, since the number is required to be inverted,

the loop should consider the last number first
and store it i.e. in reverse order */

FOR cntr IN REVERSE l..str length

/* Variables used as counter in the for loop need not be
declared i.e. cntr declaration is not required */

LOOP

. /* The last digit of the number is. obtained wusing the
substr function and stored in a’ variable, while
retaining the previous digit stored in the varlable

*/
inverted_number = inverted number 11
substr (given_ number, cntrx, 1);, '
END LOOP;

/* Display the initial number, as well as the inverted
number which is stored in the variable on screen
*x/
dbms_output.put line (‘'The Given number .is * ||
.given number };
dbms_output.put_line (‘The Inverted number is ' ||
~ inverted number -);
END; -
The above PL/SQL code block stores the given number as well its-length in two
variables. Since the FOR loop is set to repeat till the length of the number is reached
and in reverse order, the loop will fire 4 times beginning form the [ast digit, i.e., 9.
This digit is obtained using the function SUBSTR and stored in a variable. The loop
now fires again to fetch and store the second last digit of the given number. This is

appended to the last digit stored previously. This repeats till each digit of the number
is obtained and stored. The resultant display after execution of the PL/SQL code

will be

. Output:

The Given number is 5639
The Inverted number is 9365

Sequential Control
The GOTO statement

The GOTO statement changes the flow of control within a PL/SQL block. This

statement allows execution of a'section of code, which is not in the normal flow of
control. The entry point into such a block of code is marked using the tags
<<userdefined name>>. The GOTO statement can then make use of this user-defined
name to jump into that block of code for execution.
The Syntax for this 1s:

GOTO <codeblock name>;

Example: . , , .
Write a PL/SQL block of code to achieve the following: if the price of product

-

Database Development

NOTES

Self Imtructior;al Material 87

-

Ihmhme@mmm

NOTES

88 Se{f Instructional Material

P0000Y’ is less than 500, then r;hange the price to 500. The price change is to be
recorded in the old_price_tabie along w1th Product_no and the date on which the
price was last changed.

Table Name : Product_master

Product-no Sell_price

PO000I 350

P00002 © 400

P0OGO0G3 ’ ‘850

“ P00004 900 .

PO000S : 250

Table Name : old_price_table

Product_No Date_change Old_PricEe
DECLARE

/* Declaration of memory variables and constants to be
used in the Execution section. */

‘Selling price number(10,2);

BEGIN
/* Fetch the sell price of product no ‘P00001* into a
variable */ -
SELECT Sell price into selling price
FROM Product Master
WHERE Product ne = ‘P00001‘; .

/* If the sell price is less than 500, pass the execution
control to a user labeled section of code, labeled
as add old price in this example. If the price is
equal te or greater than. 500, display a message,
glVlng the current sell price of the product */

IF Selllng_prlce < 500 THEN
GOTO add_old_pr;ce;
ELSE '
Dbms_output.put_liﬁe(‘Current Price of PO0001 is’
|| selling price);
END IF; ‘

/* A labeled section -0of code which updates the sell price
of product ‘P0000L’ to 500. The product no, .current
date and the old price are inserted in to the
table old price table and a message displaying
the new price is displayed. */ '

<<add_old 'price>> :
UPDATE Product Master
SET Sell price = 500
WHERE Product no = ‘P00001’;
INSERT INTO old price_table
TProduct_no, Date_change, 014 price)
VALUES (‘P0000l’, sysdate, selling;price) ;
Dbms output.put_line(‘The new Price of P00001l is
5007); '

END;))
The PL/SQL code first fetches the first fetches the Sell_price of the Product_no
‘POD001’ into a variable selling price. It then checks whether the value that is held in
the variable Selling _price it is less than 500. If so, the control is passed to a different
section of code, labeled as add_old_price. In this block of code, the valué of sell_price
for-product_no ‘PO0001’ in the Product Master table is updated to 500. Also, the

Product_no, the current date and the Old_price are inserted into the old_price table
that keeps an audit trail of the change made to the product_master table.

In case the Sell_price for Product_no ‘PO0001” in the Product_Master table is already
equal or greater than 500, a message stating the current price of the product ‘P00001’
is displayed. :

PL/SQL Control Structures

PL/SQL, like other third-generation languages, has a variety of control structures
that allow you to control the behavior of the block as it runs. These structures include
conditional statements and loops. It is-these structures, combined with variables, that
give PL/SQL its power and flexibility. _ '
IF-THEN-ELSE I .
The syntax for an IF-THEN-ELSE statement is
IF Boolean_ expressionl THEN
Sequence of statements;
[ELSEIF Bo_olean_expresa‘ionz THEN

'sequence_of statements;]

[ELSE
sequence of statements;])
~ END 1IF] '
where Boolean_expréssion is any expression that evaluates to a Boolean value, defined
in the previous section, “Boolean Expressions,” The ELSEIF clauses are optional

and there can be many ELSEIF clauses as desired. For example, the following block
‘shows an IF-THEN-ELSE statement with one ELSEIF clause and one ELSE clause:

DECLARE .
V_NumberSeats rooms.number seats%TYPE;
V_Comment VARCHAR(35);

£mewJawﬁmméw

{

NOTES

Self Instructional Marerial 89

Database Systerns

NOTES

90 Self Instructional Marerial

BEGIN :
/* Retr:i._eve' the number of seat‘s' in the room* :i.:lentified
by ID 20008. :
Store the result in v NumberSeats. */
 SELECT number_ seats
INTO v_NumberSeats
' II FROM rooms
WHERE room_id = 20008;
IF v 'NumberSeats < 50 THEN -
V-Comment := ‘Fairly Small';
ELSEIF v _NumberSeats < 100 THEN
V Comment := ‘A little bigger’;
ELSE
V_Com:iuent_ := ‘Lots of room’;
¢ END IF; '
END;) . .
The behavior of the preceding block is the same as the keywords imply. If the first

condition evaluates to TRUE, the first sequence of statements is executed. In this
case, the first condition is

V_NumberSeats < 50

And the first sequénce of statement 1s
V _Comment ":= ‘Falrly amall’ _

If the number of seats is not less than 50 the second condmon
V_NumberSeats < 100 , o

Is evaluated. If this evaluates to TRUE, the second sequence of statements
vV _Comment := ‘A little bigger’;

Is executed. Finally, if the number of seats is not less than 100, the ﬁnal/sequence of
statements

V_comment := “Lots of room’;

Is executed. Each sequence -of statements is executed only if its associated Boolean

- condition evaluates to TRUE.

In the example, each sequence of statements has only one procedural statement.
However, in general, you can have as many statements (procedural or SQL) as desired.
The following block illustrates this:

V_NumbersSeats rooms.number séats%TYPE;
V_Comment VARCHAR(35);
BEGIN

/\1‘r Retrieve the number of seats in the room identified
. by ID 20008.

Store the result in v_NumberSeats. */
SELECT number seats

INTO \.r__Nuz'nberSeats
FROM - rooms
WHERE room id = 20008;
IF v_NumberSeats < 50 THEN
V_Comment := ‘Fairly small’;’
INSERT INTO temp table (char col)
VALUES (‘N:l.ce and cozy’ Y .
ELSEIF v NumberSeats < 100 THEN
V Comment := ‘A little bigger’; -
INSERT INTO temp table (char col) |
VALUES ({‘Some breathing room’):
ELSE. _
V_Comment := ‘Lots of Eo_ﬁm';
END IF; '
END;
Loops

PL/ SQL provides a facility for executing statements repeatedly, via loops. Loops are
divided into four categories. Simple loops, WHILE loops and numeric FOR loops
are loops that are discussed in the following sections.

Slmple Loops

The most basic kmd of loops, simple loops, have the syntax
LOOP _
Sequence_ of statements;
END _LOOP: ..
The sequence_of_statements will be- executed ‘infinitely, because this loop has no

stopping condition. However, we can add one with the EXIT statement, which has
the following syntax:
EXIT [WHEN condition]; }
For example the following block inserts 50 rows into temp_table,
DECLARE _ . f;’
V_counter BINARY INTEGER := 1; : Z
BEGIN ’ ,
LOQP _
— Insert a row into temp_ﬁabie with the current
. value of the loop counter.. - .
INSERT INTO temp table -
VALUES (v_couni:er, ' "Lloop index’) ;

A\ Counter := v_Counter + 1;

— Exit cond:l.t:.on - ‘when the 1oop counter > 50 ag will

— break out of the loop

Database Development

NOTES

Self Instructional Material 91

-

Database Systems

NOTES

92 Self Instructional Material

.

IF'thouﬁter » 50 THEN
EXIT;
END IF;‘
END LOOP;
END;

The statement
EXIT WHEH condition;

Is equivalent to
IF condition THEN
EXIT; '
END IF;
So, we can rewrite the example with the following block, which behaves exactly the
same way:
DECLARE -
V _Counter BINARY INTEGER := 1;
BEGIN.
LOQP

'— Insert a row into temp table with the current
value of the

— loop counter.
INSERT INTO temp table
VALUES (v_Counter, ‘Loop index’);
V_Counter := v_Counter + 1; C -
— Exit condition - when the loop counter > 50 we will
— break out of the loop.
EXIT WHEN v Counter > 50;
END LOOP;
~ END; ’

WHILE Loops

The syntax for a WHILE loop is
WHILE rl.'ondition LOOP ‘
Sequence_of_statements;
END LOOP;

The condition is evaluated before each iteration of the loop. If it evaluates to TRUE,
sequence_of_statements is executed. If condition evaluates to FALSE or NULL,
the loop is finished and control resumes after the END LOOP statement. Now we
can rewrite the example using a WHILE loop as follows:
DECLARE
V_Counter BINARY INTEGER := 1;
BEGIN '

— Test the loop counter before each loop iteration to
— insure that it is still less than 50
WHILE V Counter <= 50 LOOP

INSERT INTO temp table

VALUES ({'_Counter, ‘Loop index’);

V_Coninte_r = thc.:unt:er + 1;

END . LOOP;
END;)

The EXIT or EXIT WHEN statement can still be used inside a WHILE loop to exit
the loop prematurely, if desired. -

RS

Keep in mind that if the loop condition does not evaluates to TRUE the first time it
is checked, the loop is not executed at all. If we remove the initialization of v_Counter
in our example, the condition v_Counter < 50 will evaluate to NULL, and no rows
will be inserted into temp_ table:

DECLARE
V_Counter BINARY INTEGER;
BEGIN ,
- this condition will evaluate to NULL, since V_Counter
— is initialized to NULL by default.
WHILE v_Counter <= 50 LOOP '
INSERT INTC temp table
VALUES (v_Counter, ‘Loop index’);
V_Counter := v Counter + 1;
END LOOP;
END ;

Numeric FOR Loops

The number of iterations for simple loops and WHILE loops is not known in advance
-~ it depends on the loop condition. Numeric FOR loops, on the other hand, have
defined number of iterations. The syntax is . .
FOR loop counter IN [REVERSE] low bound..high boud LOOP
Sequence_of_statements; - '
END LOOP;

" Where loop_counter is an implicitly declared index variable, low_}t)und and
high_bound specify the number of iterations and sequence_of statements is the
content of the loop. . '

The bounds. of the loop are evaluated once. The determines the total number of
iterations that loop_counter will take on the values ranging from low_bound to
high_bound, incrementing by 1 each time until the loop is complete. We can rewrite
our looping example using a FOR loop as follows:

' BEGIN '

FOR v _Counter IN 1..50 LOOP

Database Development

NOTES

Self Instructional Material 93

+

Database Systems

NOTES

94 Self Inustructional Material

INSERT INTO temp table . '
VALUES (v_Counter, ‘Loop Index’);
END LOOP; | o
END;

Scooping Rules

The loop index for a FOR loop is implicitly declared as a BINARY_INTEGER. It is
not necessary to declare it prior to the loop. If it is declared, the loop index will hide
the outer declaration in the same way that a variable declaration in an inner block can
hide a declaration in an outer block. See the following example:

DECLARE _
V_Counter NUMBER := 7;
BEGIN
~ Inserts the value 7 into temp_table.
INSERT INTO temp tabie (num col)
VALUES (v_counter);

~ This loop redeclares v_ Counter as a BINARY _INTEGER,
which hides

— the NUMBER declaration of v_Counter.
FOR v_Counter IN 20..30 loop
— inside the loop, v _Counter ranges from 20 to 30.
INSERT INTO temp table (num col)
VALUES (v Counter);
END LOOP; .
— Inserts another 7 into temp table.
INSERT INTO temp table (num col}
VALUES (v_Counter); .
END;

Using REVERSE

If the REVERSE keyword is present in the FOR loop, the loop index will iterate
from the high value to the low value. Note in the following example that the syntax
is the same — the low value is still referenced first: '

BEGIN
' FOR v_Counter in REVERSE 10..50 LOOP

— v_Counter will start with 50 and will be decremented
. by

— 1 each time through the loop.
NULL;’
END LOOP;
END;
Loop Ranges , 3 : |

The high how value don’t have to be numeric literals. They can be any expression
that can be converted to a numeric vaiue. Here is an example:

DECLARE

V_LowValue NUMBER := 10;

V_HighValue NUMBER := 40; . s
BEGIN |

FOR v Counter IN REVERSE v LowValue .. v_HighValue
LOOP ’

INSERT INTO temp table

VALUES {v_ Counter, ‘Dynamically specified loop
anges)3 ' N

. END LOOP;
‘END:;

-

CREATE TABLE

This command allows you to create a schema under which all the controls will be
mentioned. 3

This is done using the syntax. -
CREATE TABLE NewTa.ble (NewValue) INT)

Executing this statement creates a new table named New Table w1th a column named
New Value that takes integer data. If you want to add additioral column, simply add
the additional column names followed by their data type so that each pairing of
name and.data type between the parentheses- is separated by a comma,- as follows:

CREATE TABLE NewTable (NewValue INT, NextValue VARCHAR(6))
Since creating a table entails creating columns and creating columns requires the use

of data types, it's useful to review the dita types available. The following table provides
a way of reacquainting yourself with the data types which are available with SQL.

Name . Storage

binary Up to 8,000 bytes of binafy data

bit . Tntegers 0 or 1 |

char A fixed-length string of characters not encoded as Unicode

datetime " Date and time valuc:s from 1/1/175 to 12/31/9999

decimal Numbers containing decimal fractions from -10* 38-1 to 10"38-
| B ’ .

float Floating-point decimals from -1.79E+308 to 1.79E+308

image A variable-length string of bits (binary data) with a maximum
51ze of 2"31

int "~ Integers from -27°31-1to 2731-1

money * Numbers representing monetary values from -2763 to 27°63-1

nchar A fixed-length string of characters encoded as Unicode

Database Development

NOTES

Self Instructional Material 95

Database Systems

NOTES

9 Self Tnstructional Material

A variable-length string of characters not encoded as Unicode

ntext -
' with a maximum size of 2°31-1 |
nvachar A variable-length string of characters encoded as Unicode
numeric Same as decimal
real Floatiné—point decimals from -3.40E+38 to 3.40E+38
smalldatetime Date and time values from 1/1/1900 to 6/6/2079
smallint integers from -2715-1 to 2*15-1
smallmoney Numbers representing monetary values from -214,748.3648 to
214,748.3647

text A variable-length string of characters not encoded as Unicode
‘with a maximum size of 2°31-1

timestamp A unique number in the database A

tinyint Integers from 0 to 255-failed copy

verbinary A variable-length string of bits (binary data) with a maximum
size of 8,000 bytes

varchar A variable-length string of characters not encoded as Uicode

uniqueidentifier A globally unique identifier (GUID), that is, a number in the
world. ‘

One thing that you have to consider is the ultimate.size of your database and to
certain extent, its speed. In general, you want to plan your tables by choosing table
names and column names that are descriptive and self-documenting. People have to
remember how to use your tables and columns and table names and column do not
take up large amounts of space. This statement should not suggest, however, that
256-character column names are a good idea. The data type for a blank occurrence of
that column. Many SQL databases require on database creation that you set the

. maximum file size for the database. Under these circumstances, you want to choose

your data types wisely so that you do not bump up against that maximum size too
quickly.

- In choosing data types, therefore, apply the following suggestions:

'@ Choose varchar over char whenever possible. Char (256) sets aside 1 filled
byte and 255 blank bytes for the valye “A.” Varchar (256}, while it does incur
slight overhead to allow variable-length strings, only uses the number of bytes
it requires for the string.

Q If you absolutely know that you will never ever need to store a Unicode
string, use the standard data types (like char) instead of the data types that
begin with “n” (line nchar). Storing Unicode incurs some additional storage,
because you are not using a character set that can be represented by a single
byte. However, you need to be absolutely certain that you will need to store
Unicode, because you won't be able to if ‘you try.

Q Use a tiny data type or a small data type whenever it makes sense to do so.
" For example, you can use tinyint, smallint or int. The int data type takes the
most, storage, because it has to be prepared to store very large integers. The

smallint data type restricts the possible range of iﬁtegers and takes less storage.
The tinyint type takes the least storage but has a maximum value of 235.

~ 1 Avoid the binary and next data types whenever possible. If you need to store
a collection of binary large objects (BLOBs), such as a collection of pictures,
consider storing the path to the graphics file in the database and the BLOB in
a folder set aside for holding the BLOB files. Your database will be’smaller,

storage for the BLOBs will actually be less, because you won’t have the

" -overhead the database wraps around the BLOB to keép track of it and response
time for queries will be faster. The same is true for large chunks.of text.

In addition to planning data types, you need to consider default value and nullability

when planning column layouts in tables. The default value is what is placed in the
column when a row is created if no value for the column is provided. To provide a
default ‘value, you use the default keyword as follows:)

CREATE TABLE NewTable (NewValue INT DEFAULT 0)

- The column NewValue now takes a value of 0 if no other value is provided for it by
an INSERT statement. A default value of 0 is somewhat redundant for any numenc
data type, because the data type itself. usually defaults the column to 0.

However, there are many instances where 0 is not the appr(_)pnate default, such as
when you want to specify a guaranteed interest rate for a life insurance contract. In
addition, you need to specify whether the column can be null, that is, whether it can
contain no data at all. You do so using the following syntax:

'CREATE TABLE NewTable (NewText CHAR{6) NULL)

This table definition states that the column NewText can be null,\w-hich-will be its

value if an INSERT does not supply another value. You can also specify a default

value for a nullable column as follows:)

" CREATE TABLE NewTable (NewText CHAR(6) NULL DEFAULT
‘ABCDEF’) '

I-Iere an INSERT that does not prcmde a value Ior thls column creates a row that‘

contains ‘ABCDEF’ in the column NewText. However, another INSERT statement
could later set the value of this column to NULL if we so desired. If your database
supports filenames or filegroups that represent the files that containing the data on
the disk, you can usually specify which files to use in creating a table using the ON
- keyword. You should check you database’s documentation for the exact conventions
to use, because they can differ. Most tables have more than one or two columns, so
let’s take a brief look at a table deftnition: '

CREATE TABLE Friends : ,
friend id char(4) NOT NULL,
friend name varchar(40) NULL,

city varchar (20) ' NULL, '
state . char{2) ' " NULL,
country varchar (30) = NULL,

DEFAULT ("INDIA®)

Database Development

NOTES

Self Instructional Material 97 -

Database Systems

NOTES

98 Self Instructional Mar.gﬂ’al

" Things to note here are:

+ The use of identification to make the statement more readable.

+ Each column has its own line.

« . Any additional lines necessary for a given column are indented well underneath
that column name.

In addition, note that you can use NOT NULL to indicate that a column absolutely -
cannot contain NULL as a value. -

a

DROP TABLE

You can also delete tables with the DROP statement. The syntax is stra1ghtfomard
DROP TABLE [dbo].[friends]

Keep in mind that DROP needs a keyword to identify what you want to delete, in
this case a table. Following this keyword is the table name. DROP is final and does
not prompt you to have your sanity checked before you carry through the deletion.
Make sure you have the names right. If there is data in the table, 1t will be deleted
along with the table.) : -

" ALTER TABLE

As you m1ght guess,’ ALTER TABLE is a statement that changes an existing table.
Its basic syntax is as follows:

ALTER TABLE MyTable ADD HYCol‘me VARCHAR (20) NULL

This form of the statement adds a column. As you can see, the name of the table
follows the ALTER TABLE keywords and then the action to be taken follows. This’ ~
example adds two constraints to a table; it was taken from a script that SQL Server
generated for building the table:

ALTER TABLE [dbo].[sales] ADD
FOREIGN KEY
(
[F_id]
) . REFERENCES (dbo) . [names] (
[F_id]
Ye .
FOREIGN KEY
(
[x;rame_id]
) REFERENCES (dbo). laddress] |

[name_:i.dfl

You can also drop a column or a constraint using syntax like the following;:
ALTER TABLE MyTable DROP COLUMN MYColumn

You use one ADD keyword and each item to add follows in a comma-separated list.
Use separate ALTER TABLE statements for each intended action. ALTER TABLE
statements can become confusing when they are complex and complex ALTER
TABLEs can lead to -accidental and unintended consequences. Keep them as simple
and straightforward as possible.

INSERT INTO - - -

INSERT can be used in serveral ways. The most important one is to add data in the
database. Various options of INSERT are shown next. :

Remember: Do not forget that SQL statements can be in upper- or
lowercase. The data, depending on how it is stored in the
database, is not case-sensitive. These examples use both lower-
and uppercase just to show that is does not affect the outcome.

Inserting Data into a Table

Use the INSERT statement to insert new data into a table. There are a few optlons
with the INSERT statement: look at the following basic syntax to beigin:

INSERT INTO SCHEMA.TABLE NAME
VALU’ES (‘valuel’, ‘ValueZ’ [NULL]);

Using this INSERT statement syntax, you must include every column in the spectfied
table in the VALUES list. Notice that each value in this list is separated by a comma.
The values inserted into the table must be enclosed by quotation marks for character
and date data types. Quotation marks -are not required for numeric data types of
NULL values using the NULL keyword. A value should be present for each colimn
in the table. .

In the foﬂowing example, you insert a new record into the PRODUCTS_TBL table.

Table structure
products.tbl

Column Name Null? ; Data Type

PROD_IDNOT ULy 'VARCHAR2 (10)
PROD_DESC NOT NULL ~ VARCHAR2 (25)
COST NOT NULL . NUMBER(6,2)

Sample INSERT statement.
INSERT INTO PRODUCTS TBL
VALUES (~7725’, TLEATHER GLOVES’, 24.89);

You will get the output as:
1 row created.

In this example, you insert three values into a table with three columns, The inserted
values are in the same order as the columns listed in the table.

Datgbase Development

NOTES

Self Instructional Material 99

Database System

STUDENT ACTIVITY 2.2

1. 'What are Entity Types and Entity Sets?

/2. Write a short note on Relationship among Entities.

100 Self Intructional Material

Database Development

3. Describe the working of First normal form with example.

4. What do you understand by Second normal form?

-7 - . Self Intructional Material 101

Database Systems

. NOTES

102 Self Instructional Material

The first two values are inserted using quotation marks, because the data types of the
corresponding columns are of character type.

The third value’s associated column, COST, is a numeric data type and does not
require quotation marks, although they can be used.

Tip: The schema name, or table owner, has not been specified as part
of the table name, as it was shown in the syntax, The schema
name is not required if you are connected to the database as the
user who owns the table.

Inserting Data into Limited columns of a Table

There 1s a way you can insert data into a table’s limited columns. For instance, suppose

~ you want to insert all values for an employee except a pager number. You must, in

this case, specify a column list as well as a VALUES list in your INSERT statement.
INSERT. INTO EMPLOYEE TBL

(EMP ID, LAST NAME, FIRST NAME, MIDDLE NAME, ADDRESS CITY,
STATE, PIN, PHONEJ

VALUES : :

(*123456789', “TENDULKAR’, “SACHIN’, “RAMESH’, "123 JUHU
BEACH ROAD’, “MU'MIB'AI’ » + MAHARASHTRA’, 7400001,
~9810223293');

In this case you will get the output as:

1l row created
The syntax for 1nsertmg values into a limited number of columns in a table is as
follows:

INSERT INTO SCHEMA TABLE NAME (" COLUMN1‘’, “COLUMN2’})

VALUES (“VALUEl’, “VALUE2'); '

You use ORDERS_TBL and insert values into only SpeC]_ﬁCd columns in the followmg
example

Table structure

ORDERS_TBL
Column Name Null? Data .Type
ORD_ NUMNOT ' . NULL VARCHAR2 (10)
CUST 1D ' NOT NULL VARCHAR2 (10)
 PROD_IDNOT NULL VARCHAR2 (10)
QTY - NOT NULL NUMBER (4)
ORD DATE | DATE

Sample INSERT statement
- INSERT INTO ORDERS_TBL (ORD _NUM, CUST ID, PROD_ID, QTY)
VALUES (723al16’, ~109’, °~7725‘, 2)

You will get the output as:
1 row created -

_ You have specified a column list enclosed by parentheses after the table name in the
INSERT statement. You have listed all columns into which you want to insert data:
ORD_DATE is the only excluded column. You can see, if you look at the table
definition, that ORD_DATE does not require data for every record in the table. You
know that ORD_DATE does not require data because NOT NULL is not specified
in the table definition. NOT NULL tells us that NULL values are not allowed in the
column. Furthermore, the list of values must appear in the order in which you want
to insert them according to the column list. .

Remember: The column list in the INSERT statement does not have to ,

reflect the same order of columns as in the-definition of the
associated table, but the list of values must be in the order of
the associated columns in the column list.”

Inserting Data from Another Table

You can -insert data into a table based on the results of a query from another table
using a combination of. the INSERT statement and the SELECT statement. A query
is a_question that the user asks the database, and the data returned is the answer. In

the case of combining the INSERT statement with the SELECT statement, you are

able to insert the data remeved from a query into a table.

The syntax for inserting data from another table is:
INSERT NTO SCHEMA TABLE NAME [{ COLUMN1‘, ~COLUMN2')]
SELECT (*.|(COLUMN1‘, ~COLUMN2’)]
FROM TABLE NAME
[WHERE CONDITION (S)]

You see three new keywords in this syntax, which are covered here briefly. These

keywords are SELECT, FROM, and WHERE. SELECT is the main command used -

to initiate a query in SQL. FROM is the clause in the query that specifies the names
of tables in which the target data should be found. The WHERE clause, also part of
the query is used to place conditions on the query itself. An example condition may
state: WHERE NAME = ‘SACHIN’. ~

A condition is a way of placing criteria on data affected by a SQL statement.

The following example uses a simple query to view all data in the PRODUCTS_TBL
table. SELECT" * tells the database server that you want information on all columns

 of the table. Because theré is no WHERE clause, you want to see all records in the
table as well. For example,

SELECT * FREE PRODUCTS TBL;

The output of this would be as follows:

PROD-ID PROD DESC COST
11235 , WITCHES COSTUME 29.99
222 ' PLASTIC PUMPKIN 18 INCH ’ 7.75
90 LIGHTED LANTERNS : " 14.5
15 ASSORTED COSTUMES _ . 0.0
9 'CANDY CORN : L.35

Database Development

NOTES

Self Instructional Material 103

Dazsabase Systems

NOTES

104 Self Instructional Material

6 ' PUMPKIN CANDY : 1.45

87 ' PLASTIC SPIDERS , 1.05
119 ASSORTED MASKS ' ‘ 4.95
1234 . KEY CHAIN _ 5.95
2345 OAK BOOKSHELF - 59.99

1l rows selected.

Now, insert values into the PRODUCTS_TMP table based on the precedmg query.
You can see that 11 rows are created in the temporary table.

" Your input here would be:

INSERT INTO PRODUCTS TMP . : -
SELECT * FROM PRODUCTS_ TBL;

The result of this would be:

11 rows selected’

. The following query shows all data in the PRODUCTS TMP table that you just

inserted.

The input here would be:
SELECT * FROM PRODUCTS_TMP;

And the result would be:

PROD- ID PROD_DESC T . COST
11235 : WITCHES COSTUME _ 29.99
222 o PLASTIC PUMPKIN 18 INCH 7.75
90 LIGHTED LANTERNS 14.5
15 - _ IAéSORTED COSTUMES o 10.0
' CANDY CORN 1.35

PUMPKIN CANDY 1.45

87 ' " PLASTIC SPIDERS = 1.05.
119 ASSORTED MASKS 4.95
1234 KEY 'CHAIN i ‘ 5.95
2345 . OAK BOOKSHELF ' 59.99

11 rows selected.
Inserting NULL Values

Inserting a NULL value into a column of a table is a simple matter. You might want
to insert a NULL value into a column if the value of the column in question is
unknown. For instance, not every person carries-a pager, so it would be inaccurate to
enter an erroneous pager number—not to mention, you would not be budgeting space.
A NULL value can be inserted into a column of a table using the keyword NULL.
The syntax for inserting a NULL value follows:
INSERT INTO SCHEMA.TABLE NAME VALUES
(" COLU’MNl' NULL, ~“COLUMN3‘}; ("

The NULL keyword should be used in the associated coiumn that exists in the table.

That column will not have data in it for that row if you enter NULL. In the syntax, a
NULL value is being entered in the place of COLUMNZ
Study the two following examples:

INSERT INTO ORDERS TBL (ORD NUM, COST ID, PROD_ID, QTY,
ORD_DATE)

VALUES (~23a16’, ~109°‘, ~7725', 2, NULL) ;

The output of this would be:

1 row created.
In the first example, all columns in which to insert values are listed, which also happen
to be every column in the ORDERS_TBL table. You insert a NULL value for the

ORD_DATE column, meaning that you either do not know the order date or there is
no order date at this time.

INSERT IN‘I‘O ORDERS TBL _

VALUES (~23a16°, ~109', “7725’, 2, ~'}):
The result of this would be: '

1 row created.

There are two differences frorm the first statement in the second example, but the
results are the same. First, there is not a column list. Remember that a column list is

not required if you are inserting data into all columns of a table. Second, instead of-
inserting the value NULL into the ORD_DATE column, you insert * (two single
quotation marks together), wh1ch also symbolizes a NULL value (because there is

nothing between them.)

DELETE FROM

The DELETE command is used to remove entire ro/ws of data from a-table. The
DELETE command is not used to remove values from specific columns; a full record,
including all columns, is removed. The DELETE statement must be used with

caution—it works all too well.
To delete a single record or selected reaords from a table, the DELETE statement
must be used with the following syntax:

DELETE ,FROM SCHEMA.TABLE NAME

(WHERE CONDITION) ;

.For example,
DELETE FROM ORDERS TBL
WHERE ORD-NUM = T23Al16';

The output of this would be:
1 row deleted.

Notice the use of the WHERE claise. The WHERE clause is an essential part of the
DELETE statement if you are attempting to remove selected rows of data from a
table. You rarely issue a DELETE statement without the use of the % “ERE clause.
If you do, your results are similar to the following example. '

Database Development

NOTES

Self Instructional Material 105

Database Systems

NOTES

106 Self Instructional Material

DELETE FROM ORDERS_TBL;
11 rows delete‘d.

Tip: - If the WHERE clause is omitted from the DELETE statement,
* all rows of data are deleted from the table. As a general rule,
always use a WHERE clause with the DELETE statement.

Tip: + The temporary table that was populated from the ongmal tab!e
earlier can be very useful for testmg the DELETE and
UPDATE commands bqfore issuing them again the original
table.

UPDATE

This statement is used to update the existing data in the table. Pre}existing.daté in a

table can be modified using the UPDATE command. The UPDATE command does *
not add new records to a table, nor does it remove records—it simply updates existing
data. The update is generally used to update one table at a time in a database, bur can

‘be used to update multiple columns of a table at the same time. An individtai row of
" data in a table can be updated, or numerous rows of data can be updated in a single

statement, depending on what’s needed.
Updating the Value of a Single Column

The most simple form of the UPDATE statement s its use to update a single column
in a table. Either a single row of data or numerous records can be updated when

~updating a single column in a table.

The syntax for updating a single column follows:
UPDATE TABLE NAME -
SET COLUMN NAME = ~VALUE’
(WHERE CONDITION) . ,
The following example updates the QTY column in the ORDERS table to the' new

value 1 for the ORD_NUM 23A16 which you have specified using the WHERE
clause.

UPDATE, ORDER_TBL
SET QTY = 1
WHERE ORD NUM = “23A16’;
The output of this would be:
1 row updated.

‘t. The following example is identical to the previous example, except for the absence

of the WHERE clause:
WHERE ORDERS TBL
SET QTY = 1; |
The output of this would be:
11l rows updated. _

Notice that in this example, 11 rows of data were updated. You set the QTY to 1, Database Development
which updated the quantity column in the ORDERS_TBL table for all rows of data.

Is this really what you wanted to do? Perhaps in some cases, but rarely will you issue

an UPDATE statement without a WHERE clause.

Caution: Extreme caution must be used when using the UPDATE
statement without @ WHERE clause. The target column is
updated for all rows of data in the table if conditions are not
designated using the WHERE clause.

NOTES

Updating Multiple Columns in One or More Records
"Next, you see how to update multiple columns with a single UPDATE statment.
Study the following syntax; .
UPDATE TABLE NAME
SET COLUMN1l = “VALUE’,
{COLUMN2 “VALUE’,]
{COLUMN3 “VALUE']
[WHERE CONDITION] ;

The output of this would be:
1 row updated.

A comma is used to separate the two columns being updated. Again, the WHERE
- clause is optional, but usually necessary. '

Remember: Tke SET keyword is used omfy once for each UPDATE
statement. If more than one column is to be update, a comma is
used to separate the columns to be updated.

GENERAL QUERY SYNTAX (SELECT)

”

SELECT commands with where clause using conditional expressions

- This command accompanied by many options and tlauses, is used to compose quéries
against a relational database. SELECT is the main command used in SQL to initiate
a query. Let us see how it can be used. The basic syntax for the command is:

SELECT [* | ALL | DISTINCT COLUMN1, COLUMN2] FROM TABLEL
: [, TABLE2 };
Here the the various terms used are:
SELECT ‘It is the main query

FROM - It is the keyword followed by a list of one or more tables from
which you want to select data '

ALL ‘This option is used to display all vaues for a column, including
duplicates. -

DISTINCT This option is used to eliminate duplicate rows. The default ,
between DISTINCT and ALL is ALL, which may not be i
spec1ﬁed ' :

Self Instructional Material 107

" Database S; YStens

NOTES

i 1
'

108 &ﬂfﬁsﬂud@n&fﬂﬂﬂﬂﬁd

It can be used in various ways. Some of them are discussed here.
Supposing you have a table of various students with Names, Roll Nos., Address, etc.
You can use the following Select statement to list out only names from it,

SELECT NAME FROM STUDENT_ TBL; A ' -

This would result in the following:
SACHIN
RAHUL .
YUVRAS
DILIP

Tip: Commas are used fo separate arguments in a list in SQL
statements. Some common lists of columns in a query lists of
tables to be selected from in a query, values to be inserted into a
table, and values grouped at a condition in a query’s WHERE
clause,

Now we see the other options of SELECT statement.

Selecting All the Columns -

Using the All option, you can use the statement in the following way.
SELECT ALL ROLLNO. FROM STUDENT TBL;

This would result in the following:
1022 .
1033
1044
1055 1
These are the Roll numbers which are there in the table. Since ALL is a default
option, you could have given the above command in the following way too.
SELECT ROLLNO. FROM STUDENT TBL;

This would again have given the same result.

" Selecting Specific Column

In the above case we had to select one field only. We can in fact select both- Name
and RoliNo. fields together. Let us see how it is done.

\SELECT ALL NAME, ROLLNO. FROM STUDENT TBL:

This would result in the following:
SACHIN 1022
‘RAHUL 1033

YUVRAJ 1044
DILIP 1055

Similary if you want you can select the various or all fields.

CREATE VIEW

In SQL, the command to specify a view is Create View, The view is givan a table
name {Or view name), a list of attribute names, and a query to specify the contents of
the view. If none of the view attributes results from applying functions, or arithmetic
operations, we do not have to specify attribute names for the view, since they would
be same as the names of the attributes of the defining ables in the default case. The
views V1 and V2 are created in the follpwing examples

Vi)
CREATE VIEW WORKS_ON1
As Select Fname, Lname, Pname, I,-Ioufs
From -'EMPLOYEE, PROJEqi, WORKS ON
Where ' Ssn=Essn AND Pno=Pnumber
V2 ' '
CREATE VIEW DEPT_INFO (Dept name, No+of_-emps,l
Total sal) . -
As Select Dname, CQUNT (*), SUM (Salary)
 From . DEPARTMENT, EMPLOYEE . “
Where ‘Dnumber=Dno
Group by Dname ;

In V1 we did not specify any new attribute names of the view WORKS_ONT; in this
case, WORKS_ONTI inherits the names of the view attributes from the defining
tables EMPLOYEE, PROJECT, and WORKS_ON. View V2 éxplicity specifies new
attribute names for the view DEPT_INFO using a one-to-one correspondence between
the attributes specified in the CREATE VIEW clause and those specxfied in the
SELECT clausé of the query that defines the view.

I)RK)P'VIEWV,

If we do not need.a view any more, we can use DROP VIEW comand to dispdise of
it. For example, to get rid of the view V1, we can use the SQL statement in V1A.

V1lA DROP VIEW WORKS_ON1; o L

SET OPERATORS' - UNION, INTERSECT AND MINUS

You can combine multiple queries by using UNION clause. But the condition to
apply union clause is that both the tables should have same structure and specify the
column name of both the tables in the same sequence. The syntax for this is:

SELECT [STATEMENT] UNION SELECT [STATEMENT]

For example, .

SELECT NAME, ROLL_NO FROM STUDENT TBL UNION NAME, ROLL . NO
¥FROM MARKS TBL;

Database Developtnent

NOTES

Self Instructional Material 109 -

|

Database Systems

NOTES

" 110 Self Instructional Material

The above statement would display name and roll number from two tables, mainly,
STUDENT_TBL and MARKS_TBL. The duplicate rows would be automatically
deleted by the UNION clause. '

Several set theoretic operations are used to merge the elements of two sets in various
ways, including UNION, INTERSECTION, and SET DIFFERENCE (also called
MINUS). These are binary operations; that is, each is applied to two sets (of tuples).
When these operations are adapted to relational databases, the two relations on which
any of these three operations are applied must have the same type of tuples; this
condition has been union compatibility. Two relations R(A , Az,A)and 5B,
B,, . . . B) are said to be union compatible if they have the same degree n and if
dom(A) = dom (Bi) fir 1 <7 <n. This means that the two relations have the same
number of attributes and each corresponding pair of attributes has the same domain.

We can define the three opearions UNION, INTERSECTION, and SET
DIFFERENCE on two union-compatible relations R and S as follows:

. UNION: The result of this operation, denoted by R w S, is a relation that
" includes all tuples that are either in R or in S or in both R and §. Deuplicate
tuples are eliminated. -

» INTERSECTION: The result of this operation, denoted by R N S, is a relationt
that includes all tuples that are in both R and S.

« SET DIFFERENCE: (or MINUS): The result of this ()peratlon denoted by
R - S, is a relation that includes all tuples athat are in R but not in §.

We will adopt the convention that the resulting relation has the same attribute names
as the first relation R. It is always possible to rename the attributes 1 in the result using

the rename operator.
"“ﬁ-\._‘___‘_‘_

Notice that both UNION and INTERSECTION are, .cmnmutarwe operations, that is,

—

RuS=SuR&dRNS=SNR T

Both UNION and INTERSECTION can be treated as n-ary operations apphcable to
any number of relations because both are associative operations; that is, -

RU(SuT)-(RuS)uTand(RmS)mT Rn{SnT
The MINUS operation is not commutative, that is, in general,
R-S#S-R

"FUNCTIONS

Functions are the keywords in SQL and are used to manipulate values within columns
for output purposes. A function is a command always used in conjunction with a
column name for expression. There are several types of functions in SQL.

Types of SQL Functions
Following are the various typés of functions:
Aggregate functions

Date and Time functions

Character functions
Conversion functions .

Miscellaneous functions.

Single Row Functions

Single Row functions operate on the single row and return one result per row. They

can accept one or more arguments and return one€ value for each row. They can be
used with SELECT, WHERE, and ORDER BY clause and also they can be nested.
An argument can be of the following types

+ Users supplied constant
_* Variable name

* Variable value

« Expression ' -

Single row functions can fall in the foliowing categories:

-« Character

» Number

. Daté

» Converston o

+ General

Character Functions

There are various typés of functions in SQL. Character functions are used to modify
the appearance.of character values. Various character functions are: CHR, CONCAT,
INITCAP, INSTR, LEFT, LENGTH, LOCATE, LOWER, LPAD, LTRIM,
REPLACE, RIGHT, RPAD, RTRIM, SUBSTR /SUBSTRING, TRANSLATE,
TRIM and UPPER. Some of them have been discussed earlier. Let us read about
them one by one.

CHR

This function returns the character equivalent of the number it uses as an argument. .

For example, ')
SELECT ROLLNO, CHR(ROLLNO} FROM STUDENT TBL;

This would give the following result.

ROLLNO CH
22 -
33 H
4 o
85 7
CONCAT

This function was talked earlier as Concotation Operators (| |).

Database Development

NOTES

Self Instructional Material 111

Database Systems' INITCAP ' ‘ .

This function makes the first character to the uppercase_and all other characters to.
lowercase.
‘ For example,

NOTES SBLECT NAME BEFORE, INITCAP(FIRSTNAME) AFTER FROM
STUDENT TBL; ' :
This would give the follc;wing result.

BEFORE AFTER’

SACHIN Sachin
RAHUL Rahul * -)
. YUVRAJ Yuvraj ‘

. DILIP Dilip

 INSTR

This function is used to find out where in a string a parncular pattern occurs. For
example .

SELECT NAME INSTR(INAME. ‘A’, 2, 1) FROM STUDENT TBL;

This would give the following result.

NAME INSTR (LASTNAME, - ‘A’, 2, 1)
SACHIN 2
RAHUL - 2
YOVRAJ 5
DILIP 0

In Sachin, A is at 2nd position, so in Rahul. In the case of Yuvraj it is there on the 5t_h
position, while in Dilip it is not there, hence-0 is returned.

LEFT
+ This function returns the leftmost character from the string.

For example, _ c :
SELECT LEFT(NAME, 3) FROM STUDENT TBL;

This would give the following result.
NAME LEFT (NAME, 3)
SACHIN SAC
RAHUL RAH
YUVRAJ YUV
DI L IP DIL

The first 3 characters from the left are selected.
LENGTH() |

This function is used to find the length of a string, number, date, or expressxon in
bytes. The syntax is:

"LENGTE (CHARACTER STRIN_G)

112 Self Instructional Material

For example, - ' ' ' T .
SELECT LENGTH{NAME) FROM STUDENT_TBL ‘
This would return the number of characters in the Name field.

LOCATE

This function is used to the first occurence of the substring in the string. It returns a
0 if the string is not there. ' :

For example,
SELECT LOCATE(‘AC’, ‘SACHIN’);

This would give the following result.
2

In Sachin, AC appears at the 2nd position, fﬁat is why 2 has been returned.
LOWER | ' |
It has been discussed carlier.
LPAD
"See RPAD.

LTRIM

It is used to clip a part of a string. It is used to trim characters-from the left of a string.
The syntax is: >

LTRIM(CHARACTER STRING [, ‘set’])

For exa.mplé,
SELECT LTRIM(NAME, ‘SA’) FROM STUDENT TBL

This would remove SA from the name, if it is there. The net result would be:
SACHIN 1022 MUMBAI

RAHUL 1033 BANGALORE
YUVRAJ 1044 DELHI v
DILIP 1055 KOLKATA '

In the first record, it was found and thus SA has been trimmed.-
REPLACE | |

It has been discussed earlier.

RIGHT . '

This function returns the rightmost character from the string.

For example,)
SELECT RIGHT(NAME, 3) FROM STUDENT_TBL;

This would give the following result.
NAME RIGHT (NAME, 3)
SACHIN HIN . -
RAHUL HUL

Database concepts

NOTES _

Self Instructional Material 1r3

Database Systems

NOTES

114 Seif nstructional Material

YUVRAJ RAJ
DILIP LIP

The first 3 characters from the right are selected.

RFPAD()

PAD and TRIM are used twice over with Left and Right. So you have functions as
LPAD and RPAD. I am going to give them separately. In fact, what this function
does is that it fills up the extra space in the field w1th the padding either from the left
or from the nght The syntax is: :

LPAD (CHARACTER STRING)
RPAD (CHARACTER STRING)

For example,
SELECT LPAD (NAME)
Supposmg we have the field length of 10 in the case of NAME and the data we have,

as in the case of SACHIN, only 6 characters, the rest 4 characters would be filled up
with padding records. The net result would be:

FROM STUDENT TBL

«+-+.SACHIN 1022 MUMBAI
..... RAHUL 1033 BANGALORE
....YUVRAJ 1044 DELHI

. ++-..DILIP 1055 KOLKATA

Similarly if the command had been given for right padding, the result would have
been.

SACHIN.... 1022 MUMBAI

RAHUL..... 1033 BANGALORE

YUVRAJ.... 1044. DELHI

DILIP..... 1055 KOLKATA
RTRIM

It is similar to LTRIM but the trimming of characters starts from the right. The
syntax is:

RTRIM(CHARACTER STRING [, ‘set’])

. For example,

SELECT LTRIM(NAME, ‘UL’) FROM STUDENT TBL

This would remove UL from the name, if it is there as the last 2 characters. The net
result would be: '

SACHIN 1022 MUMBAT
RAH "1033 BANGALORE
YUVRAJ 1044 DELHI
DILIP 1055 - ROLKATA

In the second fecord, it was found and thus UL has been trimmed.
SUBSTR '

It is used to take out a set of characters from a string. The syntax is:
~ SUBSTR (COLUMN NAME, STARTING POSITION, LENGTH) -

Here Column Name is the name of the ﬁeld from the characters have to be obtaméd,
STARTING POSITION 1s the position from where the displaying would start and
LENGTH is the number of characters it would display. For example,

SELECT SUBSTR(NAME, 2, 2) FROM STUDENT TBL
This would start from the second character and display the next 2 characters. The net
result would be:
. CH 1022 MUMBAI

AH ., 1033 BANGALORE
VR " 1044 ' DELHI
LI 1055 KOLKATA

Notice that all other fields remain the same,
TRANSLATE |
This was discussed earlier.
" TRIM
See LTRIM and RTRIM.
UPPER . |

This was discussed earlier.

Case Conversion Functions

Various functions under this category are: LOWER, INITCAP and UPPER. All of
them have been discussed earlier.

| Character Manipulation Function

Various functions under this category are: CONCAT and INSTR. They have been
discussed earlier.

Number Functions

-Following is the list of number functlons arranged in the alphabetical order and what
they do.

ABS _

This function ret_rufns the absolute value. The syntax for this function is:
ABS (value) '

ACOS

This function returns arc cosine of value. The syntax for this function is:
ACOS (value) _

ASIN

This function returns arc sin of value. The syntax for this function is:
ASIN(value)

’

Database Development

NOTES

Self Instructional Material 115

. Database Systems

NOTES

116 Seif Bistructional Material

- ATAN :

This function returns arc tangent of value The syntax for this function is:
ATAN (value)

CEIL

This function returns smallest mteger larger than or equal to value. The syntax for

this function is:

CEIL(value)
cos '

This function returns cosine of the value. The syntax for this functmn 18t
COS (value)

COSH

This function returns hyperbolic cosine of the value. The syntax for this function is:
COSH (value) |

- EXP

This function returns e raised to the valueth power.
The syntax for this function is:

EXP (n)
FLOOR

This function returns largest integer smaller than or equal to value. The syntax for
this function is:

FLOOR (value)
LN _
fI"his function returns natural {(base €) logazithni of value. The syntax for this function
is: : _
" LN(number)
LOG N
This ﬁJncnon returns base logarithm of value. The syntax for this functlon is:
LOG (base, number)
MOD i

This function returns modulus of value divided by divisor. The syntax for this function
1s: - :
MOD (value, divisor)

NVL

This function returns substitute for value if value is NULL. The syntax for this .
function is:

NVL(value, subsgtitute) -
POWER . .

_This function returns value raised to an exponent.-The syntax for thits function is:

POWER (value, exponent)

ROUND

This function returns rounding of value to precision. The syntax for this function i 18:
ROU'N'D {date, 'format')

SIGN

This functlon returis 1 if value is positive, —1 if negative, 0 if zero. The syntax for
this ﬁll'lt,uun 1s:

SIGN({value)
SIN _
This function returns sine of value. The syntax for this function is:
sin{value) ’
SINH _
This function returns hyperbolic sine of value. The syntax for this function is: -
~ SINH(value) ‘
SORT
This function returns square root of value. Thé syntax for this function is:
SQRT (value))
TAN . _
This function returns tangent of value. The syntax for this function is:
TAN (value) _
TANH | . ‘
This function returns hyperbolic tangent of value. The syntax for this function is:
"TANH (value)
TRUNC _
This function retumns value truncated.to precision. The syntax for this function is:
TRUNp(vqlue,precision)

VSIZE '

~

This function returns storage size of value in Oracle. The syntax for this function is:

VSIZE(value}

Working with Dates

Date is already stored in computer. You can recall it and then mampu.late usmg the
-following functions as per your need

LAST DAY

This function is used to return the last of a specified month. It is there supposmg you
forget how mary days are there in that particular month.

For example,
SELECT ENDDATE, LAST DAY (ENDDATE) FROM EMP_TBL;

Database Development

NOTES

Self Instructional Material 117

Database Systems

NOTES

118 Seif Instructional Material

. This would give the following, depending upon the data you have in EMP_TBL.

ENDDATE LASTDAY (ENDDATE)
01-01-2003 31-01-2003
01-02-2003 28-02-2003
01-03-2003 31-03-2003

MONTHS_BETWEEN()

This function is used to return the number of months elapsed between two months.
For example, :
SELECT STARTDATE,

. ENDDATE)

ENDDATE, MONTHS BETWEEN (STARTDATE '
DURATION FROM PROJECT;

This would gvie the following, depending upon the data you have in EMP_TBL.

ENDDATE LASTDAY'(ENDDATE) DURATION
01-01-2003 30-01-2003 .93548387
01-02-2003 01-02-2003 © 0 ,
01-03-2003 15-03-2003 ..48387097

NEXT _DAY()

This function is used to return the first day of the week that is equal to or later than
another specified date. ' :

For example,

SELECT STARTDATE, NEXT DAY (STARTDATE, ‘MONDAY’) FROM
EMP_TBL; '

This would give the following, depending upon the data you have in EMP_TBL.

STARTDATE NEXTDATE

01-01-2003 06-01-2003
01-02-2003 03-02-2003
01-03-2003 03-03-2003

ADD_MONTHS() _
This function is used to add a number of months to a specified date.

For example,

SELECT STARTDATE, ENDDATE ORIGINAL, ADD MONTHS (ENDDATE, 3)
FROM EMP_TBL;

This would give the following, depending ulpon the data you have in EMP_TBL.

STARTDATE ORIGINAL ADD MONTH .
01-01-2003 31-01-2003 30-04-2003
01-02-2003 28-02-2003 31-05-2003
01-03-2003 31-03-2003 30-06-2003
ROUND() - : : L

It rounds off date according to format. Various formats available for rounding are:

Format Meaning

cc,scec century (rounds up to January lst of next century, as of
midnight exactly.on the morning of January Ist 1950, 2050
and so on)
syear,syyy,y,yy,yyy,yyyy and year year(rounds up to January Ist of the next year as
of midnight exactly on the morning of July 1st)

q quarter (rounds up in the 2nd month of the quarter as of
midnight exactly on the morning of the 16th, regardless of
the number of days in the month) '

month,mon,mm month (rounds up as of midnight exactly on the morming of
the 16th regardless of the number of days in the month)
ww rounds to closest Monday

w rounds to closest day which i is the same day as the first day of

the month
ddd,dd,,j . rounds up _to the next day as of noon exactly. This is the same
as ROUND with no format
day,dy,d rounds up to next Sunday (ﬁrst day of the week) as of noon
exactly on Wednesday _
hh,hh12,hh24 rounds up to the next whole hour as of 30 minutes and 30
seconds after the hour c o '
mi rounds up to the next whole minute as of 30 seconds of this
minute. -

TRUNC
It truncates number to precision. , ' ,
“Arithmetic Operation on Dates

Date functions similar to character string functions, are used to manipulate the
representation of data and time. Among the various functions which can be performed
on the Date are; format the date and time in the required format, compare date
values with one another, compare intervals between dates, etc.”

Date Functions and their Usuage

Date is used in calculations too. It is possible that you have to-convert its characters -

first for using it.
Convemng Dates to Character Strings

You can convert date to month, date, year. For this we have the functlon called
TO_CHAR. - :
For example, oo - :

SELECT ENDDATE TO _CHAR (ENDDATE, “Month dd, yyyt’)

‘DATE CHAR’ FROM PRO_JECT TBL; -

This would return the following, depending upon the data available in
PROJECT_TBL. \ -

ENDDATE DATE_CHAR . .

01-01-2003 January 1, 2003

Database Ijeveiopment

NOTES’

Self Instructional Material 119~

Database Systems

NOTES

120 Self Instructional Material

01-02-2003 February 1, 2003
'01-03-2003 March 1, 2003

Converting Character Sm:zgs to Dates

This is the reverse of the above. Well, it is posmble that you may need to do th1s too.
Here the function to be used is TO_DATE. . :

For example,

SELECT TO DATE('JANUARY 01 2003‘, ‘MONTH DD YYYY') FROM
EMPLOYEE TBL; . '

"This would give you the following resuit.

TO_DATE(“

01-JAN-2003
01-JAN-2003
01-JAN-2003
01-JAN-2003

. ' Lo
This will depend on the type of data you have in your EMPLOYEE_TBL.,

. Data type Conversion Functions - |

As we have seen in the case of dates above, the conversion sometimes becomes
necessary. But the conversion is not limited to dates only. You need to convert data
also sometimes. The functions are TO_CHAR and TO_ NUMBER.

Implicit Conversions _

“Wheri the Oracle Server automatically converts data to the expected datatype, the

conversion is called implicit convesion. For an assignment the Oracle Server can
automatlcally convert the following:

From ' "To
VARCHAR20RCHAR NUMBER
VARCHAR20RCHAR DATE

NUMBER VARCHAR2
DATE VARCHAR?

For, expression evaluation, the Oracle Server can automatically convert the following:
From) To

VARCHAR20RCHAR NUMBER
VARCHAR20RCHAR DATE

Explicit Conversion

Explicit datatype conversion are done by using the conversion functions. Conversion -

functions convert one datatype to another. SQL provides the three explicit conversion

functions listed below:

Function Purpose
TO CHAR{number | date, [fmt], [nlparamsl[}

Converts a number or date value to a VARCHAR2 character

string with format model fmt. nlparams parameter specifies

the following characters, which are returned by number’

format elements:

. Decimal character

» Group separator

. Local currency symbol

» International currency symbol

TO NUMBER(char, [fmt], [nlsparams])

Converts a character string containing digits to a number in

the format specified by the optional format model fmt. The

nlsparams parameter has the same purpose as in the
- TO_CHAR function for number conversion.

TO DATE (char, [£fmt], [nlsparams])
Converts a character string representing a date to a date

value according to the fint specified. If fmt is omitted, the
format is DD-MON-YY. The nlsparams parameter has the

same purpose in this function as in the TO CHAR funcnon .

“for date conversmn
TO_CHAR Function with Dates '
This has been discussed earlier.
TO_CHAR Function For Numbers
This function can be used for coiwerting a nurhber into a character.
TO_NUMBER '

This finction is used to convert a character string to its numerical equivalent. In the
following example, we have converted the: NAME to number and then multiplied
with another number to get the result.

SELECT NAME, TESTNUM, TESTNUM*TO NUMBER (NAME) FROM
' STUDENT_TBL; -

This would give you the following result.

NAME TESTNUM TESTNUM*TO_ NUMBER (NAME)

13 23 299)
a0 95 3800

74 68 5032

TO_DATE Functions |

This is used to convert text into a Date format. The syntax.is similar to TO_CHAR.
TO DATE (expression, ‘date_picutre’) ‘

For example, |

T SELECT TO DATE('20030101’, ‘yyyymmdd’) “NEW DATE” FROM
STUDENT_TBL; :

This would give the following result.

NEW DATE ,
01-JAN-2003

Database Development

NOTES

Self Instructional Material 121

¢

Database Systems

NOTES

122 Self Instructional Material

Or you can have the following format.

SELECT TO DATE(‘20030101’, ‘yyyy/mm/dd’) .“NEW pﬁIE" FROM

STUDENT TBL;

‘This would give the following result.

NEW DATE

01/JAN/2003 -

Valid Date, Time and Other Formats

Following is the list of valid date, time and other formats:

Element

Description

DATE FORMATS
SCC or CC

Century; S preﬁxés BC date with -

Years in dates YYYY or SYYYY Year; S prefixes BC date with -

YYYorYYorY
YYYY ‘
[YYYIYY]IY,I

SYEAR or YEAR
BC or AD

B.C. or AD.

Q

MM

MONTH

MON

RM

WW or W

DDD or DD or D
DAY

, DY
J
TIME FORMATS

AMorPM
AM. or PM.

Last three, two or one digits of year
Year'with comma in this position

Four, three, two or one digit year based on the
ISO standard

Year spelled out; S prefixes BC date with -

BC/AD indicator

Quarter of year

 Month, two-digit value

Name of month, padded with blanks to length
of nine characters

Name of month_, three-letter abbrevjation.
Roman numerical month

Week of year or month

Day of year; month or week

Name of day padded with blanks to length of 9
characters

Name of day; three-letter abbreviation

Julian day; the number of days since 31
December 4713 BC

Meridian indicator

Meridian - indicator with perniods

]
]

HH or HH12 or HH24 . Hour of day or hour (1-12) or hour (0-23)

MI Minute (0-59) -)

SS ' Second(0-59)

SSSSS . Seconds past midnight (0-86399)

OTHER FORMATS ‘ ‘

/. :) Punctuation is reproduced in the result

“of the” Quoted string is reproduced in the result

"TH . Original number (for example, DDTH for 4th)

SP . Spelled out number (for example DDSP for
: FOUR) _

SPTH or THSP _ Spelled out ordinal numbers (for example,

| DDSPTH for FOURTH)
NVL Function and its Usage '

This function s used to return data from one expression if another expression is
NULL. NVL can be used with most data types, however, the value and the substitue
must be the same data types. The syntax for this is:

NVL(‘VLAUE’, ‘SUBSTITUTION’)

For exa\m\ple, . _
SELECT NVL(SALARY, ‘00000°‘) FROM EMPLYI'_TBL;

This statement finds NULL values and substitutes 00000 for any NULL values.
DECODE Function and its Usage '

This function is used to search a string for 2 value or string, and if the string is found,
an alternate string is displayed as part of the query results. The syntax is:

DECODE {COLUMN NAME , “SEARCH1‘, \‘RETURN1’, [‘SEARCH2’,
‘RETURNZ2/, ‘DEFAULT VALUE '\])
For exz'lmple, \

SELECT DECODE (LAST . NAME, ‘BANGIA’, ‘RAMESH’, *OTHER’) FROM
. STUDENT _TBL;

This query searches the value of all last names in EMPLOYEE _TBL; if the value
BANGIA is found, RAMESH is displayed in its place. -All other names are dlsplayed
as OTHER, which is called the default value.

Remember: When embedding functions within functions in an SQL
" statement, remember that the innermost function is resolved
Sfirst, and then each function is subsequently resolved ﬁ-om the
inside out.

" GROUP FUNCTIONS

'T'ypical group functions—those that are used with the GROUP BY clause to arrange

" Database Development

NOTES

Self Instructional Material 123

Database Systems

A

NOTES

e

124 Self Instructional Material

. “data in groups——mclude AVG, MAX, MIN, SUM, and COUNT. You will learn about

them in the next para.

Types of group functions
The various type of group funciio_ns are: MAX, MIN, SUM, AVG and COUNT.

" Thiey are discussed and their usage shown below.

Using MAX Function

Returns the maximum value associated with an expression. The syntax is:
MAX (sql_expression) ’

The sql_expression is typically a column name, although arithmetic expressions can
be used. ALL and DISTINCT may be used to qualify sql_expression, although
DISTINCT has no real meaning in the context of this function. There is only one
maximum value for any given expression. ALL. forces the function to apply to al' .
values of the expression; it is the default mode of operation for the function. Te
return type matches that of sql_expression. For example, '

" SELECT MAX (ytd_sales) FROM titles
Using MIN Function”

Returns the minimum value associated with an expression. The syntax is: .
MIN (sqgl_expression) '

The sql_expression is typically a column name, although arithmetic expressions can
be used. ALL and DISTINCT may be used to qualify sql expression, although
DISTINCT hasno real meaning in the context of this function. There is only one
minimum value for any given expression. ALL forces the function to apply to all
values of the expression; it is the default mode of operation for the function. Te
return type matches that of sql_expression. For example, '

*. SELECT min(ytd sales) FROM titles
Using AVG Function

Returns the average of the values in a group defined either by AVG or GROUP BY.
The syntax is-
AVG (sql _expression)

The sql_expression is typically a column name, but it can be a more comiplex
expression. ALL or DISNTINCT can be used to modify the expression. The return

. value matches the’ data type of the sql_expression. For example,

SELECT AVG(DISTINCT prlce) FROM titles

) 'Usmg SUM Function . R “,,

“~

Returns the sum of the items designated i mn ¢ the e@ressmn The syntax is
SUM(sql_expression) o _‘%‘_, . _
The sql_expression is typically a column name. However, other types of expressions

can be used. Sql_expression, must represent numeric data and NULL are discarded.
ALL and DISTINCT may be used to modify sql_expression and ALL is the default.

. DISTNCT forces the sum of only the unique values’ duplicate values are discarded.

The sum data type matches that of sql_expression. For example,

SELECT SUM(advance) FROM title_s
Using COUNT Function

" Returns the count of the number of items in a group defined by COUNT or GROUP
By. The syntax is:
COUNT (8ql_expression)

The sql_expression is typically a column name, although more complex expressions
are possible. ALL and DISTINCT may be used to qualify sql_expression. The return
" type Is an integer representmg the count. For example,

SELECT COUNT (city) FROM authors

Using COUNT(*¥)

This function is used to count all rows in a table. So when you give the command
COUNT(*), it will give you the number the rows the table has.

For example,
SELECT COUNT(*) FROM STUDENT TBL;

This will give you, .
. .

Since there are only 4 rows in the table, the result value 4 has been given.

DISTINCT clause with COUNT(*)

DISTINCT as we know is the command to eliminate the duplicates. So when you
use this with the COUNT function, the counting is done on the number of rows
which are unique and not duplicate in nature. For examplé,-

SELECT DISTINCT COUNT({(*) FROM STUDENT;_TBL;
This will result in follox;fing: ,
Since there are no duplicates, the value rétum has been the same.

Using NVL Function with Group Functions

All the group functions expect COUNT ignore the NULL values in the column. For-

example, -
. SELECT AVG_SALARY FROM EMPLOYEE TBL;

When the above command is executed, the AVG function will find the average of all
the records excluding the ones which have the NULL values.)

JOIN

An SQL JOIN clause combines records from two tables in a database. It creates a set
that can be saved as a table or used as is. A JOIN is a means for combining fields
from two tables by using values common to- each. ANSI standard SQL specifies four
types of JOINS INNER, OUTER LEFT, and RIGHT. In special cases, a table (base
table view, or joined table) can JOIN to itself in a self ~join. Y

A programmer writes a JOIN predicate to identify the records for joining. If the

Database Development

NOTES

Self Instructional Material 125
\

Database Systens

NOTES

126 Self Instructional Material

‘evaluated predlcate is true the combined record is then produced in the expected
format, for example a record set or a temporary table. -
Sample tables

All subsequent explanations on join types in this article make use of the following
two tables. The rows in these tables serve to illustrate the effect of different types of
joins and join-predicates. In the following tables, Department. DepartmentID is the
primary key, while Employee.DepartmentID is a_foreign key.

Employee Table
LastName DepartmentID

| Rafferty 31

Jones 33

Steinberg 33
Robinson 34

Smith 34

Jasper . . NULL

Department Table _
Depar-tmentID DepartmentName
31 Sales '
3 Engineering

34 Clerical

35 _ Marketing

Note: The “Marketing” Department currently has no listed, employees. Employee
“Jasper” has not been assigned to any Department yet.

Inner join .

An inner join requires ‘each.record in the two joined tables to have a matching record.
An inner join essentially combines the records from two tables (A and B) based on a
given join-predicate. The result of the join can be defined as the outcome of first
taking the Cartesian product (or cross-join) of all records in the tables (combining
every record in table A with every record in table B) - then return all records which
satisfy the join predicate. Actual SQL implementations will normally use other
approaches where possible, since computing the Cartesian product is not very efficient.

This type of join occurs most commonly in applications, and represents the default
join-type.

SQL specifies two different éyntactical_ ways to ’express joins. The first, called “explicit
join notation”, uses the keyword JOIN, whereas the second uses the “implicit join’
notation”. The implicit join notation lists the tables for joining in the FROM clause

. of a SELECT statement, using commas to separate them. Thus, it specifies a cross-

join, and the WHERE clause may apply additional filter-predicates. Those filter-
predicates function comparably to join-predicates in the explicit notation.

One can further classify inner joins as equi-joins, as natural JOIns, Or as Cross-joins {see
below). .

Programn;ers should take special care when joining tables on columns that can contain
NULL values, since NULL will never match any other value (or even NULL itself),
unless the join condition explicitly uses the IS NULL or IS NOT NULL predicates.

As an example, the following query takes all the records from the Employee table
and finds the matching record(s) in the Department table, based on the join predicate.
The join predicate compares the values in the DepartmentID column in both tables.
If it finds no match (i.e., the department-id of an employee does not match the
current department-id from the Department -table), then the joined record remains
outside the joined table, i.e., outside the (intermediate) result of the join.
Example of an explicit inner join:

SELECT *

FROM enployee
INNER JOIN department

ON employee.DepartmentID = depart.men't.DepartmentID

is equivalent to:
SELECT *
FROM
WHERE

employee, department

eﬁployee .DepartmentID = department.DepartmentID

Explicit Inner join result:

Employee.LastName Employee. DepartmentID Departsent.DepartmentName Depamnént.DepartmeanD

Smith 34 Clerical 34
Jones 33 Engineering 33
Robinson 34 + Clerical 34
' Steinberg 33 Eirfgineering 33
Rafferty 31 Sales ' 31

Notice that the employee “Jasper” and the department “Marketing” does not appeat.
Neither of these has any matching records in the respective other table: “Jasper” has
no associated department and no employee has the department ID 35. Thus, no
information on Jasper of on Marketmg appears in the joined table. Depending on the
desired results, this behavior may be a subtle bug. Outer joins may be used to avoid it.

Equi-join

An equi-join, also known'as an equijoin, 1s a specific type of comparator-based join,
or theta join, that uses only equality comparisons in the join-predicate. Using other

comparison operators (such as <) disqualifies a join as an equi-join. The query shown -

above has already provided an example of an equi-join:

SELECT 'Employee.lastName, Employee. DepartmentID,
Department.DepartmentName

FROM Employee INNER JOIN Department

2

/

/

. Database Development

NOTES

Self Insrmmonaf Ma:enal 127
-H: - \.{ N\

Database Systems

NOTES

128 Seif Instructional Marerial

"‘ON Employee.DepartmentID = Department.DepartmentID;
SQL provides .optional syntacﬁic sugar for expressing equi-
joins, by way of the USING construct (Feature ID
F402) : ,
" SELECT - . Employee.lastName,' . DepartmentID,'
Department.DepartmentName
FROM Employee INNER JOIN Department

USING(DepartmentID) ; .
The USING clause is supported by MySQL, Oracle and PostgreSQL.

Natural join-

A natural join offers a further specialization of equi-joins. The join predicate arises
implicitly by comparing all columns in both tables that have the same column-name
in the joined tables. The resulting joined table contains only one column for each pair
of equally-named columns. '

The above sample-query for inner joins can be expressed as a natural join in the
following way:

SELECT * _

‘FROM employee NATURAL JOIN department

‘The result appears slightly different, however, because only one DepartmentiD column

1

occurs in the joined table.

DepartmentID Employee.LastName Department. DepartmentName.
34 "~ Smith - Clerical
33 Jones Engineering
. 34 Robinson Clerical)
33 . ~ Steinberg - Engineering
31 Rafferty ' Sales

The Oracle database implementation of SQL selects the appropriate column in the
naturally-joined table from which to gather data. An error-message such as “ORA-
25155: column used in NATURAL join cannot have qualifier” is an error to help
prevent or reduce the problems that could occur may encourage checking and precise
specification of the columns named in the query, and can also help in providing

" compile time chécking (instead of errors in query).

Cross join

A cross join, cartesian join or product prdvides the foundation upon which all types

-of inner joins operate. A cross join returns the cartesian product of the sets of records

from the two joined tables. Thus, it equates to an inncr join where the join-condition.

. always evaluates to True or join-condition is absent in statement.

If A and B are two sets, then the cross join is written as A X B.

_ The SQL code for a cross join lists the tables for joining (FROM), but does not
include any filtering join-predicate.

Example of an explicit cross join:

SELECT *

FRCM employee CROSS JOIN department

Example of an implicit cross join:

SELECT *

FROM employee, ‘department;)

Employee.LastName Employee. DepartmentID Depariment, DepartmentName Department. DepartmentiD

Rafferty 31 Sales 31
Jones 33 Sales 31
. Steinberg 33 Sales 31)
Smith 34 Sales 31
Robinson 34 Sales 31
Jasper NULL Sales 31
Rafferty 31 Engineering 33
. Jones 33 Engineering 33
 Steinberg 33 Engineering 33
Smith 34 Engineering 33
Robinson 34 Engineefing 3 3
Jasper NULL Engineering 33
Rafferty 31 Clerical - 34
Jones 33 Clerical 34
Steinberg 33 Clerical 34
Smith 34 Clerical 34
Robinson 34 Clerical 34 >
Jasper NULL Clerical - . 34
Rafferty 31 Marketing 35
Jones 33 Marketing 35
Steinberg 33 Marketing 35
" Smith 34 Marketing 35
Robinson 34 Marketing 35
Jasper NULL Marketing 35

The cross join does not apply any predicate to filter records from the joined table.
Programmers can further filter the resuits of-a cross join by using a WHERE clause.

QOuter joins

An outer join does not require each record in the two joined tables to have a matching

Database Development

NOTES

Self Instructional Material 129

Database Systems

NOTES

130 Self Instructional Material

record. The joined table retains each record—even if no other matching record exists.
Outer joins subdivide further into left outer joins, right outer joins, and full outer
joins, depending on which table(s) one retains the rows from (left, right, or both).

(For a table to qualify as left or right 1ts name has to appear after the FROM or JOIN
keyword, respectively.) .

No implicit Jom-notanon for outer joins exists in standard SQL.

Left outer join

The result of a left duter join (or simply left join) for table A and B always contains
all records of the “left” table (A), even if the join-condition does not fihd any matching
record in the “right” table (B). This means that if the ON clause matches 0 (zero)
records in B, the join will still return a row in the result—but with NULL mn each
column from B. This means that a left outer join returns all the values from the left
table, plus matched values from the right table (or NULL in case of no matching join
predicate). ‘

- For example, this allows us to find-an employee’s department but still shows the

employee(s) even when their department does not exist (contrary to the inner-join
example above, where employees in non-existent departments are excluded from the

result).

Example of a left outer join, with the additional result row italicized:
SELECT * . '
* FROM employee LEFT OUTER JOIN de‘partment

ON employee DepartmentID =
department DepartmentID

Employee.LastName Employee,DepartmentID Depaﬂmem.Deparfmtha;ne Department,DepartmentID

Jones. . - 33 : - Engineering ' 33
Rafferty.’ 31 ' I Sales - 31
Robinson 34 . Clerical 34

Smith * 34 - . - Clerical o 34

Jasper NULL -~ NULL . NULL
Steinberg 33 Enginéering 33)

Right outer joins

A nght outer join (or right join) closely resembles a left outer join, except with the
treatment of the tables reversed. Every row from the “right” table (B} will appear in
the joined table at least once. If no matching row from the “left” table (A) exists,
NULL wiil appear in columns from A ‘for those records that have no match in A.

A right outer join returns all the values from the right table and matched values from
the left table (NULL in case of no matching join predicate). X

For example, this allows us to find each employee and his or her departxﬁent, but still
show departments that have no employees.

Example right outer join, with the additional result row italicized: Database Development
" SELECT » ‘ '
FROM employee RIGHT OUTER JOIN department

ON employee. DepartmentID =
department. DepartmentID : - '

NOTES
Emplayee.Laerarr{e Employee.DepartmentID Department.DepartmentName Department, DepartmentID

Smith 34 : Clerical | 34

Jones 33 ‘Engineering 33

Robinson 34 Clerical -~ 34 \
Steinberg 33 Engineering 33 - _ .
Rafferty 31 ’ Sales 31 |

NULL . NULL . Marketing 35

In practice, explicit right outer joins are rarely used, since they can always be replaced
with left outer joins (with the table order switched) and provide no additional
functionality. The result above is produced also with a left outer join:

SELECT «) .
FROM department LEFT OUTER JOIN employee

ON employee DepartmentID =
department DepartmentID

Full outer join

A full outer join combines the results of both left and right outer joins. The joined
table will contain all records from both tables, and fill in NULLs for missing matches
on either side.

For example, this allows us to see each employee who is in a department and each
department that has an employee, but also see each employee who is not part of a
department and each department which doesn’t have an employee. .
* Example full outer join: '
SELECT *
FROM employee

FULL OUTER JOIN department

ON employee. DepartmentID B
department. DepartmentID

Employee.LastName Employee.DepartmentID Department.DepartmentName - Department. DepartmentID

Smith 34 Clerical . 34
Jones 33 Engineerling o 33
Robinson 34 Clerical ’ 34

Jasper "NULL NULL - NULL

Self Instructional Material 131

Database Systems

NOTES

132 Self Instructional Material

Steinberg 33 : Engineering 33
Rafférty 31 ' Sales ’ 31
NULL h NULL Marketing ‘ 35
Some database systems (like MySQL) do not support this functionality dlrectly, but

they can emulate it through the use of left and nght outer joins and unions.. The same
example can appear as follows:

SELECT *
FROM employee
LEFT JOIN department

ON employee. DepartmentID
department. DepartmentID -

. UNION
SELECT *
FROM employee
RIGHT JOIN department

: ON employee.DepartmentID
department.DepartmentID

WHERE émployee .DepartmentID IS NULL

Self-join

A self-join is joining a table to itself. This is best illustrated by the following example.
Example

A query to find all pairings of two employees in the same country is desired. If you
had two separate tables for employees and a query which requested employees in the
first table having the same country as employees in the second table, you could use a -
normal join operation to find the answer table. However, all the employee information
is contained within a single large table.

Considering a modified Employee t_able such as the following:
Employee Table .
EmployeelD LastName Country ‘ DepartmentID

123 Rafferty B Australia - 31

124 Jones : Australia - | 33

145 .Steinberg . Australia 33

201 Robinson United States 34
305 Smith 'United Kingdom 34
306 Jasper United Kingdom NULL

An exan{ple solution query could be as follows: . _
SELECT F.EmployeeID, F.LastName, S.EmployeelD, S.LastName,
F.Country
. FROM Emplloyee F, Employee S°

+

WHERE F.Country = S.Country
AND F.EmployeeID < S.EmployeeID
ORDER BY F.EmployeeID, S.EmployeelD;

Which results in the following table being generated.
Employee Table after Self-join by Country

Employeesss LastName EmployeelD LastName Country

123 Rafferty 124 Jones Australia
123 . Rafferty 145 Steinberg "Australia
124) Jones 145 . “Steinberg Ausfre;lia
305 Smith 306 " Jasper United Kingdom

For this example note that:
F and S are aliases for the first and second copies of the employee table.

The condition F.Country = S.Country excludes pairings between employees in different -
countries. The example question only wanted pairs of employees in the same country.

The condition F.EmployeelD < S EmpioyeelD excludes pairings where the
EmployeeIDs are the same.

FEmpIoveelD < S.EmployeelD also excludes duplicate pairings. Without it only the
following less useful part of the table would be generated (for the United ngdom
only shown):

EmployeelD) LastName EmployeeID LastName Country

305 Smith 305 Smith “United Kingdom

305 Smith 306 Jasper United Kingdom
306 Jasper 305 Smith . United Kingdom .
306 Jasper 306 Jasper United Kingdom

Only one of the two middle pairings is needed to satisfy the original questibn, and
the topmost and bottommost are of no interest at all in this example.

- Alternatives

The effect of ouiter joins can also be obtained using correlated subqueries. For example

SELECT employee.LastName, employee. DepartmentID,
department. Departmentﬂame

FROM employee LEFT OUTER JOIN department

ON employee.DepartmentID = |

' department DepartmentID

can also be written as
SELECT emplqye,e .Lasi:Na.me, employee .DepartmentID,
" (SELECT department.DepartmentName
FROM department

Database Development -

NOTES

Self Instructional Material 133

Database Systems I

NOTES

134 Self Instructional Material

WHERE employee.DepartmentID = department.DepartmentID
) : ' -

FROM employee

.Implementation

Much work in database-systems has aimed at efficient implementation of joins,
because relational systems commonly call for joins, yet face difficulties in optimising
their efficient execution. The problem arises because (inner) joins operate both
commutatively and associatively. In practice, this means that the user merely supplies
the list of tables for joining and the join conditions to use, and the database system
has the task of determining the most efficient way to perform the operation. A query
optimizer determines how to execute a query containing joins. A query optimizer

. has two basic freedoms

Join order: Because joins function commutatively and associatively, the order in
which the system joins tables does not change the final result-set of the query. However,
join-order does have an enormous impact on the cost of the join operanon so choosing
the best join order becomes very important.

Join method: Given two tables and a join condition, multiple algorithms can produce
the result-set of the join. Which algorithm runs most efficiently depends on the sizes
of the input tables, the numbert of rows from each table that match the join condition,
and the operations required by the rest of the query. '

Many join-algorithms treat their inputs differently. One can refer to the inputs to a
join as the “outer” and “inner” join operands, or “left” and “right”, respectively In -
the case of nested loops, for example, the database system will scan the entire inner
relation for each row of the outer relation. '

One can classify query-plans involving joins as follows:

left-deep: using a base table (rather than another join) as the inner operand of each

" join in the plan

_nght-deep. using a base table as the outer operand of each join in the plan |

bushy: neither left-deep nor right-deep; both inputs to a join may themselves result -
from joins

These names derive from the appearance of the query plan if drawn as a tree, with
the outer join relation on the left and the inner relatlon on the right (as convention
dictates). :

Join algorithms: Three fundamental algorithms exist for performing a join operation.
Nested loops ‘

Pleasé refer to main articles: Nested loop join and block nested loop

Use of nested loops produces the simplest join-algorithm. For each tuple in the outer
join relation, the system scans the entire inner-join relation and appends any tuples

‘that- match the join-condition to the result set. Naturally, this algorithm performs

poorly with large join-relations: inner or outer or both. An index on co]umns in the
inner' relatlon in the join-predicate can enhance pérformance.

" The block nested Ioops (BNL) approach offers a refinement to this technique: for

every block in the outer relation, the system scans the entire inner relation. For each
match between the current inner tuple and one of the tuples in the currént block of
the outer relation, the system adds a tuple to the join result-set. This variant means
* doing more computation for each tuple of the inner relanon but far fewer scans of
the inner relation.

Merge join

~ If both join relations come in order, sorted by the join attribute(s), the system can
perform the join trivially, thus:

- Consider the current “group” of tuples from the inner relation; a group consists of a
set of contiguous tuples in the inner relation with the same value in the join attribute.

For each matching tuple in the current inner group, add a tuple to the join result.
Once the inner group has been exhausted, advance both the inner and outer scans to
the next group.)

Merge joins offer one reason why many optimizers keep track of the sort order
produced by query plan operators—if one or both input relations to a merge join
arrives already sorted on the join attribute, the system need not perform an additional
sort. Otherwise, the DBMS will need to perform the sort, usually using an external
sort to avoid consuming too much memory.

Hash join

A hash join algorithm can only produce equisjoins. The database system pre-forms
access to the tables concerned by building hash tables on the join-attributes. The
lookup 1in hash tables operates much faster than through index trees. However, one
can compare hashed values only for equality, not for other relationships.

~ SUB QUERIES

The most common operatlon in SQL databases is the query, wh1ch is perforrned with

the declarative SELECT keyword. SELECT retrieves data from a specified table, -

multiple related tables in a database or the result of an expression. While often grouped
with Data Manipulation Language (DML) statements, the standard SELECT query
is considered separate from SQL DML, as it has no persistent effects on the data
“stored in a database. Note that there are some platform-specific variations of SELECT
. that can persist their effects in a database, such as the SELECT INTO syntax that
exists in some databases. : ‘ :

SQL queries allow the user to specify a deséription of the desired result set, but it 1s
left to the devices of the database management system (DBMS) to plan, optimize,

and perform the physical operations necessary to produce that result set in as efficient

a manner as possible. An SQL query includes a list of columns to be included in the
final result immediately following the SELECT keyword. An asterisk (“*”) can also
be used as a “wildcard” indicator to specify that all available columns of a table (or
multiple tables) are to be returned. SELECT is the most complex statement in SQL,
with several optional keywords and clauses, including: -

‘The FROM clause which indicates the source table or tables from whiv .- he data is

to be retrieved. The FROM clause can include optional JOIN clauses t+ _ .in related

tables to one another based on user-specified critenia.

A

Database Development

NOTES

. Self Instructional Material 135

Database Systems

NOTES

136 Self Instructional Marerial

The WHERE clause includes a comparison predicate, which is used to restrict the
number of rows returned by the query. The WHERE clause is applied before the
GROUP BY clause. The WHERE clause eliminates all rows from the result set where
the comparison predicate does not evaluate to True.

The GROUP BY clause is used to combine, or group, rows with related values into
elements .of a smaller set-of rows. GROUP BY is often used in conjunction with
SQL aggregate functions or to eliminate duplicate rows from a result set.

The HAVING clause includes a comparison predicate used to eliminate rows after
the GROUP BY clause is applied to the result set. Because it acts on the resuits of
the GROUP BY clause, aggregate funetlons can be used in the HAVING clause
predicate.

The ORDER BY clause is used to identify which columns are used to sort the resulting
data, and in which order they should be sorted (options are ascending or descending).

" The order of rows returned by an SQL query is never guaranteed unless an ORDER
BY, clause is specified.

The following is an example of a SELECT query that returns a list of expensive
books. The query retrieves all rows from the Book table in which the price column
contains a value greater than 100.00. The result is sorted in ascending order by title.
The asterisk {(*} in the select list indicates that all columns of the Book table should
be included in the result set.

SELECT *
- FROM Book
WHERE price > 100.00
ORDER BY title. .
The example below demonstrates the use of multiple tables in a join, grouping, and

aggregation in an SQL query, by returning a list of books and the number of authors
associated with each book.

SELECT Book.title,
‘ count (*) 'AS Authors
FROM Book .
JOIN Book author ON Book.isbn = Book author.isbn
GROUP BY Book.title |

Example output might resemble the foﬂowing:

Title _ Authors
SQL Examples and Guide 3
The Joy of SQL 1
How to use Wikipedia 2
Pitfalls of SQL 1

Under the precondition that isbn is the only common column name of the two tables
and that a column named title only exists in the Books table, the above query could

1 be rewritten in the following form: .

SELECT title,

count (*) AS Authors
" FROM Book '
NATURAL JOIN Book author
GROUP BY title '

However, many vendors either do not support this approach, or it requires certain
column naming conventions. Thus, it is less common in practice.

Data retrieval i§ very often combined- with data projection when the user is looking
for calculated values and not just the verbatim data stored in primitive data types, or
when the data needs to be expressed in a form that is different from how it's stored.
SQL-allows the use of expressmns in the select list to project data, as in the following
" example which returns a list of books that cost mote than 100.00 with an additional
sales_tax column containing a sales tax figure calculated at 6% of the price.

SELECT isbn,
title,
- price,
price * (0.06 AS saies_tax_
FROM Book
WHERE price > 100.00
ORDER BY title

Universal quantlﬁcation is not explicitly supported by sql, and must be worked out
as a negated existential quantification. -

SUMMARY -

1. The database is used to store information useful to an organization.

2. The entity-relationship data model (E R Model) grew out of exercise of using commermally
available DBMSs to model application databases.

3. The relationship between entity sets is represented by a model named E-R relationship.

4. Conceptual modeling is a very important phase in designing a successful database _
application. ' '

5. A database modelisa collectlon of logical constructs used to represent the data structure
and the data relationships found within the database.

6. Tranditional data models are the hierarchical, network and relatmnal models,

7. Semantic data modes were influenced by the semantic networks developed by artificial
intelligence researchers.

8. Composite attributes can be divided into smaller subparts which represent more basic
attributes with independent meanings.

9. Most attributes have d single value for a particular entity.
10. There can be multivalued attributes too.
11. Some attribute values can be denved from related entities.

12. Insome cases a pamcular entity may not have an applicable value for an atmbute Itis
called the NULL value.

13. A database usually contains groups of entities that are similar.

14. An entity type descnbes the schema or intension for a set of entities that share the same
structure.

Database Development

NOTES

Self Instructional Material 137

Database Systems

NOTES

" 138 Self Instructional Material

13.

16.

17.

©18.

19.
20.

21.
22,
"23.
24,

25.
26.

27.
28.
29.
30.

31.

32.
33.
34,
35.
36.
37.
38.
39.

40.
41.

An important constraint on the entities of an entity type is the key or uniqueness constraint

on atmbutes

It is aconstraint that prohibits any two entities from having the same value for the key
attribute at the same time.)

Each simple attribute of an entity type is associated with a value set (or domain of values),

which specifies the set of values that may be a351gned to that attribute for each individual

entity,

Database models can be grouped into two categories: conceptual models and

implementation models.
The conceptual model focuses on the logical nature of the data representation.

An implementation model places the emphasis on how the data are represented in the
database or on how the data structures are implemented to represent what is modeled.

Each database model is evolved from its predecessors.
The degree of a relationship type is the number of participating entity types.
It is sometimes convenient to think of a relationship type in terms of attributes.

Each entity type that participates in a relationship type plays a partlcular role in the
relationship.

The process of database design is an iterative rather than a linear or sequential process.

During the design process, the database designer does simply depend on mtemews to
help define entities, attributes and relationships. ' .

Converting'any E-R model to a set of tables in a database is followed by a specific set of
rules that govern such a conversion.

The normalization process, as first proposed by Codd (1972a), takes a relation schema
through a series of tests to “certify” whether it satisfies a certain normal form.

Codd prOposed three normal forms, which he called First, Second and Third normal
form. -

A stronger definition of 3SNF—called Boyce-Codd Normal Frorn (BCNF)—was proposed
later by Boyce and Codd. -

Normalization of data can be Iooked upon as a process of analyzing the given relation
schemas based on their FDs and primary keys to achieve the desirable properties of :
minimizing redundancy and minimizing the insertion, deletion, and update anomalies.

Normal forms, when considered in isolation from other factors, do not guarantee a good
database design.

Normalization is carried out in practice so that the rcsultmg designs are of high quality
and meet the desirable properties.

The process of storing the join of higher normal form relations as a base relation whlch is
in a lower normal form—is known as denormalization.

The problem of database i inconsistency and redundancy of data are similar to the problems
that exist in the hierarchical and network models.

The first normal form states that the domain of an attribute must include only atomic
(simple, indivisible) values and that the value of any attribute in a tuple must be a single
value from the domain of that attribute.

The only attribute values permitted by INF are single atomic (or indivisible) values.
First normal form also disallows multivalued attributes that are themselves composite.
Second normal form (2NF) is based on the concept of full functional dependency.
Third normal form (3NF) is based on the concept of transitive dependency.

In terms of the normalization process, it is not necessary to remove the partial dependencies

42.

42,
43.

44.

45.
46.

47.

48.

. 49.
50.

-51.
52.

53.
54.
.55.
56.
57.

58.
59.

60.

61.
62.
63.
64,
63.

66.
67.
68.

69.
70.

before the transitive dependencies, but historically, 3NF has been defined with the
assumption that a relation is tested for 2NF first before 1t is tested for 3NF.

Boyce-Codd normal form (BCNF) was proposed as a simpler form of 3NF, but it was
found to be stricter than 3NE. .

In practice, most relation schemas that are in 3NF are also in BCNFE.

SQL statements have 3 Data Definition Language (DDL) statements CREATE, ALTER
and DROP.

SQL also has Data Mampulauon Language (DML)statements such as SELECT, UPDATE,
and DELETE.

Data Control Commands (DCL) allow us to control access to data within the database.

Some data-control commands are; ALTER PASSWORD GRANT REVOKE and
CREATE SYNONYM. :

TCL (Transactional Control Commands are the commands which allow the user to manage |

database transactions. For example commands like: COMMIT, ROLLBACK,
SAVEPOINT and SET TRANSACTION, | '

SELECT command accompanied by many options and clauses 18 used to compose queries
against a relational database.

INSERT command is used to insert new data into a table.

UPDATE command does not add new records to a table, nor does it remove records—it
simply updates existing data.

DELETE command is used to remove entire rows of data from 2 table.

CREATE command allows yo to create a schema under which all the controls will be
mentioned, :

DROP command can be used, for example, to drop a user from using the database.
ALTER command is used to change the attributes like user, password, privileges, etc.
RENAME allows you to rename a table from the database.

TRUNCATE allows you to truncate the running job.

GRANT command is used to grant both system-level and object-level privileges of an
exising database user account.

REVOKE command removes privileges that have granted to database users.

COMMIT is the transactional command used to save changes invoked by a transaction to
the database. :

ROLLBACK is the transactional control command used to undo transactions that have
not already been saved-to the database.

ADDITION is _performe& using (+) symbol.
SUBTRACTION is performed using (—) symbol.
MULTIPLICATION is performed using (*) symbol,
DIVISION is performed using (/) symbol.

Anithrnetic operators are performed in the sequence of D1v1510n Multiplication, Addition
and Subtraction.

NULL is used where you have to specxfy that there is nothing in it.
CONCATENATION is the process of combining the two separate strings into one string.

The DISTINCT option is used when you have to display only one of the duplicate
records.

WHERE command is used when you have to make selection based on some facts.

The character means the various alphabets which are used in the laﬁguage.'

Database Development

NOTES

Self Instructional Material 139

Database Systems

NOTES

140 éeljf Instructional Material

71.
72.
73.
74.
- 75.
76.
77.
78.
79.
80.

81.
82.

83.
84,
85.

86.
87.
88.
89.

90.
91.
92.

93.
94.

REPLACE function is used to replace every occurence of a character(s) with a specified
character(s).

The LIKE operator is used to compare a value which is 51m11ar to values glven by the
wildcards. :

The EXISTS operator is used to search for the presence of a row in a specified table that
meets certain criteria.

UNIQUE operator searches every row of a specified table for uniqueness, i.e., no duplicates.
The ALL operator is used to compare a value to all values in another values set.

The ANY operator is used to compare a value to any applicable value in the list according
to the condition.

AND operator allows the existence of multiple conditions in an SQL statement’s WHERE
clause.

OR operator is used to combme multiple conditions in an SQL statement’s WHERE
clause. '

ORDER BY clause is used in sorting.
You can choose multiple columins too for sorting.
CHR function returns the character equivalent of the number it uses as an argument.

INITCAP function makes the first character to the uppercase and all other characters to
lowercase, . ;

INSTR function is used to find out where in astring a partic:ular pattern occurs.

LEFT function retums the leftmost character from the stnng

LENGTH function is used to find the length of a stnng, number, date, or expressmn in
bytes. :

LOCATE function is used to the first occurance of the substring in the string.

LTRIM is used to clip a part of a string. *
RIGHT function returns the rightmost character from the string.

NUMBER functions are: ABS, ACOS, ASIN, ATAN, CEIL, COS, COSH, EXP, FLOOR,
LN, LOG, MOD, NVL, POWER, ROUND, SIGN, SIN SINH, SQRT, TAN, TANH,
TRUNC and VSIZE.

LAST.DAY function is used to return the last day of a specified month.

MONTHS_BETWEEN function is used to return the number of months elapsed between
two months.

NEXT DAY function is used to feturn the first day of the week that is equal to or later
than another specified date.

ADD_MONTH function is used to add a number of months to a specified date.

ROUND rounds off date according to formiat.

SELFASSESSMENT QUESTIONS

N ol

‘What do you understand by Data Modeling?
Describe Entity Relationship Model.

‘Describe the various Data Models. : ' _ ' -

Write a short note on Entities and Attributes.

What are Entity Types and Entity Sets?

Write a short note on Key Attributes of an Entity Type.
Write a short note on Relationship among Entities.
What is E-R Diagram? S

19.
20.
21.
22,
23.

TNSERT UPDATE
‘DELETE CREATE
DROP ALTER
" RENAME TRUNCATE
GRANT REVOKE
COMMIT ROLLBACK
ADDITION SUBTRACTION
MULTIPLICATION DIVISION
NULL . CONCATENATION L
DISTINCT WHERE '
~ GREATER THAN LESS THAN
LIKE . EXITS
UNIQUE | _ ANY’
AND o OR
ORDER ' CHR -
INITCAP INSTR
LEFT LENGTH
LOCATE LTRIM
'RIGHT NUMBER ‘ .
LAST DAY NEXT_DAY N
MONTHS BETWEEN ADD_MONTH .

. One-to-Many relationship

. What do you understand by Functional Dependencies?
10.
11.
12.
13.
14.
15.
16.
17.
18.

What are Trivial and Non-Trivial dependencies?

Describe the Closure of a set of dependencies and attributes.

What do you understand by Irreducible set of dependencies?

Describe the Non-loss decomposition.

Describe the working of First normal form with example.

‘What do you understand by Second normal form?

What is Third normal form?

Describe in details the Boyce/Codd normal form.

Write short notes on : '

Functional dependencies Full Func_tional dependencies
Prime Attribute and Nonprime Attribues Transitive Dependency
General Definition of Second normal form General Definition of Third normal form.

File Based Primitive Models Traditional Data Model;

Semantic Data Models ' Composite versus Simple Attributes
Single Value versus Multivalues Attributes Null Values

Complex Attributes Value Sets of Attributes -

Many-to-Many relationship
One-to-one relationship Degree of a Relationship Type
Relationships as Attributes

Converting an E-R Model into a database structure.

Which are the Data Definition Language statements?

‘Which are Data Manipulation Language statements?

What are the Data Contrgl Commands? i

Which are Transactional Control Commands?

Describe with example the use of the following functions:

ROUND

Database Development

NOTES

- Self Instructiona! Materiol 141

Database Systems

NOTES

142 Self Instrictional Material

10.
11,
12.
13.

14,

15.
16.
17.
18.
19.

20.
- (@} (*)symbotl ® (+) symbpl

(@ TCL (Transactional Control Command)

Mul’tipt'e Choice-Questions

-1. E-R represents the relationship between :

(a) attributes (b) Data s " (¢) entitites
. Tranditional data models are the hierarchical, network and _ :
(@) physical) (b) rela}i:ional : - (¢) manual
Entities not having an applicable value for an attribute are called :
{8 NULL " . (» NIL © NO
. Database models can be grouped into two categories: __ models and

implementation models :
{a) concurrent 7 (b) clumisy - {¢©) conceptual

' data modes were influenced by the semantic networks deve]oped by
artificial intelligence researchers :

{a) Semantic _ (b) Traditional (© Primitive

Codd proposed three normai forms, which he called First, Second, and " __ normal

form: : _ : .

(@) Fourth _ (b) Many () Third

A stronger definition of BNF——called Boyce-Codd Normal From (BCNF)—was proposed
. by Boyce and o

(a) Paul Allen (b) Codd , (c) Bill Gates

The process of storing the join of higher normal f0rm relations as a base relation which is
in a lower normal form—is known as

- (@) normalization (b) denormahzahon

. Third normal form (3NF) is based on the concept of . dependency:
(a) transitive (b) functional . (¢) none of above
In practice, most relation schemas that are in 3NF are alsp in ‘
(@) INF " (b) 2NF) (c} 3CNF
Data Definition Language (DDL) statements are: CREATE, ALTER and :
(a) DROP - (b) UPDATE () REVOKE~
Out of the following which are Data Manipulation Language (DML) statements:
(@ SELECT - ' (b) UPDATE © () EVOKE
Qut of the following which are Data Control Commands :
(a} ALTER (b) PASSWORD ' (¢ GRANT
ROLLBACK isa: '

]

(b) DML (Data Manipulation Language)
(¢) Data Definition Language)
For entering new data we use

(a) UPDATE _ (b)- CREATE " {¢) INSERT
For creating a new database/table we use;’) .

(@) CREATE " (b) UPDATE . () INSERT
For changing the user, password, etc, we use:

(a) UPDATE) (b) INSERT (c) ALTER
A privilege is given to a user by command:

(@ GRANT - (bj REVOKE) (¢} COMMIT
ADDITION is performed using : .

(@ () symbol ®) (+) symbol . (¢} (*)symbol

MULTIPLICATION is performed using : ‘
(©) () symbol

21.

22

10.
. 11

12.
13.
14,

15.
16.
17.
18.
19.
20.
21,
22.
23,
24.
25,

26.

27.

INITCAP function makes which character to the ﬁppercase :
(a) Last ’ (b) Second - (¢) First

. To find out the length of a string, we use the fgnction called:

(a) STRING (b) LENGTH . (¢ FUNCTION -
True/False Questions _ ‘

. The entity-relationship data model (E R Model) grew out of exercise of using commercially

available DBMSs to model application databases.

- The relationship between entity sets is represented by a model named E-R relationship.

A database model is a collection of logical constructs used to represent the data structure
and the data relationships found within the database.

Semantic data models were not influenced by the semantic networks devcloped by amﬁaal
intelligence researchers.

Most attributes have a single value for a particular entity.

There cannot be multivatued attributes.

In some cases a particular entity may not have an applicable value for an attribute, It is
called the NULL value, .
An entity type does not describe the schema or intension for a set of entities that share the
same structure.) .

It is a constraint that prohibits any two entities from having the same value for the key
attribute at the same time.

Database models cannot be grouped into two categories: conceptual models and

implementation' models.

An implementation model places the emphasis on how *he data are represented in the
database or on how the data structures are implemented to represent what is modeled.

It is sometimes convenient to think of a relationship type in terms of attributes.

The process of database design is an iterative rather than a linear or sequential process.

Converting any E-R model to a set of tables in a database is followed by a specific set of
rules that govern such a conversion. -

The normalization process, as first proposed by Codd (1972a), takes a relatlon schema
through a series of tests to “certify” whethc. .i satisfies a certain normal form.

Codd proposed three normal forms, which he called First, Second, and Third normal form.

Normalization of data can be looked upon as a process of analyzing the given relation
schemas based on their FDs and primary keys to achieve the desirable properties of :
minimizing redundancy and minimizing the insertion, deletion, and update anomalies.
Normal forms, when considered in isolation fmm other factors, do guarantee a good database
design.

The problem of database inconsistency and redundancy of data are similar to the problems
that exist in the hierarchical and network models.

The only attribute values not permitted by 1NF are single atomic (or indivisible) values.

First normal form also disallows multivalued attributes that are themselves composite.
Third normal form (3NF) is based on the concept of transitive dependency.

In practice, most relation schemas that are in 3NF are also in BCNF.

SQL statements have 3 Data Definition Language (DDL) statements, CREATE, ALTER
and DROP. .

Data Control Commands (DCL) does not allow you to control access to data within the
database. -

TCL(T ransactional Control Commands are the commands which allow the user to manage
database transactions. For example commands like:-COMMIT, ROLLBACK,

" SAVEPOINT and SET TRANSACTION,

INSERT command is used to insert new data into a table.

Database Development

NOTES

Self Instructional Material 143

‘Database Systems

NOTES

144 Self Instructional Material

28.
29.
30.
31.

32.

33.
34,
35.

36.
37.
38.
39.

40.
41.
42,
43.

44.
45.

46.

—

W

DELETE command is not used to remove entire rows of data from a table.
DROP command cannot be used, for example, to drop a user from using the database.
RENAME allows you to rename a table from the database.

GRANT command is not used to grant both system-level and object-level privileges to af -
exising database user account.

COMMIT is the transactional command used to save changes invoked by a transaction to
the database.

ADDITION is performed using (-) symbol.
MULTIPLICATION is performed using (/) symbol. '

Arithmetic operators are performed in the sequence of Division, Muluphcamn Addition
and Subtraction.

CONCATENATION is the process of combining the two separate strings into one string:
WHERE command is used when you have to make selection based on some facts,

The ALL operator is used to compare a value to all values in another values set.

AND operator aIlows the existence of multiple conditions in an SQL statement s WHERE

clause.

ORDER BY clause is used in sorting,

CHR function returns the character equivalent of the number it uses as an argument.
INSTR function is used to find out where in a string a particular pattern occurs.
LENGTH function is used to find the length of a string, number date or expression in
bytes.

LTRIM is not used to clip a part of a string.

NUMBER functions are: ABS, ACOS, ASIN, ATAN, CEIL, COS, COSH, EXP, FLOOR,
LN, LOG, MOD, NVL, POWER, ROUND, SIGN, SIN, SINH, SQRT, TAN; TANH,
TRUNC and VSIZE. '

MONTHS_BETWEEN function is used to return the number of months elapsed between.
two months.

Short Questions with Answers

. 'What is an entity-relationship model?

The entity-relationship model is a generalization of these models. It allows the
representation of explicit constraints as well as relationships. Even though'the E-R model
has some means of describing the physical database model, it is basically useful in the
design and communication of the lofical database model. :

. What is conceptual modeling?

Ans,
_ application. Generally, the term database application refers to a particular database and the

Conceptual modeling is a very important phase in designing a successful database

associated programs that implement the database queries and updates. For example, a
BANK database application that keeps track of customer accounts would include programs
that implement database updates corresponding to customers making deposits and
withdrawals. :

. Whatisan entuy? .
. The basic object that the ER model crepresents is an entity, which is a “thing” in the real

world with an independent existence. An entity may be an object with a physical existence
(for example, a particular person, car, house, or employee) or it may be an object with a
conceptual existence (for example, a company, a job, or a university course}. Each entity
has attributes—the particular properties that describes it.

. What is entity type?
Ans.

An entity type describes the schema or intension for a-set of entities that share the same
structure. The collection of entities of a particular entity type are grouped into an entity set,
which is also called the extension of the entity type.

w

4

What type of relationships exist in terms of databases?

Ans. There are three main type of relationships: One to one relationship; On to many relatlonshjp

&

Ans. A functional dependency is basically a constraint between two sets of attributes from the

~

o

O

m.»—t_o

2L

and Many to Many relationship.
What is a functional dependency?

database. It is due to the consequence of the interrelationship among attributes of an entity
represented by a relation or due to the relationship between entities that isalso represented
by a relation,

. 'What is normalization? ‘ wL |

The normalization process, as first proposed by Codd (1972), takes a relation schema
through a series of tests to “certify” whether it satisfies a certain normal form. The process,

- which proceeds in a top-down fashion by eva]uatmg each relation again the criteria for
normal forms and decomposing relations as necessary, can thu§ be considered as relational

design by analysis.

. How many normal forms are there?

Initially, Codd proposed three normal forms, Wh_lCh he called First, Second, and Third
noimal form. A stronger definition of 3NF—called Boyce-Codd Normal Form (BCNF)}— -
was proposed later by Boyce and Codd. All these normal forms are based on the functional
dependencies among the attributes of a relation. Later, a fourth normal form (4NF) and a
fifth normal form (SNF) were proposed, based on the eoncepts of multivalued dependenc1es
and join dependencies, réspectively. h

What are the properties of first normal form?
First normal form disallows having a set of values, a tuple of values, or a combmatton of

" both as an attribute value for a single tuple. In other words, INF disallows “relations

within relations” or “relations as attribute values within tugics.” The only attribute values

* permitted by INF are single atomic {or indivisible) values.
. What is second normal form based on?

Second normal form (2NF) is based on the concept of full functlonal dependency.
What is third normal form based on?
Third normal form (3NF) is based on the concept of transitive dependency.

. Whrite the syntax of the following: CREATE, ALTER, DROP, TRUNCATE, SELECT,

DATES, AND, OR, Not EQUAL, Not BETWEEN, Not IN, Not LIKE, Is Not NULL,

» Not EXISTS, Not UNIQUE, GROUP BY, INSERT, UPDATE SQL commands.
. 'CREATE

CREATE TABLE NewTable (NewValue) INT)

ALTER ‘

ALTER TABLE MyTable ADD MyColumn VARCHAR (20) NULL

DROP

DROP TABLE [dbo]. [friends]

TRUNCATE '

DELETE FROM authors

TRUNCATE TABLE authors -

SELECT)

SELECT [* | ALL | DISTINCT COLUMN1, CQLUMN2]JFROM TABLE1]{, TABLE?2

DATES

SELECT GETDATE()

AND

WHERE ROLLNO = “1033” AND NAME = “RAHUL”

OR : :

WHERE ROLLNO = “1033” ORROLLNO = “1030” ~ °

roec

Database Development

NOTES

Self Instructional Material 145

Database Systems . ’ Not EQUAL
‘ WHERE ROLLNO <> “1050”
Not BETWEEN
WHERE ROLLNO NOT BETWEEN “1000” “2000”
NotIN
NOTES WHERE ROLLNO NOT IN (10007, “1200”, “1300")

Not LIKE

WHERE ROLLNO NOT LIKE-*2000”

Is Not NULL) '

WHERE ROLLNO IS NOT NULL

Not EXISTS

WHERE NOT EXISTS (SELECT ROLLNO FROM STUDENT_TBL WHERE

ROLLNO = “1033%)

‘Not UNIQUE

WHERE NOT UNIQUE (SELECT ROLLNO FROM STUDENT TBL)

GROUP BY '

SELECT LAST_NAME, FIRST NAME, CITY.

FROM EMPLOYEE_TBL

GROUP BY LAST_NAME;

INSERT

INSERT INTO SCHEMA. TABLE NAME

VALUES (‘valyel’, “Value2’, [NULL1);

UPDATE

UPDATE TABLE_NAME

SET COLUMN_NAME = "VALUE’

. (WHERE CONDITION)
. : - ANSWERS
Multiple Choice Questions . .
B o 2. b 3, a 4. ¢

5. a . 6. ¢ 7. b 8. b
9. a 10. ¢ 11. a 12. a -
13. b 4. a 15. ¢ 16. -a
17. ¢ 18. a 19. a 20. b

.21 a. 22. ¢

True False Questions *
1.T 2. T 3. T 4, F
5T 6. F 7. T 8. F
9. T 10. F 1. T 12.T
13. T 14. T 15. T 16. T
17. T 18. F - 19, T 20. F
21. T 22. T 23. T 24. T
25. F 26. T 27. T 28. F
29. T 30. T 31. F 32. T
33. F . 34, F 35. T 36. T
37. T 38T 39, T 40. T
41. T 42. T 43. T - 44. F
45, T 46. T

146 Self Instructional Material

CHAPTER 3

DATA ADMINISTRATION

- -

LearnING OBJECTIVES

After going through this chapter, you should appreciate the following:

¢ .Data Administration '
* Client/Server and Distributed Databases Data administration functlons
¢ Data administration tools - Repositories
* CASE Tools
* Concurrency Control
* Database Security

"« Database Recovery
* Client/Server Architecture
* Functions of Cllent/Server
* Advantages
* [ssues)
« Distributed Databases
* Obijectives

. » Distributed DBMS
« Location transparency .
* Replication transparency ;
* Failure transparency
¢~ Commit protocol
* Concurrency transparency.

Database Systems

NOTES

148 Self Instructional Material

DATA ADMINISTRATION

In any organization where many persons use the same resources, there is a need for a
chief administrator to oversee and manage these resources. In a database environment,
the primary resource is the database itself, and the secondary resource is the DBMS
and related software. Administering these resources is the responsibility of the
DataBase -Administrator (DBA). The DBA is responsible for authorizing access to
the database, for coordinating and monitoring its use, and for acquiring software and
hardware resources as needed. The DBA is accountable for problems such as breach
of security or poor system response time. In large organizations, the DBA is assisted
by a staff that helps carry out these functions.

~

CLIENT/SERVER AND DISTRIBUTED DATABASES DATA
ADMINISTRATION FUNCTIONS

Architectures for DBMSs have followed trends similar to those for general computer
system architectures. Earlier architectures used mainframe computers to provide the
main processing for all system functions, including user application programs and
user interface programs, as well as all the DBMS functionality. The reason was that
most users accessed such systems via computer terminals that did not have processing
power and only provided display capabilities. Therefore, all processing was performed
remotely on the computer system, and only display information and controls were
sent from the computer to the display terminals, which were connected to the central -
computer via various types of communications networks,

As prices of hardware declined, most users replaced their terminals with PCs and
workstations. At first, database systems used these computers similarly to how they
had used display terminals, so that the DBMS itself was still a centralized DBMS in
which all the DBMS in which all the DBMS functionality, application program
execution, and user interface processing were carried out on one machine. Gradually,
DBMS systems started to exploit the available processing power at the user side,
which led to Client/Server DBMS architectures.

Basic Client/Server Architectures

First, we discuss client/server architecture in general, then we see how it is applied to
DBMSs. The client/server architecture was developed to deal with computing
environments in which a large number of PCs, workstations, file servers, printers,
database servers, Web servers, and other equipment are connected via a network.
The idea is to define specialized servers with specific functionalities. For example, it
is possible to connect a number of PCs or small workstations as clients to a file-
server that maintains the files of the client machines. Another machine can be
designated as a printer server by being connected to various printers; thereafter, all
print requests by the clients are forwarded to this machine. Web servers or e-mail
servers also fall into the specialized server category.

In this way, the resources provided by specialized servers can be accessed by many
client machines. The client machines provide the user with the appropriate interfaces
to utilize these servers, as wel as with local processing power to run local applications,
This concept can be carried over to software, with specialized programs—such as a

r

DBMS or a CAD (compuier aided design) package-—being stored on specific server -

machines and being made accessible to multiple cliénts.

" The concept of client/server architecture assumes an underlying framework that

consists of many PCs and workstations as well as a smaller number of mainframe

machines, connected via LANs and other types of computer networks. A client in
this framewonr, is typically a user machine that provides user interface capabilities
and local »ncessing. When a client requires access to additional functionality—such
as database access—that does not exist at the machine, it connects to a server that
provides the needed functionality. A server is a system containing both hardware and
software that can provide services to the client machines, such as file access, printing,
archiving, or database access. In the general case, some machines install only client

software, others only server software,-and still others may include both client and

server software. However, it is more common that client and server software usually
" run on separate machines. Two main types of basic DBMS architecture were created
on this underlying client/server framework: two-tier and three-tier.

Two-Tier Client/Server Architectures for DBMSs

The client/server architecture is increasingly being incorporated into commercial
DBMS packages. In relational database nianagement systems (RDBMSs), many of
which started as centralized systems, the system components that were first moved
to client sider were the user interface and application programs. Because SQL provided

a standard language for RDBMSs, this created a logical dividing point between client

and server: Hence, the query and transaction functionality related to SQL processing
remained on the server side. In such architécture, the server is often called a query
server or transaction server because it provides these two functionalities, In an RDBMS
the server is also often called SQL server.

In such a client/server architecture, the user interface programs and application
programs can run on the client side. When DBMS acess is required, the program
establishes a connection to the DBMS, which is on the server side; once the connection
is created, the client program can communicate with the DBMS. A standard called
Open Database Connectivity (ODBC) provides an application programming interface
{APT), which allows client- s1de programs to call the DBMS, as long as both client and
server machines have the necessary software installed. Most DBMS vendors provide
ODBC. drivers for their systems. A client program can actually connect to serveral
RDBMSs and send query and transaction requests using the ODBC API, which are
then processed at the server sites. Any query results are send back to the client
program, which can process or display the results as needed. A related standard for
the Java programming Inaguage, called JDBC, has also been defined. This allows
Java client programs to access the DBMS through a standard interface.

Three-Tier and n-Tier Architecture for Web Application

Many Web applications use an architecture called the three-tier architecture, which

adds an intermediate layer between the client and the database server. This immediate -

“layer or middle tier is sometimes called the apphcatlon server and sometimes the
Web server, depending on the application. This server plays an intermediary role for
storing business rules, procedures or constraints, that are used to access data from the
database server. It can also improve database security by checking a client’s credentials
before forwarding a request to the database server. Clients contain GUI interfaces
and some additional application-specific business niles. The intermediate server accepts

Data Administration

NOTES

Self Instructional Material 149

Database Systems

NOTES

150 Self Instructional Material

requests from the client, processes the request and sends database commands to the
database server, and then acts as a conduit for passing (partially) processed data from
the ‘databaser server to the clients, where it may be processed further and filtered to
be presented to users in GUI format. Thus, the userr interface, apphcatlon rules, and
data access act as the three tiers.

Advances in encryption and decryption technology make it safer to transfer sensitive
data from server to client in encrypted form, where it will be decrypted. The latter

~ can be done by the hardware or by advanced software. This technology gives higher

levels of data security, but the network security issues remain a major concern. Various
technologies for data compression also help to transfer large amounts of data from
servers to clients over wired and wireless networks.

DATA ADMINISTRATION TOOLS - REPOSITORIES

Data administration is, in computing science, the administration of the organisation
of data, usually as stored in databases under some Database Management System or
alternative systems such as electronic spreadsheets.

In many smaller organisations, Data Administration is not performed at all, or is but
a small parcel of the Database Administrator’s work. -

Data Administration ideally begins at software conception, ensuring there is a data
dictionary to help keeping consistency and avoid redundancy and modelling the
database so as to make it logical and usable, by means of the normalisation technique.

Quite often such modelling is mistaken as diagramming, because of the prevalence
of entity-relationship diagrams.

Data Resource Management refers to the development and maintenance of data
models to facilitate data sharing between different systems, particularly in a corporate
context. DRM is concerned with both data quality and compatibility between data
models.

A large amount of multimedia data as well as metadata is stored for rétrieval purposes.
A central repository containing multimedia data may be maintained by a DBMS and
may be organized into a hierarchy of storage level—local disks, tertiary disks and
tapes, optical disks, and so on. Examples include repositories of satellite images,
engineering drawings and designs, space photographs, and radiologhy scanned pictures.

'CASE TOOLS

CASE (Computer-aided Software/System Engineering) refers .to the methods
dedicated to an engineering discipline for the development of information systems
together with automated tools that can be used in this process.

CASE can be described as harboring two key ideas
« Computer Assistance in software development and/or maintenance
* An engineering approach to the software development and/or maintenance.

Some typical CASE tools are:

* Code éeneration tools
. Data modeling tools
"+ UML
.+ Refactoring tools

* QVT or Model-transformation Tools

Classification of CASE Tools \
Existing CASE Environments can be classified aléng 4 different dimensions :
+ Life-Cycle Support '
+ Integration Dimension
+ Construction Dimension)
+ Knowledge Based CASE dimension ,
Let us take the meaning of these dimensions along with their examples one by one :
Life-Cycle Based CASE Tools . | '

This dimension classifies CASE Tools on the basis of the activities they support in
the information systems life cycle. They can be ClaSSLﬁed as Upper or Lower CASE
tools.

Upper Case Tools support strategic, planmuz and construction of conceptﬁal level
product and ignore the design aspect. They support traditional dlagrammatlc languages
such as ER Diagrams, DFD, Structure charts etc. :

Lower Case Tools concentrate on the back end actmtles of the software life cycle
and hence support activities like physical design, debuggmg, construction, testing,
integration of software components, maintenance, reengmeermg "nd reverse
engineering activities.

Integration Dimension _

Three main CASE Integration dimension have been iJroposed :
+ CASE Framework ' ' '
+ ICASE Tools
+ Integrated Project Support Envi}onment(IPSE)

History of CASE

All aspects of the software development lifecycle can be supported by software tools,
and so the use of tools from. across the spectrum can, arguably, be described as CASE;
from project management software through tools for business and functional analysis,
system design, code storage, compilers, translation tools, test software, and so on.

However, it is the tools that are concerned with analysis and design, and with using
design information to create parts (or all) of the software product, that are most
frequently thought of as CASE tools. CASE applied, for instance, 1o a database
software product, might normally involve: °

- » Modelling business / teal world processes and data flow

Data Administration

NOTES

Sey—ffnstma‘ionaf Material 151

Database Systems

NOTES

152 Self Instructional Matérial

. o

Development of data models in the form of entity-relationship diagrams
» Development of process and function descriptions - 3
» Production of database creation SQL and stored procedures

The term CASE was originally coined by software company, Nastec Corporation of
Southfield, Mich. in 1982 with their original integrated graphics and text'editor
GraphiText, which also was the first microcomputer-based system to use hyperlinks
to cross-reference text strings in documents — an e¢arly forerunner of today's web
page link. GraphiText's successor product, DesignAid was the first microprocessor-
based tool to logically and semantically evaluate software and system design diagrams
and build a data dictionary. Under the direction of Albert F. Case, Jr. vice president .
for product management and consulting (the rumor that he changed his last.ndme is
untrue), and Vaughn Frick, director of product management, the DesignAid product
suite was expanded to support analysis of a wide range of structured analysis and
design methodologies, notably Yourdori/Demarco, Gane & Sarson, Ward-Mellor (real-
time) SA/SD and Warnier-Orr (data driven). The next entrant into the market was
Excelerator from Index Technology in Cambridge, Mass: While DesignAid ran on
Convergent Technologies and later Burroughs Ngen networked microcomputers, Index
launched Excelerator on the IBM PC/AT platform. While, at the time of launch,
and for several years, the IBM platform did not support networking or a centralized
database as did the Convergent Technologies or Burroughs machines, the allure of
IBM was strong, and Excelerator came to prominence.

CAGSE tools were at their peak in the early 1990s. At the time IBM had proposed
AD/Cycle which was an alliance of software vendors centered around IBM's
mainframe:

The application development tools can be from several sources: from IBM, from
vendors, and from the customers themselves. IBM has.entered into relationships
with Bachman Information Systems, Index Technology Corporation, and
Knowledgeware, Inc. wherein selected products from these vendors will be marketed
through an IBM complementary marketmg program to prowde offerings that will
help to achieve complete life-cycle coverage.

With the decline of the mainframe, AD/Cycle and the Big CASE tools died off,
opening the market for the mainstream CASE tools of today. Interestingly, nearly all
of the leaders of the CASE market of the early 1990s ended up being purchased by
Computer Associates, including IEW, IEF, ADW, Cayenne, and Learmonth & Burchett
Management Systems' (LBMS).

Many CASE tools not only output code but also generate other output typical of
various systems analysi;'and design methodologies such as SSADM. e.g.:

* database schema

« data flow diagrams

+ entity relationship diagrams
» program specifications

» user documentation

CONCURRENCY CONTROL

In computer science, especially in the fields of computer programming (see also
concurrent programming, parallel programming), operating systems, multiprocessors,
and databases, concurrency control ensures that correct results for concurrent
operations are generated, while getting those results as quickly as possible.

Concurrency control in databases

Concurrency control in database managément systems (DBMS) ensures that database
transactions are performed concurrently without the concurrency violating the data
integrity of a database. Executed transactions should follow the ACID rules, as
described below. The DBMS must guarantee that only serializable (unless Serializability
is intentionally relaxed), recoverable schedules are generated. It also guarantees that
no effect of committed transactions is lost, and no effect of aborted (rolled back)
transactions remains in the related database.

Transaction ACID rules

« Atomicity - Either the effects of all or none of its operations remain when'a

transaction is completed - in other words, to the outside world the transactlon :

appears to be indivisible, atomic.
+ Consistency - Every transaction must leave the database in a consistent state.

+ Isolation - Transactions cannot interfere with each other. Providing isolation
is thé main goal of concurrency control.

« Durability - Successful transactions must persist through crashes. '

Concurrency control mechanism

The mam categories of concurrency control mechamsms are:

Optlmlstlc Delay the synchronization for a transactlon unt11 its end w1thout

blocking (read, write) operations, and then abort transactions that v101ate
desired synchronization rules:

» Pessimistic - Block operations of . transaction that would cause v1olat10n of
synchromzatlon rules.

There are several methods for concurrency control Among them
» Two-phase locking '
-+ Strict two-phase locking _ o
.+ Conservative two-phase locking |
 Index locking o
» Multiple granularity locking -

A Lock is a database system object associated with a database object (typically a
data item) that prevents undesired (typically synchronization rule violating) operations
of other transactions by blocking them. Database system operations check for lock
existence, and halt when noticing a lock type that is intended to block them.

There are also non-fock concurrency control methods, among them:

Data Administration

NOTES

" Self Instructional Material 153
. N

Database Systers

NOTES

154 Self Instructional Material

» Conflict (serializability, precedence) graph checking
. Timestanip ordering -
* commitment ordering .
Also Optlmlstu: concurrency control methods typically do not use locks.

Almost all currently implemented lock-based and non-lock-based concurrency. control
mechanisms guarantee schedules that are conflict serializable (unless relaxed forms
of serializability are needed). However, there are many research texts encouraging
view serializable schedules for possible gains in performance, especially when not'too
many conflicts exist (and not too many aborts of completely executed transactions
occur), due to reducing the considerable overhead of blocking mechanisms.

Concurrency control in operating systems

Operating systems, especially real-time operating systems, need to maintain the illusion
that many tasks are all running at the same time. Such multitasking is fairly simple
when all tasks are independent from each other. However, when several tasks try to
use the same resource, or when tasks try to share information, it can lead to confusion
and tnconsistency. The task of concurrent computing is to solve that problem. Some
solutions involve "locks" similar to the locks used in databases, but they risk-causing

. problems of their own such as deadlor*k Other solutions are lock free and wait-free

algorithms.

DATABASE SECURITY

Database security is the.system, processes, and procedures that protect a database

from unintended activity. Unintended activity can be categorized as authenticated
misuse, malicious attacks or inadvertent mistakes made by authorized individuals or
processes. Database security is also a specmlty within the broader discipline of
computer secunty :

Definition: Database security is the system, pméesses, and procedures that
- protect a database from unintended activity.

Traditionally databases have been protected from external connections by firewalls
or routers on the network perimeter with the database environment existing on the
internal network opposed to being located within a demilitarized zone.

Additional network sécuﬂ'ty devices that detect and alert on malicious database
protocol traffic include network intrusion detection systems along with host- -
based intrusion detection systems.

Process Controls

Database security is more critical as networks have become more open. Databases
provide many layers and types of information security, typically specified in the data
dictionary, including the following controls:

* Access control

= Auditing

» Authentication
» Encryption = - . -
+ Integrity controls

Database security-can begin with the process of creation and publishing of appropriate
security standards for the database environment. The standards may include specific
controls for the various relevant database platforms; a set of best practices that cross
over the platforms; and linkages of the standards to higher level polices and
governmental regulations. An important procedure when evaluating database security
is performing vulnerability assessments against the database. A vulnerability
assessment attempts 10 find vulnerability holes that could be used to break into the
database

" Database administrators or information security administrators run vulnerability
scans on databases to discover misconfiguration of controls within the layers
mentioned above along with known vulnerabilities within the database software.

The results of the scans should be used to harden the database in order to mitigate
the threat of compromise by intruders.

A program of continual monitoring for compliance with database security standards
is another important task for mission critical database environments. Two crucial
aspects of database security compliance include patch management and the review
and management of permissions (especially public) granted to objects within the
database. Database objects may include table or other objects listed in the Table link.

The permissions granted for SQL language commands on objects are considered in .

this process. One should note that compliance monitoring is similar to vulnerability
assessment with the key difference that the results of vulnerability assessments
generally drive the security standards that lead to the continuous monitoring program.
Essentially, vulnerability assessment is a preliminary procedure to determme risk
where a comphance praogram is the process of on-gomg risk assessment.

The comphance program should take into.consideration any dependencies at the
application software level as changes at the database level may have effects on the
application software or the application server. In direct relation to th1s topic is that of
application securlty .

Application level authentication and authorization mechanisms should be
considered as an effective means of providing abstraction from the database
- . layer.

The primary benefit of abstraction is that of.a single sign-on capability across multiple
databases and database platforms. A Single sign-on system should store the database
. user’s credentials (login id and password), and authenticate to the database on behalf
of the user. Another security layer of a more sophisticated nature includes the real-
time monitoring of database protocol traffic (SQL) over the network. Analysis can
be performed on the' traffic for known exploits or network traffic baselines can be
captured overtime to build a normal pattern used for detection of anomalous activity,
that jcould be indicative of intrusion. These systems can provide a comprehensive
Datdbase audit trail i in addition to the intrusion detectlon (and potentlally protection)
'mechamsms HEER - ;

2

Dato Administration

NOTES

1

L]

Seif Instructional. Material 155

Database Systems

NOTES

156 Self Instructional Material

When a network level audit system is not feasible a native database audit program
should be instituted. The native audit trails should be extracted on a regular basis and
transferred to a designated security system where the database administators do not
have access. This ensufes a certain level of segragation of duties that may provide
evidence the native audit trails were not modified by authenticed administrators.
Generally, the native audit trails of databases do not provide sufficient controls to
enforce separation of duties; therefore, the network and/or kernel module level host
based monitoring capabilities provides 2 higher degree of confidence for forsenices
and preservation of evidence.

After an incident occurs, the usage of Database Forensics can be employed to
determine the scope. '

A database security program should include the regular review of permissions granted
to individually owned accounts and accounts-used by automated processes. The
accounts used by automated processes should have appropriate controls around
password storage such as sufficient encryption and access controls to reduce the risk
of compromise. For individual accounts, a two-factor authentication system should
be considered in a database environment.where the risk is commensurate with the
expenditure for such an authentication system.

In conjunction with a sound database security program, an appropriate disaster
recovery program should exist to ensure that service is not interrupted during a security
incident or any other incident that results in an outage of the primary database
environment. An example is that of replication for the primary databases to sites
located in different geographical regions.

~ Access Control s

Access control is the ability to permit or deny the use of a particular resource by a
particular entity. Access control mechanisms can be used in managing physical
resources (such as a movie theater, to which only ticketholders should be admitted),
logical resources {a bank account, with a limited number of people authorized to
make a withdrawal), or digital resources (for example, a private text document on a
computer, which only certain users should be able to read). ’

Item Control or Electronic Key Management is an area within (and possibly inte_grated
with)an access control system which concerns the managing of possession and location
of small assets or physical (mechanical) keys.

Access Control System Operation

When a credential is presented to a reader, the reader sends the credential’s information,
usually a number, to a control panel, a highly reliable processor. The control panel
compares the credential’s number to an access control list, grants or denies the
presented request, and sends a transaction log to a database. .
}
When access is denied based on the access control list, the door remains locked,
If there is a match between the credential and the access control list, the ccmtml
panel operates a relay that in turn unlocks the door.

‘The control panel also ignores a door open signal to prevent an alarm. Often the

reader provides feedback, such as a flashing red LED for an access denied and a
flashing green LED for an access granted -

The above description illustrates a single factor transaction. Credentials can be passed Data Administration
around, thus subverting the access controi list. For example, Alice has access rights

to the server room but Bob does not. Alice either gives Bob her credential or Bob

takes it; he now has access to the server room. To prevent this, two-factor

authentication can be used. In a two factor transaction, the presented credential and

'a second factor are needed for accéss to be granted. The second factor can be a PIN, NOTES.

a second credential, operator intervention, or a blomemc input. Often the factors are
characterized as

+ something you have, such as a credential,

* something you know, e.g. a PIN, or '

+ something you are, typically a biometric input.
Access Control System Components

An access control point, which can be a door, turnstile, parking gate, elevator, or
other physical barrier where granting access can be electrically controlled. Typically
the access point is a door. An electronic access control door can contain several
elements. At its most basic there is an electric lock.

The lock is unlocked by an operator with a switch. To automate this, operator
intervention is replaced by a reader. The reader could be a keypad where a code is
entered, it could be a card reader, or it could be a biometric reader, Readers do not
usually make an access decision but send a card number to an access control panel
that verifies the number agaiist an access list. To monitor the door position a magnetic
door switch is used. In concept the door switch is not unlike those on refrigerators or
car doors. -

Generally only entry is controlled and exit is uncontrolled. In cases where exit is

alse controlled a second reader is used on the opposite side of the door. In cases

where exit is not controlled, free exit, a device called a request-to-exit (REX) is
used.

Request-to-exit dévices can be a pushbutton or a motion detector. When the button B}
is pushed or the motion detector detects motion at the door, the door alarm is
temporarily ignored while the door is opened. Exiting a door without having to
electrically unlock the door is called mechanical free egress. This is an important
safety feature. In cases where the lock must be electrically unlocked on exit, the
request-to-exit device also unlocks the door. ’

Credential

A credential is something you know, such as number or PIN, something you have,

-such as an access badge, something you are, such as a biometric feature, or some
combination of these. The typical credential is an access card, key fob, or other key.
There are many card technologies including magnetic stripe, bar code, Wiegand, 125
kHz proximity, contact smart cards, and contactless sniart cards. Typical biometric
technologies include fingerprint, facial recognition, iris recognition, retinal scan, voice,
and hand geometry. |

Bar Code Technology

A bar code ts a series of alternating dark and light stripes that are read by an Opncal Y

scaniner. The organization and w1dth of the lines is determined by the bar code protocol _.
. : Seif Instructional Mazerial 157

1w '

Darabase Sy-stems .

NOTES

158 Seif Instructional Material

£
v

- selected. There are many different protocols but code 39 is the most popular in the

security industry. Sometimes the digits represented by the dark and light bars are also
printed to allow people to read the number without an optical reader.

The advantage of using bar code technology is that it is cheap and easy to
generate the credential and it can easily be applied to cards or other items. -

The disadvantage of this technology is that it is cheap and easy to generate a credential
making the technology susceptible to fraud and the optical reader can have reliability
problems with dirty or smudged credentials. One attempt to reduce fraud is to print

the bar code using carbon-based ink and then cover the bar code with a dark red

overlay. Thé bar code can then be read with:an optical reader tuned to the infrared
spectrum, but can not easily be copied by a copy machine. This does not address the -
ease with which bar code numbers can be generated from a computer using almost
any printer. - '

Magnetic Stripe Technology

Magnctic stripe technology, usually called mag-stripe, is so named because of the

~ stripe of ‘magnetic oxide tape that is laminated on a card. ‘There are threé tracks of

data on the magnetic stripe. Typically the data on each of the tracks follows a specific
encoding standard, but it-is possible to encode any format on any track.

A mag-stripe card is cheap compared to other card technologies and is easy to
program.

The magnetic stripe holds more data than a bar code can in the same space. While a
mag-stripe is more difficult to generate than a bat code, the technology for reading
and encoding data on a mag-stripe is widespread and easy to acquire. Magnetic stripe
technology is also susceptible to misreads, card wear, and data corruption.

Wiegand Card Technology

Wiegand card technology is a patented technology using embedded ferromagnetic

* wires strategically positioned to create a unique pattern that generates the identification

number. Like magnetic stripe or bar code, this card must be swiped through a reader
to be read. Unlike those other technologies the identification media is embedded in
the card and not susceptible to wear: This technology once gained popularity because
of the difficulty in duplicating the technology creating a high perception of security.
This technology is being replaced by proximity cards because of the limited source
of supply, the relatively better tamper resistance of proximity readers, and the
convenience of the touch-less functionality in proximity readers.

Proximity Card Technology

The Wiegand effect was used in early access cards. This method was abandoned in
favor of other technologies. The new technologies retained the Wiegand upstream
data so that the new readers were compatible with old systems. Readers are still
called Wiegand but no longer use the Wiegand effect. A Wiegand reader radnates al"
to 5" electrical field around itself. Cards use a simple LC circuit. :

W’km a card is presented to the reader, the reader’s electrical field excites a coil
. in the card. The coil charges a capacitor and in turn powers a integrated circuit.

The iﬁtegrated circuit outputs the card number to the coil which transmits it to the
reader.

A common proximity format is 26 bit Wiegand. This format uses a facility code,
sometimes also called a site code. The facility code is a unique number common to

. all of the cards in a particular set. The idea is that an organization will have their own

facility code and a set of numbered cards incrementing from 1. Another organization
has a different facility code and their card set also increments from 1. Thus different
organizations can have card sets with the same card numbers but since the facility
codes differ, the cards only work at one organization. This idea worked fine for a
-while but there is no governing body controlling card numbers, and different
manufacturers can supply cards with identical facility codes and identical card numbers
"to different organizations. :

Thus there is a problem of duplicate cards. To counteract this problem some
manufadurers have created formats beyond 26 bit Wiegand that they control
-and issue to organizations.

In the 26 bit Wiegand format, bit 1 is an even parity bit. Bits 2-9 are a facility code.
Bits 10-25 are the card number. Bit 26 is an odd parity bit. Other formats have a
similar structure of a leading facility code followed by the card number and including
parity bits for error checkmg

Smart Card

There are two types of smart cards: contact and contactless Both have an embedded
microprocessor and memory. The smart card differs from the card typically called a
proximity card in that the microchip in the proximity card has only one function: to
provide the reader with the card’s identification number. The processor on the smart

"card has an operating system and can handle multiple applications such as a cash

card, a pre-paid membership card, and even an access control card.

The difference between the two types of smavt cards is found in the manner
with which the mrcropmcessor on the card communicates with the outside
-world. : -

A contact smart card has eight contacts, which must physically touch contacts on the
reader to convey information between them. A contactless smart card uses the same
radio-based technology as the proximity card with the exception of the frequency

band used. Smart cards allow the access control system to save tser informationona

credential carried by the user rather than requiring more memory on each controller.
PIN '

A personal identification number (PIN) falls in the category of what you know rather
than what you have. The PIN is usually a number consisting of four to eight digits.
Less and the number is too easy to guess. More and the number is too difficult to
remember.

The advantage to using a PIN as an access credential is that once the number is
memorized, the credential cannot be lost or left somewhere. |

The disadvantage is the difficulty some people have in remembering numbers that -
are not frequently used and the ease with which 4 PIN can be observed and therefore |

Data Administration

NOTES

Self Instructional Material 159

Database Systems

NOTES

160 Self Instructional Material

~

used by unauthorized people. The PIN is even less secure than a bar code or magnetic

- stripe card.

Computer Security

In computer security, access control includes authentication, authorization and audit.
It also includes measures such as physical devices, including biometric scans and
metal locks hidden paths, digital signatures, encryption, social bamers and monitoring
by humans and automated systems.

In any access control model, the entities that can perform actions in the system are
called subjects, and the entities répresenting resources to which access may need to

‘be controlled are called objects. Subjects and objects should both be considered as

software entities, rather than as human users: any human user can only have an effect
on the system via the software entities that they control. Although some systems
equate subjects with user IDs,-so that all processes started by a user by default have
the same authority, this level -of control is not fine-grained enough to satisfy the
Principle of least privilege, and arguably is responsible for the prevalence of malware
in such systems. -

In some models, for example the object- capablhty model, any software entity can
potentially act as both a subject and object.

Access control models used by current systems tend to fall into one of two classes:
those based on capabilities and those based on access control lists (ACLs). In a’
capability-based. model, holding an unforgeable reference or capability to an object
provides access to the object (roughly analogous to how possession of your house
key grants you access to your house); access is conveyed to another party by
transmitting such a capability over a secure channel. In an ACL-based model, a
subject’s access to an object depends on whether its identity is on a list associated
with the object (roughly analogous to how a bouncer at a private party would check
your ID to see if your name is on the guest list); access is conveyed by editing the list.

~ Different ACL systems have a variety of different conventions regarding who or

what is responsible for editing the list and how it is edited. -

Both capability-based and ACL-based models have mechanisms to allow access rights
to be granted to all members of a group of subjects (often the group is itself modeled
as a subject).

Access cont;oi systems provide the essential services of identification and
authentication (I&A), authorization, and accountability where:

» identification and authentication determine who can log on to a system, and
the association of users with the software subjects that they are able to control .
‘as a result of logging in;

= authorization detemlmes what a subJect can do;

» accountability identifies what a subject (or all subjects associated with a user)
did.

Identifi catwn and Authentication (I&A)

Identification and authentication (I&A) is the process of verifying that an identity is
bound to the entity that asserts it. The I&A process assumes that there was an initial

“vetting of the identity, during-which an authenticator was established. Subsequently,

the entity asserts an identity together with an authenticator as a means for validation.

The only reqmremens Jor the identifier is that it must be unique within its
security domain.

Authenticators are commonly based on at least one of these four factors:

-+ Something you know, such as a password or a personal identification number

(PIN). This assumes that only the owner of the account knows the password.

or PIN needed to access the account.

* Something you have, such as a smart card or token. This assumes that only

thé owner of the account has the necessary smart card or token needed to’

unlock the account. ;

+ Something you are, such as fingerprint, voice, retina, or iris characteristics.

« Where you are, for example inside or outside a company firewall, or proximity
of login location to a personal GPS device.

Authorization) 3

Authorization applies to subjects rather than to users (the association between a user

and the subjects initially controlled by that user having been determmed by I&A).

'Authorization determines what a subject can do on the system.

Most modern operating systems define sets of permissions that are variations or
extensions of three basic types of access:

* Read (R): The subject can
* Read file contents

» List directory contents

« Write (W): The subject can change the contents of a file or directory with the -

following tasks:

+ Add

» Create

¢ Delete

*+ Rename"

+ Execute (X): If the file is 2 program, the subject.can cause the program‘ to be
run. (In Unix systems, the ‘execute’ permission doubles asa ‘traverse directory’
permission when granted for a directory.)

* These rights and permissions are implemented differently in systems based on
Discretionary Access Control (DAC) and Mandatory Access Control (MAC).

Acéountability

Accountability uses such system components as audit trails (records) and logs to
associate a subject with its actions. The information recorded should be.sufficient to
map the subject to a controlling user. Audit trails and logs are important for

*» Detecting security violations
» Reé-creating security incidents

If no one is regularly reviewing your logs and they are not maintained in a secure and
consistent manner, they may not be admissible as evidence. - .

Data Administration

NOTES

Self Instructional Material 161

Database System

TUDENT ACTIVITY 3.1

!

1. What do you understand by Database Security?

2. How a Database is Protected?

162 Self Intructional Material

- Database Adminstration ”

3. "What is Data administration?

v

4. 'What are CASE {Computer-aided Software/System Engineering) tools?

Self Intructional Material 163

Database Systems

NOTES

164 Seif Instructional Material

Many systems can generate automated reports based on certain predefined criteria or
thresholds, known as clipping levels. For example, a clipping level may be set to
generate a report for the following: -

* More than three failed logon attempts in a given period
+ Any attempt to use a disabled user account

These reports help a system administrator or security adm1mstrator t0 more easily
identify possible break-in attempts.

Access Control Techniques

Access*control- techniques are sometimes categorized as either discretionary or non- -
discretionary. The three most widely recognized models are Discretionary Access
Control (DAC), Mandatory Access Control (MAC), and Role Based Access Control
(RBAC). MAC and RBAC are both non-discretionary.

Discretionary Access Control

Discretionary access control (DAC) is an access policy determined by the owner of
an object. The owner. decndes who is allowed to access the object and what pnvxleges

-they have.

Two important concepts in DAC are

» File and data ownership: Every object in the system has an owner. In most"
DAC systems, each object’s initial owner is the subject that caused it to be
created. The access policy for an object is determined by its owner.

« Access rights and permissions: These are the controls that an OWner can assign
-to other subjects. for specific resources. :

Access controls may be discretionary in ACL-based or capability- based access control
systems. (In capability-based systems, there is usually no explicit concept of ‘owner’,
but the creator of an object has a similar degree of control over its access policy.)

Mandatory Access Control

Mandatory access control (MAC) is an access policy determined by the system,. not
the owner. MAC is used in multilevel systems that process highly sensitive data,
such as classified government and military information. A multilevel system is a
single computer system that handles multiple classification levels between subjects
and objects. .

* Sensitivity labels: In a MAC-based system, all subjects and objects must

* have labels assigned to them. A subject’s sensitivity label specifies its level of
trust. An object’s sensitivity label specifies the level of trust required for
access. In order to access a given object, the subject must have a sensitivity-
level equal to or hlgher than the requested object.

* Data import and export: Controlling the import of information from other
systems and export to other systems (including printers) is a critical function

. of MAC-based systems, which must ensure that sensitivity labels are properly
maintained and implemented so that sensitive information is appropriately
protected at all times. '

Two methods are commonly used for applying mandatory access control;

» Rule-based access controls: This type of control, further defines specific
conditions for access to a requested object. All MAC-based systems implement
a simple form of rule-based access control to determine whether access should
be granted or denied by matching:

+ An object’s sensitivity label
+ A subjeci’s sensitivity label -

» Lattice-based access controls: These can be used for complex access control
decisions involving multiple objects and/or subjects- A lattice model is a
mathematical structure that defines greatest lower-bound and least upper-
bound values for a pair of elements, such as a subject and an object.

Few systems implement MAC. XTS-400 is an example of one that does.
Role Based Access Control , SR

Role-based access control (RBAC) is an access policy determined by the system, not
the owner. RBAC is used in commercial applications ‘and also in military systems,
where multi-level security requirements may also exist. RBAC differs from DAC in
that DAC allows users to control access to their resources, while in RBAC, access is
controlled at the system level, outside of the user’s control. Although RBAC is non-
discretionary, it can be distinguished from MAC primarily in the way permissions are
‘handled. MAC controls read and write permissions based on a user’s clearance level
and additional labels. RBAC controls collections of permissions that may include
complex operations such as an e-commerce transaction, or may be as simple as read
or write. A role in RBAC can be viewed as a set of permissions.

Three primafy rules are defined for RBAC:

1. Role assignment: A subject can execute a transaction only if the subJect has
selected or been assigned a role.

2. Role authorization: A subject’s active role must be authorized for the subject.
With rule 1 above, this rule ensures that users can take on only roles for
which they are authorized. -

3. Transaction authorization: A subject can execute a transaction only if the
transaction is authorized for the subject’s active role. With rules 1 and 2, this
rule ensures that users can execute only transactions for which they are
authorized.

Additional constraints may be applied as well, and roles can be combined in a hjerarchy
where higher-level roles subsume permissions owned by sub-roles.

* Most IT vendors offer RBAC in one or more products.
Public Policy

In public policy, access control to restrict access to systems (“authorization”) or to
track or monitor behavior within systems (“accountability”) is an implementation
- feature of using trusted systems for security or social control.

Auditing

The most general definition of an audit is an evaluation of a person, organization, .

system, process, project or product. Audits are performed to ascertain the validity

Data Administration

NOTES

Self Instructional Material 165

Database Systems

NOTES

166 Self Instructional Material

~ and reliability of information, and also provide an assessment of a system’s internal

control. The goal of an audit is to the person/organization/system etc. under
evaluation based on work done on a test basis.

Due to practical constraints, an audit seeks to provide only reasonable assurance
that the statements are free from material error. .

Hence, statistical sampling is often adopted in audits. In the case of financial audits,
a set of financial statements are said to be true and fair when they are free of material
misstatements - a concept influenced by both quantitative and qualitative factors.

Traditionally audits were mainly associated with gaining information about financial
systems and the financial records of a company or a business. However recently
auditing has begun'to include other information about the system, such as information |
about environmental performance. As a result there are now professions that conduct
environmental audits.

In financial accounting, an audit is an independent assessment of the fairness by
which a company’s financial statements are presented by its management. It is -
performed by competent, independent and objective person or persons, known as
auditors or accountants, who then issue an auditor’s report on the results of the audit.

Such systems must adhere to generally accepted standards set by governing bodies

. that regulate businesses. It simply provides assurance for third parties or external

users that such statements present ‘fairly’ a company's financial condition and results
of operations.

Authentication

In art, antiques, and anthropology, a common problem is verifying that a given artifact
was produced by a certain famous person, or was produced in a certain place or
period of history.

There are two types of techniques for doing this.

The first is comparing the attributes of the object itself to what is known about
objects of that origin. For example, an art expert might look for similarities in the
style of painting, check the location and form of a signature, or compare the object
to an old photograph. An archaeologist might use carbon dating to verify the age of
an artifact, do a chemical analysis of the materials used, or compare the style of
construction or decoration to other artifacts of similar origin.-The physics of sound
and light, and comparison with a known physical environment, can be used to examine
the authenticity of audio recordings, photographs, or videos.

Attribute comparison may be vulnerable to forgery. In general, it relies on the fact
that creating a forgery indistinguishable from a genuine artifact requires expert
knowledge, that mistakes are easily made, or that the amount of effort required to do
so is considerably greater than the amount of money that can be gained by selling the
forgery. '

Criminal and civil penalties for fraud, forgery, and counterfeiting can reduce the
incentive for falsification, depending on the risk of getting caught.

The second type relies on documentation or other external affirmations. For example,
the rules of evidence in criminal courts often require establishing the chain of custody

of evidence presented. This can: be accomplished through a written evidence log, or
by testimony from the police detectives and forensics staff that handled it. Some
antiques are accompanied by certificates attesting to their authent1c1ty External records
have their own. problems of forgery and perjury, and are also vulnerable to being
separated from the artifact and lost. '

Currency and other financial instruments commonly use the first type of authentication

method. Bills, coins, and cheques incorporate hard-to-duplicate physical features, such -
as fine printing or engraving, distinctive feel, watermarks, and holographic imagery,

which are easy for receivers-to verify.

Information contéent

The authentication of information can pose special problems, and is often wrapped
up with authenticating identity.

Literary forgery can involve imitating the style of a famous author. If an original
manuscript, typewritten text, or recording is available, then the medium itself (or its
packaging - anything from a box to e-mail headers) can help prove or disprove the
authenticity of the document.

However, text, audio, and video can be copied into new media, possibly leaving
only the informational content ifself to use in authentication.

. Various systems have been invented to allow authors to provide a means for readers
to reliably authenticate that a given message originated from or was relayed by them.
- These involve authentication factors like:

« A difficult-to-reproduce physical artifact, such as a seal, signature, watermark,
special stationery, or fingerprint.

A shared secret, such as a passphrase, in the content of the message.

+ An electronic signature; public key infrastructure is often used to
cryptographically guarantee that a message has been signed by the holder of
a particular pnvate key. '

The opposite problem is detection of plagiarism, where information from a dlf’ferent
- author is passed of as a person’s own work. A common technique for proving
plagiarism is the discovery of another copy|0f the same or very similar text, which
has different attribution, In_some cases excesswely hlgh quality or a style mismatch
may raise suspicion of plagiarism. S

Factual verification ' .

Determining the truth or factual accuracy of information in a message is generally
considered a separate problem from authentication. A wide range of techniques,
from detective work to fact checking in journalism, to scientific experiment mlght be
employed. '

DATABASE RECOVERY

Database protection can begin with the process of creation and publishing of
appropriate protection standards for the database environment. The standards may
include specific controls for the various relevant database platforms; a set of best

Data Administration ~

NOTES

Self Instructional Material 167

Database Systems

7

NOTES

168 Self Insrructional Material

| The Conceptual level

practices that cross over the platforms; and linkages of the standards to higher level
polices and governmental regulations. An important procedure when evaluating .
database security is performing vulnerability assessments against the database. A
vulnerability assessment attempts to find vulnerability holes that could be used to
break into the database.

A database protection program should include the regular review of permissions
granted to individually owned accounts and accounts used by automated processes.
The accounts used by automated processes should have appropriate controls around
password storage such as sufficient encryption and access controls to reduce the risk
of compromise. For individual accounts, a two-factor authentication system should
be -considered in a database environment where the risk is commensurate with the
expenditure for such an authentication system.

‘CLIENT/SERVER ARCHITECTURE ‘

Three of the four important characteristics of the database approach are:

1. insulation of programs and data (program data and program- operatlon
' independence), -
. 2. support of multiple user views, and

3. use of a catalog to store the data-base description (schema).

Here, we specify an architecture for database systems, called the Three-Schema
Architecture, that was proposed to help achieve and visualize these characteristics.

The Three-Schema Architecture

The goal of the three-schema architecture is to separate the user applications and the
physical database. In this archltecture schemas can be defined at the following three
levels:

The External level

’

/

_The external or view level includes a number of external schemas or user views.

Each external schema describes the part of the database that a particular user group

_ is interested in and hides the rest of the database from that user group. Here, each

external schema 1s typically implemented using a representational data model, possnbly
based on an external scherna design in a high-level data model.

AN

The conceptual schema hides the details of physical storage structures and
concentrates on describing entities, data types, relationships, user operations, and
constraints. Usually, a representational data model is used-to describe the conceptual
schema when a database system is implemented. This implementation conceptual
schema is often based on a conceptual schema design in a high-level data model.

The Internal level

. The internal level has an internal schema, which describes the physical storage structure

of the database. The internal schema uses a physical data model and describes the
complete details of data storage and access paths for the database. The conceptual

level has a conceptual schema,-which describes the structure of the whole database

for a community of users.
The three-schema architecture is a convenient tool with Wthh the user can visualize
the schema levels in a database system.

Most DBMSs do not separate the three levels completely, but support the three-
schema architecture to some extent, Some DBMSs may include physical-level
details in the conceptual schema.

In most DBMSs that support user views, external schemas are specified in the same

data model that describes the conceptual-level information. Some DBMSs allow

different data models to be used at the conceptual and external levels.

Mappings

Notice that the three schemas are only descriptions of data; the only data that actually
_exists is at the physical level. In a DBMS based on the three-schema architecture,

each user group refers only to its own external schema. Hence, the DBMS must
- transform a request specified on an external schema into a request against the

conceptual schema, and then into a request on the internal schema for processmg

over the stored database.

If the request is a database retrieval, the data extracted from the stored database
must be reformatted to match the user’s external view. The processes of transforming
requests and results.between levels are called mappings. 1hese mappings may be
time-consuming, so some DBMSs—especially those that are meant to support small
databases—do not support external views. Even in such systems, however, a certain
amount of mapping is necessary to transform requests between the conceptual and
internal levels. -

The processes of transforming requests and results between levels are called
mappings.

FUNCTIONS OF CLIENT/SERVER——ADVANTAGES AND
ISSUES

A Client Server system has one or more client processes and one or more server
processes, and a client process can send a query to any one server process. Clients are
responsible for user-interface issues, and servers manage data and execute transactions.
Thus, a client process could run on a personal computer and send queries to a server
running on a mainframe.

This architecture has become very popular for several reasons. First, it-is relatively
simple to implement due to its clean separation of functionality and because the
server s centralized. Second, expensive server machines are not underutilized by dealing
with mundane user-interactions, which are now relagated to inexpensive client
machines. Third, users can run a graphical user interface that they are familiar with,
rather than the (possibly unfamiliar and unfriendly) user interface on the server.

While writing Client Server-applications, it is important to_remembtf- 2 boundary
between the client and the server and keep the communication betwes:: them as set-

Data Administrarion

* NOTES

/
Self Instryafomt' Material 169

Database Systems

NOTES

170 Self Instructional Material

oriented as possible. In particular, opening a cursor and fetching tuples one at a time
generates many messages and should be avoided. Even if we fetch serveral tuples
and cache them at the client, messages must be exchanged when the cursor is advanced
to ensure that the current row is locked. :

DISTRIBUTED DATABASES OBJECTIVES

A distributed database is a database that is under the control of a central database

management system (DBMS) in which storage devices are not all attached to a
common CPU. It may be stored in multiple computers located in the same physical
location, or may be dispersed over a network of interconnected computers.-

Collections of data (eg. in a database) can be distributed across multiple physical
locations. A distributed database is distributed into separate partitions/fragments.
Each partition/fragment of a distributed database may be replicated (ie. redundant
fail-overs, RAID like).

Besides distributed database replication and fragmentation, there are many other
distributed database design technologies. For example, local autonomy, synchronous
and asynchronous distributed database technologies. Thesé technologies'
implementation can and does depend on the needs of the business and the sensitivity/
confidentiality of thé data to be stored in the database, and hence the price the business
is willing to spend on ensuring data security, consistency and integrity..

Basic architecture
A database Users access the distributed database through
Local apphcatmns applications which do not require data from other sites.

Global applications: apphcanons which do require data from other sites.

Important considerations
Care with a distrilbuted database must be taken to ensure the following:

* The distribution is transparent — users must be able to interact with the
system as if it were one logical system. This applies to the system's
performance, and methods of access amongst other things.

« Transactions are transparent — each transaction must maintain database
integrity across multiple databases. Transactions must also be divided into
_subtransactions, each subtransaction affecting one database system...

Advantages of distributed databases

*» Reflects organizational structure — database fragments are located in the
departments they relate to. :

» Local autonomy — a department can control the data about them (as they
are the ones familiar with it.) -

.« Improved availability — a fault in one database system will only affect one
fragment, instead of the entire database. '

* Improved performance — data is located near the site of greatest demand,
and the database systems themselves are parallelized, allowing load on the

databases to be balanced ambng servers. (A high load on one module of thé
database won't affect other modules of the database in a distributed database.)

+ Economics — it costs less to create a network of smaller computers with the -

power of a single large computer.

» Modularity — systems can be modified, added and removed from the
distributed database without affecting other modules (systems).

Disadvantages of distributed databases -

» Complexity — extra work must be done by the DBAs to ensure that the
distributed nature of the system is transparent. Extra work must also be done
to maintain multiple disparate systems, instead of one big one. Extra database
design work must also be done to account for the disconnected nature of the
database — for example, joins become prohibitively expensive when performed
across multiple systems. " N '

« Economics — increased complexity and a more extensive infrastructure means
extra labour costs. .

+ Security — remote database fragments must be secured, and they are not
centralized so the remote sites must be secured as well. The infrastructure
must also be secured (e.g., by encrypting the-network links between remote
sites).

+ Difficult to maintain integrity — in a distributed database, enforcing initegrity
over a network may require too much of the. network’s resources to be feasible.

+ Inexperience — distributed databases are difficult to work with, and as a
young field there is not much readily available experience on proper practice.

» Lack of standards - there are no tools or methodologies yet to help users
convert a centralized DBMS into 2 distributed DBMS.

« Database design more complex — besides of the normal difficulties, the design
of a distributed database has to consider fragmentation of data, allocation of
fragments to specific sites and data replication.

DISTRIBUTED DBMS

Distributed databases bring the advantages of distributed computing to the database
management domain. A distributed computing systert consists of a number of

processing elements, not necessary homogenous, that are interconnected by a computer.

network, and that cooperate in performing certain assigned tasks. As a general goal,
distributed computing systems partition a big, unmanagable problem into smaller
pieces and solve it efficiently in a coordinated manner. The economic viability of
this approach stems from two reasons: inore computer power is harnessed to solve a
complex task, and-each autonomous processing clement can be managed
independently and develop its own applications.

We can define a distributed database (DDB) as-a collection of multiple logically
interrelated database distributed over a computer network, and a distributed database
management system (DDBMS) as a software system that manages a distributed
database while making the distribution transparent to the user.

Data Administration

NOTES

Self Instrucrional Material 171

Database Systems

NOTES

¢ Ilrrll '
172 Self Instructional Material

" REPLICATION, FAILURE, COMMIT PROTOCOL AND

A collection of files stored at different nodes of a network and the maintaining of
interrelationships among them via hyperlinks has become a common organization
on the Internet, with files of Web pages. The common functions of database
management, including uniform query processing and transaction processing, do not
apply to this scenario yet. The technology is, however, moving in a direction such
that distributed World Wide Web (WWW) databases will become a reality in the
near future, . . a

LOCATION TRANSPARENCIES—LOCATION,

A

CONCURRENCY, ETC.

Following types of transparencies are possible:

*. Distribution or network transparency. This refers to freedom for the user from
the operating details of the network. It may be divided into location
transparency and naming transparency. Locations refers to the fact that
command used to perform a task is indépendent of the location of data and
the location of data and the location of the system where the command was
issued. Naming transparency implies that once a name is specified, the named
objects can be accessed unambiguously without additional specification.

* Replication transparency. Copies of data may be stored at multiple sites for
better availability, performance, and reliability. Replication transparency makes
the user unaware of the existence of copies.

* Fragmentation transparency. Two type of fragmentation are possible.
Horizontal fragmentation distributes a relation into sets of tuples (rows).
Vertical fragmentation distributes a relation into subrelations where each
subrelation 1is defined by a subset of the columns of the original relation. A’
global query by the user must be transformed into several fragment queries.
Fragmentation transparency makes the user unaware of the existence of

- fragments.

* Other transparencies include design transparency and execution
transparency—referring to freedom from knowing how the distributed database
is designed and where a transaction executes.

SUMMARY

10.
11.

12.
13.

14.

15.
1é.
17.
18.

19.

20.

. Database security is the sys:tem, processes, and procedures that protect a database from

unintended activity. _)
Databases provide many layers and types of information security, typically specified in

. the data dictionary,! .
. Two crucial aspects of database security compliance include patch management and the

review and mar.agement of permissions (especially public) granted to objects within the
database,

. A Single sign-on system should store the database user’s credentials {login id and password),

and authenticate to the database on behalf of the user.

. Access control is the ability to permit or deny the use of a partzcular resource by a

particular entity.

. An electronic access control door can contain several elements. At its most basic there is

an electric lock.

. The bar code can then be read with an optjcai reader tuned to the infrared spectrum, but

can not easily be copied by a copy machine,

. Wiegand card technology is a patented technology using embedded ferromagnetic wires

strategically positioned to create a unique pattern that generates the identification number.

There are two types of smart cards: contact and contactless. Both have an embedded
micreprocessor and memory.

The PIN is usually a number consisti_ng of four to eight digits.

1dentification and authentication (I&A) is the process of verifying that an identity is
bound to the entity that asserts it.

Authorization détermines what a subject can do on the system.

Accountability uses such system components as audit trails (records} and logs to associate
a subject with its actions. The information recorded should be sufficient to map the
subject to a controlling user. :

Discretionary access control (DAC) is an access _policy determined by the owner of an
object. The owner decides who is allowed to access the object and what privileges they
have. -

Mandatory access control (MAC) is an access policy determined by the system, not the
owner.

Role-based access control (RBAC) is an access policy determined by the system, not the
owner.

The most general definition of an audit is an evaluation of a person, organization, system,

process, prgject or product.

The authentication of information can pose S]J€C1al problems, and is often wrapped up
with authenticating identity.

In cryptography, encryption is the process of transforming information (referred to as
plaintext) using an algorithm (called cipher) to make it unreadable to anyone except those
possessing special knowledge, usually referred to as a key.

Data integrity is a term used in computer science and telecommunications that can mean
ensuring data is “whole” or complete, the condition in which data are identically
maintained during any operation.

. Inany organization where many persons use the same resources, there 1s a need for a chief

roo. 1
administrator to oversee and manage these resources.

. The client/server architecture was developed to deal with computing environments in

4
Data Administration

NOTES

Self Instructional Material 173

Database Systems

NOTES

- I,f : B
174 Self Instructional Material

23.

24,
25.
26.

27.
28.
29.

30.

which a large number of PCs, workstations, file servers, printers, database servers, Web
servﬁers and other equipment are connected via a network.

Many Web apphcatlons use an architecture called the three-tier architecture, which adds
an intermediate layer between the chent and the database server.

Data administration is, in computing science, the administration of the organisation of
data, usually as stored in databases under some Database Management System or
alternative systems such as electronic spreadsheets.

CASE (Computer-aided Software/System Engineering) refers to the methods dedicated
to an engineering discipline for the development of information systems together with
automated tools that can be used in this process.

A Lock is a database system object associated with a databasc object (typically a data 1tem)
that prevents undesired (typically synchronization rule violating) operations of other
transactions by blocking them.

Database protection can begin with the process of creation and publishing of appropriate
protection standards for the database environment.

A Client Server system has one or more client processes and one or more server processes,
and a client process can send a query to any one server process.

A distributed database is a database that is under the control of a central database
management system (DBMS) in which storage devices are not all attached to a common
CPU.

Distributed databases bring the advantages of dlstrlbuted computmg to the database
management domain.

SELF ASSESSMENT QUESTIONS

,.—-|_‘
=0

RN TR WD

. What do you understand by Database Security?

What are Process Controls?

How a Database is Protected?

What are 2-phase Command and Working Protocols?

‘What is Data administration?

What are CASE (Computer-aided Software/System Engmeenng) tools?
How would you lock a database?

How dacabase can be protected?

What is a Client Server system?

"What is a distributed database?
. Describe the followings :

Access Control System Operation ' Access Control System Components
Credential - Bar Code Technology

Magnenc Smpe Technology - Wiegand Card Technology
Proximity Card Technology | . Smart Card

PIN I . Computer Security

Identification and Authentication (I&A) - Authorization -

Accountability _ - " Access Control Tec_hniqﬁes

Public Policy

10.

11

12.

Multiple Choice Questions
REX is:

- (@) Requesttoexit (b) Reguest to exist

PIN is:
(a) Private Identification Number
(b) Personal Identification Number

(¢) Personal Information Number

. ACLis:

{(a) Alter Control List (b) Access Clear List
I&Ais:

(@) Identification and Authentication

(b) Information and Authentication

(¢) Identification and Access

. DACis:

(@) Discrétionaty Add Control
(b) Discretionary Access Controf
{¢) Direct Access Control

. MACis:

(&) Man Access Control

(b) Mandatory Access Cleér

{¢) Mandatory Access Contrql'

RBACis: ’ T

(a) Roie Based Access Control

(b) Role Basic Access Control

{¢) Real Based Access Control

DBAis: o

(@) Database Administrator (b} Database Advisor~
RDBMSis: _ :

(@) Relative Database Management System

(b} Relational Database Management System
(©) Rotational Database Management System
CASEis: ’

(a) Computer Aided Software/System Engineer

' (b} Computer Added Software/System Engineering

(c) Computer Aided Software/System Engineering
DDBis: '

(a) Distributed Database .

(b) Deleted Database

() Diluted Database

DDBMS is :

(@ Deleted Database Management System

(b) Distributed Database Management System

(¢} Diluted Database Management System

(¢) Readytoexit

(© Acéess Control List

{c) Database Accurator

Data Administrarion

NOTES -

Self Fnstructional Material 175

Database Systemns

NOTES

176 Self Instructional Material

True/False Questions

. Databases provide many layers and types of mformauon secunty typically Spf:Clﬁed inthe

data dictionary.
Access control is the ability to permit or deny theuse of a particular resource bya pamcular

entity.-

An electronic access control door cannot contain several elements. At its most basic there
is an electric lock.

. Wiegand card technology-is a patented technology using embedded ferromagnetio wires

strategically positioned to create a unique pattern that generates the identification number.

Identification and authentication (I&A) is the process of verifying that an identity is bound
to the entity that asserts it.) -

. Authorization determines what a subject cannot do on the system..
7. Discretionary access control (DAC) is an access policy determined by the owner of an

object. The owner cleades who is allowed to access the object and ‘what privileges they -

‘have.

8. Mandatory access conrrol (MAC) is an access policy determined by the owner.
9. The most general definition of an audit is an evaluation of a person, organization, system,

10.

11.

—

[\

(O8]

process, project or product.

The authentication of information can pose special problems and is o&en wrapped up with
authenticating identity.

\
Database protection can begin w1th the process of creation and pubhshmg of appropriate
protection standards for the database environment. '

Short Questions with Answers /

What is Access Control? /

/
Access control is the ability to permit or deny the use of a particular resource by a particular -
entity. Access control mechanisms can be used in managing physical resources (such as a
movie theater, to which only ticketholders should be admitted), logical resources (a bank
account, with a limited number of people authorized to make a withdrawal), or digital
resources (for example, a private text document on a computer, which only certain users
should be able to read).

What is Wiegand Card Technology? . ,

Wiegand card technology is a patented technology using embedded ferromagnetic wires
strategically positioned to create a unique pattern that generates the identification number,
Like magnetic stripe or bar code, this catd must be swiped through a reader to be read.
Unlike those other technologies the identification media is embedded in the card and not
susceptible to wear.

. Whatis Bar Code Technology?

Abar code is a series of alternating dark and light stripes that are read by an optical scanner.
The organization and width of the lines is determined by the bar code protocol selected.
There are many different protocols but code 39 is the most popular in the security industry.
Sometimes the digits represented by the dark and Jight bars are also printed to allow people
to read the number without an optical reader.

. What is Bar Code Technology?
. ‘There are two types of smart cards: contact and contactless. Both have an embedded

microprocessor and memory. The smart card differs from the card typically called a
proximity card in that the microchip in the proximity card has only one function: to
provide the reader with the card’s identification number. The processor on the smart card

wn

~J

. has an operating system and can handle mulitiple applications such as a cash card, a pre-paid *

membership card, and even an access control card.

. Whatis PIN?
. A personal identification number (PIN) falls in the category of what you know rather than

what you have. The PIN is usually a number consisting of four to eight digits. Less and the
number is too easy to guess. More and the number is too difficult to remember.

. What are Discretionary Access Control (DAC), Mandatory Access Control (MACY), and

Role Based Access Control (RBAC)?
Discretionary Access Control

Discretionary access control {DAC) is an access policy determined by the owner of an
object. The owner decides who is allowed to access the object and what privileges they
have. : o !

Mandatory Access Control - . .

Mandatory access control (MAC) is an atcess policy determined by the system, not the
owner. MAC is used in multilevel systems that process highly sensitive data, such as
classified government and military information. A multilevel system is a single computer
system that handles multiple classification levels between subjects and objects.

Role Based Access Contml

Role-based access control (RBAC) is an access policy determined by the system, not the
owner. RBAC is used in commercial applications and also in military systems, where
multi-level security requirements may also exist. RBAC differs from DAC in that DAC
allows users to control access to their resources, while in RBAC access is controlled at the
system level, out51dc of the user’s control. .

‘What is Factual Verification? .)
Determining the truth or factual accuracy of information in a message is generally considered

a separate problem from authentication. A wide range of techniques, from detective work -

to fact checking in journalism, to scientific experiment might be employed.

. Whatis a Client Server?

The client/server architecture was developed to deal with 'cbmputipg environments in
which a large number of PCs, workstations, file servers, printers, database servers, Web
servers, and other equipment are connected via a network, The idea is to define specialized

‘servers with specific functionalities. For example, it is possible to connect a number of PCs

or small workstations as clients to a file-server that maintains the files of the client machines.
Another machine can be designated as a printer server by being connected to various
printers; thereafter, all print requests by the clients are forwarded to this machine. Web
servers or e 'maiI servers also fall into the specialized server category.

What does Data Administrator do7

Data Admmlstratlon ideally begins at so&ware conception, ensuring there is a data dictionary
to help keeping consistency and avoid redundancy and modelling the database so as to
make it logical and usable, by means of the normalisation technique.

‘What are CASE Tools?

Ans. CASE (Computer-aided Software/System Engineering) refers to the methods dedicated to

an engineering discipline for the development of information systems together with
automated tools that can be used in this process.

. What is Concurrency Control?

Concurrency control in database management systems (DBMS) ensures that database
transactions are performed concurrently without the concurrency violating the data integrity
of a database. Executed transactions should follow the ACID rules. The DBMS must

. guarantee that only serializable (unless Serializability is intentionally relaxed), recoverable

Data Administration

NOTES

Self Instructional Material 177

Database Systems

NOTES

178 Self Instructional Material

schedules are generated. It also guarantees that no effect of committed transactions is lost,
and no effect of aborted {rolled back) transactions remains in the related database.

12. What are Disiributed databases? .
Ans. A distributed database is a database that isunder the control of a central database management
systern (DBMS) in which storage devices are not all attached to a common CPU. It may be
- stored in multiple computers located in the same physical location, or may be dispersed
over a network of interconnected computers.
Distributed databases bring the advantages of distributed computing to the database
management domain. A distributed computing system consists of a number of processing
elements, not necessary homogenous, that are interconnected by 2 computer network, and
that cooperate in performing certain assigned tasks.

" ANSWERS
Multiple Choice Questioqs' '
1. a- , 2. b 3¢) 4. .a
5. b " 6. ¢ 7. a 8. a
9. b 10, ¢ 11. a _ 12. b
TmeFaIseQuéstions |
1. T 2. T 3. F 4. T
5. T e 6. F 7. T 8. F
9. T S 10. T ' 11. T

CHAPTER 4|

DATABASE APPLICATIONS

LeARNING OBJECTIVES -

After going through this chapter, you should appreciate the followlng
e Financial Systems .
» Marketing System
* Foreign Trade
» Inventory Information Systems,

Database Systems

NOTES

" 180 Seif Instructional Material

FINANCIAL SYSTEMS

An important area of computerization is the Accounting System. Usually this is the
second application to be computerized in any organization, the first being the Payroll
System. A well maintained accounting setup with capabilities of the quick production
of reports and summaries is an asset to any business activity in that the management
is aware of the latest up to date financial standing of the business thereby facilitating
right decision making. In a non computerized accounting system the books of
accounts are normally completed only by two to thee months after closing of the
period and knowledge of what happened before two or three months is only of
historical importance.

An accounting system is ideally suited for computerization, since the system involves
mass processing of data which otherwise take many man hours to complete. Accuracy
1s of paramount important as regards accounting data is concerned which is often
lost in a manual system. Also the type of accounting data are of simple numerical in
nature involving large volumes and laborious calculations.

In olden days, in a manual system, closing of accounts of production of periodical
reports were done rather infrequently after days of poring over the books of accounts
and painstakingly arriving at the required totals during which time all routine
accounting activities were to be suspended. Today, with the advent of computers, it
has become possible to prepare profit and loss figures monthly or if necessary even
on a daily basis.

Unfortunately to the technical uninitiated, the accounting system will remains a
mystery and except for students with a commerce background, computer professionals
are generally unaware of the nuances of the system. This is primarily because the
terminologies used and the concept of accounts are rather strange to students of
other faculties.

To understand a computerized accounting system it is therefore imperative that one
should have a clear background to this field of study as otherwise when talking to the
accounting personnel, he would be faced with terminologies like debits and credits
which would be rather incoherent to a software personnel.

Let us now try to understand the accounting system using our household as a typical
example. You must have heard many a times “to put your house in order” usage
when things go wrong. Is it not? '

While a household is strictly not a business organization, we need to make “both
ends meet” in a household. ‘What does this means? You should be able to live off
well without much difficulties with your income from all sources. In other words,
you should control your expenditure so that it never exceeds your income and even
if at some stage it exceeds due to unavoidable reasons, you should be able to mobilize
enough funds to offset such expenses. This is exactly what is required in a business
organization too, except that in a business, success is measured in terms of profits
you make. Even in a household, if you can make a saving, well and good. Is it not so.

How do we achieve this objective? First and foremost is that we should account very
pisa that is being spent and earned under different heads of accounts. We will now
see what are the different heads of accounts possible in a household to maintain a
typical accounting system.

10.
11.
12
13.
14.
15.
6.
17.
18.
19.
20.
21,
22.
23.
24,
25.
26

27.

28.
29.
30.

The above accounts heads are by no means all that there is to it. There could be-

© N U R W

Land and Buildings.

Machineries — for e.g. Mixer Grinder, Refrigerator etc.

Furniture — e.g.'Cots, Chairs, table etc.

Tools - e.g: Stove, Utensils, Hammer, Screw driver etc.

Stacks — Many items Like Rice, Sugar, Bulbs, etc kept in stock.

Cash - Amount of cash kept in a Cash box:for day to day minor expenditure.
Bank — Amount kept in 2 Bank account for expenditure of a larger nature.

Debtors — There may be persons who owe money to you for various reasons,
For e.g. you have given 2 loan to Mr, X.

Creditors ~ You may perhaps owe money to M/s ABC traders for purchases
made.

Loans taken — From may be the Bank for construction of the house.
Salaries and allowances — Paid ta domestic systems. |
Telephone charges
Electricity charges
Cost of statidnery :
Travelling expensés
Cost of Provisions
Cost of Milk

Cost of Vegetables
School Fees -
Entertainment Expenses ‘ ' v
Salary received from employer

Proceeds of Coconut Sales

Interest received on deposits from the bank

Proceeds of sale — other agricultural products

M/s. ABC Coconut traders — They buy Coconut from you regularly

M/s. XYZ Agricultural traders - They buy other agricultural products from -

you :

~

Varkey’s supermarket — From whom you regularly buy your domestic
requirements.

Pramod Kumar — The milk man who supplies milk regularly
Moosa Koya ~ Supplier of Vegetables

Bank of India — A loan has been taken from this bank for an emergency

many more account heads. But for understanding an accounts system, the above
heads would suffice.

Database Applications

NOTES

Self Instructional Material 181

Database Systems

NOTES

182 Seif Instructional Material

On analysis, you can find heads 1 though 8 are of a peculiar nature. They are all some
from of an ASSET as far as a household is concerned. You could sell them and get
money according to the worth of the assets. Cash is hard cash, you can use them,
money in the bank can be encashed, money from debtors can be realized and so on.
If you decide to migrate to America, you can convert these heads into solid cash. Do
you get the concept of an ASSET? ’

- ASSETS :a:re of two kjnds, Fixed Assets and Current Assets. Items 1 through 4 are

fixed assets, while items 5 through 8 are examples of current assets. Fixed assets are
those which cannot be very easily sold while it is easy liquidity as far as current assets
are concerned, i.e. easy it convert to into cash. Items 9 and 10 are LIABILITIES to
the household. If you are going away for good, Creditors should be paid off, loan
taken should be repaid. Thus these items are a burden to you. Isn't it?

In an actual business environment, there will be appearing a major account head
under the caption “LIABILITIES”, titled Capital Account. This represents the initial
investment or money received from shareholders to start the organization or for further
expansion of business. Until the organization is wound up or liquidated, these funds
received remain as a liability in the books of accounts.

Items 11 to 24 represents heads coming under the Profit and Loss accounts (generally
known as P & L account heads). These are further divided into INCOME heads
(items 21 to 24) and EXPENDITURE heads (item 11 to 20). Expenditure could also
be subdivided into direct and indirect expenditure heads. We have considered here
only direct expenditures and indirect expenditure will be discussed later.

Finally items 25 and 26 are the debtors to the household while items 27 to 30 are the
creditors. Debtors are those who owe you money for whatever reasons it may be like
in this case, they owe you money for purchases made from you. Creditors are those
to whom you owe money in the course of business transactions with them. Here we
owe them money for purchases made form them. In the case of item 30, you owe
Bank of India money to be repaid against a loan taken from them.

With the above backgréund,‘ let us now study the various procedures of book keeping
involved in an Accounting System. '

Double Entry Systém of Book Keeping

You would have heard in your Physics classes that “matter can neither be created nor
be destroyed”. It only changes form. Similarly in an accounting system, we have a
parallel.

Income and Expenditure, direct or indirect are what constitutes an accounting
environment. When an expenditure is incurred, you always get something in return.
You can say that the expenses under any head of account gets converted into an
income under some other head of account. Remember that income or expenditure
need not necessarily be in the form of hard currency, it could be in any other form
which has an equivalent value in terms of money. So it follows that any transaction
has two sides to it bne affecting an expenditure head and the other an income head.
We have here used the terms income and expenditure in the literal sense. In accounting
parlance, the corresponding items are Debits and Credits. Translating our concept of
income and expenditure to accounting terminology, we say that for every Debit
transaction,. there is a corresponding Credit transaction. We will illustrate this by an
example.

Suppose we spend Rs. 20 from our cash box in the household and purchase vegetables
for use at dinner. We debit Rs. 20 to the head of account “Cost of vegetables” and
Credit Rs. 20 to the head of account titled “Cash”. What does this mean? Rs. 20 has
gone out of the cash box (expended) and ‘Cost of vegetables’ account has gained by
a similar amount. You can visualize the various heads of accounts as boxes where
you are going to keep money pertaining to that account, Thus ‘Cash’ is box as is the
‘Cost of vegetables’. What really has happened here, money has changed boxes. Rs.
20 from Cash has gone to the box ‘Cost of vegetables. You will now wonder than
where do the vegetables come from. Actually you have paid the money to the vegetable
vendor and got in return vegetables worth Rs. 20. so when we say the ‘Cost of
vegetables’ head has gained by Rs. 20, it only means that vegetables worth Rs. 20 has
gone into this box. For accounting purposes, the actual material purchased is of little
consequence, but accounts are only interested in the money equivalent to the item
purchased.

Thus if 2 cheque payment is made to your servant for Rs. 500 towards his salary for -

the month, we credit ‘Bank’ account with Rs. 500 and debit “Salaries and allowances”
account with an equivalent amount. (In fact, the payment is made to your servant
and this is of no consequence to your Accounting Syste,). :

You will find the above concept is rather strange, but you will get used to it as we
move along. This is primarily because, we confuse accounting terms with their
meanings in the literal sense and it will take time to comprehend these terms in the
spirit of a real accounting system,

We have now seen that the real difficult task in accounting to decide which accounts

is- to be debited and which corresponding account is to be credited when there is a
transaction in a business or housechold. Fortunately, this is the job of an Accountant
and we as computer students are not very much interested in this aspect. However,
we should try to understand these concepts generally to have some superficial
knowledge of the system.

Account heads are basically divided into Personal Accounts and Impersonal accounts.
Impersonal accounts are further classified into Property or Real and Nominal or
Fictious Accounts.

Personal A/C

Where an accounting transaction affects a person such as individual or any body of
individuals such as an association, club or a company and the like in a Credit
transaction, 1s known as a Personal a/c e.g. Debtors such as M/s. XYZ agricultural
traders, Creditors such as Varkey’s Super Market, Pramod Kumar etc,

Suppose we sell coconuts worth Rs. 5000 to M/s ABC Coconut traders. We debit
ABC Coconut trades with Rs. 5000 and credlt a similar amount to the head “Proceed
of Coconut Sales”

Stmilarly if we buy vegetables worth Rs. 30 from Moosa Koya, we debit the account
“Cost of vegetables” with Rs. 300 while credltmg Moosa Koya with a similar amount.

The general pnnc1ple in respect of a Personal a/c'is to debit the Receiver and Credit
and Giver.

In the above example, Moosa Koya is the giver of vegetables worth Rs 300 and who
receives it, the head titled “Cost of vegetables”. Now verify the above principle with
what we have done with the transaction.

Datrabase Applications

NOTES

Self Instructional Material 183

Database Systems

NOTES -

184 Self Instructional Material

Property or Real A/c

All commodities having commercial value and which can be-touched and seen are
known as properties in real existence normally mvolved in either exchange or transfer
transactions are called as such.

For e.g. Land and Buildings, Machineries, Furniture etc.
Proceeds of Coconut sales and other agricultural sales.

Suppose you buy 3 chairs against payment of Cash from a furniture shop. You debit
the cost of say Rs 1200 of the chairs to “furniture” Account while crediting it to
“Cash”account. Here Rs 1200 has goneout of ‘Cash’- a/c and. ‘Furniture a/c’ where
the Rs. 1200 worth of chairs has come is in debited.

Nominal or Fictious A/c

Expenses and Income of various types incurred or-earned on availing or rendering .
services of any nature which do not cause any property go away are called Nominal

-or Fictious Accounts. Expenses result in permanent losses which cannot be recovered -

at all while income received cannot be claimed by any person.

- For example, Electricity charges, Salaries and allowances etc.

Interest received, Commission received for services rendered efc.

The general principle in respect of this type of account is to debit expenses or losses
while crediting incomes or gains. :

The above princibles enumerated are known as the Golden rules of -Accounting.

Journal

Journal is the prime book of entry. It is also known as the first book of an accounting
entry. Every accounting transaction is first required to be recorded into this journal
debit transactions are entered into the debit column and credit transactions into the
‘Credit’ column. The account number (Head of accounts are coded) and the particulars
of the transactions are written into the appropriate columns. Gwen below is a typical
format of a Journal. -

J OURNAL
Date Reference No. Particulars - A/c. Head Debir -
Credit '
3-11-02 CV/327 Cash Paid for 3 chairs BL006 1200.00
3-11:02 CM/135/02 Furniture A/c. -BL0003 1200.00

The reference number shows the document number of the source document from
which entries are made into the Journal. BL006 is the code no. for Cash account and
BL003 the code number for the furniture account. When cash is paid out, a cash
payment voucher is prepared and authorized by the Accounts Officer and this voucher
number is entered in the ‘reference’ column. The supplier of the chairs ABC traders -
would give you a Cash bill when payments are received and this bill number is entered -
as ‘Reference’ against the Furniture A/c. '

" We will now study the various source documents from which an accounting
transaction is normally generated.

Invoice (Bill)

When items or services are sold on credit for e.g. sale of coconuts to M/s. ABC
traders, a bill is prepared and issued to the customer describing the goods or services
sold, their quantity and value. Form this bill, an entry of sale of goods or services on
credit 1s recorded into the journal. In case of a sales invoice the bills will be serially
numbered and this bill number is entered in the ‘Reference’ column of a journal.

Similarly, when goods or services are purchased on credit, from a supplier of such
goods or services, a bill is received from the supplier as detailed above from which
the entry for purchases on credit is reordered into the journal. Purchase bill will not
be serially numbered since they are received from various suppliers.

The format of invoices has already been elaborated in the chapters on sales and
purchases. '

Cash Memo

When purchase are made from a supplier against payment of cash, the supplier issues
a cash memo which is subsequently journalized. This cash memo is very similar to
an invoice in nature except that this memo also serves the purpose of a receipt of
payment for goods supplied. Purchase Cash memos also contain a number, which
may not be serial in nature since purchases are made form various suppliers.

Likewise, when items or services are sold for cash payment, a cash bill is issued to the
customers in the same format of a sales invoice with numbers given serially. This
also serves as an acknowledgement for payment received for goods or services sold.

Receipts

Whenever payments are made either in cash or by cheque for any purpose, a receipt
1s issued by the receiver and likewise when money is received, receipts are issued bin
acknowledgement. When we issue receipts, they.will be serially numbered. Receipts
from others will contain a receipt number, but not in any serial order.

Cash/Cheque payment Voucher

Whenever payment is made in cash or cheque for expenses of any nature for which
an official receipt cannot be obtained form the receiver of the money as in the case
of say travelling expenses paid to an employee, a payment voucher is prepared by the
payer and the signature is obtained thereon from the receiver, wherein the details of
such expenses are recorded together with the account number to which it should be
debited. The entries from these vouchers are also entered into the journal. Vouchers
are serially numbered for reference.

Debit Note

When purchases are made on credit and later on, if any part of it or whole of it are
returned for any genuine reasons, to the supplier; a memo is issued to the supplier
indicating therein, the reason for the réturn of the items and the value thereof. At the

- same time, the supplier is informed that his account which was previously credited |-

with the value of purchases as giver of items or services has now been debited with
the value of items returned to him. As a receiver of value of the returned 1tems his
account 1s debited. This sort of a memo is called a Debit Note.

Database Applications

NOTES

Self Instructional Material 185

_ Database Systems

NOTES

186 Seif Instructional Material

Credit Note

When items come in as returned or services rendered are disapproved by the customers
to whom they were supplied or offered on credit, a memo is issued to the customers
acknowledging the receipt of items returned or accepting the disapproval of services
rendered and the value of returns. Thus the customer is informed that this account in
the books of the supplier which was previously debited as receiver is now credited
with the value of returns as gwer of that value. This sort of a memo is called a Credit
note,

We . will consider an indirect expenditure. For example, Deprec:latlon of an asset.
When you buy a chair, though it is an expense is not considered as such for calculatmg
profit or loss of an organization. This is because a chair can be used for many years
and taking the full cost of the chair as an expense in the year of purchase is not quite
right. So what do we do. Let us assume that the cost of the chair is Rs 400 and that
this chair can be used for 10 years. Then every year the chair gets depreciated by
10%. It is not so. This amount Rs. 40 is treated as an expense in the year of purchase.
So. we create the following transaction.

I. To depreciation of a chair — Furniture a/c — Credit Rs ;1_0
2. “Depreciation a/c — Debit Rs. 40

Thus the “furniture account” gets reduced by Rs 40 and the “Depreciation Account”
gdins by Rs 40. This depreciation account is reckoned for profit and loss calculations.

Note that the net asset value of the chair has now become Rs 360 and next year, it
will be depreciated only by Rs 36 i.e. 10% of Rs 360. You will observc that the net
asset value of the chair never becomes zero.

How a certain asset is depreciated depends on tax laws of the land and directions
contained in the company’s Act for the relevant financial year.

Such sort of transactions which are of indirect nature are written up in a Journal
Voucher and this document also becomes a Source document of an accountmg system,
Given below s the format of a Journal Voucher.

Every journal voucher is authorized by an officer of the accounts department to
confirm that the debits and credits are charged to the correct account heads.

Now to summarize, we have the following source documents in an accounting system.
1. Bill (invoices) |

Cash Memos

Receipts

Cash/Cheque Payment Vouchers

Debit notes

Credit notes -

e

Journal vouchers

Using the above documents as input, an accounting system is computerized. We \will
now study how this is done in detail. The various statements and reports produced in
an accounting system will be explained at the appropriate placed. '

Computerization

The first step in computerizing an accounting system is to identify the heads of
accounts required and code them as appropriate. We have already done this at the
beginning of this chapter. In an actual business environment there would be many
. more heads of accounts and these should be studied in detail and classified into
major and minor groups, such as Fixed Assets and within fixed assets, Land and
Buildings, Plant & machinery etc. A suitable coding structure should then be designed.
A typical coding structure is given below.

The account heads in a business can generally be classified as follows:

Balance Sheet Heads

Within this major grouping, we can have various subgroups as under.
1. ASSETS

2. LIABILITIES

Wlthm ASSETS, minor grouping ‘can be done as
1. FIXED ASSETS: Within which sub groupmg can be done as

/

1. Land
2, Building
3. ° Plant & Machinery
4, Furniture ;etc. -
etc. N
2. CURRENT ASSETS: sub groups within as
1. Stocks -
2. Cash
3. Bank
4. ‘Debtors etc.

Similarly within lLiabilities, there can be Capital a/c and Current liabilities with in
which Creditors, Loans etc. cain be classified. .

Profit & Loss Account Heads: o .'

These are classified into

~

1. Income — Account Heads refaresenting income within which there could be
1. Direct income Heads like
1. Sales A/c ~ Coconuts
2. Sales A/c - Other agricultural products..
2. Indirect Income Heads like
1. Interest gained from deposits
2. Refunds received

3. Sale of Assets etc. ' ,
' |

Database Applications

NOTES

e

' I';‘-
1.
l

Self Instructiotial Material 187
of

Database Systems

NOTES

188 Self Instructional Material

2. Expenditufe — Account Heads representing expenditures within which there |

could be _
1. . Direct Expenditure like
| 1. Salaries & Allowances
2. Travelling expenses .
3. - Cost of Raw materials consumed
etc.
.2, Indirect Expenditure like
1.- " Depreciation of an Asset
2. - Bad debts written off
, ete. _ .
3. DEBTORS :-All debtors are given a Head of account like
1. ABC traders ﬂ
2. Metro Trading Co.
3. Global Enterprises
etc. '

Sometime debtors can be classified as -

1. Customers who are regular buyers of your product.
2. Individual debtors with whom you have occasional transactions
3. Staff members of the organization etc.

4. CREDITORS: Al creditors are also given a Head of account like
1. Varkey’s Super Market

2 Delhi Hardware Stores A
3 SK.&F '

4. Fertilisers & Chemicals of Travancore

s .

Mr. Pramod Kumar

-Creditors can also be classified as

1. * Suppliers of Raw materials

2. . Suppliers of Machinery and Space parts
'3, Machinery Maintenance companies

4. Sundry creditors

etc. depending on the type of creditors'in any organization.

Classification of account heads as above is not a very difficult job as you can seek

the help of the Accountant who are guite familiar with the specific requirements of
an organization. After such classifications, codes can be allotted using any of the
coding technique. For example

BL/01/01/01 - ‘could represent Land under fixed assets under
- ' ASSETS head under Balance Sheet a/c heads.
BL - . Balance Sheet — Major Group
BLOl - “ - Asset — Inter-Group
BL0O10I - * % __ Fixed Assets
. Minor Group
BL010101 - “««“_ Land etc. '
BLO10102 - . can represent Buildings)

B1L.020104 - Creditors etc. ‘
' E;L — Balance Sheet
02 -~ Liabilities
01 — Current Liabilities
. ' 04 - Creditors -

Similarly PL/01/02/03 -~ ' Can représent Sale of assets under mdlrect
income under Income head -
" of P & L Account.

A good coding system, needless to say, goes a long way in efficient computerisation
~of an accounting function.

After the codes are thus allotted, the next step is to design the Master Files. In a
typical accounting system, thee are two Master Files.

1. Account Master File ' . . l

2. Budget Master File — used in Budgetory contro] system which will be
dlscussed later.

Accounts Master File

This master file is designed depending on whether you are going to do batch processing
or on line processing. In a batch processing the master files are updated only
periodically, normally once in a month. In an on line processing environment, the
master file are updated immediately on a transaction taking place and will always
. reflect the latest financial position of the organization. '

Master File. Layout

St No. Description Width Dec Typé Remarks
1 Account Number _ 8 Character Code allotted
2. Description of the account 30 - Character Name of account

Database Applications

NOTES

Self Instructional Material 189

Database Systems

NOTES

190 Self Instructional Material

Date

3. Financial Year ending 8 Year ending date e.g.
_ 31/03/02

4. Current Balance. 10 2 Numeric '

5. Todate debits .10, 20 Numeric]

6 Todate credits 10 2 Numeric /\ .

7 Opening Balance — April 10 2 Numeric '

8 “ — May 10 2 Numeric

9 “ — June) 10 2 Numeric

10 “ — July. o iO 2 Numeric

11 “— August 10 2 Numeric - .

12 “ — September 10 2 Numeric -

13 “ — QOctober 10 2 Numeric

14 - * — November : 10 2 Numeric

15 . “ — December ‘ 10 2 Numeric

16 “- January ' 10 2 Numeric

17 Opening Balance - February 10 2 Nufﬂeric ,

18 “--March - 3 10 2 Numeric

*19 Closing Balance for the year 10 2 Numeric

We have assumed here that the ﬁnéncial year of the organization is April to March
of the succeeding year, which also happens to be the Tax year. Some organization do
have a separate ﬁnanc1al year e.g. July to June of next year or the Calender year
itself. -

t

Current Balance
This is the latest balance up to the last transaction entered into the computer.

This can be a positive or negative figure. Negative figures are preceded by a minus
sign e.g. -6325.00. In other words, the current balance represent the sum total of all

" debits and credits of all transactions that has occurred in the current financial year

plus any opening balance for the respective financial year. In computers, credits are
considered as negative figures and debits as positive ones, normally. There is no harm
done even if you enter a debit as a negative figure as when balancing is done, usual

. mathematical rules of addition or subtraction are followed.

To date Debits/Credits L

These fields are used to store the total of all debit transaction and credit transactions

. that has occurred in a ﬁnanmal year in respect of the given account number contained
‘1n the file layout \ \

\

Opening Balance:’

\

This is the balance in respect of the account number as at the beginning of every

\

-

calendar month. The usage of this is primarily for selective printing of a ledger for a
given month, which will be explained later in this chapter.

Closing Balance for the year -) :

This is the balance as the end of the financial year which can again be p051t1ve or
negative in respect of the account number.

The above master file is usually maintained in the account number order. At the

beginning of the financial year, To date débits/credits fields as well as opening balances

from May through March are initialized to Zero. The closing balance for the year also

is set to zero. The fields current balance and opening balance for April would be the

closing balance of the account for the previous year in respect of all balance sheet,

Debtors & Creditors account heads. In Profit & Loss accounts, these are also initialized
" to zero. ! .

At any point of time, the current balance would be equal to (Opening balance for
April + To date Debits — To date Credits). Similarly the Closing balance for the year
would be the same figure as that of the current balance at the end of the year. So this
field is strictly superfluous and can be removed. If you have understood this, you are
doing well with the comprehension of the accounting system.

The first program to be written in an accounting system thus would be to create,
maintain and query the Accounts Master File. Normally, the data contained in this
file should never be modified except at the beginning of a ﬁnanaal year when the
Numeric fields of the file would be initialized to zero.

The Program should check that when modifications are done, the current balance
and opening balance for April should be the only fields where data other than zero
can be entered in respect of non P & L accounts. For all other fields if the data is 1%
April of any year, you can zeroise the fields. For any other. month, no changes to data
should be permitted. In other words, data in the above file should never be manually
changed except at the beginning of every financial year to initialize the file. Querying
this file is always allowed. -

When the master file creation ts complete we should next prepare the transaction
files. Any for of expenditure or income is entered into this transaction file. In-a
manual system, transactions which are authenticated through any one of the source
documents described earlier are first posted into a journal, In the computerized system,
this is not necessary. Records are created and appended to the transaction file direct
from the source documents. Often transaction records are generated automatically
when the source document is itself prepared on a computer. For example, when an
invoice s printed, the corresponding transactions are appenaed 1o the accounting
transaction file by the sales system. Thus we see that all other systerns computerized
ih an organization is ultimately linked to the accounting system. We will discuss this
aspect a-little more in detail later

We will now ook at a transaction file layout.

Transaction File Layout

SI No. Description " Width Dec Type Remdrks -

1. Date of transaction 8 Date

Database A pplications

NOTES

Self Instructional Material 191

Database Systems

NOTES

192 Self Instructional Material

2. Source document Number 8 Character e.g. 1/94/032 °
3. - Document Date .8 Date
4, '‘Document Code 3 Character -
5. ‘Narration 30 Character
6. Account Number ' 8 Character
7. Amount . 10 2 INumer_ic (Minus for Credit
- amount)
Cost Centre code 2 Numeric
9, Bank Code ' 2 n Numeric (For cheque
. : payments &
receipts)
10, Cheque Number 8 Character '

All transactions emanate from a source document and it is this source document

" number and date of document which are éntered into Fields 2 & 3. For e.g. 1/94/032

may be an invoice number representing sale of items to a specific customer.

Al document are coded as under

INV - Invoices
: CM - | Cash Memos
I\I RPT - Receipfs — Cash
;P CSH - Cash payment Voucher
‘ RPQ - Receipts — Cheque
CQP - Cheque Payment Voucher ‘
DN - - Debit Note
CN - Credit Note X
JV - . Journal Voucher etc. ’

Details in brief regarding the transaction are entered into the ‘narrations’ Field.

While a debit mount is entered as such, a credit amount is prefixed by a minus sign.

Expenses and income are sometimes analyzed department wise or cost centre wise.
A cost centre is a department or section which directly contributes to the cost of
production of an item. Accounts department, Personnel department etc. are generally
non profit earning departments and expenses incurred by them do not directly affect’
the cost of production. These cost centres are coded and keyed in into-the last field
of the transactlon record.

Data are entered into the transaction file either through a data entry program or

directly from linked computerized systems like Payroll, Inventory, Sales or Purchase
systems. We w111 first concentrate on a data entry procedure done in line.

We had earher mentioned that for every transaction there will a debit and credit
entry. That 1s for every transaction two heads of accounts are affected. The ‘Reverse
Account Number; shown in the screen layout is to generate the second transaction.

When after data entry, you respond with a “Y” to the prompt “Confirm Recording”,

two records will be generated, the first one charged to the account number and the

second one charged to the reverse account. The -amount in the first record if a debit,
in the second record, it will be created as a credit (with a minus sign prefixed) or vice
versa.. These two records are appended to the transaction file which is generally
maintained in Account Number, date of transaction order. Apart from this the
accounts Master File would be updated to reflect the latest current balances and
todate debits and credits in respect of the two account numbers affected in the
transaction. This result in some amount of duplication of data which can be
-eliminated by using certain short cuts which will be described later. However, with
storage space becoming cheaper with technological advances in the field of computers,
this draw back can easily be ignored. Needles to mention, data entered should be well
validated and visually verified before recording and tipdating.

Direct Data Entry through linked systems
From Sales System:

When an invoice is printed, it represents a sales activity. The customer to whom the
invoice is being sent in a debtor to the organization, if the sale is done on credit basis.
Therefore the grow value of the invoice is debited to the ‘customer’s personal account’
and credited to ‘Sales account’. These transactions automatically generated and
appended to the accounts transaction file and the master updated.

Similarly when a cash Sale is made to a customer, a cash bill is prepared. The amount
of the bill has been received in cash and therefore debited to” ‘Cash account’ and
credited to ‘Sales Account’ and suitable transactions are generated and appended to
“the transaction file and the corresponding master record updated.

From Payroll System:

Salaries and allowances are calculated in this system and when department wise

in the departments are computed and transaction records created by debiting such
amount to the head ‘Salaries and allowances’ and credited to ‘Cash account’ when
salary payments are made in cash. If payments are being made by cheque, the amount
will be credited to the ‘Bank account’. Accounts master file is then updated as
appropriate.

From inventory control System:

Whenever an issue is made form the stores, the value of. items issued is credited to
stock account and debited to the corresponding account pertaining to the usage of
the items. For examples if raw materials are issued from stores to the production
department, the value of issues.is debited to ‘Cost of raw materials’ Master records
are also updated automatically.

From Purchase System: . . <

When purchases are made from suppliers on credit, the supplier sends an invoice
showing value of items supplied. The value of goods thus received is debited to
Stock account and credited to the suppliers account (Creditor). If purchases are made
against cash, the value of items purchased is credited to ‘Cash account’ and debited
to ‘Stock account’ and master records are automatically updated.

Database Applications

NOTES

Self mstructional Material 193

Database Systems- A

‘NOTES

194 Self Instructional Material

-

Similarly when debit notes or credit notes are prepared consequent to purchase returns
or issue / sales returns, the corresponding transactions are generated by the system
and appended to the transaction file while updating the accounts master file.

Subsidiary Book of Accounts

In the mariual accounting system, the main journal of accounts is subdivided into
many subsidiary journals like

1. Cash Book

Bank Book

Sales Journal/Register
Purchase Journal/register

Debit note Journal or Goods Returns Outward Book.

AN N

Credit note Journal or Goods Returns Inward Book.
Etc. - T

“

These subsidiary books of accounts can easily be prepared in a Computerized
accounting system periodically. Cash book is prepared on a day to day basis for
reconciliation of the cash balances, to find out whether there has been under/over
payments or whether a transaction has been omitted to bé entered into the transaction
file.

Let us now see how cash reconciliation is done. The input to this program is the
account transaction file. The documents codes CSH and RPT representing Cash
payments and receipts are only selected for this purpose. The opening balance of
cash at the beginning of the day is keyed in as a parameter or retrieved from a file,
specially kept to store daily cash opening and closing balances.

‘We thus see that all cash transactions made during a day are listed in this Cash book
together with the opening balance of cash at the beginning of the day. When the last
transaction is printed, the total cash receipts for the day and total cash payments are
printed and the closing cash balance is computed and given as the last entry of the
cash book.

If this cash closing balance does not tally with the cash in the cash box, an error has
occurred in either the receipts or payments or in data entry which must be investigated

and the errors corrected. The cash closing balance will be the opening cash balance

for tomorrow. '

Earlier we talked about duplication of data in the account transaction files when on
line data entry of transactions are made. Cash Receipts are debited to Cash account

. while cash payments are credited. To do this for every transaction would be unnecessary

duplication of data in the Cash accounts. To avoid this, while on line data entry is
made, the cash account related transactions are omitted and when the. cash book is
printed and reconciled at the end of the day, the total receipts of cash can be debited
to the Cash account while crediting cash payments to Cash account. This practice is
generally not recommended.

Similar to Cash book preparation, Bank books and other subsidiary books of accounts
can also be prepared on the computer periodically usually at the end of the month.
Observe that the opening balances of each account head is provided in the Accounts

Master for each month of the financial year. This figure together with the related
transactions in respect of Sales a/c, Purchase a/c etc. are used to prepare the relevant
. journals, at the end giving the total debits and credits of all transactions and the
closing balance of the month computed in respect of the account.

These books can also be prepared either quarterly, half yearly or annually as desired.

In an online accounting system, the transactions are entered as and when they take
place and this provide an upto date record of the financial position of the organization.
Let us now see what other reports are,prepared form the data thus stored to make
meaningful analysis and consequent decision making or strategical finance planning.

Ledger

This the main book of accounts and is the final book of accounting entrjes. All
transactions are posted into the ledger from either the source documents or from the
journal book in such a manner that every account head and transactions pertaining to
the account appears in the ledger separately and independent of each other, together
with their debit and credit effects to provide summarized information of all heads of
accounts in respect of all associated transactions.

In a computerized accounting system, the ledger is prepared monthly when all the
transactions pertaining to the month are data entered into the accounts transaction
file. Together with the Accounts master file, the ledger is printed.

A ledger is printed account headwise with all the transactions listed datewise with the
document reference numbers, particulars of transaction and a debit or credit amount
as appropriate. The ledger account details for the ‘month are preceded by the opening
balance figure for the respective account and at the end of all transactions listed, the
closing balance figure i1s computed by adding up all debit amounts and credit amounts
separately and the difference calculated by subtracting credit total from the debit
" total and if this total is positive the net balance is printed under the debit column and
if other wise the balance printed under the credit column. The closing balance for the
month is entered into the Accounts Master record as the opening balance for the
succeeding month,

At the end of the ledger, total of all debit and credit transactions excluding the closing
balance figures are printed in réspect of all account heads put together.

Obviously these two figures would be the same since in a double entry book keeping
system, for every debit there is a corresponding credit. If it Is not, there is some
mistake somewhere and it has to be localised and . corrected and the ledger reprinted.

This ledger can-be printed selectively, i.e. either monthly, quarterly or annually and
such selections are provided to the program through input parameters at the time of
running the program. For e.g. you can give the ‘from date’ and ‘to date’ and transactions
will be picked out to fall between the dates supplied and the appropriate opening
balance extracted from the Accounts Master. You can also print the ledger for selected
account heads tco.

In a manual accounting system, you will hear about the balancing of the Ledger
accounts and this ts achieved automatically in a2 computerized accounting system,
the method of which is explained above. The user is transparent to such intricacies in
a computerized system. '

Database Applications

" NOTES

Self Instructional Material 195

Database Systemns

NOTES

196 Self Instructional Material

Understanding Ledger Accounts

Personal Accounts

Every personal account showing debit balance (i.e. excess of debit side over credit
side) will reveal the amount by which the debit side is more than the credit side.
Debit side. Debit balance is recoverable from the person whose account shows a
debit balance. A debit balance to a personal account is an asset and therefore the
more debit balance to a personal account is an asset and therefore the more debit
balances to personal accounts, more the _assets are in the form of outstanding
recoverables. :

Similarly a personal account showing credit balance means such balances are payable
to the person whose account shows a credit balance. So credit balances to personal
accounts are a liability. More the credtt balances to personal accounts, more the
amounts payable to others.

Property or Real Accounts

All real accounts show a debit balance in the ledger except Sales and Returns outward
accounts which show credit balances as they represent goods. A debit balance to
every other real account shows the value of the properties in possession of an
organisation on any day. It represents the wealth and financial position of the company

"in the form of properties owned and therefore more the debit balances in such

accounts, the more wealthy the organization is.
Nominal or Fictitious Accounts

Nominal accounts which represent non-recoverable expenses w111 have debit balances
and is a loss of the company. More such debit balances, more are the losses of the
organization. -

Nominal accounts with credit balances represent gains to the organization and it is

" quite welcome to the organization. More the nominal accounts with credit balances,

more incomes and gains to the organization.

The duty of analysing a ledger is the function of the accounts department and computer
users need not normally worry about such things.

Tnal Balance

A ledger for & month when printed will run into many pages and it would be very
difficult for anyone to go through them in detail. You can imagine what would be the
volume when a ledger is printed which could be in the order of 5000 to 10,000
transactions in a medium sized organized in a month. To make this_ledger more
readable and comprehensible often the summary of all transactions together with the
opening balances is computed and an account headwise summary report of the closing
balances in respect of all account heads are printed. This is known as Trital Balance in
a computerized system.

Every account head preparing in a ledger is listed in this trial balance. At the end the
total of debits and credits in respect of all accounts are also printed. As mentioned
before these totals should be the same if we have meticulously entered all transactions
into the computer. If they do not tally, the reasons should be investigated in depth.

In a manual accounting system, the trial balance has a different definition. It is a
statement of balances of all the ledger accounts, extracted from the ledger at the end

of a specific period to determine whether the grand total of debits and credits tally
and thus (find out that all transactions have been properly journalised and) posted
into the ledger. In contrast, the computer ledger tallies or not. Moreover, in the manual
system, Cash and Bank expenses are only posted as debits and the corresponding
credits are posted as a total extracted from the cash book or the Bank Book at a later
date, may be a: the end of the month when the subsidiary books are individually
reconciled '

A computerised accounting system is thus less prone to errors in posting and accuracy
of accounts can be ascertained, if necessary even on a day to day basis. And the
ledger at any point of time is exhaustively maintained and no short cuts are ever to
be employed to save posting efforts in contrast to the manual system. When the trial
balance tallies, it only means arithmetic accuracy in respect of the double entry book
keeping system. It is not a proof of accounting accuracy. Many mistakes could still
be there through trial balance be tailed arithmetically. Let us look at them. -

Errors of Principles

Where accounts are wrongly debited or credited due to improper application of the
golden rules of accounting, we call them an error of principles. For example a Personal
account rule is applied to a transaction where it whould have been considered as a
Property account. Suppose Rs 500 were paid to Ms. ABC Enterprises for purchase
of an electric iron. We had in the transaction debited Ms. ABC enterprises with Rs
500 and credited a similar amount to Cash account. Actually it should have been
debited to a Property account ‘Plant & Machinery’. The trial balance would tally
with this error, but the accounts is still incorrect. Is it not so? How do we correct such
a mistake.

- Rectification of the entry referred above can be done by creating a Journal Voucher
debiting the said amount to ‘Machinery account’ and crediting it to ‘Ms. ABC
Enterprises’ account which was wrongly.debited earlier. This journal voucher should

be duly authorised by an officer of the accounts department. Given below is the

appropriated journal voucher specimen.

This journal voucher is now keyed in into the accounts transaction file and the master
records would be updated accordingly to rectify this error of principle.

Error of Commission

This is an error where principles of accounts are not violated, but there has been a
transcription error. For example instead of debiting and crediting the affected account
heads as above with Rs. 500 only Rs. 50 were debited and credited. In an online
accounting system, this type of error is quite common, that we key in the amount
only once and the other corresponding account is automatically created by the
computer and updated as appropriate by referring to-the Reverse Account (Refer the
screen layout of transaction data entry).

* Now both debit and credit side has a shortfall of Rs 450 and the trail balance will
tally.

To rectify this error, create a journal voucher debitiﬂg the ‘Machinery account’ by Rs
450 and crediting ‘Cash account’ by a similar amount with a suitable narration in the
Particular column, duly authorised by the Accounts officer. This voucher is then data
entered into the transaction file and master updated accordingly.

. Database Applications

NOTES

Self nstructional Material 197

Database Systems

NOTES

198 Seif Instructional Material

Errors of Compensation

When an error on one side of an account gets compensated by an error on the other
side, they are called ‘Compensatory errors’ As in the previous examptle, the shortfall
of Rs 450 can be considered as this type of error since the short debit of Rs. 450
compensates short credit of Rs. 450.

Another example of this type of error is when goods worth Rs. 5000 was bough from
M/s. Varkey's supermarket and by mistake, this was treated as a sales transaction
and the following wrong entries were made.

1. Debited Rs. 5000 to' M/s. Varkey’s supermarket account.

- 2. Credited Rs. 5000 to Sales Account

Though the trial ba.lance would tally, the entries are not correct, one nustake covers
the other mistake. Tsn’t it? To rectify this error, we have to completely reverse the .
entries as follows.

1. Credit M/s. Varkey’s super market A/c. With Rs: 5000
Debit Sales a/c with Rs 5000

2. ‘ Debit Stock a/¢ with Rs 5000
Credit M/s. Varkey’s supermarket with Rs. 5000

The journal voucher should be prepared with the above entries, duly authorised and
data entered and master updated.

This sort of an error could also happen during’ data entry by keying in the wrong
account code. A transaction a/c¢ number DB004 was wrongly entered as CR004. To

correct this type of errors too you should reverse the entries as explained above.

Suitable narrations should be given in the particulars column to explain the transactlons)
as incident to error correctlons

Errors of Omission -

When both of the debit and credit aspects in respect of a transaction is omitted while
data entry or when a whole document is omitted to be data entered, an error of
omission occurs. In such cases, do what should have been done. Enter the data omitted
prepare the trial balance once over again. -

Validation procedures of Hash total checking or Control total checking could eliminate
such errors of omission.

Suspense A ccount

If the trial balance does not tally due to a small difference and finding out the error is
going to delay the preparation of the final ‘accounts, in such cases, in order to avoid
such delays, the amount of the difference between the debit and credit sides is
temporarily placed in a Suspense a/c and the trial balance tallied. For example, if the
debit side total of the trial balance is Rs 20,000 and that of the credit side is Rs
19,500 the difference of Rs 500 is placed into the.credit side of the Suspense a/c and
journalised which is data entered and the trial balance would then tally.

After the final accounts are prepared, the error will be localised and suitable reverse
entries are passed to eliminate.any balances in the suspense a/c.

There is another occasion when you can make use of the Suspense a/c. Say for
-example, you have received from a customer a cheque for Rs. 5000 without any
explanations as to why this amount is being paid. Whilé you would debit this amount

to Bank a/c you do not know where this amount is to be credited since you do not

know the customer number or his name (Possibly he had forgorten to attach a covering
letter along with the payment). In this case, you credit the amount to suspense account.
Then at a later date, the position become clear, the suspense a/c is debited with the
amount and credited to the right account and appropriately date entered.

Final Accounts

Final Accounts consist of 3 parts.

1. Trading Account
2. Profit & Loss Account
3. Balance Sheet

A tallied trial balance is the base for preparing the final accounts.

Trading Account

This is prepared to find out the result of direct trading or manufacturing and trading
activity in the form of gross profit or gross loss, that is the difference between the
value of sales and cost of purchases or cost of manufacture without taking into
consideration the indirect costs or expenses. It is prepared in the form of a ledger
account, by debiting it with such of the expenses or debit balances from the trial
balance, which makes up the total cost of purchases and cost of manufacture. The
account is then credited with the sales balances after deducting there from purchase
returns if any.

Ina tradmg account the first entry on the debit side is normally the opening stock if
any. The next entry will be the purchases after deducting purchase returns if any.
Thereafter, expenses such as clearing and forwarding charges, packing charges, salaries,
handling charges and such other expenses incurred on purchase and which are directly
attributable to purchase or direct cost of manufacture are entered on the debit side of
the trading account to arrive at the direct cost of goods sold.

In manufacturing organizations, the same account is called Trading and Manufacturing
account and in addition to the accounts already shown above, other expenses directly
incurred on account of manufacturing and specifically attributable to cost of
manufacture, such as factory expenses, lighting and electricity charges of the factory,
power and fuel charges, salary of factory staff and labour and similar other expenses

on account of production or manufacturing activity are debited to this account. Credit

. side of the trading account will usually have the Sales account balances as the first
entry after deducting therefrom sales returns if any. The last entry on the credit side

would be the closing stock value determined on physical verification of stock and -

valuation at the end of' the financial year. The excel of credit side total of this account
over the debit side totals reveal the Gross profit and if the debit totals are in excel of
the credit totals, it reveals the Gross loss, which are carried forward or brought down
to the Profit.and Loss account. Following is the format of a trading Account.

To prepare this report in a computerized system, it is just a matter of extraction of
the relevant accounts details from the transaction and accounts master files. Or

Database Applications

NOTES

Self Instructional Material 199

Database Systems

NOTES

200 Self Instructional Material

TR U FOR RN

alternatively, this can be taken from a temporary file created on preparing the trial
balance consisting of the relevant accounts heads and their balances. This file should
have the account number, particulars of the account, debit or credit balances in respect
of all account pertaining in the trading activity.

The trick in organizing this reports is by allotting such account code number from
which you can easily pick out the heads participating in the trading function. For
example, we have an account head titled “Stock a/c” in the Accounting system. Iif
we were to subclassify this-head into say

Raw material Stocks

Finished Goods Stocks - -
Machinery Stock - Factory '

Machinery Spaces — Non Factory related

General Stock

etc. it would be fairly easy to find out Purchase of stock required to appear in the ‘

trading account. Similarly notional accounts should also be classified as the ones that
are affecting the trading account and others.

In most of the organizations where the accounting system is computerized the practice

is the to create the containing all the account heads affecting the trading account.
- Using this file and the accounts master file, appropriate records are selected and the

trading account printed. Value of closing stock is input through the keyboard after
physical verification and valuation. -

Profit and Loss Account

The purpose of preparing the account is to find out the net profit made by the
organization, during a particular period. The gross profit or gross loss is not the actual
indicator of the net resuits of the business operation, because while arriving at the
gross profit or loss, the indirect expenses are not taken into con31derat1on

While preparing the P & L account, the first entry on the credit side is the gross proﬁt
brought down from the trading a/c. If the trading a/c shows a loss, this would appear
on the debit side of the P & L account. Thereafter all expenses of a nominal or
fictitious nature are entered into the debit -side of the P & L account.

Incomes of a nominal nature are entered into the credit-side of the account This
account is then balanced and if the credit side is more than the debit side, the excess
of credit side over the debit side will be the net profit whereas the excess of debit
side over credit side indicate the net loss. '

In a computerized accounting system, P & L accounts are coded separately to easily
identify them. In our example, of heads of accounts, P & L heads are coded starting
with ‘PL’ for example, ‘PLO1’ shows “salaries & Allowances” etc. These account
heads are p1cked up from the Accounts master and together with the results of the
trading accounts, P & L account is printed. Before the certain notional expenditures
are computed like: deprec1at10r1 of fixed assets etc. and included in"the input data of
P & L programs.

Data to prepare this report is extracted from the Accounts Master using the P & L
account heads file and the heads are groups into Income and Expenditure and printed

as above without any rounding off and finally net proﬁt / loss is computed and Database Applications
printed in the end. . .

Balance Sheet

The entries in the balance sheet are classified as follows -

. - : ' NOTES
Assets _

They are the value of properties in possession of the company including all the

receivables and recoverablles from debtors and other sources. They are further .

classified: -

. Fixed Assets.

Investment in Securities

1
2
3. Current Assets
4 Loans and Advances -
S,

Stocks, Cash and Bank Balances etc
Llabllltles ;o

7

They are the source or causes of all liabilitics which the organization owes to or is
indebtéd to pay to others including the liabilities to the owners of the organization in
‘the form of capital, net profit, reserves, accumulated profits in any form, provisions
for various purposes and funds created out of profits. -

While preparing a balance sheet, assets can be listed on one 51de and the liabilities on
the other side or liabilities can be listed first followed by the assets.

At the end, both the assets and the liabilities are totalled both side totals will be the
same if everything is done in order. Those account balances taken in the P & L or -
trading a/c must not be included while preparing the balance sheet. Only the closing
stock shown on the credit side of the trading a/c should be taken into the balance
sheet, being assets still in possession of the organization. The net profit or loss from

_ the P & L a/c is taken into the liabilities side for giving effect to the Capital a/c. The |-
Capital of an organization is the asset in excel of all liabilities towards the owners as
well as others.

When a computerized Accounting System is designed, the staff in the accounts
department should be consulted to get the full idea about their requirements and the
~ nature of the heads of accounts so that preparation of the final accounts is made
easier from the Accounts Master maintained on an up to date basis. Using a properly .
designed system, it would be possible to take the P & L account and Balance sheet of
an organization at any point of time. Usually these are prepared only at the end of a
financial year. ‘

Apart from the above reports, many other useful statements are also prepared as
_byproduct of a good computerized accounting system. Let us look at them briefly.

Bank Reconciliation Statements -|
Any organization who buys or sells items on credit usually make use of banking
facilities and for this purpose accounts are opened with one or more banks. Opening

an accounts and depositing money with the bank is like transferring one of the cash

Self Instructional Material 201

"Database Systems

NOTES

202 Self Instructional Material

boxes into the safe custody of a bank referred to as a bank account, which money is
rightfully owned by the depositor. So, the organization normally keeps only a small
amount of money in the cash a/c, while the lion’s share is kept in a bank a/c. They
use money from both these accounts to meet their expenses.

When money is received by means of a cheque, they are deposited in the bank and is
debited to the Bank a/c of the organization’s books of accounts. Similarly when
cheque payments are made by the company, théy are credited to the bank a/c. Often
money is transferred from Cash a/c to Bank a/c when cash balances accumulate and
vice versa when cash balances deplete. Such transactions which result in neither an
income nor an expense are called ‘Contra Entries’ in accounting parlance, However
the transactions are journalised and data entered in a computerized accounting system.

When an account is opened with a bank, a debtor — creditor relation comes into
existence between the organisation and the bank. Amounts are deposited into the
bank a/c as well as withdrawn from time to time. Payments are made by a cheque
from the bank account and often receipts are got by cheques which are deposited in
the bank. —

Records of these transactions are entered into the Bank a/c of the company.
Simultaneously the bank also maintains a record of such transactions. But often the
records maintained by the bank may not tally with Bank a/c maintained by the
organization due to various reasons. Therefore it is necessary to keep a check on the
bank transactions maintained by the company with the statements of transactions
provided by the bank normally once in a month. This is done by a Bank Reconciliation
statement.

We will now look into the possible reasons why the bank statement and the bank
a/c maintained by the company differ.

1. The bank might have credited to your account by interest accrued on your
balances or debited interest on overdraft amount drawn.

2. A cheque issued by the organization might not have been presented to the
bank. . '

3. A cheque received from a party, though debosited in the bank might not have
been cleared as yet and credited to your account.

‘At the end of the month, when the statement of account is received from the bank
which would include details such as cheque number, amount déposited or withdrawn,
date of transaction etc., these details are keyed into a file and is compared with the
records in the transaction file (only RPQ and CPQ document codes are considered
for this purpose) and varying records can be identified and printed out.

The net balances of such accounts when added to your bank balances at the end of
the month as per your records would give the balances to tally with the balance
shown in the statement of account provided to you by the Bank. This process is
known as Bank Reconciliation. The fields compared are cheque number and amount
which are available in the accounts transaction file as well as the statement of account
received from the bank. If the company has accounts with more than one bank, the
bank reconciliation, statement is prepared in respect of each bank.

Input parameters are opening bank balance, Closing bank balances as well as the
dates between which the reconciliation is to be prepared. The simple rule observed in

i

preparing a bank reconciliations is “Do what the bank has doné”.‘lf the bank has not
deducted an amount which we have deducted, then we add back the amount to be in
line with the Bank records. We correct ourselves by reversing our act to be in line
with the act of bank

Ratio Analysis

The statements described above are prepared purely based on accounting principles
and 'fall short of management requirements to take proper decisions. Ratios help to
express performances, results ard financial information either in terms of percentages

or in terms of relations between different sets of values 10 enable management to
understand how well the financial resources are being utilized and to detemlme what
remedial measures are to be taken for improved performances.

Let us look at some of such ratios.

_Current Ratio

This is also known as working capital ratio or solvency ratio. This reveals the relation
between current assets and liabilities. Current assets are convertible into cash within
the current period (normally for the period of one financial year) to meet the current
liabilities arising during the same period.

Current Ratio = Current Assets / Current Liabilities

The more the current assets are in relation to the current liabilities, the better the
financial ability of the organization to meet its financial liabilities. A current ratio of
a figure less than 1 is quite dangerous. : :

Current assets include cash in hand and in the bank; stock of raw materials, finished
' goods, debtors from whom money is recoverable, short term investments etc. while
current liabilities include bank overdrafts, creditors to whom money is payable, bills
and other short term liabilities, If these heads are so coded to identify them easily,
the computer using the Accounts master file as Input can quickly work.out this ratio
and displayed whenever needed.

Acid Text Ratio o |

This is also known as quick ratio or liquid ratio, which is an improvement over the
current ratio, This involves the testing of the liquidity of the current assets into cash

in the shortest possible time without difficulties to meet the immediate current

liabilities. _ ' , . N
Acid Test Ratio = Quick Assets / Quick Liabilities

Stock which is strictly speaking saleable into cash génerally. not considered as quick
assets. Similarly a bank overdraft is not a quick liability since'it is a long term facility
offered to you by a bank.

A 1:1 quick ratio between quick assets and labilities can be considered as a safe ratio.
With proper coding to identify quick assets and liabilities, this ratio can be worked .

out by the computer using accounts master file as input to the program.
*Stock turnover Ratio:

This is used to find out how fast the stocks are utilized or disposed. i.e. the rate at

Database Applications

NOTES

Self Instructional Material 203

Database Systems ~

NOCTES

204 Self Instructional Material

" which stocks are sold and thus converted to money. The faster such conversion, the

better will be the business performance. .
Stock Turnover ratio = Cost of goods sold / Average iniventory at cost
Average inventory at cost = Opening stock + Closing Stock / 2

When the Sales system and the accounting system are integrated this ratio can easily .
be calculated on a computer. Cost of goods sold is -not the salé-proceeds, since it
includes a profit element in it. It is the actual cost of the goods in other words the
cost of production of the goods. :

Debtor turnover ratio:

This ratio is prepared to find out as to how much of the total sale is held by debtors
without having paid for them. It indicates the number of days credit facility extended
to or availed by the customers. Ratio reveals the number of days the sales remain
unpaid. It enables management to have control on the debtors and to make efforts in

recovering outstanding from debtors in time. ‘

Debtor Turnover Ratlo = Debtors balances / Sales per day

Sales per day = Net Sales / Number of working days (360 approximately)

Gross Profit Percentage
Gross Profit Percentage = Gross Profit * 100 / Net Sales

This reveals margin of profit on sales. Increase in gross profit do not necessarily
indicate good performance since increase in selling price with out a corresponding
decrease in manufacturing cost is unfoverable. Decrease in gross profit can also be
due to uneconomic purchase of raw materials, improper valuation of stock balances
etc.

Net Profit Ratio

This is a more realistic indicator of the success in business since this includes alt
direct and indirect cost of the trading or manufacturing activity and indicates the
actual returns on investment in a business.

Net Profit Ratio = Net Profit * 100 / Net Sales

Return on Capital

Return on Capltal employed = Net Profit * 100 / Gross Capltal Employed

- Gross capital 1s the share capital received form the shareholders as well as borrowed

capital by way of long term loans, debentures and reserves of a capital and revenue
nature. Capital is represented by the assets in existence with the organization and
employed for the purpose of geferating profits. That portion of the assets of a
fictitious nature like goodwill, investments outside the orgamzatlon etc. are excluded
while computing the gross capital employed.

Net Worth

This indicates the relation of capital (Share Capital, Reserves and Surplus, accumulated
profits etc.) with the fixed assets of the organization. Value of fixed assets must be
reasonably low in comparison to the capital as otherwise it shows non productive

investments. Higher the value of current assets in comparison to fixed assets, better
the financial strength of the organization. More the owners capital in relation to
outside capital by way of loans, debentures etc. better the financial structure and
represent sound policies and profitable activities of a business with least dependence
on creditors for finances.

The above ratios can be excellent by product of a good computerized accounting
System. The trick in preparing these ratios lie in a good coding system from which
appropriate figures can easily be extracted for computations. A very good interaction
and involvement of the accounting personnel while designing the system can pay
rich dividends in the form of good management 1nformat10n emanating from the
Accounting syster.

Cash Flow Analysis

-This shows the inflow and outflow of cash during the individual months of this year
in each major and minor heads of accounts. The relevant figures can be extracted
from the Accounts Master file and transaction files. Let us look at the usual format
of a Cash flow statement. The above report can be prepared monthly, quarterly, half
yearly or annually as desired.

All transactions relating to the bank and Cash accounts are only considered for this
purpose. A cash flow statement for.a given period is usually a good indicator to the
possible cash flow of the next ensuing period and therefore similar statements are
also prepared by managers to forecast their cash requirements for a period yet to
come. This is normally. done using an Electronic 'spread sheet and doing ‘What-if’
analysing with varying parameters of cash inflow and outflow,

Apa}t from what we have discussed so far, a computerized accounting system should
_have the following Sub systems.

1. Accounts Receivable

2 Accounts Payable '

3 Depreciation of Fixed assets calculations

4, Preparation of various schedules in support of the Balance sheet.
5

Budgetory Control System etc.

- MARKETING SYSTEM

A market system is any systematic process enabling many market players to bid and
ask: helping bidders and sellers interact and make deals. It 1s not just the price
mechanism but the entire system of regulation, qualification, credentials, reputations
and clearing that surrounds that mechanism and makes it operate in a social context.

Because a market system relies on the assumption that players are constantly involved
and unequally enabled, a market system is distinguished specifically from a voting
system where candidates seck the support of voters on a less regular basis. However,

the interactions between market and voting systems are an important aspect of

political economy, and some argue they are hard to differentiate, e.g. systems like
cumulative voting and runoff voting involve a degree of market-like bargaining and
tradeoff, rather than simple statements of choice.

Database Applications

NOTES

Self Instructional Material 205

Database Systems

NOTES

206 -Seff Inszl‘mm'onai Marerial

In economics, market forms are studied. These look at the impacts of a particular

form on larger markets, rather than technical characteristics of how bidders and sellers
interact.

Heavy reliance on many interacting market systems and forms is a feature of
capitalism, and advocates of socialism often criticize market features. This article
does not discuss the political impact of any particular system nor applications of a

particular mechanism to any particular problem in real life.

For more on specific types of real-life markets, see commodity markets, insurance
markets, bond markets, energy markets, flea markets, debt markets, stock markets,
online auctions, real estate market, each of which is explained in its own article with
fearure_s of its application, referring to market systems as such if needed.

J

Protocols

The market itself provides a medium of exchange for the contracts and coupons and
cash to seek prices relative to each other, and for those to be publicized. This.
publication of current prices is a key feature of market systems, and is often relevant
far beyond the current groups of buyers and sellers, affecting others' supply and
demand decisions, e.g. whether to produce more of a commodity whose price is now
falling. Market systems are more abstract than their application to any one use, and
typically a 'system' describes a protocol of offering or requesting things for sale.
Well-known market systems that are used in many applications include:

* auctions - the most common, including:

‘Dutch auctions - ‘

reverse auctions

silent auctions
+ rationing (including the command economy of some states)
+ regulated market (including most real-life examples as above)
* black market (the term 'black’ indicating lack of regulation)

The term 'laissez-faire’ ("let alone"} is sometimes used to describe some specific
compromise between regulation and black market, resulting in the political struggle
to define or exploit "free markets”. This is net an.easy matter to separate from other
debates about the natuze of capitalism.

There is no such thing as a "free" market other than in the sense of a black market,
and most free-market advocates favor at least some form of regulated market, e.g. to
prevent outright fraud, theft, and retain some degree of credibility with the larger
public. This political debate is out of the scope of this article, other than to note that
the "free" market is usually a "less regulated” market, but not qualitatively different
from other regulated markets, in any society with laws, and that what opponents of
"free markets" usually seek is some kind of moral purchasing rather than pure
rationing. “

As this debate suggests, key debates over market systems relate to their accessibility,
safety, fairness, and ability to guarantee clearance and closure of all transactions ina
reasonable period of time. '

-~

Importance of trust

The degree of trust in a political or economic authority (such as a bank or central

bank) is often critical in determining the success of a market. A market system

depends inherently on'a stable money system to ensure that units of account and
standards of deferred payment are uniform across all players - and to ensure that the
balance of contracts due within that market system are accepted as a store of value,
i.e. as "collateral" of the holder of the contract, which justifies "credit” from a lender
of cash.

Banks, themselves, are often described in terms of markets; as "transducers of trust"
between lenders (who deposit money) and borrowers (who take it out again). Trust in
the bank to manage this process makes more economic activity possible. However,
critics say, this trust is also quite easy to abuse, and has many times proven difficult
to limit or control (see business cycle), resulting in 'runs on banks' and other such
‘crises of trust' in 'the system'.

However, market systems are usually flexible enough to be refined and have its-detailed
rules adjusted so as to regain the trust of participants relatively quickly - most market
systems tend to degrade gracefully, with a few exceptions, e.g. hyperinflation, South
Sea bubble, tulip boom, dotcom boom, depression, that are very damaging, but
nonetheless relatlvely infrequent.

FOREIGN TRADE | j

Computer is very much used in the various calculations of foreign trade. It is more or
less on the lines of the Inventory System, discussed next. .

INVENTORY INFORMATION SYSTEMS

An inventory information approval system, or ITAS, is a point-of-sale technology
used by retailers that accept FSA debit cards, which are issued for use with medical
flexible spending accounts (FSAs), health reimbursement accounts (HRAs), and some
health savings accounts (HSAs) in the United States.

By the end of 2007, all grocery stores, discount stores, and online pharmacies that -

accept FSA debit cards must have an ITAS; by the end of 2008, most chain pharmacies
must have an [1AS as well.

The first ITAS was developed by the online retailer drugstore.com for its "FSA store"
in 2005; it was first introduced to brick-and-mortar retailing by Walgreens in 2006.
Wal-Mart became the first discounter with an IIAS in late 2006.

How ITAS works

ITAS is similar to the system used by grocery stores ever since they introduced the
first barcode scanners in the 1970s to separate items eligible for purchase under the
Food Stamp Program from those that are not eligible. Every item in the grocery
store's database is flagged "yes" ‘or "no” for food-stamp eligibility; the scanner
-automatically keeps a separate total for food-stamp items. In the beginning, the cashier
pressed a special "food-stamp total” key, and the customer presented paper food

Database Applications

" NOTES

Self Instructional Material 207

Database Systems

NOTES

208 Self Instructional Material

stamps; today, the customer swipes an Electronic Benefit Transfer (EBT) card and
selects the "food stamp” account, and the register charges only the food-stamp total
to the EBT card. The remaining balance must be paid for by other means.

IIAS works in much the same way, but with medical FSAs, HRAs, or HSAs instead
of food stamps: (Usually, the term "FSA" is used to cover all of them; HRAs, HSAs,
and non-medical FSAs are relatively rare, and HSAs can also have regular debit cards
though many of them have FSA debit cards instead.)

Every item in the store's scanner database is flagged "yes" or "no" for FSA eligibility.
(This flag is obviously separate from the one for food stamps, if there is one.)

Prescription drugs are usually not in the main scanner database (though they may be
made scannable by tying the pharmacy system into the scanners), but they are almost
always FSA-eligible; therefore, the pharmacy department is often categorically flagged
as FSA-eligible, the only department to be so treated. (In contrast, multiple
departments of most grocery stores are categorically flagged as food-stamp eligible,
including the meat, produce, and dry-grocery departments.)

At checkout, the scanner (for brick-and-mortar retailers) or shopping cart (for online .
retailers) keeps a separate total for those items that are "FSA-eligible".

If an FSA debit card is presented for payment, the scanner or shopping cart will
charge the card, but for no more than the "FSA-eligible" total. -

If there are other items in the order (or if the FSA debit card didn't pay for all eligible
items), the scanner or shopping cart then demands another form of payment, such as
cash, check, credit card or debit card, to pay-for the remaining items.

ITAS does have one additional requirement that is not normally found with food
stamps, though the U.S. Department of Agriculture can audit retailers directly for
similar purposes: Beginning January 1, 2007, the merchant must make a record of
each transaction available to the employer, or more commonly, to the employer's
FSA or HRA provider. This can be done contemporaneously with the transaction, or
it may be provided later if the Internal Revenue Service ever audits the employer.

Please note that the terminology used by the IRS in its descriptions of IIAS may
seem obtuse; this is not only because it's the IRS, but also because I[IAS was first
developed by an online retailer (drugstore.com) and only later adapted to brick-and-
mortar retailing. For example, IIAS is described by the IRS as an "inventory control"
system tied to SKUs; but it's generally easier to understand as it was implemented by
Walgreens and Wal-Mart, i.e., as a point-of-sale system tied to UPC codes.

IRS requirements to use ITAS

Though IIAS was first used in 2005, it was not officially approved by the Internal
Revenue Service until July 2006, in IRS Notice 2006-69. At the same time, the IRS
decided to crack down on FSA/HRA providers that were not following prior IRS
guidance on FSA debit cards. As part of this, the IRS decided that grocery and discount
stores would not be allowed to accept FSA debit cards unless they installed an IIAS;
they decided it would be too easy to misuse the cards if they could be used at grocers
and discounters for anything they sold, even if the grocer or discounter also had a
pharmacy. However, they permitted stand-alone chain or independent pharmacies
(known as "true pharmacies") to accept the card without an IIAS.

Grocers and discounters immediately challenged the IRS ruling, claiming that their
pharmacies were being discriminated against, and that since most "true pharmacies"
sold ‘ineligible goods as well, the risk from them was just as great. Therefore, two
changes were made by IRS Ruling 2007-02 in December 2006:

Grocers and discounters are allowed to keep accepting the cards until December 31,
2007; this was to give them sufficient time to install an IIAS.

"True pharmacies" are required to install an ITAS after December 31, 2008, unless at
least 90% of the individual pharmacy's sales are of "FSA-eligible" items, i.e.,
prescription drugs or over-the-counter (OTC) items.

Most major pharmacy chains report that 60-65% of their sales come from the
pharmacy; therefore, OTC would have 'to account for 25-30% of their total sales for
them to qualify, which is unlikely--especially since each individual pharmacy must
qualify separately. Therefore, only independent pharmacies are likely to qualify for
the exemption.

Because of this ruling, by 2009 most grocers, discounters, and chain or Internet
pharmacies in the U.S. must have an IIAS in place in order to accept FSA debit caids.

Importance of IIAS

In addition to the above IRS requirements, IIAS is important in promoting the use of
tax-favored health accounts, especially FSAs (which are usually set up by employees)
for these reasons:

While other IRS-approved "auto-adjudication” systems for elecrronic substantiation
of FSA debit card charges are geared towards health plan expenses, such as copay
matching or electronic transmittal of explanations of benefits, IIAS is the only one
that is designed for use with over- -the- counter drugs and similar items (OTC) as well
as prescription drugs.

ITAS is the first system with 100% "auto-adjudication” of an entire class of FSA
debit card charges that has been widely adopted by the FSA industry. A few FSA
vendors had previously used proprietary systems which provided 100% auto-
adjudication of prescription charges thru a pharmacy benefits manager, but they ran
into numerous technical and educational issues and were not adaptable to OTC.

Some of the IRS rules on what OTC items are and aren't eligible for FSAs have
proven rather arcane in practice; for example, condoms are OK since they prevent
pregnancy, but K-Y Jelly isn't if it's used to lubricate them. ITAS effectively manages
this problem by verifying eligibility of each OTC item at point-of-sale.

Both paper claims and manual substantiation of FSA debit card charges often required
the submission of receipts with "full names” of OTC items; but many stores
abbreviate item names in such a way that it is almost impossible to tell if the item is
eligible or not. Also, most providers did not reimburse sales tax on paper claims with
"mixed" FSA/non-FSA receipts because they could not "split" the tax line item

without being versed in the sales tax laws of .every state and locality m the US,, a

near impossibility. IIAS avoids this by having the retailer itself verify item eligibility

" and "split” the sales tax.

The process of demanding receipts or reimbursement for FSA debit card charges

‘that are not “auto-adjudicated”, known as "pay and chase" in the industry (a term

recognized by the TRS in Notice 2007-02), proved particularly cumbersome for OTC

Database Applications

NOTES

Self Instructional Material 209

Database Systems

NOTES

I

210 Self Instructional ‘Marerial

L

items dite to the lack of "auto-adjudication" systerhs and the high potential for

fraudulent or erroneous charges; IIAS eliminates this by providing an "auto-.’

adjudication” system for OTC while preventing many fraudulent or erroneous charges
at retailers. ' '

Since IIAS eliminates many of the roadblocks that previously existed for use of
medical FSAs at retailers (especially for OTC items), it is hoped that it will lead to
increased enrollment in medical FSAs. '

/o

