
■ 1

CONTENTS
Chapters Page No./

N
1. Database Concepts

2. Database Development

3. Data Administration

4. Database Applications

1-26
27-146

147-178
179-210

DATABASE MANAGEMENT SYSTEM
SECTION A

Database Concepts: What is Database? Need of Database, Function of the Database; Types
Database ; Relational Database Management System, Relational Model - Key Concept;
Domain Constraint, Integrity Constraints; Foreign Key.

SECTION B

Database Development Process, Database Modeling & Database Design.
E-R Model, Attributes, Relationship, Logical Database Design, Normaliza.tion, First Form,
Second Normal Form, Third Normal Form, Translating E-R.Diagram to Relations, Physical
Database Design. '

SECTION C

Relational Algebra & SQL Relational Database Commands.
Data-types, Create Table, Drop Table, Alter Table, Insert Into, Delete From, Update, General
Query Syntax (Select), Create View, Drop View, Set Operators - Union, Intersect, Minus,
Functions, Group Fimctions, Join, Sub Queries.

SECTION D

■■ Data Administration, Client / Server and Distributed Databases.
Data-Administration Functions, Data Administration Tools - Repositories, CASE Tools,
Concurrency Control, Database Security, Database Recovery.
Database Applications: Financial Systems, Marketing System, Foreign Trade, Inventory
Information Systems.

V

/

•\

I

-1

<

f

s

-\
-.v

1

1

■;

T

I

CHAPTER 1

DATABASE CONCEPTS

Learning Objectives
After going through this chapter, you should appreciate the following:

• Primary Key
• What is Database?
• Need of Database.
• Function of the Database
• Types of Databases.
• Relational Database Management System
• Relational Model - Key Concept
• Integrity Constraints
• Foreign Key

Database Systems
PRIMARY KEY

A basic unit called in a database is called a Table that organizes the data. Rows are
related. The columns in the table classify the nature of the data items that are related
by virtue of row membership. The Name column identifies that whatever appears at
this position in any row is a person’s name. The Address column identifies that whatever
appears in this position in an address. Membership in a row that has columns makes
the data items in the row belong to a set.
In fact, a database table is a conceptual representation of the set theory we all struggled
with in grade school mathematics. Columns also play a special classificatory role in a
database; they identify the type of the data stored in them. Data type is the means by
which data storage is interpreted.
You must remember the following:

□ Data is stored in tables.
□ Tables have rows that group related data items together and columns that

classify the data as to its type and its role in the world.

NOTES

Tables

A table is the place in the database where all the data is stored. Every piece of
information that gets loaded into an Oracle database must be placed inside an Oracle
table. In fact, all the information needed by an Oracle database to manage itself'is
stored in a series of tables that are commonly known as the data dictionary. Think of
the data dictionary as table about tables. The data dictionary tables tell the database
what kind of data is stored in the database, where it is located and how the database
can work with it.
A table is made up of columns. Each column must be given a unique name within
that table and assigned a data type (such as varchar2, date or number) with an associated '
width (which could be predetermined by the data type, as in date). Each table column
can also be designated as null or not null. Not null means the column data is mandatory
for that colurnn, In other words, for rows of data to be entered into that table, all
columns assigned not null destination must contain valid data values.
To enforce defined business rules (integrity constraints) on a table’s data, OracIe9i
allows you to associate integrity constraints and triggers for a table.
Attribute

Within a database for example, you have names. These names would be there in your
office records but you can assign various attributes to it too. These attributes are the
additional information you need to- keep for example, your job title.
Tuple/Rows

Nobody calls them by the old names,, i.e.. Tuples, everybody now calls them rows.
As mentioned above a database actually consists of columns and rows. A row is~a
record of the data in the database. For example, in a school database, a record may
contain the information related to a student, like his enrolment number, name, address,
class, section, phone number, etc. A row comprises of fields that contain data. This
record in turn belongs’to a table.

2 Self JnsMiOional Material

Field Database Concepts

It is the oAer side of the record, i.e., column. It specifies aparticular data in a database.
It also corresponds to the name given to it. Every database must consist of a column.
Data ' ''

t

It is the raw information which is fed into the database. It could be in the form of
information collected from various sources. Like in the school database, the
information about the student is collected from the form which he has filled up.
Concept of String

A string is a simple concept: a-bunch of things in a line,.like houses, popcorn or
pearls, numbers, or characters in a sentence. Strings are frequently encountered in
managing information. Names are strings of characters, as in Sachin Tendulkar. Phone
numbers are strings of numbers, dashes, and sometimes parentheses, as in a telephone
number, (011)-2551 6754. Even number, such as 5516754 can be considered as either
a number or a string of characters.
Strings can include any mixture of letters, numbers, spaces, and other symbols (such
as punctuation marks and special characters) are called character strings, or just
character for short.
There are two string data types in Oracle.
CHAR strings are always a fixed length. If you set a value to a string with a length
less than that of a CHAR column, Oracle automatically pads the string with blanks.
Wheri yoii compare CHAR strings, Oracle compares the strings by padding them out
to equal lengths with blanks. This means that if you compare “character” with
“character” in CHAR columns, Oracle considers-the strings to be the same.
VARCHAR2 data type is a varying leiigth string. The VARCHAR datatype is
synonymous with VARCHAR2, but this may change later, so you should avoid using
VARCHAR.

. Use CHAR for fixed-length character string fields and VARCHAR2 for all other
character string fields.
Number Values

In Oracle NUMBER stores any type of number. For example,
NUMBER (MAX_LENGHT}

You may specify a NUMBER’S data precision with the following syntax:
NUMBER (precision, scale)

Subtypes: DEC, DECIMAL, DOUBLE PRECISION, INTEGER, INT, NUMERIC,
REAL, SMALLINT, FLOAT PLS_INTEGER defines column that may contain
integers with a sign, such as negative numbers.
Date values

T^s is there to keep track of date variable.

Data type and Data integrity
There are various type of data inserted into tables. There are two aspects to it. Once
is to make sure that the data which is being, entered is of the right type and then .we

.NOTES

Self instructional Material 3

Database System have to make sure that the data which is being entered is accurate. First we would see
how the integrity of the data matters. •

Domain Integrity

As discussed the primary key of the table must have the unique values, which identify
the each row. So, if any row is having the value NULL for the primary key. The rule
of primary key violate that is the primary key must be unique. This is the reason to
follow the entity integrity rule according to which primary key will not accept the-
null value. This rule state that if attribute A of relation R is a prime attribute of R,
then A cannot accept NULL values.

Referential integrity

It is the assurance of consistent and accurate data within a database. Referential
integrity simply means that the values of one column in a table depend upon the
values of a column in another table. For instance, in order for a customer to have a
record in the ORDERS table, there must first be a record for that customer in the
CUSTOMERS table. In order for data to be in the EMPLOYEE_PAY table, there
must first be a corresponding personnel record in the EMPLOYEES table.

Types of Keys
Keys are the ways of connecting tables. These help you in creating relation between •
them. There are 4 type of keys.

Candidate key

We ail know that in a table, every row must be different. There should be at least one
attribute that can uniquely identify the row. These attributes are called Candidate
keys.

Alternate key/Surrogate

It is used in case there is no possibility of naming a primary key. Then in that case
you assign a another key as the primary key.

Primary key

A primary key for a uniquely identifies each row in a table and cannot be null. Oracle
tables must have only one primary key defined.

■ Foreign keys

In a table, a foreign key, normally a single field, directly references a primary key in
another table to enforce referential integrity.

NOTES

WHAT IS DATABASE

Database means base of the data. It is based on the information given by you. It can
be catalogued, stored .and used. For all this information, database is used. Any
collection of related information grouped together as a single item is' a database. A
metal filling cabinet containing customer records, a card file of names and phone
numbers, and notebook containing a listing of a store inventory, all are databases.

Any collection of related information grouped together as a single item is a
database. '

4 Self Instructional Material

However, a file cabinet or a notebook does not itself make a database. Containers,
like cabinets, notebooks, or computer programs like FoxPro, are only aids in organizing

• informarion.

Database Concepts

1

In Database, data is stored in the form of rows and columns.

NOTESDatabase uses the table format of tows and columns to store the information, as'
shown here. A .database, or a FoxPro database file, may consist of one such table or
several ones.
In the example shown next you will notice that each row contains a name, an address,
a phone number and a customer number, Each row is related to the others because they all
contain the same types of information in the same places.
A mailing list, for example, containing a similar type of data about'various people, is'
a good example of a database.

Name Address
F-19. Sec-20
G-478, Sakurpur
12, Asaf Ali Road
14, Asaf Ali Road
21, Kinari Bazar
345, Surya Nagar

City State Pin Ph. No. Cust.No.
Noida UP 201301 8531642 0005
Delhi Delhi 110034 2454312 0001
Delhi Delhi 110002 3255582 0002
Delhi Delhi 110002 3266698 0004
Delhi Delhi 110006 3280816 0006
Ghazi UP 201204 8876543 0003

R.Dayal
Sachin
Rahul
Saurav
Anil
Yuvraj

Rows in a database table are called records, and columns are called fields.

The figure here illustrates this idea by comparing a simple one-table database to an
address filling system kept on 3x5 file cards. Each category of infoimation on a card
is a field.
Fields can contain any type of
information, as long as each
field always contains the same
type of information. In the
card box, each record contains
six fields: a name, address, city,
PIN code, and phone number.
Since every card in the box
has the same type of
information, the card box is a
database.

Name: R.Dayal
Address ; F-19, Sector 20
City: Noida
Pin : 201301

Fields State: UP
Phone : 8531642

A computerized database provides speed, compactness and flexibility. It is also
easier to locate a particular record in computerized database.

Databases and database technology are having a major impact on the growing use of
Computers, It is fair to say that databases play a critical role in almost all areas where
computers are used, including business, electronic commerce, engineering, medicine,
law, education, and. library science, to name a few.
The preceding definition of database is quite general; for example, we may consider
the collection of words that make up this page of-text to be related data and hence to

Self Instructional Material 5

constitute a database. However, the common use of the term database is usually
more restricted.

A database has the following implicit properties:

• A database represents some aspect of the real world, sometimes called the
miniworld or the universe of discourse (UoD). Changes to the miniworld are
reflected in the database.

• A database is a logically coherent collection of data with some inherent
meaning. A random assortment of data cannot correctly be referred to as a
database.

• A database is designed, built, and populated with data for a specific purpose.
It has an intended group of users and some preconceived applications in which
these users are interested.

We will use the word data as both singular and plural, as is common in database
literature; context will determine whether it is singular or plural. In standard English,
data is used only for plural; datum- is used for singular.

Database Systems
A database can be of any size and of varying complexity. For example, the list, of
names and addresses referred to earlier may consist of only a few hundred records,
each with a simple structure. On the other hand, the computerized catalog of a large
library may contain half a million entries organized under different categories—^by
primary author’s last name, by subject, by book title—with each category organized
in alphabetic order.

A library database may contain name of book, author’s last name, subject, book
title in alphabetical order.

Database Systems

NOTES

. A database of even greater size and complexity is maintained by the Internal Revenue
Service to keep track of the tax forms filed by taxpayers. If we assume that there are
100 million taxpayers and if each taxpayer files an average of five forms with
approximately 400 characters of information ,per form, we would get a database of
100 x 10^ X 400 X 5 characters (bytes) of information. If the revenue department
keeps the past three returns for each taxpayer in addition to the current return, we
would get a database of 8 x 10" bytes (800 gigabytes). This huge amount of
information must be organized and managed so that users can search for, retrieve,
and update the data as needed.

A database may.be generated and maintained manually or it may be cornputerized.
For example, a library card catalog is a database that may he created and maintained
manually. A computerized database may be created and maintained either by a group
of application programs written specifically for that task or by a database management
system. Of course, we are only concerned with computerized databases in this book.

NEED OF DATABASE

Information from the database, stored in the form of a computerized filling system,
can be stored and retrieved quite easily. Tasks that would be time-consuming to

• accomplish manually, are easily done with the aid of a computer. In principle, a database
6 Self Instructional Material

in a computer is not different from a database recorded on paper and filled in cabinets. But the
computer does the tedious work like maintaining and searching through a database,'
and it does so quickly. A computerized database that can do all of this is known as a
DataBase Management System, or DBMS for short..

Storing massive amounts of information into written directories and filling
cabinets can consume a great deal of space and time.

Database Concepts

NOTES

Manual database systems are usually not fool-proof. A telephone book, for example,
is fine for finding telephone numbers, but if you have an address and not the name of
the person who lives there, the telephone directory becomes useless for finding that
person’s telephone number. A similar problem plagues conventional office filling
systems: if the information is organized by name and you want to find all the clients
located in a particular area, you could be in for a tedious search. In addition, storing
massive amounts of information into written directories and filling cabinets can
consume a great deal of space.

A manual database can also be tedious to modify. For example, inserting a new phone
number into a list and rearranging the list. Or, if the phone company were to assign a
new area code, someone would have to search for all phone numbers having the old
area code, and replace it with the new one. It is very easy to eliminate these type of
problems, if you are using the computer for your database. Advanatages of using the
Database can be listed as following:

• A computerized database provides speed; finding a phone number from
among a thousand entries or putting the file in alphabetical order takes just

.seconds with the database management system.

• A computerized database is compact; a database with thousands of records
can be stored on a single floppy CD.

• A computerized database is flexible: it has the ability to examine information
from a number of angles, so you can search for a phone number by name, by
address, or by pin code and then name.

Of course, these are just- few of them. - •

A manual database can also be tedious to modify.

FUNCTION OF THE DATABASE

Computer programmers who have written programs for other applications know how
much a database programming differs from the traditional programming. Here the
database programming is quite different from the traditional approach of programming
with files. In traditional file processing, each user defines and implements the files
needed for a specific software application as part of programming the application.

Programming for database is quite different from traditional programming.

For example, for one user, the grade reporting office, may keep a file on students tind
their grades. Programs to print a smdent’s transcript and to enter new grades into the
file are implemented as part of the application. For second user, the accounting office.

Self /fi5miCt!Ortal Materiid 7

may keep track of students fees and their payments. Although both users are interested
in data about students, each user maintains separate files—and programs to manipulate ,
these files—because each requires some data not available fi-om the other user’s files.
This redundancy in defining and storing data results in wasted storage space and in
redundant efforts to maintain common data up to date. In the database approach, a
single system of data is maintained that is defined onc^_ and then is accessed by
various users. The main characteristics of the database approach versus the file-
processing approach are the following: .

• Self-describing nature of a database system

• Insulation between programs and data, and data abstraction

• Support of multiple views of the data

■ Sharing of data and multiuser transaction processing

Let us study each one of them separately,

Self’Describing Nature of a Database System

A fundamental characteristic of the database approach is that the database system
contains not only the database itself but also a complete definition or description of
the database structure and constraints. This definition is stored in the DBMS catalog,
which contains information such as the structure of each file, the type and storage
format of each data item, and various constraints on the data. The information stored
in the catalog is called meta-data, and it describes the structure of the primary database.

The catalog is used by the DBMS software and also by database users who need this
information about the database structure. A general-purpose DBMS software package
is not written for a specific database application, and hence it must refer to the catalog
to know the structure of the files’ in a specific database, such as the type and format
of data it will access. The DBMS software must work equally well with any number
of database applications—for example, a university database, a banking database, or
a company database—as long as the database definition is stored in the catalog.

In traditional file processing, data definition is typically part of the application
programs themselves. Hence, these programs are constrained to work with only one •
specific database, whose structure is declared in the application programs. For example,
an application program written in C++ may have struct or class declarations, and a
COBOL program has Data Division statements to define its files. Whereas file­
processing software can access only specific databases, DBMS software can access
diverse databases by extracting the database definitions from the catcilog and then
using these definitions.

In the example, shown,next, the DBMS catalog will store the definitions of all the
files shown. These definitions are specified by the database designer prior to creating
the actual database and are stored in the catalog. Whenever a request is made to
access, say, the Name of a STUDENT record, the DBMS softwcire refers to the
catalog to determine the structure of the STUDENT file and the position and size of
the Name data item within a STUDENT record.

Database Systems

NOTES

STUDENT file Name Number Class Course

Sachin 10 1 Phd

Rahul 44 2 Phd
8 Self Instructional Material

Database Concepts
NumberCOURSE file Name . Hours Dept.4

Visual Basic VBIO

RDIO

Computer Sc. CSIO

5 Phd

RDBMS 4 Phd

2 CS NOTES

SECTION file Section SemesterCourse Year Teacher
Tony

Greg

Tom

88 VBIO Ilnd 2005

RDIO90 1st .2005
112 CSIO

MICIO

Illrd 2005

120 Ilnd 2005 Bob

GRADE_REPORT Number Section Grade

10 90 A

44 88 B

PREREQUISITE Course Per. Number

VBIO CSIO

RDIO MICIO

By co'htrast, in a typical file-processing application, the file structure and, in the extreme
case, the exact location of Name within a STUDENT record are already coded within
each program that accesses this data item.

DBMS software can access diverse databases by extracting the database
definitions fivm the catalog and then using these definitions.

Insulation between Programs and Data, and Data Abstraction

In traditional file processing, the structure of data files is embedded in the application
programs, so any changes to the structure of a file may require changing all programs
that access this file. By contrast, DBMS access programs do not require such changes
in most cases. The structure of data files is stored in the DBMS catalog separately
from the access programs. We call this property program-data independence.

For example, a file access program may be written in such a way that it can access
only STUDENT records of the strucmre. If we want to add another piece of data to
each STUDENT record., say the BirthDate, such a program will no longer work and
must be changed. By contrast, in a DBMS environment, we just need to change the
description of STUDENT records in the catalog to reflect the inclusion of the new
data item BirthDate; no programs are chang..^ The next time a DBMS program
refers to the catalog, the new structure of ST
used.

ENT records will be accessed and

Self Instructional Material 9

Database Systems Data Item Name Starting Position in Record Length in Characters (hytes)

Name 31 30

StudentNuraber .

Class,

Major

33 8

37 8NOTES
39 8

In some types of database systems, such as object-oriented and object-relational
systems, users can define operations on data as part of the database defihitions. An
operation (also called a function or method) is specified in two parts. The interface
(or signature) of an operation includes the operation name and the data types of its
arguments (or parameters).

The implementation (or method) of the operation is specified separately and can be
changed without affecting the interface. User application programs can operate on
the data by. invoking these operations through their names and arguments, regardless
of how the operations are implemented. This may be termed program-operation
independence.

The characteristic that allows program-data independence and program-operation
independence is called data abstraction. A DBMS provides users with a conceptual
representation of data that does not include many of the details of how the data is
stored or how the operations are implemented. Informally, a data model is a type of
data abstraction that is used to provide this conceptual representation.

The data model uses logical concepts, such as objects, their properties, and their
interrelationships, that may be easier for most users to understand than computer
storage concepts. Hence, the data model hides storage and implementation details
that are not of interest to most database users.

• The characteristic that allows program-data independence and program-
operation independence is called data abstraction.

The internal implementation of a file may be defined by its record length—the number
of characters (bytes) in each record^and each data item may be specified by its
starting byte within a record and its length in bytes. The STUDENT record would
thus be represented. But a typical database user is not concerned with the location of
each data item within a record or its length; rather, the concern is that when a reference
is made to Name of STUDENT, the correct value is returned. A conceptual representation
of the STUDENT records is shown earlier. Many other details of file storage
organization—such as the access paths specified on a file—can be hidden from
database users by the DBMS.

In the database approach, the detailed strucmre and organization of each file are
stored in the catalog. Database users and application programs refer to the conceptual
representation of the files, and the DBMS extracts the details of file storage fi-ora the

• catalog when these are needed by the DBMS file access modules. Many data models
can be used to provide this data abstraction to database users.

In object-oriented and objea-relational databases, the .abstraction process includes
not only the data structure but also the operations on the data. These operations
provide an abstraction of miniworld activities commonly understood by the users;

/
/

10 Self Instructional Material

1-(
For example, an operation CALCULATE_GPA can be applied to a STUDENT object
to calculate the grade point average. Such operations can be.invoked by the user
queries or application programs without having to know the details of how the.
operations are implemented. In that sense, an abstraction of the miniw_orld activity is
made available to the user as an abstraa operation.

Datalme Concepts

NOTES
TRANSCRIPT Name Transcript

Number Grade
VBIO C

Semester Year
Fall 99 ■

Section
119

Smith
VBIO B .
RDlb A

MICIO A

Fan 99 112
FaU 85• 98
Fall 98 92

Brown
RDIO ■ B
MICIO A
CNumber

Spring 99 102
Fall 99 135

PREREQUISITES CName Pre.
RDIO
VBIODatabase DBIO

Computer
• Sc. MICIO MIC20

Support of Multiple Vien’s of the Data

A database typically has many users, each of whom may require a different perspective
or view of the database. A view may be a subset of the database or it may contain
virtual data that is derived from the database files but is not explicitly stored. Some
users may not need to be aware of whether the data they refer to is stored or derived.
A multiuser DBMS whose users have a variety of distinct applications must provide
facilities for defining multiple views. For example, one user, of the .database may be
interested only in accessing and printing the transcript of each student; the view for
this user is shown in the above first table. A second user, who is interested only in
checking that students have taken all the pre-requisites of each course for which they
register, may require the- view shown in the second table above.

Some users may not need to be aware of whether the data they refer to is stored
or derived.

Sharing of Data and Multiuser Transaction Processing

A multiuser DBMS, as its name implies, must allow multiple users to access the
database at the same time. This is essential if the data for multiple applications is to
be integrated and maintained in a single database. The DBMS must include
concurrency control software to ensure that several users trying to update the same
data can do so in a controlled maimer and the result of the updates is correCT. For
example, when several reservation clerks try to assign a seat on an airline flight, the

. DBMS should en^re that each seat can be accessed by only one clerk.at a time for

Self Instructional Material 11

Database System

STUDENT ACTIVITY 1,1

What is a database?'1.

2. What do yo,u understand by Multiple Views of the database?

12 Self Intructiona! Material

Why do we need database? Database Concepts3.

\

\
What are Primary and Foreign Keys?4.

/

I

/
• /

Self IntmctiomI Material 13

assignment to a passenger. These types of applications are generally called OnLine
Transaction Processing (OLTP) applications. A fundamental role of multiuser DBMS
software is to ensure that concurrent transactions operate correaly.
The concept of a transaction has become central to many database applications. A
transaction is an executing program or process that includes one or more database
accesses, such as reading or updating of database records. Each transaction is supposed
to execute a logically correct database access if executed in its entirety without
interference from other transactions. The DBMS must enforce several transaction
properties. The isolation property ensures that each transaaion appears to execute in
isolation from other transactions, even though hun^eds of transactions may be
executing concurrently. The atomicity property ensures that either all the database
operations in a transaction are executed or none are.

Each transaction is supposed to execute a logically correct database access if
executed in its entirety without interference from other transactions.

/
The preceding characteristics are most important in distinguishing a DBMS from
traditional file-processing software.

Database Systems

NOTES

TYPES OF DATABASES

The DBMS, on which the database system is based can be classified according to the
number of users, the database site locations(s) and the expected type and extent of
use.
The number of users determines whether the DBMS is classified as single - user or
multiuser. A single-user DBMS supports only one user at a time. In other words, if
user A is using the database users B and C must wait until user A has completed his/
her database work. If a, single-user database runs on a personal computer, it is also
called a desktop database. In contrast, a multiuser DBMS supports multiple users at
the same time. If the multiuser database supports a relatively small number of users
(usually fewer than fifty) or a specific department within an organization, it is called
a work group database. If the database is used by- the entire organization, it is called
a workgroup database. If the database is used by the entire organization and supports
many users (more than fifty, usually hundreds) across many departments, the database
is known as an enterprise database.
The database site location might also be used to classify the DBMS. For example, a
DVMS that supports a database located at a single site is called a centralized DBMS.
A DBMS that supports a database distributed across several different sites is called a
distributed DBMS.
Perhaps the types of use and the extent of such use yield the most relevant and
currently favored DBMS classification. For example, transactions such as product or
service sales, payments and supply purchases reflect critical day-to-day operations.
Such transactions are time-critical and must be recorded accurately and immediately
- the sale of a product must be recorded and reflected in the inventory immediately.

/
A DBMS that powers a database primarily designed to support such “immediate
response” transactions is classified as a transactional DBMS or a produaion DBMS.
In contrast a decision support database focuses primarily on the production of.

14 Se// InstriACiional Material
\

Database Conceptsinformation required to make tactical or strategic decisions at middle and high
management levels. Decision support, provided by a decision support system (DSS),
typically, requires extensive “Data messaging” (data manipulation) to extract
information from historical data to formulate pricing decisions, sales forecasts, market
positioning and so on. Because most DSS information is based on historical data, the
data retrieval time factor is not likely to be as critical as it is for the transactional
database. Additionally, the DSS information tends to be based on complex data derived
from many sources.

To make such complex data more easily retrievable, the DSS database structure is
quite different from that of a transaction - oriented database. In faa, the term data
warehouse is used to describe the database design favored by DSSs.

Quite clearly, properly database design requires the database designer to precisely
identify the database’s expected use. Designing a transactional database emphasizes
data integrity, data consistency and operational speed. The design of a decision support
database reco^izes the use of-historical and aggregated data. Designing a database
to be used in centralized, single-user environment requires a different approach from
that used in the design of a distributed, multiuser database.

NOTES

RELATIONAL DATABASE MANAGEMENT SYSTEM

A DataBase Management System (DBMS) is a collection of programs that enables
users to create and maintain a database. The DBMS is hence a general-purpose software
system that facilitates the processes of defining, constructing, manipulating, and
sharing databases among various users and applications. Defining a database involves
specifying the data types, structures, and constraints for the data to be stored in the
database.

A DataBase Management System (DBMS) is a collection of
programs that enables users to create and maintain a database.

Definition!

Constructing the database is the process of storing the data itself on some storage
medium that is controlled by the DBMS. Manipulating a database includes such
functions as querying the database to retrieve specific data, updating the database to
reflect changes in the miniworld, and generating reports from the data. Sharing a
database allows multiple users and programs to access the database concurrently.

Other important functions provided by the DBMS include protecting the database
and maintaining it over’a long period of time. Protection includes both system
protection against hardware or software malfunction (or crashes), and security
protection against unauthorized or malicious access.

A typical large database may have a life cycle of many years, so the DBMS must
be able to maintain the database system by allowing the system to evolve as

requirements change over time.

It is not necessary to use general-purpose DBMS software to implement a
computerized database. We could write our own set of programs to create and
maintain the database, in effect creating our own specific-purpose DBMS software,
in either case—whether we use a general-purpose DBMS or not—we usually have to

Self Instructional Material 15

Database Systems deploy a considerable amount of complex software. In fact, most DBMSs are very
complex software systems.

RELATIONAL MODEL - KEY CONCEPT
NOTES The database is used to store information useful to an organization. To represent this

information, some means of modeling is used. The -components used in modeling
jare limited to the objeas of interest to the organization and the relationships among
these objects. One category of objects of concern to any organization is its personnel,
and one relationship that exists within this category of objects is that pf supervisor to
employees. Another area in which the definition, management, and manipulation of
a considerable amount of data is required is in computer-aided design (CAD) and
computer-aided manufacturing (CAM), The objecs in these applications consist of
the specifications of various components and their interrelationships.
A database model is a collection of logical constructs used to represent the data
structure and the data relationships found withiri the database. Database models can
be grouped into two categories: concepmal models and implementation models.

- The conceptual model focuses on the logical nature of the data representation.
Therefore, the conceptual model is concerned with what is represented in
the database, rather than with how it is represented.
In contrast to the conceptual model, an implementation model places the
emphasis on how the data are represented in the database or how the data
structures are implemented to represent what is modeled. Implementation
models include the hierarchical database model, the network database model,
the relational database model and the object-oriented database model.

File Based or Primitive Models
Entities or objects of interaa are represented by records that are stored together in

•files. Relationships between objects are represented by using directories of various
kinds.

Traditional Data Models
Traditional data models are the hierarchical, network and relational models.' The
hierarchical model evolved from the file-based system and the network model is a
superset of the hierarchical model. The concept of data models evolved about the
same models- as the proposal of the relational model. You were introduced to
Hierarchical and Network models in the last chapter. Relational model will be discussed
in the next chapter.

The concept of data models evolved about the same models as the proposal of
the relational model.

Semantic Data Models
i

This class of data modes was influenced by the semantic networks developed by
artificial intelligence researchers. Semantic networks were developed to organize and
represent general knowledge. Semantic data models are. able to express greater
interdependecies among entities of interest. These interdependecies consist of both.

16 Self Instructional Material

Database Conceptsinclusion and exclusion, enabling the models to represent the semantics of the data
in the database.

INTEGRITY CONSTRAINTS
NOTES

A database usually contains groups of entities that are similar. For example, a company
employing hundreds of employees may want to store similar information concerning
each of the employees. These employee entities share the same attributes, but each
entity has its own value(s) for each attribute. An entity type defines a collection (or
set) of entities that have the same attributes. Each entity type in the database is
described by its name and attributes.

The following figure shows two entity types, named EMPLOYEE and COMPANY,
and a list of attributes for each. A few individual entities of each type are also illustrated,
along with the values of their attributes. The collection of all entities of a particular
entity type in the database at any point in time is called an entity set; the entity set is
usually referred to using the same name as the entity type. For example, EMPLOYEE
refers to both a type of entity as well as the current set of all employee entities in the
database.

COMPANY

Name, Headquarters, President

EMPLOYEE

Name, Age, Salary

(PMG, Mumbai, Sunil)(Sachin, 32, 5000)

(Rahul, 30, 4000) (DNA, Bangalore, Srinath)

(TTR, New Delhi, Mohinder)(Virendra, 26, 4000)

An entity type is represented in ER diagrams as a rectangular box enclosing the
entity type name. Attribute names are enclosed in ovals and are attached to their
entity type by straight lines. Composite attributes are attached to their component
attributes by straight lines. Multivalued attributes are displayed in double ovals.

An entity type describes the schema or intension for a set of entities that share the
same structure. The collection of entities of a particular entity type are grouped into
an entity set, which is also called the extension of the entity type.

Key Attributes of an Entity Type
An important constraint on the entities of an entity type is the key or uniqueness
constraint on attributes. An entity type usually has an attribute whose values are
distinCT for each individual entity in the entity set. Such an attribute is called a key
attribute, and its values can be .used to identify each entity uniquely. For example, the

Self Instructional Material 17

Database Systems Name attribute is a key of the COMPANY entity type in the last figure, because no
two companies are allowed to have the same name.

For the PERSON, entity type, a typical key attribute is SocialSecurityNumber.
Sometimes, several attributes together form^^a key, meaning that the combination of
the attribute values must be distinct for each entity. If a set of attributes possesses
this property, the proper way to represent this in the ER model, that we describe here,
is to define a component attribute and designate it as attribute of the entity type.

Notice that such a composite key must be minimal; that is, all component attributes
must be included in the composite attribute to have the uniqueness ,property. In ER
diagrammatic notation, each key attribute has its name underlined inside the oval.

Specifying that an attribute is a key of an entity type means that the preceding
uniqueness property must hold for every entity set of- the entity type. Hence, it is a
constraint that prohibits any two entities from having the same value for the key
attribute at the same time. It is not the property of a particular extension; rather, it is
a constraint on all extensions of the entity type: This key constraint, or for that even
the other constraints, is derived from the constraints of the miniworld that the database
represents.

It is a constraint that prohibits any two entities fivm having the same value for
the key attribute at the same time.

NOTES

Some entity types have more than one key attribute. For example, each of the Vehicle
ID and Registration attributes of the entity type car (see following figure) is a key in
its own right.

The Registration attribute is an example of a composite key formed from two simple
component attributes, RegistrationNumber and State, neither of which is a key on its
own. An entity type may also have no key, in which case it is called a weak .entity
type.

CAR

Registration (RegistrationNumber, State), VehcilelD, Make, Model, Year,
(Colour)

(123, DELHI), DL4CJ4759, Hundai, Saotro, 2000, (Blue)

(123, DELHI), DL7SB7713, Bajaj, Super, 1999, (Yellow)

(123, DELHI), DL7SA0009, Escorts, Yamaha, 1997, (Grey)

Value Sets (Domains) of Attributes
Each simple attribute of an entity type is.associated with a value set (or domain of
values), which specifies the set of values that may be assigned to that attribute for
each individual entity. In earlier figure, if the range of ages allowed for employees is

18 Self Instructional Material

between 16 and 70, we can specify the value set of the Age attribute of EMPLOYEE
to be the set of integer numbers between 16 and 70. -
Similarly, we can specify the value set for the Name attribute as being the set of
strings of alphabetic characters separated by blank characters, and so on. Value sets
are not displayed in ER diagrams, value sets are typically specified using the basic •
data types available in most programming languages, such as integer, string, boolean,
float, enurJl^..alcd type,,subrange, and so on. Additional data types to represent date,
time, and other concepts are also emnloyed.
Mathematically, an attribute A of entity type E whose value set is V can be defmed
as a function from E to .the power set P(V) of V

A: E P (V)

Database Concepts ■

NOTES

• We refer to the value of attribute A for entity e as A(e). The previous definition
covers both single-valued and multivalued attributes, as well as nulls. A null value is
represented by the empty set. For single-valued attributes, A{e) is restricted to being
a singleton set for each entity e in E, whereas there is no restriction on multivalued
attributes. For a composite attribute A, the value set V is the Cartesian product of
HV,), P(K,) , P(FJ, where V,, Vj
component attributes that form A:

, are the value sets of the simple

V = P(F;) X PiV^) X ... X P(F)

Relationship among Entities
The quest for better data management has led to several different ways of solving the
file system’s critical shortcomings. The resulting theoretical database constructs are
represented by various database models. A database rnodel is a collection of logical
constructs used to represent the data structure and the data relationships found within
the database. Database models can be grouped into two categories: conceptual models
and implementation models.

- The conceptual model focuses on the logical nature of the data representation.
Therefore, the conceptual model is concerned with what is represented in
the database, rather than with how it is represented.

- In contrast to, the conceptual model, an implementation model places the
emphasis on how the data are represented in the database or on how the
data structures are implemented to represent what is modeled.
Implementation models include the hierarchical database model, the network
database model, the relational database model and the object-oriented
database model.

Conceptual models use three types of relationship to describe associations among
data; one-to-many, many-to-many and one-to-one. Database designers usually use
the shorthand notations 1:M, M:N, and 1:1 for them, respectively.
The following examples illustrate the distinaions among the three.
One-to-many relationship

A painter paints many different paintings, but each one of them is painted by only
that painter. Thus the painter (the “one”) is related to the paintings (the “many”).

Self Instructional Material 19

Therefore, database designers label the relationship “PAINTER” paints “PAINTING”
as 1 :M. Similarly, a customer account (the “one”) might contain many invoices, but 1
those invoices (the “many”) are related to only a single customer account. The
“CUSTOMER” generates “INVOICE” relationship would also be labeled 1:M,

Many-to-many relationship

An employee might learn many job skills and each job skill might be learned by
many employees. Database designers label the’relationship “EMPLOYEE learns
SKILL” as M:N. Similarly, a student can take many courses and each course can be
taken by many students, thus yielding the M:N relationship label for the relationship
expressed by “STTUDENT takes COURSE.”

One-to-one relationship

A retail company’s management structure may require that each one of its stores be
managed by a single employee. In turn, each store manager - who is an employee -
only manages a single store. Therefore, the relationship “EMPLOYEE manages
STORE” is labeled 1:1. ' •

Database designers use a conceptual database model as the basis for the database
blueprint.

Because each database model is evolved from its predecessors, we will examine all
the different models briefly in this section. Experience has taught us that you will
gain a better understanding of current database design, implementation and
management issues once you have introduced to the rudiments of each database
model’s conceptual framework. In fact, you will discover that many of the “new”
database concepts and structures bear a remarkable resembles to some of the “old”
database concepts and structures.

Consider the following figure, there are several implicit relationships among the various
entity types. In fact, whenever an attribute of one entity type refers to another entity
type, some relationship exists. For example, the attribute Manager of DEPARTMENT
refers to an employee who manages tile. department; the attribute

. ControllingDepartment of PROJECT refers to the department that controls the
project; the attribute Supervisor of EMPLOYEE refers to another employee (the
one who supervises this employee); the atfribute Department of EMPLOYEE refers
to the department for which the employee works; eind so on. In the ER model, these
references should not be represented as attributes but as relationships, which are
discussed here. In the initial design of entity types, relationships axe typically captured
in the, form of attributes. As the design is refined, these attributes get converted into
relationships between entity types.

Database Systems

NOTES

Whenever an attribute of one entity type refers to another entity type, some
relationship exists.

DEPARTMENT

Name, Number, {Locations}, Manager, ManagerStartDate

PROJECT

Name, Number, Location, ControllingDepartment

20 Self Instructional Material

Database ConceptsEMPLOYEE
Name (FName, Mlnit, LName), SSN, Sex, Address, Salary,

BirthDate, Department, Supervisor, (WorksOn (Project, Hours)}

• NOTESDEPENDENT
Employee, DependentName, Sex, BirthDate, Relationship

Degree of a Relationship Type

The degree of a relationship type is the number of participating entity types. Hence,
the WORKS^FOR relationship is of degree two. A relationship type of degree two is
called binary, and one of degree three is called ternary. An example of a ternary
relationship is SUPPLY, where each relationship instance associates three entities—a
supplier s, a part p, and a projea j— whenever s supplies part p to project], relationships
can generally be of any degree, but the ones most common are binary relationships.

• Higher-degree relationships are generally more complex than binary relationships.
Relationships as Attributes

It is sometimes convenient to think of a relationship type in terms of attributes.
Consider the WORKS_FOR relationship type, one can think of an attribute called
Department of the EMPLOYEE entity type whose value for' each employee entity
is (a reference to) the department entity that the employee works or, Hence, the
value set for this Department attribute is the set of all DEPARTMENT entities,
which is the DEPARTMENT entity set.
However, when we think of a binary relationship as an attribute, we always have two
options. Employees of the entity type DEPARTMENT whose values for each •
department entity is the set of employee entities who work for that department.
The value set of this Employees attribute is the power set of the EMPLOYEE entity
set. Either of these two attributes—Department of EMPLOYEE or Employees of
DEPARTMENT—can represent the WORKS_FOR relationship type, if both are
represented, they are constrained to be inverses of each other.
Role Names and Recursive Relationships
Each entity type that participates in a relationship type plays a particular role in the
relationship. The role name signifies the role that a participating entity from the entity
type plays in each relationship instance, and helps to explain what the relationship
means. For example, in the WORKS_FOR relationship type, EMPLOYEE plays the
role of employee or worker and .DEPARTMENT plays the role of department or
employer. ’ ,
Role names are not technically necessary in relationship types where all the

• participating entity types are distinct, since each participating entity type name can
• be used as the role name. However, in some cases the same entity type participates

more than once in a relationship type in different roles. In such cases the role name
becomes essential for distinguishing the meaning of each participation.' Such
relationship types are called recursive relationships.

Self Instructional Materiai 21

Database Systems
FOREIGN KEY

Refer to page 4 of the chapter.

NOTES
SUMMARY

1. Any collection of related information grouped together as a single item is a database.
2. Database uses the table format of rows and columns to store the information.
3. Fields can contain any type of information, as long as each field always contains the same

type of information.
4. A database is a logically coherent collection of data with some inherent meaning.
5. A database may be generated and maintained manually or it may be computerized,
6. A DataBase Management System (DBMS) is a collection of programs that enables users

to create and maintain a database.
7. Manipulating a database includes such functions as querying the database to retrieve

specific data, updating the database to reflect changes in the miniworld, and generating
reports from the data.

8. Information from the database, stored in the forrn of a computerized filling system, can be
stored and retrieved quite easily.

9. Manual database systems are usually not fool-proof
10. A manual database can also be tedious to modify.
11. A computerized database is flexible.
12. In the database approach, a single system of data is maintained that is defined once and

then is accessed by various users.
13. A fundamental characteristic of the database approach is that the database system contains

not only the database itself but also a complete definition or description of the database
structure and constraints.

14. The DBMS software must work equally well with any number of database applications.
15. DBMS access programs do not require such changes in most cases.
16. The characteristic that allows program-data independence and program-operation

' independence is called data abstraction.
17. In the database approach, the detailed structure and organization of each file are stored in

the catalog.
18. - In object-oriented and object-relational databases, the abstraction process includes not

only the data structure but also the operations on the data.
19. A view maybe a subset of the database or it may contain virtual data that is derived from

the database files but is not explicitly stored,
20. A multiuser DBMS, as its name implies, must aOow multiple users to access the database

at the same time.
21. A transaction is an executing program or process that includes one or more database

accesses, siich as reading or updating of database records.
22. In traditional software development utilizing file processing, every user group maintains

its own files for handling its data-pricing applications.
23. DBMS should have the, capability to control, this redundancy so as to prohibit

inconsistencies among the files.
24. When multiple users share a laige database, it is likely that most users will not be authorized

to access all information in the database.
25. Databases can be used to provide persistent storage for program objects and data structures.

♦

22 Self Instruaional Material

■Database Concepts
26. Tradirional database systems often suffered from the so called impedance mismatch

problem.
27; In spite of the advantages of using a DBMS, there are a few situations in which such a

system may involve unnecessary overhead costs that wouldnot be incurred in traditional
file processing.

28. Many persons are involved in the design, use, and maintenance of a large database with
hundreds of users.

29. Database designers are responsible for identifying the data to be stored in the database and
for choosing appropriate structures to represent and store this data.

30. End users are the people whose jobs require access to the database for querying, updating,
and generating reports.

31. Naive end users need to learn very little about file facilities provided by the DBMS.
32. Casual users learn only a few facilities that they may use rejjeatedly.
33. Sophisticated users try to learn most of the DBMS facilities in order to achieve their

complex requirements.
34. System analysts determine the requirements of end users, especially naive and parametric

end users, and develop specifications for canned transactions that meet these requirements.
35. DBMS system designers and implementers are persons who design and implement the

DBMS modules and mterfaces as a software package.
36. In addition to those who design, use, and administer a database, others are associated with

the design, development, and operation of the DBMS software and system environment.
These persons are typicaUy called “workers behind the scene,"

• NOTES

SELF ASSESSMENT QUESTIONS

1. Which is RDBMS?
2. Write a short note on Database Approach,
'3. What do you understand by Multiple Views of the database?
4. What is meaiit by sharing of Data and Multiuser Transaction Processing?
5. What are the advantages of using RDBMS?
6. Who is Database Administrator?
7. What work is performed by Database Designers?
8. Who are Application Programmers?

Multiple Choice Questions
1. A system where you deal with more than one databases, which are linked to each other is

called________ ;
(a) Relational Database System
(b) Database System
(c) Database

2. Data is information :
(b) polished

3. Data administrator grants you the permission to use database :
(a) True

4. A database is a collection of
(a) meaningful

5. Data in the database can be:

(c) computer output-(a) raw /

(b)' False
_____ data:
(b) not required data (c) programs

(b) updated (c) both(a) retrieved
6. The characteristic that allows program-data independence and program-operation

independence is called _______ __ :
Self Instructional Material 23(c) data abstraCTion(a) data administration (b) database

Database Systems 7- In the database approach, the detailed structure and organization of each file are stored in
the

(b) catalog
8. Traditional databcise systems often suffered from the so caUed impedance_____

- (c) no match

(a) box (c) magazine
problem:

(a) mismatch • (b) match
are the people whose jobs require access to the database :

(b) End users *
9.NOTES

(a) System Analysts (c) Programmers
determine the requirements of end users:

(b) Users
10.

(a) Programmers ,(c) System Analysts

True/False Questions
1. Database uses the table format of rows and columns to store the information.
2. A database is a logically coherent collection of data without some inherent meaning.
3. A database may be generated and maintained manually or it may be computerized.
4. Manual database systems are usually fool-proof.
5. A manual database can also be tedious to rnodify.
6. A computerized database is not flexible.
7. The DBMS software must work equally well with any number of database applications.
8. DBMS access programs do not require such changes in most cases.
9. A multiuser DBMS, as its name implies, must allow multiple users to access the database at

the same time.
. 10. DBMS should have the capability to control the redundancy so as to prohibit inconsistencies

among the files.
11. Databases cannot be used to provide persistent storage for program objects and data

structures. '
12. Traditional database systems often suffered from the so called impedance mismatch problem.
13. Many persons are involved in the design, use, and maintenance of a large database with

hundreds of users.
] 4. Naive end users need to learn very little about file facilities provided by the DBMS.
15. Casual users learn only a few facilities that they may use repeatedly.
16. Sophisticated users try to learn most of the DBMS facilities in order to achieve their

corhplex requirements.
17. DBMS system designers and implementers are persons who design and implement the

DBMS modules and interfaces as a software package.

Short Questions with Answers
1. What is a database?

Ans. Any coUection of related information grouped together as a single item is a database.

2. What are rows and columns of the database called?

Ans. Rows in a database table are called records, and columns are called fields.

3. What are the advantages of using the database?

Ans. Following are the advantages of using the database: A computerized database provides
speed; finding a phone number from among a thousand entries or putting the file in
alphabetical order takes just seconds with the database management system; A computerized
database is compact; a database vrith thousands of records can be stored on a single floppy
CD and; A computerized database is flexible; it has the ability to examine information
from a number of angles, so you can search for a phone number by name, by address, or by
pin code and then name.

24 Self Instructional Material

4. What is data abstraaion?

Ans. The characteristic that allows program-data independence and program-operation
independence is called data abstraction.

5. What is multiuser database system?

Ans. A multiuser DBMS, as its name implies, must allow multiple users to access the database at
the same time. This is essential if the data for multiple applications is to be integrated and
maintained in a single database. The DBMS must include concurrency control software to
ensure that several users trying to update the same data can do so in a controlled manner and
the result of the updates is correct.

6. How secure is the database?
Ans. A DBMS should provide a security and authorization subsystem, which the DBA uses to

create accounts and to specify account restrictions.
7. What are the main disadvantages of using RDBMS?

Ans. Disadvantages of using RDBMS are: High initial investment in hardware, software, and
training; The generality that a DBMS provides for defining and processing data; Overhead
for providing security, concurrency control, recovery, and integrity; and Additional
problems may arise if the database designers and DBA dp not properly design the database
or if the database systems applications are not implemented properly.

8. Who are Database designers?
Ans. Database designers are responsible for identifying the data to be stored in the database and

for choosing appropriate structures to represent and store this data. Where tasks are mostly '
undertaken before the database is actually implemented and populated with data, it is the

• responsibility of database designers to communicate with all prospective database users in
order to understand their requirements, and to come up with a design that meets these
requirements.

9. Who are end users?
Ans. There are several categories of end users: Casual end users occasionally access the database,

but they may need different information each time. They use a sophisticated database query
language to specify their requests and are typically middle or high-level managers or other _
occasional browsers. Naive or parametric end users make up a sizable portion of database

. end users. Their main job function revolves around constantly querying and updating the
database, using standard types of queries and updates—calldd canned transactions—that
have been carefully programmed and tested. The tasks that such users perform are varied;
Bank tellers check account balances and post withdrawals and deposits and Reservation
clerks for airlines, hotels, and car rental companies check availability for a given request
and make reservations.

10. Who are system analysts?
Ans. System analysts determine the requirements of end users, especially naive arid parametric ,

end users, and develop specifications for canned transactions that meet these requirements.
Application programmers implement these specifications as programs; then they test, debug,
document, and maintain these canned transactions. Such analysts and programmers—
commonly referred to as software engineers should be familiar with the full range of
capabilities provided by the DBMS to accomplish their tasks.

11. Who are the workers behind the scene?
Ans; Workers behind the scene are: DBMS system designers and implementers are persons who

design and implement the DBMS modules and interfaces as a software package. A DBMS
is a very complex software system that consists of many components, or modules, including
modules for implementing the catalog, processing query language, processing the interface.

Database Concepts

NOTES

Self Instruaional Material ■ 25

accessing and buffering data, controlling concurrency, and handling data recovery and
security. The DBMS must interface with other system software, such as the operating
system and compOers for various programming languages. Tool developers include persons
who design and implement tools—the software packages that facilitate database system
design and use and that help improve performance. Tools are optional packages that are
often purchased separately. They include packages for database design, performance
monitoring, natural language or graphical interfaces, prototyping, simulation, and test data
generation, In many cases, independent software vendors develop and market these tools.
Operators and maintenance personnel are the system administration personnel who are
responsible for the actual running and maintenance of the hardware and software environment
for the database system.

12. Who is database administrator?

Ans. The DataBase Administrator (DBA) is responsible for authorizing access to the database, .
for coordinating and monitoring its use, and for acquiring software and hardware resources
as needed- The DBA is accountable for problems such as breach of security or poor system
response time. In large organizations, the DBA is assisted by a staff that helps carry out
these ftmctions-

Database Systems

NOTES

ANSWERS
Multiple Choice Questions

1. a
5. c
9. b

True False Questions
1. T
5. T
9. T

• 13, T
17. T

2, a 4. a3. a
7. b• 6. c

10.- c
8. a-

2. F 3, T
7. T

11. F
15. T

4. F
6. F 8. T

12. T
16. T

10. T
14. T

'26 Self Instructional Material

CHAPTER 2

DATABASE DEVELOPMENT

Learning Objectives
After going through this chapter, you should appreciate the following:

• Development Process
• Modeling & Database Design
• Planning - ■ '
• Analysis
• Design and Implenientation
• E-R Methods and Diagrams ■
• Attributes
• Relationship
• Logical Database Design
• Normali2ation
• First Normal Form
• Second Normal Form
•. Third Normal Form
• BCNF
• Translating E-R Diagrams to Relations
• Physical Database Design
• Relationai Algebra & SQL Relational Databse Commands
• Data types
• Create Table
• Drop Table
• Alter Table
• 'Insert Into • '
• Delete From
• Update
• General Query Syntax (Select)
• Create View

"• Drop View
• Set Qperators - Union, Intersect, Minus
• Functions
• Group Functions
• Join •
• Sub queries.

/

Database Systems DEVELOPMENT PROCESS

The process of doing database design generally consists of a number of steps which
will be carried out by the database designer. Not aU of these steps will be necessary in
all cases. Usually, the designer must;

• Determine the data- to be stored in the database
• Determine the relationships between the different data elements
• Superimpose a logical structure upon the data on the basis of these

relationships.
Within the relational model the final step can generally be broken down into two ,

. further steps, that of determining the grouping of information within the system,
generally determining what are the basic objects about which information is being
stored, and then determining the relationships between these groups of information.,
or objeCTs. This step is not necessary with an Object database.
The tree structure .of data may enforce a hierarchical model organization, with a
parent-child relationship table. An Object database will simply use a one-tq-many
relationship between instances of an object class. It also introduces the concept of a
hierarchical relationship between object classes, termed inheritance

NOTES

MODELING

In computer science, data modeling is the process of creating a data model by applying
a data model theory to create a data model instance. A data model theory is a formal
data mode! description. See database mode! for a list of current data model theories.
Managing large quantities of structured and unstructured data is a primary function
of information systems. Data models describe structured data for storage in data
management systems such as relational databases. They typically do not describe
unstructured data, such as word processing documents, email messages, pictures,
digital audio, and video.

Types of Data Model
A data model instance may be one of three kinds (according to ANSI in 1975[1]):

1. A conceptual schema (data model) describes the semantics of a domain,
being the scope of the model. For example, it may be a model of the interest

‘ area of an organization or industry. This consists of entity classes (representing
kinds of things of significance in the domain) and relationships (assertions
about associations between pairs of entity classes). A conceptual schema
specifies the kinds of facts or propositions that can be expressed using the
model. In that sense, it defines the allowed expressions in an artificial ’language'
with a scope that is limited by the scope of the model.

2. A logical schema (data model) describes the semantics, as represented by a
particular data ratinipulation technology. This consists of descriptions of tables
and columns, object oriented classes, and XML tags, among other things.

3. A physical schema (data model) describes the physical means by which data
are stored. This is concerned with partitions, CPUs, tablespaces, and the like,

\

28 'Self Instructional Material

The significance of this approach, according to ANSI, is that it allows the three
perspectives to be relatively independent of each other. Storage technolo^ can change
without affecting either the logical or the conceptual model. The table/coluran
structure can change without (necessarily) affecting the conceptual model. In each
case, of course, the structures must remain consistent with the other model. The
table/column structure may be different from a direct translation of the entity classes
and attributes, but it must ultimately carry out the objectives of the conceptual entity
class structure. Early phases of many software.development projects emphasize the
design.of a conceptual data model. Such a design can be detailed into a logical data
model. In later stages, this model may be translated into physical data model. However,
it is also possible to implement a conceptual model directly.
A contextual data model (list) identifies entity classes (representing things of
significance to the organization).,
Conceptual Schema

A conceptual data model (semantics) defines the meaning of the things in an
organization. This consists relationships (assertions about associations between pairs
of entity classes).
Logical Schema

Logical schema | logical data model (schema) describes the logic representation of
the properties without regard to a particular data manipulation technology. This consists
of descriptions of the attributes (role a data element plays in relation to the thing
(entity) it represents.

Physical Schema
Physical schema | physical data model (blueprint) describes the physical means by
which data are stored. This is concerned with partitions, CPUs, tablespaces, and the
like.
A data definition (configuration) This is the ^tual language coding of the database
schema in the chosen development platform,
A data instantiation holds the values of properties applied to the data in the schema.
The significance of this approach is that it allows the six perspectives to be relatively
independent of each other and have different contributors, audiences and purposes.
In each case, of course, the structures must remain consistent with the other model
instances although the details change. The table/column structure may be different
from a direct translation of the entity classes, relationships and attributes, but it must
ultimately carry out the objectives of the contextual entity class structure and
conceptual relationship structure. Each perspective a separate and distinct vantage
point of the data: his view is not a methodology but rather a way- of classifying the
parts, however development projeas and software tools often proceed from Contextual
list, to conceptual data model, followed by the Logical schema | logical data model.
In later stages when the data platform is known (whether it be database software or
filing cabinets), this model may be translated into a Physical schema I physical data
model followed by the data definition. When the database actually stores values and
is operational data manipulation can take place.

Database Development

NOTES

Self Instructional Material 29

Database Systems Data structure
A data model describes the structure of the data within a given domain and, by
implication, the underlying structure of that domain itself. This means that a data
model in fact specifies a dedicated grammar for a dedicated artificial language for
that domain, .
A data model represents classes of entities (kinds of things) about which a company
wishes to hold information, the attributes of that information, and relationships among
those entities and (often implicit) relationships among those attributes,' The model
describes the organization of the data to some extent irrespective of how data-might
be represented in a computer system.
The entities represented by a data model can be the tangible entities, but models that
include such concrete entity classes tend to change over time. Robust data models
often identify abstractions of such entities. For example, a data model might include
an entity class called "Person”, representing all the people who interact with an
organization. Such an abstract entity class is typically more appropriate than ones
called "'Vendor" or "Employee”, which identify specific roles played by those people.
V/hen designing a data model it is useful[citation needed] to make a distinction
between transaction data and reference data, where the transaction data refers to one
or more entities of reference data.
A proper conceptual data model describes the semantics of a subject area. It is a
colleCTion of assertions about the nature of the information that is used by one or
more organizations. Proper entity classes are named with natural language words
instead of technical jargon. Likewise, properly named relationships form concrete
assertions about the subject area.
There are several versions of this. For example, a relationship called "is composed
of’ that is defined to operate on entity classes ORDER and LINE ITEM forms the
following concrete assertion definition: Each ORDER "is composed of one or more
LINE ITEMS.’- A more rigorous approach is to force all relationship names to be
prepositions, gerunds, or participles, with verb's being simply "must be” or ’’may be".
This way, both cardinality and optionality can be handled semantically. This would
mean that the relationship just.cited would read in one direction, "Each ORDER ,
may be composed of one or more LINE ITEMS” and in the other "Each LINE
ITEM must be part of one and only one ORDER.”
Note that this illustrates that often generic terms, such as 'is composed of, are defined
to be limited in their use for a relationship between specific kinds of things, such as
an order and an order line. This constraint is eliminated in the generic data modeling
methodologies.

Generic data model
Generic,data models are generalizations of conventional data models. They define
standardised general relation types, together with the kinds of things that may be
related by such a relation type. This is similar to the definition of a natural language.
For example, a generic data model may define relation types such as a 'classification
relation’, being a binary relation between an individual thing and a kind of thing (a
class) and a 'part-whole relation’, being a binary relation between two things, one with
the role of part, the other with the role of whole, regardless the kind of things that are

NOTES

30 Self instructional Material

related. Given an extensible list of classes, this allows the classification of any
individual thing and to specify part-whole relations for any individucil object. By
standardisation of an extensible list of relation types, a generic data model enables
the expression of an unlimited number of kinds of facts and will approach the
capabilities of natural languages. Conventional data models, on the other hand, have
a fixed and limited domain scope, because the instantiation (usage) of such a model
only allows expressions of kinds of facts that are predefined in the model.

Generic data models are developed as an approach to solve some shortcomings of
conventional data models. For example, different modelers usually produce different
conventional data models of the same domain. This can lead to difficulty in bringing
the models of different people together and is an obstacle for data exchange and data
integration. Invariably, however, this difference is attributable to different levels of
abstraaiori in the models and differences in the kinds of facts that can be instantiated
(the semantic expression capabilities of the models). The modelers need to
communicate and agree on certain elements which are to be rendered more concretely,
in order to make the differences less significant.

There are generic patterns that can be used to advantage for modeling business. These
include entity types for PARTY (with included PERSON eind ORGANIZATION),
PRODUCT TYPE, PRODUCT INSTANCE, ACTIVITY TYPE, ACTIVITY
INSTANCE, CONTRACT, GEOGRAPHIC AREA, and SITE. A model which
explicitly includes versions of these entity classes will be both, reasonably robust and
reasonably easy to understand.

More abstract models are suitable for genera! purpose tools, and consist of variations
on THING and THING TYPE, with all actual data being instances of these. Such
abstract models are on one hand more difficult to manage, since they are not very
expressive of real world things, but on the other hand they have a much wider
applicability, especially if they are accompanied by a standardised diaionary. More
concrete and specific data models will risk having to change as the scope or environment
changes.

One approach to generic data modeling has the following characteristics:

1. A generic data model shall consist of generic entity types, such as 'individual
thing’, 'class', 'relationship', and possibly a number of their subtypes. -

2. Every individual thing is an instance of a generic entity called 'individual
thing' or one of its.subtypes.

3. Every individual thing is explicitly classified by a kind of thing ('class') using
an explicit classification relationship.

The classes used for that classification are separately defined as standard instances of
the entity 'class' or one of its subtypes, such as 'class of relationship'. These standard
classes are usually called 'reference data'. This means that domain specific knowledge
is captured in those standard instances and not as entity types. For example, concepts
such as car, wheel, building, ship, and also temperature, length, etc. are standard
instances. But also standard types of relationship, such as 'is composed of and 'is
involved in' can be defined as standard instances.

. This way of modeling allows the addition of standard classes and standard relation
types as data (instances), which makes the data model flexible and prevents data
mode! changes when the scope of the application changes.

Database Development

NOTES

Self instructional Material 31

Database Systems • A generic data model obeys the following rules:
■ Candidate attributes cire treated as representing relationships to other entity

types.
• Entity types are represented, and are named after, the underlying nature of a

thing, not the role it plays in a particular context. Entity types are chosen.
• Entities have a local identifier within a database or exchange file. These should

be artificial and managed to be unique. Relationships are not used as part of
the local identifier.

• Activities, relationships and event-effects are represented by entity types (not
attributes).

• Entity types are part of a sub-type/super-type hierarchy of entity types, in
• order to define a universal context for the model. As types of relationships
are also entity types, they are also arranged in a sub-type/super-type hierarchy
of types of relationship.

■ Types of relationships are defined on a high (generic) level, being the highest
level where the type of relationship is still valid. For example, a composition
relationship (indicated by the phrase: 'is composed of) is defined as a
relationship between an 'individual thing’ and'another 'individual thing' (and
not just between e.g. an order and an order line). This generic level means that
the type of relation may in principle be applied between any individual thing
and any other individual thing. Additional constraints are defined in the
'reference data', being standard instances of relationships between kinds of
things.

Data organization
Another kind of data model describes how to organize data using a database
management system or other data management technology. It describes, for example,
relational tables and columns or object-oriented classes and attributes. Such a data
model is sometimes referred to as the physical data model, but in the original ANSI
three schema architecture, it is called "logical". In that architecture, the physical model
describes the storage media (cylinders, tracks, and tablespaces). IdeaUy, this model is
derived from the more conceptual data model described above. It may differ, however,
to account for constraints like processing capacity and usage patterns.
While data analysis is a common term for data modeling, the activity actually has
more in common with the ideas and methods of synthesis (inferring general concepts
from particular instances) than it does with analysis (identifying component concepts
from more -general, ones). {Presumably we call ourselves systems analysts because
no one can say systems synthesists.} Data modeling strives to bring the data structures
of interest together into a cohesive, inseparable, whole by eliminating unnecessary
data redundancies and by relating data structures with relationships.
A different approach is through the use of adaptive systems such as artificial neural
networks that can autonomously create implicit models of data.

NOTES

DATABASE DESIGN

Database design is the process of producing a detailed data model of a database. This
32 Self Instructional Material

logical data model contains all the needed logiccil and physical design choices and
physical storage parameters needed to generate a design in a Data Definition Language,
which can then be used to create a database. A fully attributed data model contains
detailed attributes for each entity.

The term database design can be used to describe many different parts of the design
of an overall database system. Principally, and most correctly, it can be thought df as
the logical design of the base data structures used to store the data. In the relational
model these are the tables and views. In an Object database the entities and
relationships map directly to object classes and named relationships. However, the
term database design could also be used to apply to the overall process of designing,
not just the base data structures, but also the forms and'queries used as part of the
overall database application within the Database Management System or DBMS.

Design process
This was discussed in the first paragraph of the chapter.

Determining data to be stored

In a majority of cases, the person who is doing the design of a database is a person
with expertise in the area of database design, rather than expertise in the domain
from which the data to be stored is drawn e.g. financial information, biological
information etc. Therefore the data to be stored in'the database must be determined
in cooperation with a person who does have expertise in that domain, and who is
aware of what data must be stored within the system.

This process is one which is generally considered part of requirements analysis, and
requires skill on the part,of the database designer to elicit the needed information
fi-om those with the domain knowledge. This is because those with the necessary
domain knowledge frequendy cannot express clearly what their system requirements ■
for the database are as they are unaccustomed to thinking in terms of the discrete
data elements which must be stored. Data rn be stored can be determined, by
Requirement Specification.

Conceptual schema

Once a database designer is aware.of the data which is to be stored within the database,
they must then determine how the various pieces of that data relate to one another.
When performing this step, the designer is generally looking out for the dependencies
in the data, where one piece of information is dependent upon another, i.e., when one
piece of information changes, the other will also. For exarriple, in a list of names and
addresses, assuming the normal situation where two people can have the same address,
but one person ceinnot have, two addresses, the name is dependent upon the address,
because if the address is different then the associated name is different too. However,
the inverse is not necessarily true, i.e, when the name changes address may be the

. same.

A common misconception is that the relational model is so called because of the
stating of relationships between data elements therein. This is not true. The relational
model is so named such because it is based upon the mathematical structures known
as relations.

Database Development

NOTES

Self Instructional Material 33

Database System Logically structuring data
Once the relationships and dependencies amongst the various pieces of information
have been determined, it is possible to arrange the data into a logical structure which
can then be mapped into the storage objects supported by the database management
system. In the case of relational databases the storage objects are tables which store
data in rows and columns.
Each table may represent an implementation of either a logical object or a relationship
joining one or more instances of one or more logical objects. Relationships between
tables may then be stored as links connecting child tables with parents. Since complex
logical relationships are .themselves .tables they will probably have links to more than
one parent.
In an Object database the storage objects correspond directly to the objects used by
the Object-oriented programming language used to write the applications that will
manage and access the data. The relationships may be defined as attributes of the
objea classes involved or as methods that operate on the objea classes.

Physical database design
The physical design of the database specifies the physical configuration of the database
on the storage media. This includes detailed specification of data elements, data
types, indexing options, and other parameters residing in the DBMS data diaionary.

NOTES

PLANNING

Planning, in organizations and public policy is both the organizational process of
creating and maintaining a plan; and the psychological process of thinking about the
activities required to create a desired future on some scale. As such, it is a fundamental
property of intelligent behavior. This thought process is essential to the creation and
refinement of a plan, or integration of it with other plans, that is, it combines forecasting
of developments with the preparation of scenarios of how to react to them.
The term is also used to describe the formal procedures used in such an endeavor,
such as the creation of documents, diagrams, or meetings to discuss the important
issues to be addressed, the objectives to be met,-and the strategy to be followed.
Beyond this, planning has a different meaning depending on the political or economic
context in which it is used.
Two attitudes to planning need to be held in tension: on the one, hand we need to be
prepared for what may lie ahead, which may mean contingencies and flexible
processes. On the other hand, our future is shaped by consequences of our own
planning and actions.

What should a plan be?
A plan should be a realistic view of the expectations. Depending upon the'activities,
a plan can be long range, intermediate range or short range. It is the framework within
which it must operate. For management seeking external support, the plan is the
most important document and key to growth. Preparation of a comprehensive plan
will not guarantee success, but lack of a sound plan will almost certainly ensure
failure. ■

34 Self Instructional Material

Purpose of Plan
Just as no two organizations are alike, so also their plans. It is therefore important to
prepare a plan keeping in view the necessities of the enterprise. A plan is an important
aspect of business. It serves the following three critical functions: Helps management
to clarity, focus, and research their business’s or project's development and prospects.
Provides a consir^cred and logical framework within which a business can develop
and pursue business strategies over the next three to five years. Offers a benchmark
against which actual performance can be meeisured and reviewed.

Importance of the planning Process
A plan can play a vital role in helping to avoid mistakes or recognize hidden
opportunities. Preparing a satisfactory plan of the organization is essential. The
planning process enables management to understand more clearly what they want to
achieve, and how and when they can do it.
A well-prepared business plan demonstrates that the managers know the business
and that they have thought through its development in terms of products, management,
finances, and most importantly, markets and competition.
Planning helps in forecasting the future, makes the future visible to some extent. It
bridges between where we are and where we want to go. Planning is looking ahead.

Database Development

NOTES

ANALYSIS

The Analysis phase performs three tasks:
1. It determines the point in the log at which to start the Redo pass.
2. It determines pages in the buffer pool that were dirty at the time of the crash.
3. It identifies transactions that were active at the time of the crash and must be

undone.
Analysis begin by examining the most recent begin_checking log record and initializing
the dirty page table and transaction table to the copies of those structures in the next
end_checkpoint record. Thus, these tables are initialized to the set of dirty pages and
active transactions at the time of the checkpoint.
Analysis then scans the log in the forward direction until it reaches the end of the log.

• If an end log record for a transaction T is encountered, T is removed from the
transaction table because it is no longer active.

• If a log record other than an end record for a transaction T is encountered, an
entry for T is added to the transaction table if it is not already there. Further,
the entry for T is modified.
1. The lastLSN field is set to the LSN of this log record.
2. If the log record is a commit record, the status is set to C, otherwise it is set

• to U (indicating that it is to be undone).
• If a redoable log record affecting page P is encountered, and P is not in the

dirty page table, an entry is inserted into this table with page id P and recLSN
equal to the LSN.of this reloadable log record. This LSN identifies the oldest
change affeaing page P that may not have been written to the disk. Self Instructional Material 35

At the the end of the Analysis phase, the transaction table contains an accurate list
. of all transactions that,were active at the time of the crash—this is the.set of

transactions with status U. The dirty page table includes all pages that were dirty at
the time of the crash but may also contain some pages that were written to disk. If an
end_write log record were written at the completion of each write operation, the
dirty page table constructed during Analysis could be made more accurate.

Database Systems

NOTES

DESIGN AND IMPLEMENTATION

For this refer to Database Design refere to’earlier pages of the chapter.

E-R METHODS AND DIAGRAMS

An entity-relationship (ER) diagram is a specialized graphic that illustrates the
interrelationships between entities in a database. ER diagrams often use symbols to
represent three different types of information. Boxes arc commonly used to represent
entities. Diamonds are normally used to represent relationships and ovals are used to
represent attributes.
An Entity-Relationship Model (ERM) in software engineering's an abstract and
conceptual representation of data. Entity-relationship modcling'is a relational schema

• f^=Sc CpoUili^i- Hfgton ^— Account }— ChtnwifT

IlmRnlDia Iteminttnttfilu

Or^

HUP^rtt
Crrtp

ItrtiBtttffwn— - Creep

C JifiKt

36 Se// Insmtetional Material

database modeling method, used to produce a type of conceptual schema or semantic
data model of a system, often a relational database, and its requirements in a top-
down fashion.

Diagrams created using this process are called entity-relationship diagrams, or ER
diagrams or ERDs for short.

Overview
The fifst stage of information system design uses these models during the requirements
analysts to describe information needs or the type of information that is to be stored
in a database. The data modeling technique can be used to describe any ontology (i.e.

. an overview and classifications of used terms and their relationships) for a certain
universe of discourse (i.e. area of interest). In the case of the design of an information
system that is based on a database, the conceprual data model is, at a later stage
(usually called logical design), mapped to a logical data model, such as the relational
model; this in turn is mapped to a physicarmodcl during physical design. Note that
sometimes, both of these phases are referred to as “physical design”.
There arc a number of conventions for entity-relationship diagrams (ERDs). The
classical notation is described in the remainder of this article, and mainly relates to
conceptual modeling. There arc a range of notations more typically employed in
logical and physical database design, such as IDEFIX.

Connection
An entity may be defined as a thing which is recognized as being capable of an
independent existence and which can be uniquely identified. An entity is an abstraction
from the complexities of some
domain. When we speak of an
entity we normally speak of some
aspect of the real world which can
be distinguished from other aspeas
of the real world.
An entity may be a physical object such as a house or a car,- an event such as a house
sale or a car service, or a concept such as a
customer transaction or order. Although the term
entity is the one most commonly used, following
Chen we should really distinguish between an
entity and an entity-type. An entity-type is a
category. An entity, strictly speaking, is an instance of a given entity-type There are
usually many instances of an entity-type'. Because
the term entity-type is somewhat cumbersome,
most people tend to use the term entity as a
synonym for this term.
Entities can be thought of as nouns. Examples: a
computer, an employee, a song, a mathematical
theorem. Entities are represented as rectangles.
A relationship captures how two or more entities are related to
one another. Relationships can be thought of as verbs, linking
two or more nouns. Examples: an owns relationship between a

Database Development

NOTES

performs songartist

Two reteted enUies

employee

An entdy wSh an attribute

. A relatlonstlip wth an attribute

Primary key

Self Instructional Material 37

company and a computer, a supervises relationship between an employee and a
deparhnent, a performs relationship between an artist and a song, _a proved relationship •
between a mathematician and a theorem. Relationships are represented as diamonds,
connected by lines to each of the entities in the relationship.

Entities and relationships-can both have attributes. Examples; an employee entity
might have a Social Security Number (SSN) attribute; the proved relationship may •
have a date attribute. Attributes are represented as ellipses connected to their owning
entity sets by a line.

Every entity (unless it is a weak entity) must have a minimal set of uniquely identifying
attributes, which is called the entity’s primary key.

Entity-relationship diagrams don’t show single entities or single instances of relations.
Rather, they show entity sets and relationship sets. Example: a particular song is tin .
entity. The collection of all songs in a database is an entity set. The eaten relationship
between a child and her lunch is a single relationship. The set of all such child-lunch
relationships in a database is a relationship set.

Lines are drawn between entity sets and the relationship sets they are involved in. If
all entities in an entity set must participate in the relationship set, a thick or double
line is .drawn. This is called a participation constraint. If each entity of the entity set
can participate in at most one relationship in the relationship set, an arrow is drawn
from the entity set to the relationship set. This is called a key constraint. To indicate
that each entity in the entity set is involved in exactly one relationship, a thick arrow
is drawn.

Database Systems

NOTES

ER diagramming tools

There are many ER diagramming tools. Some of the proprietary ER diagramming
tools are Avolution, ConceptDraw, ER/Studio, ERwin, DeZign for Databases, MEGA
International, OmniGraffle, Oracle Designer, PowerDesigner, Rational Rose,
SmartDraw, Sparx Enterprise ArchiteCT, SQLyog, Toad Data Modeler, Microsoft Visio,
and Visual Paradigm. A freeware ER tool that ctui generate database and application
layer code (webservices) is the RISE Editor.

Some free software ER diagramming tools that can interpret and generate ER models,
SQL and do database analysis are StarUML, MySQL Workbench, and SchemaSpy.
Some free software diagram tools which can’t create ER diagrams but just draw the
shapes without having-any knowledge of what they mean or generating SQL are
Kivio, Dia. Although DIA diagrams can be translated with tedia2sql.

E-R Diagram Example

Example 1

A publishing company produces scientific books on various subjects. The books are
written by authors who specialize in one particular subject. The company employs
editors who, not necessarily being specialists in a particular area, each take sole
responsibility for editing one or more publications. A publication covers essentially
one of the specialist subjects and is normally written by a single author. When writing
a particular book, each author works with on editor, but may submit another work for
publication to be supervised by other editors. To improve their competitiveness, the
company tries to employ a variety of authors, more than one author being a specialist
in a particular subject.

38 Self Instructional Material

Database DevelopmentExample 2

A General Hospital consists of a number of specialized wards (such as Maternity,
Paediatry, Oncology, etc). Each ward hosts a number of patients, who were admitted
on the recommendation of their own GP and confirmed by a consultant employed
by the Hospital.

On admission,, the personal details of every patient are recorded. A separate register
is to be held to store the information of the tests undertaken and the results of a
prescribed treatment, A number of tests may be conducted for each patient. Each
patient is assigned to one leading consultant but may be examined by another doctor,
if required. Doctors are specialists in some brcinch of medicine and may be leading
consultants for a number of patients, not necessarily firom the same ward.

Example 3

A database is to be designed for a Car Rental Co. (CRC). The information required
includes a description of cars, subcontractors (i.e. garages), company expenditures,
company revenues and customers. Cars are to be described by such data as: make,
model, year of production, engine size, fuel type, number of passengers, registration
number, purchase price, purchase date, rent price and insurance details. It is the
company policy not to keep any car for a period exceeding one year.

All major repairs and maintenance are done by subcontraaors (i.e. fi-cinchised garages),
with whom CRC has long-term agreements. Therefore the data about garages to be
kept in the database includes garage names, addressees, range of services and the like.
Some garages require payments immediately after a repair has been made; with others
CRC has made arrangements for credit facilities. Company expenditures are to be
registered for all outgoings connected with purchases, repairs, maintenance, insurance
etc. Similarly the cash inflow coming from all sources - car hire, car sales, insurance
claims • must be kept of file. . ^

CRC maintains a reasonably stable client base. For this privileged category of customers
special credit card facilities are provided. These customers may also book in advance
a particular car. These reservations can be made for any period of time up to one
month.

Casual customers must pay a deposit for an estimated time of rental, unless they
wish to pay by credit card. All major credit cards care accepted. Personal details
(such as name, address, telephone number, driving licence, number) about each
customer are kept in the database.

Example 4

A database is to be designed for a college to monitor students’ progress throughout
their course of study. The students are reading for a degree (such as BA, BA(Hons)
MSc, etc) within the framework of the modular system. The college provides a number
of module, each being characterised by its code , title, credit value, module leader,
teaching staff and the department they come fi-om.

A module is co-ordinated by a module leader who shares teaching duties with one or
more lecturers. A lecturer may teach (and be a module leader for) more than one
module. Students are free to choose any module they wish but the following rules
must be observed: some modules require pre-requisites modules and some degree
programmes have compulsory modules. The database is also to contain some

NOTES

V

Self Instructional Material 39

Database Systems information about students including their numbers, names, addresses, degrees they
read for, and their past performance (i.e. modules taken and extimination results).

Example 5
A relational database is to be designed for a medium-sized Company dealing with
industrial applications of computers. The Company delivers various products to its
customers ranging from a single application program through to complete installation
of hardware with customized software. The Company employs various experts,
consultants and supporting staff. All personnel are employed on long-term basis, i.e.
there are no short-term or temporary staff.
Although the Company is somehow structured for administrative purposes (that is, it
is divided into deptirtments headed by department managers) all projects are carried
out in an inter-disciplinary way. For each project a project team is selected, grouping
employees from different departments, and a Project Manager (also an employee of
the Company) is appointed who is entirely and exclusively responsible for the control
of the project, quite independently of the Company’s hierarchy. The following is a
brief statement of some facts and policies adopted by the Company.
There are a variety of methods by which data is merged onto a network, a concept
referred to as the media access method. The media access method used, depends on
the way in which a particular technology such as Ethernet or Token Ring
communicates. This section will.look at the three most popular methods - contention-
based, token passing, and polling.

Contention
Contention-based media access describes a way of getting data on to the network
whereby systems ‘contend for’ or share the media. On a contention-based network,
systems can only transmit when the media is free and clear of signals. In this way,
devices listen to the media, and if no other system is transmitting, they can go ahead .
and send data. In cases where more than one system finds the network free and
attempts to transmit, a data collision will occur, and systems will need to retransmit.
On busy networks, the number of collisions can quickly get very high, adversely
affecting performance. Remember that in this scenario, only a single system truly has
access to the media at any given time, even though multiple systems may have data
to send.
The best example of a contention-based network technology is Ethernet, which uses
a scheme called Carrier Sense Multiple Access with Collision Detection (CSMA/
CD). The fact that Ethernet is contention-based is a reason why many people thought
that the technology would never be a good solution for large-networks. As time

■ passed, different techniques were developed to provide a way for contention-based
networks to scale to larger sizes. A great example is the use of switches to segment a
network,- thus significantly reducing (or even eliminating) collisions.

Token Passing
I

A more orderly scheme for moving data between network systems is found when
token passing is used. In token-passing media access environments, a special frame
referred to as a token repeatedly circles the network, passed from system to system.
If a-system has control of the token, it can transmit data. If it doesn’t, it must wait
for the token to become available again.

NOTES

40 Self Instructional Material

While this might sound like a very slow way to go about passing data, it’s important
to understand that the token moves around the network at incredibly high speeds.
Understand also that because this method isn’t contention based, there won’t be any
collisions, further increasing performance
Examples of technologies that use token-passing media access include Token Ring
and Fiber Distributed Data Interface (FDDI), both of which will be described in
detail later in this chapter. - .

Database Development

NOTES

Polling
While contention and -token-passing methods are by far the most popular ways in
which PCs'access 'LAN media, some technologies rely on a technique called polling.
Polling is a deterministic way of allowing systems access to the network while also
avoiding collisions. When used, a device referred to as the master polls systems to
see if they have data to, transmit.
In this way, polling is similar to token passing, except that the central device controls

. the order in which systems are contacted. The downside pf polling is that when the
master device fails, the network fails. Most popular in ratunframe and minicomputer
environments, polling is a technique used in protocols such as Synchronous Data
Link Control (SDLC).
The entity-relationship data model (E R Model) grew out of exercise of using
commercially available DBMSs to model application databases. Earlier commercial
systems were based on the hierarchical and network approach. The entity-relationship
model is a generalization of these models. It allows the representation of explicit
constraints as well as relationships.
Even though the E-R model has some means of describing the physical database
model, it is basically useful in the design and communicarton of the logical database
model. In this model, objects of similar structures are collected into an entity set.
The relationship between enrtty sets is represented by a named E-R relationship and
is 1:1, 1:M and M:N, mapping from one entity set to another, The database structure
employing the E-R model is usually shown using the entity-relationship (E-R) diagrams.
Conceptoal modeling is a very important phase in designing a successful database
application. Generally, the term database application refers to a particular database
and the associated programs that implement the database queries and updates. For
example, a BANK database application that keeps track of customer accounts would
include programs that implement database updates corresponding to customers
making deposits and withdrawals.
These programs provide xiser-fri'endly graphical .user interfaces (GUIs) utilizing forms
and menus for the end users of the application—the bank tellers, in this example.
Hence, part of the database application will require the design, implementation, and
testing of these application programs. Traditionally, the design and testing of
application programs has been considered to be more in the realm of the software
engineering domain than in the database domain.
As database design methodologies include more of the concepts for specifying
operations on database objects, and as software engineering methodologies specify in
more detail the structure of the databases that software programs will use and access,
it is clear that these activities are strongly related.

Self Instructional Material 41

Traditionally, the design and testing of application programs has been
considered to, be more in the realm of the software engineering domain than in

the database domain.

Database Systems

ATTRIBUTES AND ENTETIESNOTES

The basic object that the ER model represents is an entity, which is a “thing” in the
real world with an independent existence. An entity may be an object with a physical
existence (for example, a particular person, car, house, or employee) or it may be an
object with a conceptual existence (for example, a company,- a job, or'a university
course). Each entity has attributes—the particular properties that describes it. For
example, an employee entity may be described by the employee’s name, age, address,
salary, and job. A particular entity will have a value for each of its attributes. The
attribute values that describe each entity become a major part of the data stored in
the database. •

Each entity has attributes—the particular properties that describes it.

The following figure shows two entities and the values of their attributes. The employee
entity e, has four attributes: Name, Address, Age, and HomePhone; their values are
“Sachin,” “Mumbai,” “34,” and “Q22-78n85Af respectively. The company entity -
c, has three attributes: Name,'Headquarters, and President; their values are “IMG,”
“Mumbai,” and “Sunil,” respectively.

Name: Sachin Name: IMG .

Headquarters: MumbaiAddress: Mumbai

President: SunilAge: 34

HomePhone: 022-7817854

Several types of attributes occur in the ER model: simple versus composite, single­
valued versus multivalued, and stored versus derived. Let us first define these attribute
types and illustrate their use via examples. We will then introduce the concept of a
null value for an attribute.
Composite versus Simple (Atomic) Attributes
Composite attributes can be divided into smaller subparts, which represent more
basic attributes with independent iheanings. For example, the Address attribute of
the employee entity shown in the following figure, can be subdivided into
StreetAddress, City, State, and Pin, with the values “2396 Dalai Street,” “Mumbai,”
“Maharashtra,” and “400001.” Attributes that are not divisible are called simple or
atomic attributes.
Composite attributes can form a hierarchy; for example, StreetAddress can be further
subdivided into three simple attributes: Number, Street, and ApartmentNumber, in

42' Self Instructional Materia!

the figure shown. The value of a composite attribute is the concatenation of tile
values of its constituent simple attributes.

Database Development

NOTES

Number Street ApartmentNumber

Composite attributes are useful to model situations in which a user sometimes refers
to the composite attribute as a unit but at other times refers specifically to its
components. If the composite attribute is referenced only as a whole, there is no '
need to subdivide it into component attributes. For example, if there is no need to
refer to the individual-components of an address (pin code, street, and so on), then
the whole address can be designated as a simple attribute.

Single-Valued versus Multivalued Attributes

Most attributes have a single value for a particular entity; such attributes are called
single-valued. For example, Age is a single-valued attribute of a person. In some
cases an attribute can have a set of values for the same entity—for example, a Colours
attribute for a car, or a CollegeDegrees attribute for a person. Cars with one colour
have a single value, whereas two-tone cars have two values for Colours.

Similarly, one person may not have a college degree, another person may have one,
-and a third person may have two or more degrees; therefore, different persons can
■have different numbers of values for'the CollegeDegrees attribute. Such attributes •
-are called multivalued. A multivalued attribute may have lower and upper bounds to.

ronstrain the number of values allowed for each individual entity. For example, the
Colours attribute of a car may have between one and three values, if we assume that

^ car can have at most three colours.

A multivalued attribute may have lower and upper bounds to constrain the
number of values allowed for each individual-entity.

^ored versus Derived Attributes

n some cases, two (or more) attribute values are related—for example, the Age and
MrthDate attributes of a person. For a particular person entity, the value of Age can
•e determined from the current (today’s) date and the value of that person's BirthDate.
'he Age attribute is hence called a derived attribute and is said to be derivable from

^e BirthDate attribute, which is called a stored attribute.

ome attribute values can be derived from related entities; for example, an attribute
—JumberOfEmployees of a department entity can be derived by counting the number

f employees related to (working for) that department.
Self Instruaianal Material 43

Database Systems Null Values
In some cases a particular entity may not have an applicable value for an attribute.
For example, the ApartmentNumber attribute of an address applies only to addresses
that are in apartment buildings and not to other types of residences, such as single­
family homes. Similarly a CoUegeDegrees attribute applies only to persons with college
degrees, For such situations, a special value called null is created.
An address of a single-family home would have null for its ApartmentNumber
attribute, and a person with no college degree would have null for CoUegeDegrees.
Null can also be used if we do not know the value of an attribute for a particular
entity—for example, if we do not know the home phone of “Sachin”. The meaning
of the former type of null is not applicable, whereas the meaning of the latter is
unknown. The “unknown" category of null can be further classified into two cases.
The first case arises when it is known that the attribute value exists but is missing—
for example, if the Heighfattribute of a person is listed as null. The second case
arises when it is not known whether the attribute value exists—for example, if the
HoraePhone attribute of a person is null.

Null can also be used if we do not know the value of an attribute for a
particular entity.

NOTES

Complex Attributes
Notice that composite and multivalued attributes can be nested in an arbitrary way.
We can represent arbitrary nesting by grouping components of a composite attribute
between parentheses () and separating the components with commas, and by displaying
multivalued attributes between braces { }. Such attributes are called complex
attributes.
For example, if a person can have more than one residence and each residence can
have multiple phones, an attribute AddressPhone for a person can be specified as
shown below.

{AddressPhone({phone(AreaCode,PhoneNumber)},
{Address(StreetAddress(Number,Street,ApartmentNumber),

City,State,Zip))} i
RELATIONSHIP

The quest for better data management has led to several different ways of solving the
file system’s critical shortcomings. The resulting theoretical database constructs are
represented by various database models. A database model is a collection of logica.
constructs used to represent the data structure and the data relationships found withir
the database. Database models can be grouped into two categories; conceptual model
and implementation models. -

- The conceptual model focuses on the logical nature of the data representation..
Therefore, the conceptual model is concerned with what is represented in
the database, rather than with how it is represented.

44 Self Instruaional Material

- In contrast to the conceptual model, an implementation model places the
emphasis on how the data are represented in the database or on how the
data structures are implemented to represent what is modeled.
Implementation models include the hierarchical database model, the network
database model, the relational database model and the object-oriented
database model.

Database Development

NOTES

Conceptual models use three types of relationship to describe associations among
data; one-to-many, many-to-many and one-to-one. Database designers usually use
the shorthand notations 1:M, M:N, and 1:1 for them, respectively.
The following examples illustrate the distinctions among the three.
One-to-many relationship

A painter paints many different paintings, but each one of them is painted by only
that painter. Thus the painter (the “one”) is related to the paintings (the “many”).
Therefore, database designers label the relationship “PAINTER” paints “PAINTING”
as 1:M. Similarly, a customer account (the “one”) might contain many invoices, but
those invoices (the “many”) are related to only a single customer account; The
“CUSTOMER" generates “INVOICE” relationship would also be labeled I;M.
Many-to-many relationship

An employee might learn many job skills and each job skill might be learned by
many employees. Database designers label the relationship “EMPLOYEE learns
SKILL” as M:N. Similarly, a student can take many courses and each course can be
taken by many students, thus yielding the M.N relationship label for the relationship
expressed by “STUDENT takes COURSE.”
One-to-one relationship

A retail company’s management structure may require that each one of its stores be
managed by a single employee. In turn, each store manager - who is an employee -
only manages a single store. Therefore, the relationship “EMPLOYEE manages
STORE” is labeled 1:1. ,
Database designers use a conceptual database model as the basis for the database
blueprint.
Because each database model is evolved from its predecessors, we will examine all
the different models briefly in this section. Experience has taught us that you will
gain a better understanding of current database design, implementation and
management issues once you have introduced to the rudiments of each database
model's conceptual framework. In fact, you will discover that many of the “new”
database concepts and structures bear a remarkable resembles to some of the “old”
database concepts and structures.
Consider the following figure, there are several implicit relationships among the various
entity types. In faa, whenever an attribute of one entity type' refers to another entity
type, some relationship exists. For example, the attribute Manager of DEPARTMENT
refers to an employee who manages tile department; the attribute
ControllingDepartment of PROJECT refers to the department that controls the
project; the attribute Supervisor of EMPLOYEE refers to another employee (the

, one who supervises this employee); the attribute Department of EMPLOYEE refers

Self Instructional Material 45

to the department .for which the employee works; and so on. In the ER model, these
references should not.be represented as attributes but as relationships, which are
discussed here. In the initial design of entity types, relationships are typically captured •
in the form of attributes. As the design is refined, these attributes get converted into
relationships between entity types.

Whenever an attribute of one entity type refers to another entity type, some
relationship exists.

Database Systems

NOTES

DEPARTMENT
Name, Number, {Locations}, Manager, ManagerStartDate

PROJECT
Name, Number, Location, ControUingDepaitment

EMPLOYEE
Name (FName, Mlnit, LName), SSN, Sex, Address, Salary,

BirthDate, Department, Supervisor, {WorksOn (Project, Hours)}

DEPENDENT
Employee, DependentName, Sex, BirthDate, Relationship

Degree of a Relationship Type
The degree of a relationship type is the number of participating entity types. Hence,
the WORKS_FOR relationship is of degree two. A relationship type of degree two is
called binary, and one of degree three is called ternary. An example of a ternary
relationship is SUPPLY, where each relationship instance associates three entities—a
supplier s, a part p, and a projeCT j— whenever s supplies part p to project j, relationships
can generally be of any degree, but the ones most common are binary relationships.
Higher-degree relationships are generally more complex than binary relationships.

^ Relationships as Attributes
' It-is sometimes convenient to think of a relationship type in terms of attributes.

Consider the WORKS_FOR relationship type, one can think of an attribute called
Department of the EMPLOYEE entity type whose value for each employee entity
is (a reference to) the department entity that the employee works or. Hence, the
value set for this Department attribute is the set of all DEPARTMENT entities,
which is the DEPARTMENT entity set.
•However, when we think of a binary relationship as an attribute, we always have two
options. Employees of the entity type DEPARTMENT whose values for each
department entity is the set of employee entities who- work for that department.
The value set of this Employees attribute is the power set of the EMPLOYEE entity

46 Self Instructional Material

set; Either of these two attributes—Department of EMPLOYEE or Employees of
DEPARTMENT—can represent the WORKS_FOR relationship type, if both are
represented, they are constrained to be inverses of each'Other.

Role Names and Recursive Relationships

Each entity type that participates in a relationship type plays a particular role in the
relationship. The role name signifies the role that a participating entity from the entity
type plays in each relationship instance, and helps to 'explain what the relationship
means. For example, in the WORKS_FOR relationship type, EMPLOYEE plays the
role of employee or worker and DEPARTMENT plays the role of department or
employer.

Role names are not technically necessary in relationship types where all the
participating entity types are distinct, since each participating entity type name can
be used as the role name. However, in some cases the same entity type participates
more than once in a relationship type in different foies. In such cases the role name •
becomes essential for distinguishing the meaning of each participation. Such
relationship types are called recursive relationships.

Database Development

NOTES

LOGICAL DATABASE DESIGN

Most of the current commercial DBMSs use an impiementation data model—such
as the relational or te object-relational database model—so th : conceptual schema is
transformed from the high-level data model into the implementation data model.
This step is called Logical Design or Data Model Mapping; its result is a database
schema in the implementation data model of the DBMS.

NORMALIZATION

The normalization process, as first proposed by Codd (1972a), takes a relation schema
through a series of tests to “certify” whether it satisfies a certain normal form. The
process, which proceeds in a top-down fashion by evaluating each relation again the

.criteria for normal forms and decomposing relations as necessary, can thus be
considered as relational design by ancilysis.

Initially, Codd proposed three normal forms, which he called First, Second, and
Third normal form. A stronger definition of 3NF—called Boyce-Codd Normal

Form (BCNF)—was proposed later by Boyce and Codd.

All these normal forms are based on the functional dependencies among the attributes
of a relation. Later, a fourth normal form (4NF) and a fifth normal form (5NF) were
proposed, based on the concepts of multivalued dependencies and join dependencies,
respectively.

Normalization of data can be looked upon as a process of analyzing the given relation
schemas based on their FDs and primary keys to achieve the desirable properties of

(1) minimizing redundancy and

(2) minimizing the insertion, deletion, and.update anomalies.

Self Instructional Material 47

Unsatisfactory relation schemas that do not meet certain conditions—the normal
form tests—are decomposed into smaller relation schemas that meet the tests and
hence possess the desirable properties. Thus, the normalization procedure provides
database designers with the following:

■ • A formal framework for analyzing relation schemas based on their keys and
on the functional dependencies among their attributes.

• A series of normal form tests that can be carried out on individual relation
schemas so that the relational database can be normalized to any desired
degree.

The normal form of a relation refers to the highest normal form condition that it
meets, and hence indicates the degree to which it has been normalized. Normal forms,
when considered in isolation from other factors, do not guarantee a good database
design. It is generally not sufficient to check separately that each relation schema in
the database is, say, in BCNF or 3NF. Rather, the process of normalization through
decomposition must also confirm the existence of additional properties that the
relational schemas, taken together, should possess. These would include two properties:

• The lossless join or nonadditive join property, which guarantees that the
spurious tuple generation does not occur with respect to the relation schemas
created after decomposition.

• The dependency preservation property, which ensures that each functional
dependency is represented in some individual relation resulting after
decomposition.

The nonadditive join property is extremely critical and must be achieved at any cost,
whereas the dependency preservation property, although desirable, is sometimes
sacrificed.

Use of Normal Forms
Most practical design, projects acquire existing designs of databases from previous
designs, designs in legacy models, or from existing files. Normalization is carried out
in practice so that the resulting designs are of high quality and meet the desirable
properties stated jsreviously. Although several higher normal forms have been defined,
such as the 4NF and 5NF, the practical utility of these normal forms becomes
questionable when the constraints on which they are based are hard to understand or
to detect by the database designers and users who must discover these constraints.
Thus, database design as practiced in industry today pays particular attention to
normalization only up to 3NF, BCNF, or 4NF.
Another worth noting point is that the database designers need not normalize to the
highest possible normal form. Relations may be left in a lower normalization status,
such as 2NF, for performance reasons. The process of storing the join of higher
normal form relations as a base relation, which is in a lower normal form—is known .
as denormalization.

Non-loss decomposition
The problem of database inconsistency and redundancy of data are similar to the
problems that exist in the hierarchical and network models. These problems are
addressed in the network model by the introduction of virtual fields and in the

Database Systems

NOTES

48 Self Instructional Material

Database Developmenthierarchical model by the inroduction of virtual records. In the relational model, the
above problems can be remedied by decomposition. Thus, Decomposition can be
defined as following:

Definition; The decomposition of a relation scheme R = (A^, Ap A) is
its replacement by a set of relation schemes (Rp Rp . . . RJ,
suck that R, sR for I ^i ^m andR^ u R^u. . . uR^ = R.

A relation scheme R can be decomposed into a collection of relation schemes (R
- R^, Rj, . . . RJ to eliminate some of the anomalies contained in the original relation .

R. Here the relation schemes R, (1 < i < m) are subsets of R and the intersection of
R, ri R. for 1 ^ j need not be empty. Furthermore, the union of R1 (1 < i < m) is equal
to R, i.k, R = R, u R^ u . . . u R^. ""

The problems in the relation scheme STDINF can be resolved if we replace it with
the following relation schemes: • •

STUDENT_INFO (Name, Phone_No, Major)
TRANSCRIPT(Name, Course, Grade)
TEACHER(Course, Proof)

The first relation scheme gives the phone number and the major of each student and
such information will-be stored only once for each student. Any change in the phone
number will thus require a change in only one tuple of this rel-’hon.
The second relation scheme stores the grade student in each course that the student is
or was enrolled in.
The third relation scheme records the teacher of each course.
One of the disadvantages of replacing the original relation scheme STDINF with the
three relation schemes is that the retrieval of certain information requires a natural
join operation to be performed. For instance, to find the majors of student who obtained
a grade of A in course 353 requires a join to be performed: (STUDENT_INFO
TRANSCRIPT). The same information could be derived from the original relation
STDINF by selection and projection.
When we replace the original relation scheme STDINF with the relation schemes
STUDENT_INFO, TRANSCRIPT and TEACHER, the consistency and referential
integrity constraints have to be enforced.
The referential integrity enforcement implies that if a tuple in the relation
TRANSCRIPT exists, such as (Jones, 353; in prog), a tuple must exist in
STUDENT_INFO with Name = Jones and, further more, a tuple must exist in
TEACHER = Course = 353. The attribute Name, which forms part of the key of the
relation TRANSCRIPT, is a key of the relation STUDENT_INFO.
Such an attribute (or a group of attributes), which establishes a relationship between
specific tuples (of the same or two distinct relations), is called a foreign key. Notice
that the attribute Course in relation TRANSCRIPT is also a foreign key, since it is a
key of the relation TEACHER.
Note that decomposition of STDINF into the relation schemes STUDENT(Name,
Phone_No, Major, Grade) and COURSE(Course, Prof) is a bad decomposition for
the following reasons: ^

NOTES

i’

<>

Se// Instructional Material 49

Database Systems 1. Redundancy and update anomally, because the data for the attributes
Phone_No tind Majors are repeated.

2. Loss of information, because we lose the fact.that a student has a given
grade in a particular course.

\ Prof GradeName Course Phone No MajorNOTES

353 Comp Sci Smith
Chemistry Turner
Comp Sci Clark

James
Decision Sci' Cook

• Mathematics Lamb
Mathematics Bond
Comp Sci
English

AJones 237-4539 .
427-7390
237-4539
388-5183 Physics
371-6259
823-7293

329 BNg
328 BJones

Martin
Dullies

A456
C293

Duke ■ 491
Duke

B
356 . • 823-7293
492 237-4539
379 ■ 839-0827 '

in prog,
in prog.Cross

Broes
Jones
Baxter C

Functional dependencies

Earlier we discussed the concept of uniquely identifying an entity within an entity
set by a key, the key being a set of attributes of the entity.

A relation scheme R has a similar concept, which can be explained using functional
dependencies.

The first requirement indicates that the dependency of all attributes of R on K is
given explicitly in F or can be logically implied from F. The second requirement
indicates that no proper subset of K can determine all the attributes of R. Thus, the
key used here is minimal with respect to this property and the FD K —» R is left
reduced. A superset of K can then be called a superkey. If there are two or more
.subsets of R such that the above conditions are satisfied, such subsets are called
.candidate keys. In such a case one of the candidate keys is designated as the primary
key or simply as the key. We do not allow any attribute in the key of a relation to
have a null value.

Definition; Given a relation scheme R a set of
functional dependencies F, a key of R is a subset of R such that
K A^^j ...A^ is in r and for any Y c K,Y-> A^^^ ...A_^
is not in P^.

Example

If R (ABCDEH) arid F = {A BC, CD ^ E, E ^ C, D ^ AEH, ABH ^ BD, DH
. -i BC}, then CD is a key of R because CD —» ABCDEH is in F'^ (since (CD)* under

F is equal to ABCDEH and ABCDH c ABCDEH). Other candidate keys of R are
AD and ED.

Full Functional Dependency

The concept of left reduced FDs and fully fimctioncilly dependency is defined below
and illustrated in the example given below.

50 Self Insiructioml Material

Definition: Given a relational scheme R and an FD X —> Y, Y is fully
functionally dependent on X if there is no Z, where Z is a
proper subset of X such that Z Y. The dependency X ->Y is
left reduced, there being no extraneous attributes in the left-
hand side of the dependency.

Database Development

NOTESExample

In the relation scheme R (ABCDEH) with the FDs F = {A —» BC, CD —» E, E -> C,
• CD —» AH, ABH —? BD, DH BC}. The dependency A —» BC is left reduced and

BC is fully functionally dependent on A.

However, the functional dependency ABH D is not left reduced, the attribute B
being extraneous in this dependency,

Prime Attribute and Nonprime Attribute
We defined the key of a relation scheme earlier.

We distinguish the attributes that participate in any such key as indicated by the
following definition.

Example

If R (ABCDEH) and F = (A ^ BC, CD ^ E, E ^ C, AH.^ D}, then AH is the
only candidate key of R. The attributes A and H tire prime and the attributes B. C. D.
and E are nonprime.

Definition: 'An attribute A in a relation scheme R is a prime attribute or
simply prime if A is part of any candidate key of the relation.
If A is not a part of any candidate key of R, A is called a
nonprime attribute or simply nonprime.

Partial Dependency

Let us introduce, the concept of partial dependency below and illustrate the same in
the example given next.

Definition: Given a rriation scheme R with the functional dependencies F
defined on the atttibutes of R and Kasa candidate key, if X is
a proper subset of K and if F \ = X —* A. then A is said to be
partially dependent on K.

Name Course Grade Phone_No. Major Course_Dept-

I

Example

(a) In the relation scheme STUDENT_COURSE_INFO{Name, Course, Grade,

Self Instructional Material 51

Phone_No, Major, Course_Dept) with the FDs F = {Name —>
Phone_NoMajor, Course Course_Dept, NameCourse Grade},
NameCourse is a candidate key, Name and Course are prime attributes. Grade
is fully functionally dependent on the candidate key. Phone_No, Course_Dept
and Major are partially dependent on the candidate key.

(b) Given R (A, B, C, D) and F = {AB C, B D}, the key of this relation is
AB and D is partially dependent on the key.

Transitive Dependency

Another type of dependency which we have to recognize in database ;sign is
introduced below and illustrated in the example next.

Given a relation scheme R with the functional dependencies F
d^ned on the attributes of R, let X and Y be subsets of R and •
let A be attribute of R such that X <tY, A <£ XY. If the, set of
functional dependencies {X Y A] is implied by F (i.e. F

\ = X Y A and F[]-> \ = Y X) then A is transitively
dependent on X.

Database Systems ' ‘

NOTES

Definition:

ChairpersonProf_Name Department

Example

(a) In the relation scheme PROF_INFO(Prof_Name, Department, Chairperson)
and the function dependencies F = {Prof^Name Department
Chairperson}, Prof_Name is the key and Chairperson is transitively dependent
on the key since Prof_Name —» Department —» Chairperson.

' (b) Given R (A, B, C, D, E) and the function dependencies F = {AB C, B —>
D, C E}, AB is the key and E is transitively dependent on the key since
AB^C^E.

FIRST NORMAL FORM

First normal form (INF) is now considered to be part of the formal definition of a
relation in the basic (flat) relational model; historically, it was defined to disallow
multivalued attributes, composite attributes, and their combinations. It states that
the domain of an attribute must include only atomic (simple, indivisible) values and
that the value of any attribute in a tuple must be a single value from the domain of
that attribute. Hence, INF disallows having a set of values, a tuple of values, or a
combination of both as an attribute value for a single tuple. In other words, INF •
disallows “'relations within relations” or “relations as attribute values within tuples.’
The only attribute values permitted by INF are single atomic (or indivisible) values.

Consider the DEPARTMENT relation schema shown here, whose primary key is
DNUMBER, and suppose that we extend it by including the DLOCATIONS attribute

52 Self Instructional Material,

as shown in next figure. We assume that each department can have a number of
locations. The DEPARTMENT schema and an example relation state are shown in

Database Development

EMPLOYEE
ENAME SSN BDATE ADDRESS DNUMBER

NOTES

DEPARTMENT
DNAME DNUMBER DMGRSSN

DEPT LOCATIONS
DLOCATIONDNUMBER

PROJECT
PNAME PNUMBER PLOCATON DNUM

WORKS_ON
SSN HOURSPNUMBER

next figure. As we can see, this is not in INF because DLOCATIONS is not an
atomic attribute, as illustrated by the first tuple in the figure. There are two ways we
can look at the DLOCATIONS attribute:

(a) DEPARTMENT

DNUMBER DMGRSSN DLOCATIONSDNAME

T
(b) DEPARTMENT

DNAME DNUMBERDMGRSSN DLOCATIONS

. Research
Administration 4
Headquarters 1

333445555
987654321
888665555

{Bellaire, Sugarland, Houston}
{Stafford}
{Houston}

5

(c) DEPARTMENT

DNUMBER DMGRSSN DLOCATIONSDNAME

Research
Research
Research
Administration
Headquarters

333445555
333445555 .
333445555
987654321
888665555

Bellaire
Sugarland
Houston
Stafford
Houston

5
5
5
4
1

Self Instruaional Material 53

Database Systems ■ • The domain, of DLOCATIONS contains atomic values, but some tuples
. can have a set of these values. In this case, DLOCATIONS is not functionally
dependent on the primary key DNUMBER,

• The domain of DLOCATIONS contains sets of values and hence is
nonatomic. In this case, DNUMBER —> DLOCATIONS, because each set
is considered a single member of the attribute domain.

In either case, the DEPARTMENT relation of in figure is not in INF; in fact, it does
not eveii qualify as a relation according to our definition of relation. There are three
main techniques to achieve first normal form for such a relation:

1. -Remove the attribute DLOCATIONS that violates INF and place it in a
separate relation DEPT_LOCATIONS along with the primary key
DNUMBER of DEPARTMENT. The primary key of this relation is the
combination {DNUMBER, DLOCATION, as shown in figure. A. distinct
tuple in DEPT_LOCATIONS exists for each LOCATION of a department.
This decomposes the non- INF relation into two INF relations.

2. Expand the key so that there will be a separate tuple in the original
DEPARTMENT relation for each location of a DEPARTMENT, as shown
in figure c. In this case, the primary key becomes the combination
(DNUMBER, DLOCATION}. This solution has the disadvantage of
introducing redundancy in the relation.

3. If a maximum number of values is known for the attribute, for example, if
it is known that at most three locations can exist for a department—replace
the-DLOCATIONS attribute by three atomic attributes: DLOCATIONl,
DLOCATION2, and DLOCATION3. This solution has the disadvantage
of introducing null values if most departments have fewer than three
locations. It further introduces a spurious semantics about the ordering eimong
the location values that is not originally intended. Querying on this attribute
becomes more difficult; for example, consider how'you would write the
query; “List the departments that have “Bellaite” as one of their locations”
in this design.

Of the three solutions above, the first is generally considered best because it does not
' suffer from redundancy and it is completely general, having no limit placed on a
maximum number of values. In fact, if we choose the second solution, it will be
decomposed further during subsequent normalization steps into the first solution.

First normal form also disallows multivalued attributes that are themselves
composite. These are called nested relations because each tuple can have a relation
within it. The next figure shows how the EMP_PROJ relation could appear if nesting
is allowed. Each tuple represents an employee entity, and a relation
PROJS(PNUMBER, HOURS) within each tuple represents the employee’s projects
and the hours per week that employee works on each project. The schema of this
EMP_PROJ relation can be represented as follows:

BMP_ PROJfSSN, ENAME {PROJS(PNUNBER, HOURS)})

The set braces { } identify the attribute-PROJS as multivalued, and we list the
component attributes that form PROJS between parentheses (). Interestingly, recent
trends for supporting complex objects and XML data using the relational model
attempt to allow and formalize nested relations within relational database systems,
which were disallowed early on by INF,

NOTES

54 Self Instructional Material

Daiahase Development(a) EMP_PROJ

PROJS

SSN ENAME PNUMBER HOURS

NOTES
(b) EMP_PROJ

ENAMESSN PNUMBER HOURS

123456789 Smith John B. 1 32.5
2 7.5

666777888
453678325

Naryana Ramesh
English Joyce A

3 40.0.
1 20.0
2 20.0 ,

765432219 Wong Franklin T 2 10.0
3 lO.O

10 10.0
20 10.0

Zelaya Alicia J656789654 30 30.0
10 10.0

969798989 Jabbar Ahmed B 10 35.0
30 5.0

Wallace Jennifer S876787678 30 20.0
20 15.0

876545678 Borg James E 20 null

EMP PROJl(c)

ENAMESSN

EMP_PROJ2

SSN HOURSPNUMBER

Notice that SSN is the primary key of the EMP_PROJ in relation to above figures a
and b, while PNUMBER is the partial key of the nested relation; that is, within each
tuple, the nested relation must have unique values of PNUMBER. To normalize this
into INF, we remove the nested relation attributes into a new relation and propagate
the primary key into it; the primary key of the new relation will combine the partial

- key with the primary key of the original relation. Decomposition and primary key
propagation yield the schemas EMP_PROJl and EMP_PROJ2 as shown in c part of .
the figure.

This procedure can be applied recursively to a relation with multiple-level nesting to
unnest the relation into a set of INF relations. This is useful in converting an
unnormalized relation schema with many levels of nesting into, INF relations. The
existence of more than one multivalued attribute in one relation must be handled
carefully. As an example, consider the following non-INF relation:

Self Instructional Material 55

PERSON (SS#. {GARLIC#}, {PHONE#})

This relation represents the fact that a person has multiple cars and multiple phones.
If a strategy like the second option above is followed, it results in an all-key relation:

PERS0N_IN_1NF (SS#, CAR_L1C#, PHONE#) -

To avoid introducing any extraneous relationship between CAR_LIC# and PHONE#,
all possible combinations of values are represented for every SS#, giving rise to
redundancy. This leads to the problems handled by multivalued dependencies and
4NF. The right way to deal with the two multivalued attributes in PERSON above is
to decompose it into two separate relations, using strategy 1 discussed above:

P1(SS#, GARLIC#) and P2(SS#, PHONE#).

Database Systems

NOTES

SECOND NORMAL FORM

Second normal form (2NF) is based on the concept of full functional dependency. A
functional dependency X Y is a full functional dependency if removal of any
attribute A from X means that the dependency does not hold any more; that is, for
any attribute A e X, (X - {A}) does not,functionally determine Y. A functional
dependency X ^ Y is a partial dependency if some attribute A e X can be removed
from X 2ind the dependency still holds; that is,, for some A e X, (X - {A}) Y. In the
next figure part b, ‘{SSN, PNUMBER} ^ HOURS is a frill dependency (neither SSN •

HOURS nor PNUMBER HOURS holds). However, the dependency {SSN,
PNUMBR} ENAME is partial because SSN ^ ENAME holds.

A relation schema R is in 2NF if every nonprime attribute A in
R is fully functionally dependent on the primary key of R.

The test for 2NF involves testing for functional dependencies whose left-hand side
attributes are part of the prim^ key. If the primary key contains a single attribute,
the test need not be applied at all. The EMP_PROJ relation in figure part b is in INF
but is not in 2NF. The nonprime attribute ENAME violates 2NF because of FD2, as

Definition:

(a)
EMP DEPT

ENAME SSN BDATE ADDRESS DNUMBER DNAME DMGRSSN

I
(b)

EMP_PROJ

SSN PNUMBER HOURS ENAME PNAME PLOCATION ,

FD1

,FD2

FD3
56 Self Instruciioml Material

■ Database Developmentdo the nonprime attributes PNAME and PLOCATION because of FD3. ThC'
functional dependencies FD2 and FD3 make ENAME, PNAME, and , PLOCATION
partially dependent on the primary key {SSN, PNUMBER} of EMP_PROJ, thus
violating the 2NF test.

If a relation schema is not in 2NF, it can be “second normalized” or “2NF normalized”
into a number of 2NF relations in which nonprime attributes are associated only
with the part of the primary key on which they are fully functionally dependent. The
functional dependencies FDl, FD2, and FD3 in the figure part b hence lead to the
<iecomposition of EMP=PROJ into the three relation schemas EPI, EP2, and EP3
as shown in figure part a, each of which is in 2NF.

NOTES

THIRD NORMAL FORM

Third normal form (3NF) is based on the concept of transitive dependency. A
functional dependency X -> Y in a relation schema R is a transitive dependency if
there is a set of attributes Z that is neither a candidate key nor a subset of any key of
R, and both X —»Z and Z —»Y hold. The dependency SSN DMGRSSN is transitive
through DNUMBER in EMP_DEPT of above figure part a because both the
dependencies SSN —> DNUMBER and DNUMBER —> DMGRSSN hold and
DNUMBER is neither a key itself nor a subset of the key of EMP_DEPT. Intuitively,
we can see that the dependency of DMGRSSN is undesirable in EMP_DEPT since
DNUMBER is not a key of EMPlDEPT.

According to Codd’s original definition, a relation schema R is
in 3NF if it satisfies 2NF and no nonprime attribute o/Ris
transitively dependent on the primary key.

The relation schema EMP_DEPT is not in 3NF because of the transitive dependency
of DMGRSSN (and also DNAME) on SSN via DNUMBER. We can normalize
EMP_DEPT by decomposing it into the two 3NF relation schemas EDI and ED2

Definition;

TEST REMEDY (NORMALIZATION)NORMAL FORM
Relation should have no Form new relations for each npn-
nonatomic attributes or atomic attribute or nested relation,
nested relations.
For relations where primary ' Decompose and set up a new
key contains multiple
attributes, no nonkey
attribute should be
functionally dependent on a original primary key and any
part of the primary key. attribute that are fully functionally dependent

on it.

First (INF)

Second (2 NF)
relation for each partial key with
its dependent attribute(s). Make
sure to keep a relation with the

Relation should not have a ’ Decompose and set up a relation
that includes the nonkey attribute(s)
that functionally determine(s) other

Third (3 NF)
nonkey attribute
functionally determined
by another nonkey attribute nonkey attribute(s)
(or by a set of nonkey
attributes.) That is, there
should be no transitive
dependency of a nonkey
attribute on the primary key. Self Instructional Material 57

(a).Database Systems

emp_pr:oj
• SSN PNUMBER HOURS ENAME PNAME PLOCATION

NOTES

2NF NORMALIZATION
>r

EP3 ■EPl EP2

>SN ENUMBER HOURS SSN ENAME PNUMBER PNAME PLOCATION

I
EMP_PROJ

ENAME SSN BDATE ADDRESS DNUMBER DNAME DMGRSSN

T t I
’ 3NF NORMALIZATION> *

/
/

ED2EDI

ENAME SSN BDATE ADDRESS DNUMBER DNUMBER DNAME DMGRSSN

i t t r
shown in next figure part b. Intuitively, we. see that EDI and ED2 represent
independent entity facts about employees and departments. A NATURAL JOIN
operation on EDI and ED2 will recover the original relation EMP_DEPT without
generating spurious tuples.

Intuitively, we can see that any functional dependency in which the left-hand side is
part (proper subset) of the primary key or any functional dependency in which the
left hand side is a nonkey. attribute is a “problematic” FD. 2NF and 3NF normalization
remove these problem FDs by decomposing the original relation into new relations.

In terms of the normalization process, it is not necessary to remove the partial
dependencies before the transitive dependencies, but historically, 3NF has been defined
with the assumption that a relation is tested for 2NF first before it is tested for 3NF.
The next table informally summarizes the three normal forms based on primary
keys, the tests used in each case, and the corresponding “remedy” or normalization
performed to achieve the-normal form.

58 Self Instruaional Material

Database DevelopmentBCNF

Boyce-Codd Normal Form (BCNF) was proposed as a simpler form of 3NF, but it
was found to be stricter than 3NF. That is, every relation in BCNF is also in 3NF;
however, a relation in 3NF is not necessarily in BCNF. Intuitively, we can see the
need for a stronger normal form than 3NF by going back to the LOTS relation schema
of next figure with its four functional dependencies FDl through FD4.

NOTES

LOTS

• PROPERTY.ID# COUNTY.NAME LOT# AREA PRICE TAX_RATE

FDl

FD2

FD3

FD4

Suppose that we have thousands of lots in the relation but the lots are from only two
counties: Dekalb and Fulton. Suppose also that lot sizes in Dekalb County are only
0.5, 0.6, 0.7, 0.8, 0.9, and 1.0 acres, vvhereas lot sizes in Fulton County are restricted
to 1.1, 1.2, . . . , 1.9,',and 2.0 acres. In such a situation we would have the additional ,
functional dependency. FD5: AREA COUNTY_NAME. If we add this to the
other dependencies, the relation schema LOTSIA still is in 3NF because
COUNTY_NAME is a prime attribute.

The area of a lot that determines the county, as specified by FD5, can be represented
by 16 tuples in a separate relation R(AREA, COUNTY_NAME), since there are
only 16 possible AREA values. This representation reduces the redundancy of
repeating the same information in the thousands of LOTSIA tuples. BCNF is a

' stronger normal form that would disallow LOTSIA and suggest the need for
decomposing it.

!
Definition: A relation schema R is in BCNF if whenever a nontrivial

functional dependency X —* A holds' in R, then X is a superkey
ofR.

The formal definition of BCNF differs slighdy from the definition of 3NF. The only
difference between the definitions of BCNF and 3NF is that condition (b) of 3NF,
which allows A to be prime, is absent from BCNF. In our example, FD5 violates
BCNF in LOTSIA because AREA is not. a superkey of LOTSIA. Note that FD5
satisfies 3NF in LOTSIA because COUNTY_NAME is a prime attribute (condition
b), but this condition does not exist in the definition of BCNF. We can decompose
LOTSIA into two BCNF relations LOTSIAX and LOTSIAY, as shown next. This

' decomposition loses the functional' dependency FD2 because -its attributes no longer
coexist in the . same relation after decomposition.

^Iti practice, mqst relation schemas that are' in 3NF are also in BCNF. Only if X —> A

holds in a relation schema R with X not being a superkey and A being a prime attribute

/ ■■/

Self Instructional Material 59

LOTSIA(a)Database Systems

PROPERTY_ID# COUNTY.NAME LOT# AREA
FDl

FD2
NOTES

BCNF NORMALIZATION

LOTS 1 AX
AREA COUNTY_NAMEPROPERTY mu AREA LOT#

R(b)
CA B

FDl

FD2

will R be in 3NF but not in BCNF, The relation schema R shown in above figure part
b illustrates the general case of such a relation. Ideally, relational database design
should strive to achieve BCNF or 3NF for every relation schema. Achieving the

^ normalization status of just INF- or 2NF is not considered adequate, since they were
developed historically as stepping stones to 3NF and BCNF.
As another example, consider the next figure, , which shows a relation TEACH with
the following dependencies:

FDl; {student, C0URSE}^INSTRUCT0R
PD2;INSTRUCTOR COURSE

Note that {STUDENT, COURSE} is a candidate key for this relation and that the
dependencies shown follow the pattern in part b, with STUDENT as A, COURSE as
B, and INSTRUCTOR as C. Hence this relation is in 3NF but not in BCNF.
Decomposition of this relation schema into, two schemas is not straightforward
because it may be decomposed into one of the three following possible pairs:

1. {STUDENT, INSTRUCTOR} and {STUDENT, COURSE}.
2. {COURSE, INSTRUCTOR } and {COURSE, STUDENT}.
3. {instructor, COURSE } and {INSTRUCTOR, STUDENT}.

All three decompositions “lose” the functional dependency FDl. The desireable
decomposition of those just shown is 3, because it will not generate spurious tuples
after a join.

/■

60 Self lastructional Material
/

TEACH Databiise Development

COURSE INSTRUCTORSTUDENT

Narayan
Smith
Smith
Smith

Database

• Database

Operating System

Theory

Database

Operating System

Database

Database ,

Mark
Navathe NOTES •

Ammar
Schulman

Wallace Mark
Wallace

' Wong

Zelaya

Ahamad
Omiecinski
Navathe

In general, a relation not in BCNF should be decomposed so as to meet this property,
while possibly forgoing the preservation of all functional dependencies in the

, decomposed relations, as is the case in this example. The above algorithm does that
and could be used above to give decomposition 3 for TEACH,

TRANSLATING E-R DIAGRAMS TO RELATIONS

Converting any E-R model to a set of tables in a database is followed by a specific set
of rules that govern such a conversion. The application of these rules requires
understanding the effects of updates and deletions on the tables in the database.
Before we discuss these rules in detail, let’s briefly review a simpler model, its schema
and the SQL commands used to generate the tables.
The model, the Artist database, conforms to the following conditions:

- A painter might paint many paintings: To be considered a painter in the
artist database, the painter must have painted at least one painting. This
business rule decreases that the cardinality is (1,N) in the relationship between
Painter and Painting.

- Each painting -is painted by one (and only one) painter.
- A painting might (or might not) be exhibited in a gallery; that is, the Gallery

is an optional entity to the Painting entity.
Given this description, we create a simple E-R model and some matching tables for.
•the Artist database shown in figure.
Given these artist database structures, let us now examine the effect of the following
actions:

1. Deleting a painter (row) from die p^ter table. If we delete a row (painter)
/ from the painter table, the painting table will contain references to a painter

who no longer exists, fiiereby creating a deletion anomaly. (A painting does
not cease to exist just because the painter does.)'
Given this situation, it is wise to restria the ability to delete a row from a
table if there is a foreign key in another table that references if, In short, we

I

Self Instructional Materia! 61

should impose a delete restrict requirement on such a table. The restriction •
means that we can delete a painter from the painter table only if there is no
foreign key in another table that requires the painters existence.
The practical effect of this limitation is simple. Suppose that we want to
delete painter PTr_num = ,123 from the artist database. The Delete restrict
clause requires that we must first delete all rows in the painting table that
use PTr_num = 123 as the foreign key value. We do this to make the user
aware of the consequences of deleting a painter.
The DBlylS could also be instructed to delete all painting rows corresponding
to the deleted painter (delete cascade), but we chose not to do so for the
reasons just stated.

2. Adding a painter (row) to the painter table. Adding a painter does not
• catJse any problems, because the painter code does not have any dependencies

in other tables.
3. Making changes in painter table (primary key values). Changing a painter

key 'causes problems in the database because some paintings in the painting
table may make reference to this key. The solution is simple; make sure that
a change in the painter’s ptr_num automatically triggers the require changes
in the ptr_num key found in other tables. Because one change cascades
through the system, the proems is called update cascade.
In other words, the requirement of update cascade means that all foreign
key references to a primary key are updated when the primary key is changed.

4. Deleting a gallery (row) from the gallery table. Deleting a Gallery row
creates problems in the database if there are rows in the painting table that
make reference to that gallery row’s primary key.
Because gallery is optional to painting, we rnay set aU deleted gallery gal_num
values to null. Or we may want the database user to be alerted to the problem
by specifying a delete restrict clause in the gallery table. The delete restrict
clause means that the deletion of a gallery row is permitted only if there is
no foreign key (gal_num) in another table that requires the gallery row’s
existence.

5. Adding a gallery (row) to the gallery table. Adding a new row does not
affect the database because the gallery does not have dependencies in other
tables. (The new row will not be referenced by any foreign key that points to
the gallery table.) .

6. Updating the gallery table’s primary key. Changing a primary key value in
a gaiiefy row requires that all foreign keys making reference to it be updated,
as well. Therefore, we must use an update cascade clause.

Database Systems

NOTES

PHYSICAL DATABASE DESIGN

See chapter 1.

, 62 Self Instructional Material

Database Development
RELATIONAL ALGEBRA & SQL RELATIONAL DATABSE

COMMANDS

The name SQL is derived from Structured Query Language. Originally, SQL was
called SEQUEL (for Structured English Query Language) and was designed and

. implemented at IBM Research as the interface for an experimental relational database
system called SYSTEM R. SQL is now the standard language for commercial relational
DBMSs. A jont effort by ANSI (the American National Standards Institute) and ISO
(the International Standards Orga,nization) has led to a standard version of SQL (ANSI
1986), called SQL-86 or SQLl. A revised and much expanded standard called SQL2
(also referred to as SQL-92) was subsequently developed. The next version of the
standard was originally called SQL3, but now is called SQL-99.
SQL is a comprehensive database language. It has statements for data definition,
query and update. Hence, it is both a DDL and a DML. In addition, it has facilities
for defining views on the database, for specifying security and authorization, for defining
integrity constraints, and for specifying transaction controls. It also has rules for
embedding SQL statements into general-purpose programming language such as Java
or COBOL or'C/C-n-.

NOTES

Data Deflnition Language
, ' I

These commands are used to create and rhaintain a, database.
CREATE

Read about it later in the chapter.
ALTER
Read about it later in the chapter,

DROP
Read about it later in the chapter.
RENAME

Column Alias are used to rename a table’s columns for the purpose of a particular
query. The PRODUCTS_TBL illustrates the use of column aliases.

SELECT COLUMN_NAME ALIAS_NAME
FROM TABLE_NAME;

The following example displays the product description twice, giving the second
column .an alias named PRODUCT. Notice the column headers in the output. ■

. SELECT , PROD_DESC

PROD_DESC PRODUCT
FROM PRODUCTS TBL

TRUNCATE

SQL offers two options, DELETE and TRUNCATE TABLE'for deleting data. These
are the,two most dangerous commands in SQL. So make.sure that you intend to.get

Self Instructional Material 63

Database System

STUDENT ACTIVITY 2.1

1. What do. you understand by Data Modeling?

2. Describe Entity Relationship Model.

64 Self Intructional Material

Database Development

3. Describe the various stages of Information Engineering

v

4. How would you plan a model?

' Self Intructional Material 65

rid of the data you have described in these statements before you execute the
statements. There is no Undo button related to these two statements. Results are
permanent cuid final.

Hint: Prior to undertaking deletion operation, you are advised to back
up your database.

Assume that you have an entire table that needs to be' cleared of data. You have two
options for undertaking the deletion. They look like this:

DELETE FROM authors
TRUNCATE TABLE authors

Both of these statements achieve the same purpose; they delete all the data in the
table whi^e leaving intact the column structure associated with the table. As a result,

, new data can easily be inserted after the deletion-takes place.
Difference between TRUNCATE and DELETE
First, DELETE is supported by all SQL databases, while TRUNCATE TABLE might
not be. In addition, DELETE is supported in all circumstances, TRUNCATE TABLE
might not function in all situations. For example, Microsoft’s SQL Server allows you
to use TRUNCATE TABLE in most circumstances. However, when you are using
the Data Transformation Services to copy a table from one database ,to another, you
cannot use TRUNCATE TABLE to clear the table in the target database of pre­
existing data. You must instead use DELETE. In addition, TRUNCATE TABLE
undetakes only complete deletions of a table. You cannot ,use it to delete selected
rows and leave others intact.

Data Manipulation Language (DML)
These commands are used for data manipulation.

Select Command
Read about them later in the chapter.
Column Heading Default
You can use * as the indicator for all fields. It is in fact more convenient to use. For
example, the above command can be given as

SELECT * FROM STUDENT_TBL;

This would result in listing all the fileds of the table:
1022
1033
1044
1055

/
Using Arithmetic Operators
You can use the various arithmetical operators like -i-(addition), - (subtraction), *
(multiplication), cind /(divison), alongwith the SELECT statement to get the results.
Let me give you examples of each and show how they are used.

Database Systems

NOTES

MUMBAISACHIN
BANGALORERAHUL
DELHIYUVRAJ
KOLKATTADILIP

66 Self Instructional Material

Database DevelopmentAddition

' It is performed using the (+) symbol.
SELECT SALARY + BONUS FROM EMPLOYEE_TBL;

The SALARY column is added with the BONUS column for a total for each row of
data. You can e;:tcnd this command to include the following:

SELECT “’ROM EMPLOYEE_TBL WHERE SALARY. - BONUS > "25000";

This would select all the employees whose SALARY and BONUS added together
becomes more than 25,000.

Subtraction

NOTES

It is performed using the (-) symbol.
SELECT SALARY BONUS FROM EMPLOYEE TBL;

The BONUS column is subtracted from the SALARY column for calculating the
difference. You can extend this command to include the following:

SELECT PROM EMPLOYEE TBL WHERE SALARY BONUS > ”25000";

This would select all the employees whose SALARY after deducting BONUS
becomes more than 25,000.

Multiplication

It is performed using the (*) symbol.
SELECT SALARY *10 FROM EMPLOYEE_TBL;

The SALARY column will be multiplied by 10. You can extend this command to
include the following: ^

, SELECT FROM EMPLOYEE TBL WHERE SALARY * 10 > "25000";

This would return all rows where the product of the SALARY multiplied by 10 is
greater than 25,000.

Division

' It is performed using the (/) symbol.
SELECT SALARY / 10 PROM EMPLOYEE_TBL;

The SALARY column is divided by 10. You can extend this command to include the
following:

SELECT FROM EMPL6yEE_TBL WHERE SALARY / 10 > "25000";

This returns all rows where the SALARY divided by 10 is greater than 25,000.

Operator Precedence

The BODMAS rule, as learned in earlier classes applies here too. So in this case the
order would be:

Division

Multiplication

Addition and then

Subtraction

Self Instructional Material 67

Database Systems This can be significantly demonstrated by the following example.
2 + 3 * 4 + 5

If you do this calulation on the calculator, this would give you the result as 25, which
is wrong. The same if done with BODMAS rule would give you the result as 19,
which is the right result. Here keeping in mind the BODMAS rule, the multiplication
win take place first and then the addition and not the other way around.

Significance of NULL value

•NULL is used where you have to specify that there'is nothing in it, In SQL it is used
very often to check whether the column is blank or not. You can even add a NULL
value. You can search for a NULL value using the SELECT statement.

For example,
SELECT NAME FROM EMFLOYEETBL WHERE ROLLNO. IS NULL

This would search for you the records which do not have a rollno. and gives their
names.

NULL values in Arithmetic Expressions

NULL when used in a numeric field signifies that the value is not there. Supposing
you are multiplying a field by a variable and by chance that field happens to be
NULL, then the result may become abstract. For this you use statement to confirm
that the. value is not NULL,

For example.
SELECT EMP_NAME, SALARY, SALARY*!.5 FROM BMPLOYEE_TBL WHERE

SALARY IS NOT NULL;
This would result in the following:

SALARY
20000
ipooo
12000
8000

NOTES

SALARY!.5
30'00
15000
18000
12000

This has taken care that the SALARY field is not NULL.

Defining and using Column Alias

These are used to rename a table’s column for the purpose of a particular query. For
example,

SELECT BOOK_NAME, BOOK_NAME ISBN FROM BOOKSTBL

As you know that each book has an ISBN number and a name. This option as
mentioned above gives you an option of knowing either one of them. If you know .
the name of the book, then use BOOK_NAME or in case you know only the ISBN
number then use BOOK_NAME ISBN. Both will give you the same result.

Concatenation Operator fllj

It , is the process of combining the two separate strings into one string. For example,
you can combine the name and last name of. an individual using this method.

EMP NAME
. SACHIN

RAHUL
YUVRAJ
DILIP

68 Self Instructional Material

For example,
SELECT "SAC" + "HIN"

would result in SACHIN. It is quite useful in cases where you have to save space.
There you can combine two fields to club them info one. For example, in most cases
of address label printing, city and pin code are printed as one line instead of two
lines. This is doiie using Concatenation Operator,

Duplicate rows and their Elimination (DISTINCT keyboard)

The DISTINCT option is used when .you have to display only one of the duplicate
records. In our example of STUDENT_TBL if there are two records of SACHIN
then using the following command only one of them will be displayed,

SELECT DISTINCT (NAME) FROM STUDENT_TBL;

Only one SACHIN will be selected.
Limiting Rows during selection (using WHERE clause)-

' WHERE command is used when you have to make selection based on some facts.
For example, if you have to select Names and that too when RoIlNo, is 1033, you -
will use the WHERE command. For example, the above can be displayed in the
form:

Database Development

NOTES

SELECT NAME FROM STUDENT_TBL WHERE ROLLNO. = "1033"

Since there is only one name which has the student roll number as 1033, that name
will be selected.

RAHUL 1033 BANGALORE

The full record will be selected unless you ask it not to do so.
Dates

Date is stored in the corhputer but the format of representation of the same can be
different from system to system. SQL also uses date in its own way. You can recall
the system date by using the command called GETDATEQ as shown here.

SELECT GETDATB()

This will give the output as:
J;ine 30, 2003

You can perform various operations on Date, for example, converting it to character
string, adding time, converting it to picture, etc.'

Boolean operators
These are also called the Conjunctive Operators. These are used when you have to
combine more than one condition for finding out the result. These operators are:

AND, OR and NOT.
Let us see how they are used.
AND

This operator allows the existence of multiple conditions in an SQL statement’s
WHERE clause. For the action to be taken, all the conditions of the statement must
be TRUE.

Self Instructional Material 69

Database Systems. For example,
WHERE ROLLNO = "1033" AND NAME = "RAHUL"

This will select only the record which has roll number 1033 and name as RAHUL.
Both the conditions must be TRUE to get the record selected.

ORNOTES
This operator is used to combine multiple conditions in an SQL statement’s WHERE
clause. Here at least one of the condition should be TRUE for the statement to work.

For example,
WHERE ROLLNO = "1033" OR ROLLNO "1030"

Here at least one of the roll number, i.e., 1033 will match and the relative record will
be selected.

NOT

This is not just one operator. It has its own set of operators which can be used in
conjunction with this. They are: NOT EQUAL, NOT BETWEEN, NOT IN, NOT
LIKE, IS NOT'NULl, not EXISTS, NOT UNIQUE. Did you notice anything?

They tu-e just the negative conditions of the operators used earlier. These are just the
other side of those operators but they work in reverse. Instead of matching the
conditions, they make sure that the conditions are not matched.

I will not go through the details of each but just give an example to illustrate their
working.

Not EQUAL
WHERE ROLLNO <> "1050"

AH records will be selected since there is no records which matches 1050.

Not BETWEEN
WHERE ROLLNO NOT BETWEEN "1000" AND "2000"

No record will be selected since all of them are between 1000 and 2000. '

Not IN
WHERE ROLLNO NOT IN ("1000", "1200", "1300")

All records will be selected since there is no records which matches the figures given.

Not LIKE
WHERE ROLLNO NOT LIKE "2000",

All records will be selected since there is no record starting with 2000. .

Is Not NULL
• WHERE. ROLLNO IS NOT NULL

All records will be selected since there is no records which has NULL value.

Not EXISTS
WHERE NOT EXISTS (SELECT ROLLNO FROM STUDENT_TBL WHERE

ROLLNO = "1033")

It searches to see whether the roll number 1033 is not there in the table.
70 Self Instructional Material

Not UNIQUE
WHERE NOT UNIQtJE (SELECT ROLLNO FROM STUDENT_TBL) .

It tests to see whether there are roll numbers in the table that are not UNIQUE.
Logical Operator’s Precedence

Like arithmetic operators, logical , operators too have a precedence. This is different
from arithmetic one. The following is the list of precedence;

Database Development

NOTES

Arithmetic Comparison Logical
Exponentiation (*)
Negation (-)
Multiplication and division (*,/)
Integer division (/)
Modulus arithmetic (Mod)

Equality (=) ' •
Inequality (<>)
Less than (<)
Greater than (>)
Less than or
equal to (<=)
Greater than or
equal to (>=)

Not
And
Or

, Xor

Eqv
Addition and subtraction (+,-)

Imp
String concatenation (&) Is &

Group By Clause

This clause is used in collaboration with the SELECT statement to arrange identical
data into groups. The GROUP BY clause follows the WHERE clause in a SELECT
statement and' precedes the ORDER BY clause.
The position of the GROUP BY clause in a query is as follows:

SELECT
FROM ■ j'
WHERE ■
GROUP BY
ORDER BY

The GROUP BY clause must follow the conditions in the WHERE clause and must
precede the ORDER BY clause if one is used. The following is the SELECT
statement’s syntax, including the GROUP BY clause:

. SELECT COLUMNl, COLUHN2 |
FROM TABLEl, TABLE2
WHERE CONDITIONS
GROUP BY COLUMNl, COLU^2
ORDER BY COLUMNl, COLUMN2

The following sections give examples and explanations of the GROUP BY clause’s
use in a variety of situations.
Grouping Selected Data

Grouping data is a simple process. The selected columns are the columns that can be
referenced in the GROUP BY clause. If a column is not found in the SELECT
statement, it cannot be used in the GROUP BY clause. If the column name has been

Self Insiruaional Material 71

qualified, the qualified name must go into the GROUP BY clause. When grouping
the data, the order of the columns grouped does not have to match the column order
in the SELECT clause.

Group Functions

Typical group functions - those that are used with the GROUP BY clause to arrange
data in groups - include AVG, MAX, MIN, SUM and COUNT.

Creating Groups and Using Aggregate Functions

There are conditions that the SELECT, clause has that must be met when using
GROUP BY. Specifically, whatever columns are selected must appear in the GROUP
BY clause do not necessarily have to be in the same order as they appear in the
SELECT clause. Should the columns in the SELECT clause be qualified, the qualified
names of the columns must be used in the GROUP BY clause.

The following are some examples of syntax for the GROUP BY clause;'

For example
SELECT . EMP_ID, CITY
FROM EMPLOYEETBL
GROUP BY CITY, EMP_ID;

The SQL statement selects the EMP_ID and the CITY from the EMPLOYEE_TBL
and groups the data returned by the CITV and then RMP_ID. Note the order of the
column selected, versus the order of the columns in the GROUP BY clause.

For example.
SELECT EMP_ID, SUM(SALARY)
FROM EMPLOYBE_PAY_TBL
GROUP BY SALARY, EMP_ID;

This SQL statement returns the EMP_ID and the total of the seilary groups, as well
as groups both the salaries and employee IDs.

For example.
SELECT SUH(SALARY)
PROM EMPLOYEE_PAY_TBL;

This SQL statement returns the total of all the salaries from the
EMPLOYEE_PAY_TBL.

For example,
SELECT SUM(SALARY)
FROM EMPLOYEE_PAY_TBL
GROUP BY SALARY;

This SQL statement returns the totals for the different groups of salaries.

In this first example, you can see that there are three distinct cities in the
EMPLOYEE.TBL fable.

For example,
SELECT CITY

Database Systems

NOTES

72 Self Instructional Material

Database DevelopmentPROM EMPLOYEETBL;

This would result in:
CITY

’ 6ANGANA6AR
IMPHAL
NAINITAL
IMPHAL
IMPHAL
IMPHAL
6 rows selected.

In the following example, you select the city and a count of all records for each city.
. You see a count on each of the three distinct cities because you are using a GROUP

BY clause.
SELECT CITY, COUNT(*)
PROM EMPLOYEE_TBL
GROUP BY CITY;

This would give the following result:
COUNT(*)

NOTES

CITY '
GANGANAGAR 1
IMPHAL
NAINITAL
3 rows selected.

The following is a query from a temporary table created based on EMPLOYEE_TBL
and EMPLOYEE_PAY^TBL.

• SELECT *
FROM EMP_PAY_TMP;

This is what you get as an output: •
CITY
GANGANAGAR
IMPHAL
NAINITAL
IMPHAL
IMPHAL
IMPHAL
6 rows selected.

In the following example^ you retrieve the average pay rate and salary on each distinct
city using the aggregate function AVG. There is no average pay rate for
GANGANAGAR or NAINITAL, because no employees living in those cities are
paid hourly.

For example,

4
1 s.

LAST NAM FIRST NAM PAY RATE SALARY
SHARMA POONAM 30000

' PANDIT 14.75XALI
6ANJU BABY 400000

20000GANJU JOHN
11WALIA MARY

SANGAR TARXJN 15

Self Instructional Material 73

Database Systems SELECT CITY,, AVG (PAY_RATE) , AVG{SAIARY) FROM BMP_PAY_TMP
GROUP BY CITY;

This would give the following result:
AVG(PAY RATE) AVG(SALARY)

30000
20000
40000

CITY
GANGANA6AR
IMPHAL
NAINITAL
3 rows selected.

In the next example, you combine the use of multiple components in a query to
return grouped data. You still want to see the average pay rate and salary, but only for
IMPHAL and NAINITAL- You group the data by CITY, of which you have no '
choice because you are using aggregate functions on the order columns. Lastly, you
want to order the report by 2, and then 3, which is the average pay rate and then
average salary.

Study the following details and output. For example,
SELECT CITY, AVG(PAY_RATE), AVG(SALARY)
FROM EMP_PAY_TMP
WHERE CITY IN {'IMPHAL', 'NAINITAL')
GROUP BY CITY
ORDER BY 2,3;

NOTES
13.5833333

This would result in the following:
ACG{PAY_RATE)

13.5833333
AVG(SALARY)

20000
40000.

CITY
IMPHAL
NAINITAL

Values are sorted before NULL values; therefore, the record for IMPHAL was
displayed first. GANGANAGAR was not selected, but if it were, its. record would
have been displayed before NAINITAL’s record because GANGANAGAR’s average
salary is Rs.30,000 (the second sort in the ORDER BY clause was on average salary).

The last example in this section shows the use of the MAX and MIN aggregate
functions with the GROUP BY clause.

/

For example,
SELECT CITY, MAX(PAYRATE), MIN(SALARY).
FROM EMP_PAY_TMP
GROUP BY CITY;

This would result in the following:
CITY
GANGANAGAR
IMPHAL
NAINITAL
3 rows selected.

MIN(SALARY)
30000
20000
40000

MAX(PAY RATE)

15

74 Self Instmctioml Material

Database DevelopmentRepresenting Columns Names with Numbers
UiHike the ORDER BY clause the GROUP BY clause cannot be ordered by using an
integer to represent the column name - except when using a UNION and the column
names are different.
The following is an example of representing columns names with numbers:

SELECT EMP_ID, .SUM(SALARY)
FROM EMPLOYEE_PAY_TBL
UNION
SELECT EMP_ID, StJM (PAY_RATE)
FROM EMPLOYEE_PAY_TBL
GROUP BY 2. 1;

This SQL statement returns the employee ID and the group totals for the salaries.
When using the UNION operator, the results of the two SELECT statements are
merged into one result set. The GROUP BY -is performed on the entire result set. The
order for the groupings is 2 representing salary and 1 -representing EMP_ID.

GROVP BY versus ORDER BY
/

You should understand that the GROUP BY clause works the same as .the ORDER
BY clause in'that both are used to sort data. The ORDER BY clause is specifically
used to sort data from a query; the GROUP BY clause also sorts from a query fo
properly group the data. Therefore, the GROUP BY clause can be used to sort data
the same as ORDER BY.
There are some differences and disadvantages of using GROUP BY for sorting
operations:

□ All non-aggregate columns selected must be listed in the GROUP BY'cIause.
□ Integers cannot be used in the GROUP BY to represent columns after the

SELECT keyword, similar to using the ORDER BY clause.
, □ The GROUP BY clause is generally not necessary unless using aggregate

functions.
An example of performing sort operations utilizing the GROUP BY clause in place
of the ORDER BY clause is shown next:

SELECT LASTNAME, FIRST_NAME, CITY
FROM EMPLOYEE_TBL
GROUP BY LAST NAME;

This would result in the following: ,
SELECT LASTNAME, FIRST_NAME, CITY
ERROR at line 1:
ORA - 00979: not a GROUP BY expression

In this example, an error was received from the database server stating that
FIRST_NAME is not a GROUP BY expression. Remember that all columns and
expressions in the SELECT must be listed in the GROUP BY clause, with the exception
of aggregate columns (those columns targeted by an aggregate function).

NOTES

Self Instructional Material 75

In the next example, the previous problem is solved by adding all expression in the
SELECT to the GROUP BY clause:
For example,

SELECT LAST_NAME, FIRST_NAME, CITY
FROM EMPLOYEE_TBL
GROUP BY LAST_NAME, FIRST_NAME, CITY;

This would result in the following;
LAST_NAM •
GANJU
GANJU
PANDIT
SANGAR
SHARMA
WALIA
6 rows selected.

In this example, the same columns were selected from the same table, but all columns
in the GROUP BY clause are listed as they appeared after the SELECT keyword.
The results were ordered by LAST_NAME first, FIRST_NAME second and CITY
third. These results could have been accomplished easier with the ORDER BY clause;
however, it may help you better understand how the GROUP BY works.if you can
visualize how it must first sort data to group data results.
The follov.’ing example shows a SELECT from EMPLOYEE_TBL and uses the
GROUP BY to order by CITY, which leads into the next example.

SELECT CITY, LAST_NAME
FROM EMPLOYEE_TBL
GROUP BY CITY, LAST_NAME;

. This would result in the following:
CITY

. GAN6ANAGAR
IMPHAL
IMPHAL
IMPHAL
IMPHAL
NAINITAL
6 rows selected.
i

Notice the order of data in the previous results, as well as the LAST_NAME of the
individual for each CITY
All employee records in the EMPLOYEE^TBL table are now counted and the results
are grouped by CITY but ordered by the count on each city first.-

•' For example, ‘
SELECT CITY, COUNT(*)

Database Systems

NOTES

CITY-FIRST NAM
NAINITALBABY

.^OHN IMPHAL
IMPHALLALI
IMPHALTARUN
GANQANA6ARPOONAM
IMPHALMARY

LAST NAM
SHARMA
GANJU
PANDIT
SANGAR
WALIA
GANJU

t

76 Self Instructional Material

Database DevelopmentFROM EMPLOYEE_TBL
GROUP BY CITY
ORDER BY 2,1;

This would result in the following:
COUNT!*)CITY

GANGANAGAR
• NAINITAL

IMPHAL

Notice the order of the results. The results were first sorted by the count.on. each city
(1-4) and then by city. The count for the first two cities in the output is I. Because the ■
count is the same, which is the first expression in the ORDER BY clause, the city is
then sorted; GANGANAGAR is placed before NAINITAL.

Although GROUP BY and ORDER BY perform a similar function, there is one
major difference. The GROUP BY is designed to group identical data, while the
ORDER BY is designed merely to put data into a specific order. GROUP BY and
ORDER BY can be used in the same SELECT statement,.but must follow a specific
order. The GROUP BY clause is always placed before the ORDER BY clause in the
SELECT statement.

The GROUP BY clause can be used in the CREATIVE VIEW statement to sort
data, but the ORDER BY clause is not allowed in the CREATE VIEW statement.

Like operator

The LIKE operator is used to compare a value which is similar to values given by the
wildcards. There are 2 wildcards which are used here. They are”

The percent sign (%)

The underscore sign C.)

Here the percent represents zero, one, or multiple characters. The underscore represents
a single number of character. Both can be used together. If we use the LIKE command
with the following options, we would get the results as shown.

WHERE ROLLNO LIKE "100%"
• It finds the roll number that start with 100. ^

WHERE ROLLNO LIKE "%100%"

• It finds the roll number that have 100 in any position.
WHERE ROLLNO LIKE "_00"

It finds the roll number that have 00 in the second and third position.
WHERE ROLLNO LIKE "2_%_%"

It finds the roll number that starts with 2 and are at least 3 characters in length.
WHERE ROLLNO LIKE "%2"

It finds the roll number that ends with 2.
WHERE ROLLNO LIKE "_2%3"

It finds the roll number that have a 2 in the second position and end with a 3.

NOTES
1
1
4

Self Instmaional Material 77

Database Systems WHERE ROLLNO LIKE "2__3"

It finds the roll number in five digit format that start with 2 and end up with 3.

Insert
Read about it later in the chapter.

Update
Read about it later in the chapter.

Delete
Read about it later in the chapter.

NOTES

DATA TYPES

Both PL/SQL and Oracle have their foundations in SQL. Most PL/SQL data types
are native to Oracle’s data dictionary. Hence, there is a very easy integration of PL/
SQL code with the Oracle Engine.
The default data types that can be declared in PL/SQL are number (for storing numeric
data), Char (for storing character data), date (for storing date and time data). Boolean
(for storing TRUE, FALSE or NULL), number, char and date data types can have
NULL values.
The % TYPE attribute provides for further integration. PL/SQL can use the %TYPE
attribute to declare variables based on definitions of columns in a table. Hence, if a
column’s attributes change, the variable’s attributes will change'as well. This provides
for data independence, reduces maintenance costs and £illows programs to adapt to
changes made to'the table. ‘
% TYPE declares a variable or constant to have the same data type as that of a
previously defined variable or of a column in a table or in a view. When referencing
a table, user may name the table and column or name the owner, the table and column.
NOT NULL causes creation of a variable or a constant that carmot have a null Vcilue.
If an attempt is made to assign the value NUL to a variable or a constant that has
been assigned a NOT NULL constraint, Oracle senses the exception condition
automatically and an internal error is returned.

Variables
Variables in PL/SQL blocks are named variables. A variable must begin with a
character and can be followed by a maximum of 29 other characters.
Reserved words cannot be used as variable names unless enclosed within double
quotes. Variables must be separated from each other by at least one space or by a
punctuation mark.
Case is insignificant when declaring variable names. A space cannot be used in a
variable name. A variable of any data type either native to the Oracle Engine such as
number, char, date and so on or native to PL/SQL such as Boolean (i.e. logical variable
content) can be ‘declared.

78 Self Instructional Material

Assigning Values to variables

The assigning of a value of a variable can be done in two ways

Using the assignment operator : = (i.e. a colon followed by an equal to sign).

Selecting or fetching table data values into variables.

Database Development

NOTES
Constants

•Declaring a constant is similar to declaring a variable except that the keyword constzint
must be added to the variable name and a value immediately cissigned. Thereafter, no
further assignments to the constant are possible, while the constant is within the
scope of the PL/SQL block.

Raw

Raw types are used to store binary data. Character variables automatically converted
between character sets by Oracle, if necessary. These are similar to char variables,
except that they are not converted between character sets. It is used to store fixed
length binary data. The maximum length of a raw variable is 32,767 bytes. However,
the maximum length of a database raw column is 255 bytes.

Long raw is similar to long data, except that PL/SQL will not convert between
character sets. The maximum length of a long raw variable is 32,760 bytes. The
maximum length of a long raw column is 2 GB.

Rowid

This data type is the same as the database Rowid pseudo-column type. It can hold a
rowed, which can be considered as a unique key for every row in the database. Rowids
are stored internally as a fixed length binary quantity, whose actual fixed length values

. depending on the operating system.

Various DBMS_ROWID functions are used to extract information about the ROWID
pseudo-column, Extended and Restricted are two rowed formats. Restricted is used
mostly to be backward compatible with previous versions of Oracle. The extended
format takes advantages of new Oracle features.

The DBMS_ROWID package has several procedures and functions to interpret the
• ROWIDs of records. The following table shows the DBMS_r6wID functions.

DescriptionFunction

Verifies if the ROWID can be extended; 0 = can be
converted to extended format; 1 = cannot be
converted to extended format

0 = ROWID, 1 = extended

The block number that contains the record, i =
extended ROWID

The object number of the object that contains the
record.

The relative file number contains the record

The row number of the record.

ROWID_VERIFY

ROWID_TYPE

rowid_block_number

ROWID.OBJECT

rowid_relative_fno
ROWID_ROW_NUMBER

Self Instructioml Material 79

ROWID_TO_ABSOLUTE_FNO The absolute file number; use need to input
rowid_val, schema and object; the absolute file
number is returned.

Converts the ROWID from restricted to extended;
user need to input restr_rowid, schema, object; the
extended number is returned.

Converts the ROWID from extended to restricted.

Database Systems

ROWID_TO_EXTENDED

NOTES

ROWID TO RESTRICTED

ROWID is a pseudo-column that has a unique- value associated with each record of
the database.

The DBMS_ROWrD package is created by the .

ORACLE_HOME/RDBMS/ADMIN/DBMSUTIL.SQL script. This script is •
automatically run when the Oracle instance is created.

LOB Types

A company may decide that some comments about each of its vendors must be
stores along with their details. This must be stored along with all the other details that
they have on a particular vendor. This can be done in Oracle with the help of LOB
types.

The LOB types are used to store large objects. A large object can be either a binary or
a character vjilue upto 4 GB in size. Large objects can contain unstructured data,
which is accessed more efficiently than long or long raw data, with fewer restrictions.
LOB types are manipulated using the DBMS_LOB package. There tire four types of
LOBs:

- BLOB (Binary LOB) - this stores uristructured binary data upto 4 GB in
length. A blob could contain video or picture information.

- GLOB (character LOB) - this stores single byte characters upto 4GB in length.
This might be used to store documents.

- BFILE (Binary File) - this stores a pointer to read only binary data stored as
an external file outside the database.

Of these LOBs, BFILE is an external to the database. Internal objects store a locator
in' the Large Objea column of a table. Locator is a pointer that specifies the actual

• location of LOB stored outside the database. The LOB locator for BFILE is a pointer
to the location of the binary file stored by the operating system. The BDMS_LOB
package is used to manipulate LOBs. Oracle supports data integrity and concurrency
for all the LOBs except BFILE as the data is stored outside the database.

Storage for LOB data

The area required to store the LOB data can be specified at the time of creation of
the table that includes the LOB column. The create table command has a storage
clause.that specifies the storage characteristics for the table. The Syntax for this is :

CREATE TABLE <tablenaine> (<coluiiinnaine> <datatype> <size()>
<colujnnnanie> <datatype> <slze(}>, <coluiniinanie>
CLOB,....);

80 Self Instructional Material

Logical Comparisons

PL/SQL supports the comparison between variables and constants in SQL and PL/
SQL statements. These comparisons, often called Boolean expressions, generally

, consist of simple expressions separated by relational operators (<,•>, =, <>, >=, <=)
that can be connected by logical operators (AND, OR, NOT), A Boolean,expression
will always evaluate to TRUE, FALSE or NULL.

Variable Declarations
Communication with the database takes place through variables,in the PL/SQL block.

. Variables are memory locations, which can store data values. As the program runs
the contents of variables can and do-change. Information from the database can be,
assigned to a variable or the contents of a variable can be inserted into the database.

.Variables can also be modified directly by PL/SQL commands. These variables are
declared in the declarative section of the block. Every variable has a specific type as
well, which describes what kind of information can be stored in it. ■

Declaration Syntax
Variables are declared in the declarative section of the block. The general syntax for
declaring, a variable is • , , '

Variable name type [CONSTANT] [NOT ITULL] [:= value];

Where variable_name is the name of the variable, type is '.he type and value is the
initial value of the variable. For example, the following are legal variable decltirations:

DECLARE
V_DescriptionVARCHAR2 (50) ;
VNumberSeats NUMBER j= 45;
V_Counter BINARYINTEVER := 0;

Any legal-PL/SQL identifier can be used as a variable name. VARCHAR2, NUMBER
and BINARY_INTEGER are valid PL/SQL types. In this example, v_NumberSeats
and v_Counter are both initialized to 45 and 0, respectively. If a variable is not
initialized, such as v_Description, it is assigned NULL by default. If NOT NULL is
present in the declaration the variable must be initialized as it is defined. Furthermore, ,
it is illegal to assign NULL to a variable constrained to be NOT NULL, either when
it is declared or in the executable or exception section of the block. The following
declaration is illegal because v_TempVar is constrained to be NOT NULL, but is not
initialized:

DECLARE
V_TempVar NUMBER NO NULL;

We can correct this by assigning a default value to v_TempVar, for example;
DECLARE
V_TempVar NUMBER NOT NULL := 0;

If CONSTANT is present in the variable declaration, the variable must be initialized
and its value cannot be changed from this initial value. A constant variable is treated
as read-only for the remainder of the block. Constants are often used for values that
are known when the block is written, for example;

Database Development

NOTES

Self Instructional Material 81

Database Systems DECLARE.
C_Minii(iuniStudentID CONSTANT NUMBER(5) := 10000;

If desired, the keyword DEFAULT can be used instead of := as well;
DECLARE
V_MuinberSeats NUMBER DEFAULT 45;
V_Counter BINARYINTEGER DEFAULT 0;
VFirstName VARCHAR2 (20) DEFAULT 'Scott';

There can be only one variable declaration per line in the declarative section. The
following section is illegal, because two variables are declared on the same line;

DECLARE
V_FirstName, v_La8tMeune VARCHAR(20);

The correct version of this block would be
DECLARE
VFirstName VARCHAR(20};
V_LastNaine VARCHAR(20) ;

Variable Initialization

Many languages do not define what uninitialized variables contain. As a result,
uninitialized variables can contain random of unknown values at runtime. In these
languages, leaving uninitialized variables is not good programming style. In general, it
is best to initialize a variable if its'value can be determined.

PL/SQL however, does define what an uninitializd variable contains - it is assigned
NULL. NULL simply means “missing or unknown value.” As a result it is logical
that NULL is assigned by default to any tminitialized variable. This is a unique feature
of PL/SQL. Many other programming languages (C and Ada included) do not define
the value for uninitialized variables. Other languages (such as Java) require that all
variables be initialized.

Displaying User Messages On the VDU Screen

Programming tools require a method through which messages can be displayed to
the user on the VDU screen.

DBMS_OUTPUT is a package that includes a number of procedures and funaions
that accumulate information in a buffer so that it can be retrieved later. These
functions can also be used to display messages to the user.

PUT_LINE puts a piece of information in the package buffer followed by an end-of-
line marker. It can also be used to display a message to the user. Put_line expects a
single parameter of charaaer data type. If used to display a message, it is the message
string.

To display message to the user, the SERVEROUTPUT should be set to ON.
SERVEROUTPUT is a SQL * PLUS environment parameter that displays the
information passed as a parameter to the PUT_LINE function. The Syntax for this

NOTES

js;

Set ServerOutput [ON/OFP]

82 Self Instruccional Material N

Comments

A comment have two fonns, as:
- The comment line begins with a double hyphen (—). The entire line will be

treated as comment.
- The comment line begins with a slash followed by an asterisk (/*) till the

ocr-’~ence of an asterisk followed by a slash (*/). All lines within are treated
as comments. This form of specifying comments can be used to span across
multiple lines. This technique can also be used to enclose a section of a PL/
SQL block that temporarily needs to be isolated and ignored.

Control Structure

The flow of control statements can be classified into the following categories:
- Conditional Control '
- Iterative Control
- Sequential Control

Conditional Control
PL/SQL allows the use of an If statement to control the execution of a block of
code. In PL/SQL the IF - THEN - ELSEIF - ELSE - END IF construct in code
blocks allow specifying certain conditions under which a specific block of code should
be executed. The Syntax for this is:

IP <conditi;on> THEN
<Action>

ELSEIF <condition> THEN
<Action>

Database Development

NOTES

ELSE
<Action>

END IF;

Example:
Write a PL/SQL code block that will accept a Client_no from the user and adds the
amount of Rs. 100 to the B£il_due column if the Bal_due column has a minimum
balance of Rs. 5000. The process is fired on the Client_Mastet table.

DECLARE .
/* Declaration o£ memory variables and constants to be

used in the Execution section.*/
Bal_due niimber (11,2);
mClient_no varchar2{7);
add amt nuinber(4) :55 100;
MIN BAL constant number(7,2) := 5000.00;

BEGIN
/* Accept Client_no from the user*/

Self Instructional Material 83

Database Systems mClient no := &mClient no;

/* Retrieving the balance from the Client_Mast6r table
where the Client no in the table is equal to the
Clientno entered by the

SELECT Baldue
FROM Client_Ma8ter
WHERE Client no = mClient no;

user.*/
NOTES

/* Checking if the resultant balance is greater than or
equal to the minimxun balance of Rs. 5000. If the
condition is satisfied an amount of Rs. 100 is
added in the balance due of the corresponding
Client no.*/

IF Bal due >= MIN BAL THEN
UPDATE C1ien t_Mas ter
SET Bal_due = Bal_due '+ add_amt
WHERE Client_no = mClient_no;

END IP; .
END;

Iterative Control
Iterative control indicates the ability to repeat or skip sections of a code block. A
loop marks a sequence of statements that has to be repeated. The keyword loop has
to be placed before the first statement in the sequence of statements to be repeated,
while the keyword end loop is placed immediately after he last statement in the
sequence. Once a loop begins to execute, it will go on forever. Hence a conditional
statement that controls the number of times a loop is executed always accompanies
loops.
PL/SQL supports the following structures for iterative control:

Simple Loop
In simple loop, the key word loop should be placed before the first statement in the
sequence and the keyword end loop should be written at the end of the sequence to
end the loop. The Syntax for this is:

Loop
<Sequence of statements>

End loop:

Example:
DECLARE

i'number := 10
BEGIN

LOOP

84 Self Instruciional Material

Database Developmenti :s 1 + 2
EXIT WHEN I s 10

END LOP
dbms_output.put_line(tochar(i));

END;
The WHILE loop
Syntax:
WHILE <condition>

NOTES

Loop
<Action>

End loop:

Example:
Write a PL/SQL code block to calculate the area of a circle for a value of radius
varying froin 3 to 7. Store the radius and the corresponding values of calculated area
in an empty table named Areas, consisting of two columns Radius and Area.
Table Name : Areas

Radius Area
DECLARE
/* Declaration of memory variables and constants to be

used in the Execution section. */
pi constant nuinber(4,2) :s 3.14;
radius number (5)-;
area number(14,2); \

BEGIN
/* Initialize the radius to 3, since calculations- are

required for radius to 3 to 7 */
radius :=3; '

/* Set a loop so that it fires till the radius value
reaches 7 */

WHILE radius <* 7
LOOP

/* Area calculation for a circle */
pi * power(radius,2);area ! s

/* Insert the value for the radius and its corresponding
area calculated in the table */

INSERT INTO areas VALUES (radius, area);

/* Increment the value of the variable radius by 1 */

Self Instructional Material 85

Database Systems radius := radius +1;
END LOOP;
END; i

The above PL/SQL code block initializes a variable radius to hold the value of 3.
The area calculations are required for the radius between 3 and 7, The value for £irea ,
is calculated first with radius 3 and the radius and area are inserted into the table
Areas. Now, the variable holding the value of.radius is incremented by 1, i.e. it now
holds-the value 4. Since the code is held within a loop structure, the code continues to
fire till the radius value reaches 7. Each time the value of radius and area is inserted
into the areas table.
After the loop is completed the table will now hold the following:
Table name : Areas

Radius Area
28.26 '

NOTES

3

50.244
78.55

113.04 •6
153:867 .

- The FOR Loop
The Syntax for this is:

FOR variable IN ^RESERVE] start..end
Loop

<Action>
END LOOP;

Example:
Write a PL/SQL block of code for inverting a number 5639 to 9365.

DECLARE■ '
/* Declaration of memory variables and constants to be

used in the Execution section. */
given_nuinber varchar(5) := '5639';
str_length nuinber(2);
inverted niimber varchar(5);

BEGIN
/* Store the length of the given number */

str_length :s length(given_nuinber) ;
/* Initialize the loop such that it repeats for the number

of times equal to the length of the given niimber.
Also, since the number is required to be inverted,
the loop should consider the last niunber first
and store it i.e. in reverse order */

86 Self Instmctioml Material

Database Development

FOR cntr IN REVERSE 1..str_length
/* Variables used as counter in the for loop need not be

declared l.e. cntr declaration is not required */

NOTES
LOOP

. /* The last digit of the nvunber is obtained using the
siibstr function and stored in a' variable, while
retaining the previous digit stored in the variable
*/

inverted_number
substr (given_nuiiiber, cntr, 1);,

inverted numberj =

END LOOP;
/* Display the initial number,

nxunber which is stored in the variable on screen
as well as the inverted

-*/
dbms_output.put_line (‘The Given number is '

given_number) ;
dbms_output.put__line ('The Inverted number is ' i|
'v, inverted number) ;

END; .

The above PL/SQL code block stores the given number as well its-length in two
variables. Since the FOR loop is set to repeat till the length of the number is reached
and in reverse order, the loop will fire 4 times beginning form the last digit, i.e., 9.
This digit is obtained using the function SUBSTR and stored in a variable. The loop
now fires again to fetch and store the second last digit of the given number. This is
appended to the last digit stored previously. This repeats till each digit of the number
is obtained and stored. The resultant display after execution of the PL/SQL code
will be

Output:

The Given number is 5639

The Inverted number is 9365

Sequential Control

The GOTO statement

The GOTO statement changes the flow of control within a PL/SQL block. This
statement allows execution of a section of code, which is not in the normal flow of
control. The entry point into such a block of code is marked using the tags
«userdefined name». The GOTO statement can then make use of this user-defined
name to jump into that block of code for execution.

The Syntax for this is:
GOTO <codeblock name>;

Example:

Write a PL/SQL block of code to achieve the following: if the price of product
Self Instructional Material 87

Database Systems POOOOI! is less than 500, then change the price to 500. The price change is to be
recorded in the old_price_table along with Product_no and the date on which the
price was last changed.

Table Name : Product_master

Product_no SelLpriceNOTES
POOOOI 350

P00002 • 400

P00003 850

P00004 900

P00005 250

Table Name ; old_price_tabIe

Product_No Date_chaoge
DECLARE
/* Declaration of memory variables and constants to be

used in the Execution section. */
Selling_price number(10,2);

01d_Price

BEGIN
/* Fetch the sellprice of productno 'POOOOI'' into a

variable */
SELECT Sell_price into selling_price

FROM Product_Master
WHERE Product no = 'POOOOI'; -

/* If the sell_price is less than 500, pass the execution
control to a user labeled section of code, Icdseled
as add_old_price in this example. If the price is
equal to or greater than 500, display a message,
giving the current sell_price of the product */

IF Selling_price < 500 THEN
GOTO add_old_price;
ELSE

Dbmsoutput.put_line('Current Price of POOOOI is'
selling_price);

END IF;

/* A labeled section -of code which updates the sell_price
of product 'POOOOI' to 500. The product_no, current
date and the old_price are . inserted in to the
table old_price_table and a message displaying
the new price is displayed. */

88 Self Instructional Material

Database Development<<add_old_;price>>
UPDATE Product_Master

SET Sell_price =500
WHERE Product_no = 'POOOOl';

INSERT INTO old_price_table
. '(Product_no, Date_change, 01d_price)

VALUES ('POOOOl', sysdate, selling_price);
Dbmsoutput.put_line('The new Price of POOOOl is

500');

NOTES

END;

The PL/SQL code first fetches the first fetches the Sell_price of the Product_no
‘POOOOr into a variable sellmg_price. It then checks whether the value that is held in
the .variable Selling^price it is less than 500. If so, the control is passed to a different
section of code, labeled as add_old_price. In this block of code, the value of selLprice
for pr6duct_no ‘POOOOl’ in the Product_Master table is updated to 500. Also, the
Product_no, the current date and the 01d_price are inserted into the old_price_table
that keeps an audit trail of the change made to the product_master- table.

In case the Sell_price for ProduCT_no ‘POOOOl’ in the Product_Master table is already
equal or greater than 500, a message stating the current price of the product ‘POOOOl’
is displayed.

PL/SQL Control Structures
PL/SQL, like other third-generation languages, has a variety of control structures
that allow you to control the behavior of the block as it runs. These structures include
conditional statements and loops. It is-these structures, combined with variables, that
give PL/SQL its power and flexibility.

IF-THEN-ELSE

The syntax for an IF-THEN-ELSE statement is
IF Boolean_expresaionl THEN

Sequence_of statements;
[ELSEIF Boolean_expres8lon2 THEN
seguence_of__statement8; 1

[ELSE
seguence_of_statements;]
END IP]

where Boolean_expression is any expression that evaluates to a Boolean value, defined
in the previous section, “Boolean Expressions,” The ELSEIF clauses are optional
and there can be many ELSEIF clauses as desired. For example, the following block
shows an IF-THEN-ELSE statement with one ELSEIF clause and one ELSE clause:

DECLARE
V_NuinberSeats room8 .nuinber_seats%TYPE;
V Comment VARCHAR(35);

\ ■

Self Instructional Material 89

Database Systems BEGIN \
/* Retrieve the number of seats in the room identified

by ID 20008.
Store the result in v NumberSeats. */

SELECT number__seats
INTO v_NumberSeats
FROM rooms
WHERE roomid = 20008;

IF v/NumberSeats < 50 THEN
V-Comment :* 'Fairly small';

ELSEIF v_NuinberSeats < 100 THEN
VComment := 'A little bigger';

NOTES

ELSE
V_Coinment :* 'Lots of room';

END IP;
END;

The behavior of the preceding block is the same as the keywords imply. If the first
condition evaluates to TRUE, the first sequence of statements is executed. In this
case, the first condition is

VNumberSeats <50

And the first sequence of statement is
VComment := 'Fairly small';

If the number of seats is not less than 50, the second condition
V_NumberSeats < 100'

Is evaluated. If this evaluates to TRUE, the second sequence of statements
V_Gomment := 'A little bigger';

Is executed. Finally, if the number of seats is not less than 100, the final’^sequence of
statements

V_coiDment : = "Lots of room';

Is executed. Each sequence of statements is executed only if its associated Boolean
condition evaluates to TRUE.

In the example, each sequence of statements has only one procedural statement.
However, in general, you can have as many statements (procedural or SQL) as desired.
The following block illustrates this:

y_NumberSeats rooms.number_seats%TYPE;
V Comment VARCHAR(35);

BEGIN
/* Retrieve the number of seats in the room identified

by ID 20008.
Store the result in v_NumberSeats. */

SELECT number seats

90 Se// Instructional Material

INTO v_NunberSeats
FROM • rooms
WHERE rooin_id ® 20008;

IF v NumberSeats < 50 THEN
VComment := 'Fairly small';

INSERT INTO ten^_ted5le (char_col>
VALUES ('Nice and cozy'); ' .

ELSEIF v_NuinberSeats < 100 THEN
V_Coniiiient := 'A little bigger';
INSERT INTO temp_table (charcol)

VALUES ('Some breathing room');

Database Development

NOTES

ELSE.
VComment s= 'Lots of room';

END IP;
END ;

Loops
PL/SQL provides, a facility for executing statements repeatedly, via loops. Loops are
divided into four categories. Simple loops, WHILE loops and numeric FOR loops
are loops that are discussed in the following sections.

Simple Loops
The most basic kind of loops, simple loops, have the syntax

LOOP
Sequence_of statements;

END LOOP;
The sequence_of_statements will be executed infinitely, because this loop has no
stopping condition. However, we can add one with the EXIT statement, which has

. the following syntax:
EXIT [WHEN condition];

For example, the following block inserts 50 rows into temp_table, .
DECLARE

V counter BINARY INTEGER j= 1;
//

BEGIN
LOOP

•— Insert a row into temp table with the current
value of the loop counter.

INSERT INTO temp_table -
VALUES (v_counter, 'Loop index');

V Counter ,:= v_Counter + 1; .
—Exit condition - when the loop counter > 50 as will
— break out of the loop.

Self Instructional Material 91

IF v__Counter > 50 THEN
EXIT;

END IF;
END LOOP;

Database Systents

END;

The statement
EXIT WHEN condition;

Is equivalent to
IF condition THEN

EXIT;
END IF;

So, we can rewrite the example with the following block, which behaves exactly the
same way;

DECLARE
V Covuiter BINARY INTEGER 5= 1;

NOTES

BEGIN
LOOP

— Insert a row into temp_table with the current
value of the

— loop covinter.
INSERT INTO teiiip_table

VALUES {v_Couiiter, 'Loop index');
V_Counter := vCounter +1;
— Exit condition - when the loop counter > 50 we will
— break out of the loop.
EXIT WHEN v^Counter > 50;

END LOOP;
END;

WHILE Loops
The syntax for a WHILE loop is

WHILE condition LOOP
Seguence_of_statenients;

END LOOP;

The condition is evaluated before each iteration of the loop. If it evaluates to TRUE,
sequence_of_statements is executed. If condition evaluates to FALSE or NULL,
the loop is finished and control resumes after the END LOOP statement. Now we
can rewrite the example using a_WHILE loop as follows:

DECLARE
V Counter BINARY INTEGER :» 1;

BEGIN
i

92 Self Instructional Material

— Teat the loop coMnter before each loop iteration to
- insure that it is still less than 50
WHILE V Counter <= 50 LOOP

INSERT INTO teiip_table
VALUES (v_Coiinter, 'Loop index'};

V_Counter := v_Counter + 1;
END LOOP;

Database Development

NOTES

.
END;

The EXIT or EXIT WHEN statement can still be used inside a WHILE loop to exit
the loop prematurely, if desired. -

Keep in mind that if the loop condition does not evaluates to TRUE the first time it
is checked, the loop is not executed at all. If we remove the initialization of,v_Counter
in our example, the condition v_Counter < 50 will evaluate to NULL, and no rows
will be inserted into temp_ table:

DECLARE \

V_Counter BINARY INTEGER;
BEGIN

— this condition will evaluate to NULL, since V_Counter
— is initialized to NULL by default.
WHILE v_Counter <= 50 LOOP

INSERT INTO temptable
VALUES (v_Counter, 'Loop index');

VCounter := vCounter +1;
END LOOP;

END ;

Numeric FOR Loops
The number of iterations for simple loops and WHILE loops is not known in advance
- it depends.on the loop condition. Numeric FOR loops, on the other hand, have
defined number of iterations. The syntax is .

FOR loopcounter IN [REVERSE] low_bound..highboud LOOP
Seguence_of_statenients;

END LOOP;
Where loop_counter is an implicitly declared index variable, low^^und

high__bound specify the number of iterations and sequence_of_statements is the
content of the loop. .

The bounds, of the loop are evaluated once. The determines the total number of
iterations that loop_counter will take on the values ranging from low_bound to
high_bound, incrementing by 1 each time until the loop is complete. We can rewrite
our looping example using a FOR loop as follows:

BEGIN
FOR V Counter IN 1..50 LOOP

and

Self Instructional Material 93

INSERT INTO temp_table •
VALUES (v_Co\iiiter, 'Loop- Index')?

Database Systems

END LOOP;
END;

Scooping Rules

The loop index for a FOR loop is implicitly declared as a BINARY_INTEGER. It is
not necessary to declare it prior to the loop. If it is declared, the loop index will hide
the outer declaration in the same way that a variable declaration in an inner block can
hide a declaration in an outer block. See the following example:

DECLARE
V Counter NUMBER z= 7?

NOTES

BEGIN
— Inserts the value 7 into teii^_table.
INSERT INTO teit^_table (niun_col)

VALUES (vcounter);
— This loop redeclares v_Counter as a BINARY_INTEGER,

which hides
— the NUMBER declaration of v_Counter.
FOR v_Counter IN 20..30 loop
— inside the loop, v_Counter ranges from 20 to 30.
INSERT INTO ten^_table (num_col)

VALUES (vCounter);
END LOOP;
— Inserts another 7 into temptable.
INSERT INTO temp_table (n\m_col)

VALUES (v Counter);
END;

Using REVERSE

If the REVERSE keyword is present in the FOR loop, the loop index will iterate
from the high value to the low value. Note in the following example that the syntax
is the same - the low value is still referenced first:

BEGIN
FOR v_Counter in REVERSE 10..50 LOOP

- V Counter will start with 50 and will be decremented
by

— 1 each time through the loop.
NULL?

END LOOP;
\

END?

Loop Ranges

The high how value don’t have to be numeric literals. They can be any expression
that can be converted to a numeric value. Here is an example:

94 Sdf Instructional Material

Database DevelopmentDECLARE
V LowValue NUMBER := 10;
VHighValue NUMBER := 40;

BEGIN
FOR v Counter IN REVERSE v LowValue . . v_HighValue

LOOP
INSERT INTO teinp_table

VALUES (v_Counter, 'Dynamically specified loop
ranges')'; . - '

END LOOP;

NOTES

END;

CREATE TABLE

This command allows you to create a schema under which all the controls will be
mentioned.

This is done using the syntax. '
CREATE TABLE NewTable (NevATalue) INT)

Executing this statement creates a new table named New Table with a column named
New Value that takes integer data. If you want to add additional column, simply add
the additional column names followed by their data type so that each pairing of
name and. data type between the parentheses-is separated by a comma,* as follows:

CREATE TABLE NewTable (NewValue INT, NextValue VARCHAR(6))

Since creating a table entails creating columns and creating columns requires the use
of data types, it’s useful to review the data types available. The following table provides
a way of reacquainting yourself with the data types which are available with SQL.

StorageName

Up to 8,000 bytes of binary data

Integers 0 or 1

A fixed-length string of characters not encoded as Unicode

Date and time values from 1/1/175 to 12/31/9999

Numbers containing decimal fractions from -10* 38-1 to 10*38-

binary

bit .

char

datetime

decimal
1

Floating-point decimals from -1.79E-t-308 to 1.79E+308

A variable-length string of bits (binary data) with a maximum
size of 2*31

Integers from-2*31-1'to 2*31-1

' Numbers representing monetary values from -2*63 to 2*63-1

A fixed-length string of characters encoded as Unicode

float

image

ini

money

nchar

Self Instructional Material 95

A variable-length string of characters not encoded as Unicode
with a maximum size of 2'^31-1
A variable-length string of characters encoded as Unicode

Same as decimal
Floating-point decimals from -3.40E-I-38 to 3.40E-t-38

Date and time values from 1/1/1900 to 6/6/207? ■
integers from -2''15-1 to 2'^15-1
Numbers representing monetary values from -214,748.3648 to
214,748.3647
A variable-length string of characters not encoded as Unicode
with a maximum size of 2''31-1
A unique number in the database
Integers from 0 to 255-failed copy
A variable-length string of bits (binary data)' with a maximum
size of 8,000 bytes
A variable-length string of characters not encoded as Uicode
A globally unique identifier (GUID), that is, a number in the
world.

Database Systems ntext •

nvachar
numeric
realNOTES

smalldatetime
smallint
smallmoney

text

timestamp
tinyint
verbinary

I'archar
uniqueidentifier

One thing that you have to consider is the ultimate size of your database and to
certain extent, its speed. In general, you want to plan your tables by choosing table
names and column names that are descriptive and self-documenting. People have to
remember how to use your tables and columns and table names and column do not
take up large amounts of space. Tliis statement should not suggest, however, that
256-character column names are a good idea. The data type for a blank occurrence of
that column. Many SQL databases require on database creation that you set the

• maximum file size for the database. Under these circumstances, you want to choose
your data types wisely so that you do not bump up against that maximum size too
quickly.

• In choosing data types, therefore, apply the following suggestions:
□ Choose varchar over char whenever possible. Char (256) sets aside I filled

byte and 255 blank bytes for the valye “A.” Varchar (256), while it does incur
slight overhead to allow variable-length strings, only uses the, number of bytes
it requires for the string.

■ □ If you absolutely know,that you will never ever need to store a Unicode
string, use the standard data types (like char) instead of the data types that
begin with "n” (line nchar). Storing Unicode incurs some additional storage,
because you are not using a character set that can be represented by a single
byte. However, you need to be absolutely certain that you will need to store
Unicode, because you won’t be abje to if you try.

□ Use a tiny data type or a small data type whenever it makes sense to do so.
For example, you can use tinyint, smallint or int. The int data type takes the
most, storage, because it has to be prepared to store very large integers. The

96 Se/f instructional Materia/

/
Database Developmentsmallint data type restricts the possible range of integers and takes less storage.

The tihyint type takes the least storage but has a maximum value of 255.
■ □ Avoid the binary and next data types whenever possible. If you need to store

a collection of binary large objects (BLOBs), such as a collection of pictures,
consider storing the path to the.graphics file in the database and the BLOB in
a folder set aside for holding the BLOB files. Yqur database will be’smaller,
storage for the BLOBs will actually be less, because you won’t have the
overhead the database wraps around the BLOB to keep track of it and response
time for queries will be faster. The same is true for large chunks .of text. /

In addition to planning data types, you need to consider default vtilue and nullability
when planning column layouts in tables. The default value is what is placed in the
column when,a row is created if no value for the column is provided. To provide a
default Value, you use the default keyword as follows:

CREATE TABLE NewTable (NewValue INT DEFAULT 0)

- The column NewValue now takes a value of 0 if no other value is provided for it by
an INSERT statement. A default value of 0 is somewhat redundant for any numeric
data type, because the data type itself. usually defaults the column to 0.
However, there are many instances where 0 is not the appropriate default, such as
when you want to specify a guaranteed interest rate for a life insurance contract. In
addition, you need to specify whether the column can be null, that is, whether it can
contain no data at all. You do so using the following syntax:

CREATE TABLE NewTable (NewText CHAR(6) NULL)
This table definition states-that the column NewText can be null, which will be its
value if an INSERT does not supply another value. You can also specify a default
value for a nullable column as follows:

CREATE TABLE NewTable (NewText CHAR(6) NULL DEFAULT
'ABCDEF')

Here, an INSERT that does not provide a value for. this column creates a row that,
contains ABCDEF’ in the column NewText. However, another INSERT statement
could later set the value of this column to NULL if we so desired. If your database
supports filenames or filegroups that represent the files that containing the data on
the disk, you can usually specify which files to use in creating a table using the ON
keyword. You should check you database’s documeritation for the exact conventions
to use, because they can differ. Most tables haye more than one or two columns, so
let’s take a brief look at a table definition:

CREATE TABLE Friends

NOTES

{
friendid char(4) NOT NULL,
friend_naine varchar(40) NULL,
city varchar(20)
state char(2).
country varchar(30)

DEFAULT!"INDIA")

NULL,
NULL,
NULL,

)

Self Instructional Material 97

Things to note here are:

• The use of identification to make the statement more readable.

.• Each column has its own line.

•. Any additional lines necessary for a given column are indented well underneath
that column name.

In addition, note that you can use NOT .NULL to indicate that a column absolutely
cannot contain NULL as a value.

Database Systems

NOTES

DROP TABLE

You can also delete tables with the DROP statement. The syntax is straightforward:
DROP TABLE [dbo].[friends]

Keep in niind that DROP needs a keyword to identify what you want to delete, in
this case a table. FoDowing this keyword is the table name. DROP is final and does
not prompt you to have your sanity checked before you carry through the deletion.
Make sure you have the names right. If there is data in the table, it will be deleted
along with the table. ■ . '

ALTER TABLE

As you might guess,'ALTER TABLE is a statement that changes an existing table.
Its basic syntax is as follows:

ALTER TABLE MyTable ADD MyColumn VARCHAR (20) NULL
This form of the statement adds a column. As you can see, the name of the table
follows the ALTER TABLE keywords and then the action to be taken follows. This"
example adds two constraints to a.table; it was taken from a script that SQL Server
generated for building the table:

ALTER TABLE [dbo].[sales] ADD

FOREIGN KEY

/

{

[F id]

) . REFERENCES (dbo) . [names] .(

[F id]

} ,

FOREIGN KEY

[naine_id]

) REFERENCES (dbo).[address] (

[name id]

)
98 Self Instructional Material

Datqbase DevelopmentYou can also drop a column or a constraint using syntax like the following:
ALTER TABLE MyTable DROP COLUMN MyColunm

You use one ADD keyword and each item to add follows in a comma-separated list.
Use separate ALTER TABLE statements for each intended action. ALTER TABLE
statements can become confiising when they are complex and complex ALTER
TABLES can le^d to-accidental and unintended consequences. Keep them as simple
and straightforward as possible.

NOTES

INSERT INTO

INSERT can be used in serveral ways. The most important one is to add data in the
database. Various options of INSERT are shown next.

Do not forget that SQL statements can be in 'upper- or
lowercase. The data, depending on how it is stored in the
database, is not case-sensitive. These examples use both lower-
and uppercase just to show that is does not affect the outcome.

Remember:

Inserting Data into a Table

Use the INSERT statement to insert new data into a table. There are a few options
with the INSERT statement: look at the following basic syntax to beigin:

INSERT INTO SCHEMA.TABLENAME
VALUES ('valuel', 'Value2', t NULL]);

Using this INSERT statement syntax, you must include every column in the specified
table in the VALUES list. Notice that each value in this list is separated by a comma.
The values inserted into the table must be enclosed by quotation marks for character
and date data types. Quotation marks are not required for numeric data types of
NULL values using the NULL keyword. A value should be present for each column
in the table.

• In the following example, you insert a new record into the PRODUCTS_TBL table.

Table structure
products.tbl

Colimin Name

PRODIDNOT

PROD_DESC

COST

Sample INSERT statement.
INSERT INTO PRODUCTSTBL

. VALUES ('7725', 'LEATHER GLOVES', 24.99);

You will get the output as:
1 row created.

In this example, you insert three values into a table with three columns. The inserted
values are in the same order as the columns listed in the table.

Null? Data Type

•VARCHAR2(10)NULL
VARCHAR2(25)NOT NULL
NUMBER(6,2)NOT NULL

Self Instructional Material 99

Database System

STUDENT ACTIVITY 2.2

1. What are Entity Types and Entity Sets?

2. Write a short note on Relationship among Entities.

100 Self Intructional Material

Database Development

3. Describe the working of First normal form with example.

4. What do you understand by Second normal form?

i

\

Self Intmctional Material 101

Database Systems The first two values are inserted using quotation marks, because the data types of the
corresponding columns are of character type.
The third value’s associated column, COST, is a numeric data type and does not
require quotation marks, although they can be used.

The schema name, or table owner, has not been specified as part
of the table name, as it was shown in the syntax. The schema
name is not required if you are connected to the database as the
user who owns the table.

Tip;. NOTES

Inserting Data into Limited columns of a Table

There is a way you can insert data into a table’s limited columns. For instance, suppose
you want to insert all values for an employee except a pager number. You must, in
this case, specify a column list as well as a VALUES list in your INSERT statement.

INSERT INTO EMPLOYEE_TBL
(EMP ID, IjAST_NAME, FIRST NAME, MIDDLE NAME, ADDRESS, CITY,

STATE, PIN, PHONE)
VALUES
(■•123456789', 'TENDULKAR', 'SACHIN', 'RAMESH', '123 JUHU

BEACH ROAD', 'MUMBAI',.'MAHARASHTRA', '400001',
'9810223293');

In this case you will get the output as:
1 row created

The syntax for inserting values into a limited number of columns in a table is as
follows:

INSERT INTO SCHEMA TABLE_NAME ('COLUMNl', 'COLUMN2')
VALUES {'VALUEl', 'VALUE2');

You use ORDERS_TBL and insert values into only specified columns in the following
example:
Table structure

ORDERS TBL

Column Name Null? Data Type

VARCHAR2(10)ORD, NUMNOT . NULL
GUST ID VARCHAR2(10)NOT NULL
PROD IDNOT NULL VARCHAR2(10)
QTY NUMBER(4)NOT NULL
ORD DATE DATE
Sample INSERT statement

INSERT INTO ORDERS_TBL (ORDNUM, CUSTID, PROD_ID, QTY)
VALUES ('23A16', '109',. '7725', 2)

You will get the output as: ,
1 row created

102 Self Instructional Material

Database DevelopmentYou have specified a column list enclosed by parentheses after the table name in the
INSERT statement. You have listed all columns into which you want to insert data.-
ORD_DATE is the only excluded column. You can see, if you look at the table
definition, that ORD_DATE does not require' data for evwy record in the table. You
know that ORD_DATE does not require data because NOT NULL is not specified
in the table definition. NOT NULL tells us that NULL values are hot allowed in the
column. Furthermore, the list of values must appear in the order in which you want
to insert them according to the column list.

The column list in the INSERT statement does not have to
reflect the same order of columns as in the definition of the
associated table, hut the list of values must be in the order of
the associated columns in the column list.'

NOTES

Remember:

Inserting Data from Another Table

You can insert data into a table based on the results of a query from another table
using a combination of, the INSERT statement and the SELECT statement. A query
is a, question that the user asks the database, and the data returned is the answer. In
the case of combining the INSERT statement with the SELECT statement, you are
able to insert the data retrieved from a query into a table.

The syntax for inserting data from another table is:
INSERT NTO SCHEMA TABLE_NAME [('COLUMNl', ■•COLUMN2')]
SELECT {*. I (‘COLUMNl', .‘COLUMN2')]
FROM TABLE_NAME
[WHERE CONDITION(S)]

You see three new keywords in this syntax, which are covered here briefly. These
keywords are SELECT, FROM, and WHERE. SELECT is the main command used
to initiate a query in SQL. FROM is the clause in the query that specifies the names
of tables in which the target data should be found. The WHERE clause, also part of
the query is used to place conditions on the query itself. An example condition may
state: WHERE NAME = ‘SACHIN’. '

A condition is a way of placing criteria on data affected by a SQL statement.

The following example uses a simple query to view all data in the PRODUCTS_TBL
table. SELECT- * tells the database server that you want information on all columns

• of the table. Because there is no WHERE clause, you want to see all records in the
table as well. For example,

SELECT * FREE PRODUCTS_TBL;

The output of this would be as follows;

PROD DESC /
WITCHES COSTUME
PLASTIC PUMPKIN 18 INCH
LIGHTED LANTERNS
ASSORTED COSTUMES
CANDY CORN

COSTPROD-ID
29.9911235
7.75222
14.590
0.015

1.359
Self Instmaional Material 103

\

1.45Daiabase Systems PUMPKIN CANDY6
1.05PLASTIC SPIDERS87
4.95ASSORTED MASKS119

1234
2345
11 rows selected.
Now, insert values into the PRODUCTS_TMP table based on the preceding query.
You can see that 11 rows are created in the temporary table.
Your input here would be;

INSERT INTO PRODUCTS_TMP
SELECT * FROM PRODUCTS_TBL;

The result of this would be:
11 rows selected

. The following query shows all data in the PRODUCTS^TMP table that you just
inserted.

5.95KEY CHAIN
59.99OAK BOOKSHELF

NOTES

The input here would be;
SELECT * FROM PRODUCTS TMP;

And the result would be;
COSTPROD DESCPROD-ID

29.99WITCHES COSTUME
PLASTIC PUMPKIN 18 INCH
LIGHTED LANTERNS

11235
7.75222
14.590
10.0ASSORTED COSTUMES15
1.35CANDY CORN9
1.45PUMPKIN CANDY6
1.05PLASTIC SPIDERS87
4.95ASSORTED MASKS119

1234
2345
11 rows selected.
Inserting NULL Values
Inserting a NULL value into a column of a table is a simple matter. You might weint
to insert a NULL value into a column if the value of the column in question is
unknown. For instance, not every person carries a pager, so it would be inaccurate to
enter an erroneous pager number—not to mention, you would not be budgeting space.
A NULL value can be inserted into a column of a table using the keyword NULL.
The syntax for inserting a NULL value follows;

INSERT INTO SCHEMA.TABLE_NAME VALUES
('COLUMNl', NULL, 'COLUMNS');

The NULL keyword should be used'in the associated column that exists in the table.

5.95KEY CHAIN
59.99OAK BOOKSHELF

‘ I

104 Self Instructional Materia!

That column will not have data in it for that row if you enter NULL. In the syntax, a
NULL value is being entered in the place of COLUMN2.

Study the two following examples:
INSERT INTO ORDERS_TBL (ORD_NUM, COST_ID, PROD_ID, QTY,

ORD_DATE)
VALUES (■•23A16', -109', '7725', 2, NULL);

The output of this would be:
1 row created.

In the first example, all columns in which to insert values are listed, which also happen
to be every column in the ORDERS_TBL table. You insert a NULL value for the
ORD_DATE column, meaning that you either do not know the order date, or there is
no order date at this time.

INSERT INTO ORDERSTBL
VALUES (-23A16', '109', '7725', 2, '');

The result of this would be:
1 row created.

There are two differences froih the first statement in the second example, but the
results are the same. First, there is not a column list. Remember that a column list is
not required if you are inserting data into all columns of a table. Second, instead of-
inserting the value NULL into the ORD_DATE column, you insert ’’ (two single
quotation marks together), which also symbolizes a NULL value (because there is
nothing between them.) '

Database Development

NOTES

DELETE FROM

The DELETE command is used to remove entir^rows of data from a table. The
DELETE command is not used to remove values.ffom specific columns; a full record,
including all columns, is removed. The DELETE statement niust be used with
caution—it works all too well.

To delete a single record or selected records from a table, the DELETE statement
must be used with the following syntax:

DELETE .FROM SCHEMA.TABLENAME
(WHERE CONDITION);

For example,
DELETE FROM ORDERS_TBL
WHERE ORD-NUM « '23A16';

The output of this would be:
1 row deleted.

Notice the use'of the WHERE clause. The WHERE clause is an essential part of the
DELETE statement if you are attempting to remove selected rows rf data from a
table. You rarely issue a DELETE statement without the use of the -'ERE clause.
If you do, your results are similar to the following example.

Self instructional Material 105

DELETE FROM ORDERS_TBL;
11 rows deleted.

Database Systems

If the WHERE clause is omitted from the DELETE statement,
dll.rows of data are deleted from the table. As a general rule,
always use a WHERE clause with the DELETE statement.

Tip;

NOTES

The temporary table that was populated fivm the original table
earlier can be very us^l for testing the DELETE and
UPDATE commands before issuing them again the original
table. ■

Tip:

UPDATE

This statement is used to update the existing data in the table. Pre-existing,data in a
table can be modified using the UPDATE command. The UPDATE command does
not add new records to a table, nor does it remove records—it simply updates existing
data. The update is generally used to update one table at a time in a database, but can
be used to update multiple columns of a table at the same time. An individual row of

■ data in a table can be updated, or numerous rows of data can be updated in a single
statement, depending on what’s needed.

Updating the Value of a Single Column

The most simple form of the UPDATE statement is its use to update a single column
in a table. Either a single row of data or numerous records can be updated when
updating a single column in a table.

The syntax for updating a single column follows:
UPDATE TABLE_NAME
SET COLUMNNAME = 'VALUE'
(WHERE CONDITION)

The following example updates the QTY column in the ORDERS table to the' new
value 1 for the ORD_NUM 23A16, which you have specified using the WHERE
clause.

UPDATE, ORDER_TBL
SET QTY = 1
WHERE ORD_NUM =

The output of this would be:
I row updated.

The following example is identical to the previous example, except for the absence
of the WHERE clause;

WHERE ORDERS_TBL
SET QTY =1;

The output of this would be:
II rows updated.

'23A16';

106 Self Instructional Material

Notice that in this example, II rows of data were updated. You set the QTY to 1,
which updated the quantity column in the ORDERS_TBL table for all rows of data.
Is this really what you wanted to do? Perhaps in some cases, but rarely will you issue
an UPDATE statement without a WHERE clause.

Database Development

Caution: Extreme caution must be used when using the UPDATE
statement without a WHERE clause. The target column is
updated for all rows of data in the table if conditions are not
designated using the WHERE clause.

NOTES

Updating Multiple Columns in One or More Records

'Next, you see how to update.multiple columns'with a single UPDATE statment.
Study the following syntax;

UPDATE TABLE_NAME
SET COLUMNl a 'VALUE',

{COLUMN2 = 'VALUE',]
(COLUMNS = 'VALUE']

[WHERE CONDITION];

The output of this would be: . .
1 row updated.

A comma is used to separate the two columns being updated. Again, the 'WHERE
• clause is optional, but usually necessary.

Remember: The SET keyword is used only once for each UPDATE
statement. If more than one column is to be update, a comma is
used to separate the columns to be updated.

GENERAL QUERY SYNTAX (SELECT)

SELECT commands with 'where clause using conditional expressions
■ This command accompanied by many options and clauses, is used to compose queries

against a relational database, SELECT is the main command used in SQL to initiate
a query. Let us see how it can be used. The basic syntax for the commcmd is:

SELECT [* DISTINCT COLUMNl, COLUMN2] FROM TABLE!ALL
[, TABLE2];

Here the the various terms used are;
SELECT It is the main query . ' '

It is the keyword followed by a list of one or more tables from
which you want to select data
This option is used to display all vaues for a column, including
duplicates.
This option is used to eliminate duplicate rows. The default
between DISTINCT and ALL is ALL, which may not be
specified. /

FROM •

ALL

DISTINCT

Self Instructional Material 107

It can be used in various ways. Some of them are discussed here.
Supposing you have a table of various students with Names, Roll Nos., Address, etc.
You can use the following Select statement to list out only names from it.

SELECT NAME PROM STUDBNT_TBL; '

This would result in the following:
SACHIN
RAHUL .
YUVRAJ
DILIP

Daiabase Systems

NOTES

Commas are used to separate arguments in a list in SQL
statements. Some common lists of columns in a query lists of
tables to be selected from in a query, values to be inserted into a
table, and values grouped at a condition in a query’s WHERE
clause.

Tip:

Now we see the other options of SELECT statement.
Selecting All the Columns
Using the AH option, you can tise the statement in the following way.

SELECT ALL ROLLNO. FROM STUDENT_TBL;

This would result in the following;
1022 .. , •
1033
1044
1055 ^

These are the Roll numbers which are there in the table. Since ALL is a default
option, you could have given the above command in the following way too.

SELECT ROLLNO. PROM STDDENT_TBL;

This would again have given the same result.
Selecting Specific Column
In the above case we had to select one field only. We can in fact select both'Name
and RollNo. fields together. Let us see how it is done.

SELECT ALL NAME, ROLLNO. FROM STUDENTTBL;

This would result in the following:
SACHIN 1022
RAHUL
YUVRAJ 1044

r055
Similary if yoii want you can select the various of all fields.

I

1033

DILIP

i

108 Self Instr^icthnal Material

Database DevelopmentCREATE VIEW j

.. In SQL, the command to specify a view is Create View. The view is givan a table
name (or view name), a list of attribute names, and a query to specify the contents of
the view. If none of the view attributes results from applying functions, or arithmetic
operations, we do not have to specify attribute names for the view, since they would
be same as the names of the attributes of the defining ables in the default case. The
views VI and V2 are created in the following exarriples.

NOTES

VI
CREATE VIEW WORKS ONI
As Select Fname, Lname, Pname/ Hours

EMPLOYEE, PROJECT, WORKSON
SsnsEssn AND Pno=Pnuinber

From
Where

V2
CREATE VIEW DBPT_INFO (Dept_naine, No_of_emps,

Totalsal)
Dname, COUNT (*) , SUM (Salary)
DEPARTMENT, EMPLOYEE
DnumbersDno
Dname;

As Select
From
Where
Group by

In VI we did not specify any new attribute names of the view WORKS_ONl: in this
case, WORKS_ONl inherits the names of the view attributes from the defining
tables EMPLOYEE, PROJECT, and WORKS_ON. View V2 explicity' specifies new
attribute names for the view DEPT_INFO using a one-to-one correspondence between
the attributes specified in the CREATE VIEW clause and those specified in the
SELECT clause of the query that defines the view.

DROP VIEW

If we do not need a view any more, we can use DROP VIEW comand to dispose of
it. For example, to get rid, of the view VI, we can use the SQL statement in VIA.

WORKS ONI; .VIA DROP VIEW

SET OPERATORS ■ UNION, INTERSECT AND MINUS

You can combine multiple queries by using UNION clause. But the condition to
apply union clause is that both the tables should have same structure and specify the
column name of both the tables in the same sequence. The syntax for this is:

SELECT [STATEMENT] UNION SELECT [STATEMENT]

For example, .
SELECT NAME, ROLL_NO PROM STUDENTTBL UNION NAME, ROLL_NO

PROM MARKS TBL;

J

Self Instruaional Material 109 ■

The above statement would display name and roll number from' two tables, mainly,
STUDENT_TBL and MARKS_TBL. The duplicate rows would be automatically
deleted by the UNION claused
Several set theoretic operations_are used to merge the elements of two sets in various
ways, including UNION, INTERSECTION, and SET DIFFERENCE (also called
MINUS). These are binary operations; that is, each is applied to two sets (of tuples).
When these operations are adapted to relational databases, the two relations on which
any of these three operations are applied rnust have the same type of tuples; this
condition has'been union compatibility. Two relations R(A|, A^, A^) 2ind S(B
Bj, . - . B J are said to be union compatible if they have the same degree n and if
dom(A^ = dom (B/) fir 1 < z < n. This means that the two relations have the stime
number of attributes and each corresponding pair of attributes has the same domain.
We can define the three opearions UNION, INTERSECTION, and SET
DIFFERENCE on two union-compatible relations R and S as follows:

■ UNION: The result of this operation, denoted by R o 5, is a relation that
includes all tuples that are either in R or in 5 or in both R and S. Deuplicate
tuples are eliminated.

• INTERSECTION; The result of this operation, denoted by R n 5, is a relation
that includes all tuples that are in both R and S.

• SET DIFFERENCE: (or MINUS): The result of this operation, denoted by
R - S, is a relation that includes all tuples afhat are in R but nor in S.

We will adopt the convention that the resulting relation has the same attribute names
as the Jirst relation R. It is always possible to rename the attributes in the result using
the rename operator.
Notice that both UNION and INTERSECTION are.commutative operations', that is,

R u S = S u R and Rr>S = SriR
Both UNION and INTERSECTION can be treated as n-ary operations applicable to
any number of relations because both eire associative operations', that is,

R u (S u T) = (R u S) u T and (R n S) n T = R n (S n T)
The MINUS operation is not commutative', thatjs, in general,

R-S*S-R

Database Systems

NOTES

1’

FUNCTIONS
\

Functions are the keywords in SQL and are used to manipulate values within columns
for output purposes. A function is a command always used in conjunction with a
column name for expression. There are several types of functions in SQL.

Types of SQL Functions
Following are the various types of functions;

Aggregate functions

Date and Time functions

’ 110 Self Instructional Material

CharaCTer functions Database Development

Conversion functions
Miscellaneous functions.

Single Row Functions
Single Row functions operate on the single row and return one result per row. They
can accept one or more arguments and return one value for each row. They can be
used with SELECT, WHERE, and ORDER BY clause and also they can be nested.
An argument can be of the following types:

• Users supplied constant
• Variable name
• Variable value
• Expression

Single row functions can fall in the following categories:
• • Character

• Number
• Date
• Conversion
• General

NOTES

r

Character Functions
There are various types of functions in SQL. Character funaions are used to modify
the appearance.of character values. Various character functions are: CHR, CONCAT,
INITCAP, INSTR, LEFT, LENGTH, LOCATE, LOWER, LPAD, LTRIM,
REPLACE, RIGHT, RPAD,’ RTRIM, SUBSTR.'SUBSTRING, TRANSLATE,
TRIM and UPPER. Some of them have been discussed earlier. Let us read about
them one by one.
CHR

This function returns the character equivalent of the number it uses as an argument. .
For example,

SELECT ROLLNO, CHR(ROLLNO) FROM STUDENTTBL;
This would give the following result.

ROLLNO CH
22
33 I
44 . \

55 7

CONCAT

This function was talked earlier as Concotation Operators (| |).

Self Instructional Material 111

Database Systems INITCAP

This function makes the first character to the uppercase, and all other characters to
lowercase.
For example,

SELECT NAME BEFORE, INITCAP(FIRSTNAHE) AFTER FROM
STUDENT_TBL; -

This would give the following result.
BEFORE AFTER
SACHIN Sachin
RAHUL Rahul
YUVRAJ Yuvraj
DILIP Dilip

NOTES

imiR
This function is used to find out where in a string a particular pattern occurs. For
example,

SELECT NAME, INSTR(NAME, 'A', 2, 1) FROM STUDENTTBL;

This would give the following result.
NAME INSTRILASTNAME, 'A', 2, 1) '
SACHIN 2
RAHUL 2
YUVRAJ 5
DILIP 0

In Sachin, A is at 2nd position, so in Rahul. In the case of Yuvraj it is there on the 5th
position, while in Dilip it is not there, hence O is returned.
LEFT

• This function returns the leftmost character from the string.
For example,

SELECT LEFT(NAME, 3) FROM STUDENTTBL;

This would give the following result.
NAME LEFT (NAME, 3)
SACHIN SAC
RAHUL RAH
YUVRAJ YUV
DILIP DIL

The first 3 characters from the left are selected.
LEMGTHO

This function is used to find the length of a string, number, date, or expression in
bytes. The syntax is;

LENGTH (CHARACTER STRING)

t

/

112 Self Instructional Material

For example,
SELECT LENGTH(NAME) PROM STUDENT_TBL

This would return the number of charaaers in the Name field. •

Database concepts

LOCATE
NOTESThis function is used to the first occurence of the substring in the string. It returns a

0 if the string is not there.
For example,

SELECT LOCATE('AC', 'SACHIN');

This would give the following result.
2

In Sachin, AC appears at the 2nd position, that is why 2 has been returned.

LOWER
It has been discussed earlier.
LPAD

See RPAD.
LTRIM
It is used to clip a part of a string.'It is used to trim characters ‘from die left of a string.
The syntax is: '

LTRIM(CHARACTER STRING [, 'set'])

For example,
SELECT LTRIMlNAMB, 'SA') FROM STUDENT_TBL

This would remove SA from the name, if it is there. The net result would be:
1022
1033
1044
1055

In the first record, it was found and thxis SA has been trimmed;^
REPLACE

It has been discussed earlier,
RIGHT
This function returns the rightmost character from the string.
For example,

SELECT RIGHT (NAME, 3) PROM STtJDENT_TBL;

This would give the following result.
NAME RIGHT(NAME, 3)
SACHIN HIN
RAHUL HUL

MUMBAISACHIN
BANGALORERAHUL

YUVRAJ DELHI
ROLRATADILIP

Self Instructional Material ljl3

Dalabase Systems YUVRAJ RAJ
DILIP LIP

The first 3 characters from the right are selected.
RPADQ

PAD and TRIM are used twice over with Left and Right. So you have functions as
LPAD and RPAD. I am going to give them separately. In fact, what this function
does is that it fills up the extra space in the field with the padding either from the left
or from the right. The syntax is:

. LPAD(CHARACTER STRING)
RPAD(CHARACTER STRING)

For example,
SELECT LPAD(NAME) PROM STUDENTTBL

Supposing we have the field length of 10 in the case of NAME and the data we have,
as in the case of SACHIN, only 6 characters, the rest 4 charaaers would be filled up
with padding records'. The net result would be:

....SACHIN 1022

......... RAHUL 1033

....YUVRAJ 1044

.........DILIP 1055

Similarly if the command had been given for right padding, the result would have
been.

NOTES

MUMBAI
BANGALORE
DELHI
KOLRATA

SACHIN.... 1022
RAHUL
YUVRAJ.. . . 1044 •
DILIP

RTRIM

It is similar to LTRIM but the trimming of characters starts from the right. The
syntax is:

RTRIM (CHARACTER STRING ['set']')

For example,
SELECT LTRIM(NAME, 'UL') FROM STUDENT_TBL

This would remove UL from the name, if it is there as the last 2 charaaers. The na
result would be:

SACHIN
RAH
YUVRAJ
DILIP

In the second record, it was found and thus UL has been trimmed.
SUBSTR

It is used to take out a set of charaaers from a string. The syntax is:
SUBSTR(COLUMN NAME, STARTING POSITION, LENGTH)

MUMBAI
1033 BANGALORE

DELHI
1055 KOLKATA

1022 MUMBAI
1033 BANGALORE
1044 DELHI
1055 'KOLKATA

114 Self Instructional Material

Here Column Name is the name of the field from the charaaers have to be obtained,
STARTING POSITION is the position from where the displaying would start and
LENGTH is the number of characters it would display. For example,

SELECT SUBSTR(NAME, 2, 2) PROM STUDBNT_TBL

This would start from the second character and display the next 2 characters. The net
result would be:

Database Development

NOTES

1022CH MUMBAI
AH 1033 BANGALORE
VR 1044 DELHI

1055 KOLKATALI
Notice that all other fields remain the same.
TRANSLATE

This , was discussed earlier,
TRIM

See LTRIM and RTRIM. .
UPPER .
This was discussed earher.

Case Conversion Functions
Various functions under this category are: LOWER, INTTCAP and UPPER. All of
them have been discussed earlier.

Character Manipulation Function
Various functions under this category are: CONCAT and INSTR. They have been
discussed earlier.

Number Functions .
Following is the list of number functions arranged in the alphabetical order and what
they do. ■

ABS -
This function returns the absolute value. The syntax for this function is:

ABS (value)

ACOS
This function returns arc cosine of value. The syntax for this function is:

ACOS(value)
ASIN
This function returns arc sin of value. The syntax for this function is:

ASIN(value)

Self InstTuaicml Material 115

. Database Systems ATAN
This function returns arc tangent of value. The syntax for this function is:

ATAN (value)
CEIL
This function returns smallest integer larger than or equal to value. The syntax for
this function is:

CEIL(value)

NOTES

COS
This function returns cosine of the value. The syntax for this function is:

COS(value)

COSH
This function returns hyperbolic cosine of the value. The syntax for this function is:

COSH(value)
EXP
This function returns e raised to the valueth power.
The syntax for'this funaion is: .

EXP(n)

FLOOR
This function returns largest integer smaller than or equal to value. The syntax for
this function is:

FLOOR(value)

IN
This function returns natural (base e) logarithm of value. The syntax for this function
is:

LM(number)

LOG
This function returns base logarithm of value. The syntax for this function is:

LOG(base, number)
MOD
This function returns modulus of value divided by divisor. The syntax for this function
is:

MOD(value, divisor)

NVL
This function returns substitute for value if value is NULL'. The syntax for this •
function is: '

NVL(value, substitute)
POWER
This function returns value raised to an exponent. The syntax for this function is:

POWER(value, exponent)
116 Self Instructional Material

Database DevelopmentROUND
This function returns rounding of value to precision. The syntax for this function is:

ROUND (date, 'format’)
SIGN

NOTESThis function returns 1 if value is positive, -1 if negative, 0 if zero. The syntax for
this funcLiun is:

SIGN(value)
SIN
This function returns sine of value. The syntax for this function is:

sin(value)
SINH
This function returns hyperbolic sine of value. The syntax for this function is: •

SIKH (value)
SQRT
This function returns square root of value. The syntax for this function is:

SQRT(value)
TAN
This function returns tangent of value. The syntax for this function is:

TAN(value)
TANK
This funaion returns hyperbolic tangent of value. The syntax for this function is:

TANK(value)

TRUNC
This function returns value truncated .to precision. The syntax for this function is:

TRtJNC (value,precision)

VSIZE
This function returns storage size of value in Oracle. The syntax for this function is:

VSIZE(value)

Working with Dates
Date is already stored in computer. You can recall it and then manipulate'using the

• following functions as per your need.
LASTJ)AY
This function is used to return the last of a specified month. It is there supposing you
forget how many days are there in that particular month.
For example,

SELECT ENDDATE, LAST DAY(ENDDATE) FROM EHP TBL;

Self Instructional Material 117

. This would give the following, depending upon the data you have in EMP_TBL.
LASTDAY(ENDDATE)
31-01-2003
28-02-2003
31-03-2003

Database Systems

ENDDATE
01-01-2003
01-02-2003
01-03-2003

MONTHS _BETWEENO

This functidn is used to return the number of months elapsed between two months.
For example,

SELECT STARTDATB, ENDDATE, MONTHSBETWBEN(STARTDATE,
. ENDDATE) DURATION FROM PROJECT;

This would gvie the following, depending upon the data you have in EMP_TBL.
LASTDAY‘(BNDDATE) DURATION
30-01-2003
01-02-2003
15-03-2003

NOTES

ENDDATE
01-01-2003
01-02-2003
.01-03-2003

NEXTJ)AY()
This function is used to return the fust day of the week that is equal to or later than
another specified date. . •

For example,
SELECT STARTDATE, NEXT_DAY(STARTDATE, 'MONDAY') PROM

EMPTBL;

This would give the following, depending upon the data you have in EMP^TBL.
NEXTDATE
06-01-2003
03-02-2003
03-03-2003

.93548387
0
. .48387097

STARTDATE
01-01-2003
01-02-2003
01-03-2003

ADDJMONTHSO

This function is used to add a number of months to a specified date.

For example,
SELECT STARTDATE, ENDDATE ORIGINAL, ADD_MONTHS(ENDDATE,3)

FROM BMP_TBL;
This would give the following, depending upon the data you have in EMP_TBL.

ADDMONTH
30- 04-2003
31- 05-2003
30-06-^2003

STARTDATE ORIGINAL
01-01-2003
01-02-2003
01-03-2003

ROVNDO

It rounds off date according to format. Various formats available for rounding are:

31-01-2003
28-02-2003
31-03-2003

118 Self Instructional Material

Database DevelopmentFormat Meaning

cc.scc century (rounds up to January 1st of next century, as of
midnight exactly on the morning of January 1st 1950, 2050
and so on)

syear,syyy,y,yy,yyy,yyyy and year yearfrounds up to January 1st of the next year as
of midnight exactly on the morning of July 1st)

q quarter (rounds up in the 2nd month of the quarter as of
midnight exactly on the morning of the 16th, regardless of
the number of days in the month)

month,mon,mm month (rounds up as of midnight exaaly on the morning of
the 16th regardless of the number of days in the month)

ww rounds to closest Monday
w rounds to closest day which is the same day as the first day of

the month
ddd,dd, j . rounds up, to the next day as of noon exactly. This is the same

cis ROUND with no format
day,dy,d rounds up to next Sunday (first day of the week) as of noon

exactly on Wednesday
hh,bhl2,hh24 rounds up to the next whole hour as of 30 minutes and 30

seconds after the hour
mi rounds up to the next whole minute as of 30 seconds of this

minute.

NOTES'

\

TRUNC
It truncates number to precision,

1
Arithmetic Operation on Dates
Date functions similar to character string functions, are used to manipulate the
representation of data and time. Among the various functions which can be performed
on the Date are; format the date and time in the required format, compare date
values with one another, compare intervals between dates, etc.

Date Functions and their Usuage
Date is used in calculations too. It is possible that you have to convert its characters
first for using it.
Converting Dates to Character Strings
You can convert date to month, date, year. For this we have the function called
TO_CHAR.
For example, I :

SELECT BNDDATE TO_CHAR(ENDDATE, "Month dd, yyyt')
'DATE CHAR' FROM PROJECT TBL;

This would return the following, depending upon the data available in
PROJECT_TBL.

ENDDATE
01-01-2003

\ -
DATE_CHAR
January 1, 2003

Self Instructional Material 119

Database Systems February 1, 2003
March 1, 2003

Converting Character Strings to Dates
This is the reverse of the above. Well, it is possible that you may need to do this too.
Here the function to be used is TO_DATE.
For example,

SELECT TO_DATE('JANUARY Oi 2003', 'MONTH DD YYYY') PROM
EMPLOYEE_TBL;

This would give you the following result.
TO_DATE('
Ol-JAN-2003
Ol-JAN-2003
01-JAN-2003
Ol-JAN-2003

1. .

This will depend on the’type of data you have in your EMPLOYEE_TBL,

Data type Conversion Functions
As we have seen in the case of dates above, the conversion sometimes becomes
necessary. But the conversion is not limited to dates only. You need to convert data
also sometiriies. The functions are TO_CHAR and TO_NUMBER.

Implicit Conversions
Wheri the Oracle Server automatically converts data to the expected datatype, the
conversion is called implicit convesion. For an assignment the Oracle Server can
automatically convert the following:

From

01-02-2003
01-03-2003

NOTES

To

VARCHAR20RCHAR NUMBER
VARCHAR20RCHAR DATE
NUMBER
DATE

VARCHAR2
VARCHAR2

• For. expression evaluation, the Oracle Server can automatically convert the following:
From To

VARCHAR20RCHAR NUMBER
VARCHAR20RCHAR DATE

Explicit Conversion
Explicit datatype conversion are done by using the conversion funaions. Conversion -
functions convert one datatype to another. SQL provides the three explicit conversion
functions listed below:
Function

TO CHAR(number
Purpose

I date, [fmt], [nlparamsD
Converts a number or date value to a VARCHAR2 character

120, Self Instructional Material

Database DevelopmentString with format model fmt. nlparams parameter specifies
the following characters, which are returned by number
format elements:
• Decimal character
• Group separator
• Local currency symbol
• International currency symbol

TO_NUMBER(char, [fmt], [nlsparams]}

Converts a character string containing digits to a number in
the format specified by the optional format model fmt. The
nlsparams parameter has the same purpose as in the

• TO_CHAR function for number conversion.
TODATE(char, [fmt], [nlsparams])

Converts a character string representing a date to a date
value according to the' fint specified. If fmt is omitted, the

' format is DD-MON-YY. The nlsparams pcirameter has the
same purpose in this function as in the TO_CHAR function
for date conversion.

NOTES

TOjCHAR Function with Dates

This has been discussed earlier.

TOJCHAR Function For Numbers

This function can be used for converting a number into a character.

TO_NVMBER

This function is used to convert a character string to its numerical equivalent. In the
following example, we have converted the-NAME to number and then multiplied
with another number to get the result.

SELECT NAME, TESTNUM, TESTNUM*TO_NUMBER(NAME) FROM
STUDENT_TBL;

This would give you the following result.

NAME TESTNUM*TO NUMBER(NAME)TESTNUM
29913 23
3800
5032

40 95
6874

TO_DATE Functions

This is used to convert text into a Date format. The syntax-is similar to TO_CHAR.

TO_DATE (expression; 'dat:e_picutre')

For example,

'SELECT TO_DATE('20030101', 'yyyymmdd') "NEW DATE" FROM
STUDENT_TBL;

This would give the following result.

NEW DATE
Ol-JAN-2003 Self Instructional Material 121

Database Systems Or you can have the following format.
SELECT t6_DATE('20030101', 'yyyy/mm/dd') ."NEW DATE" FROM

STUDENT_TBL;

This would give the following result.
NOTES NEW DATE

Ol/JAN/2003

Valid Date, Time and Other Formats
«

Following is the list of valid date, time and other formats:

Element Description

DATE FORMATS
see or ee eentury; S prefixes Be date with -
Years in dates YYYY or SYYYY Year; S prefixes Be date with -

Last three, two or one digits of year
Year'with comma in this position
Four, three, two or one digit year based on the
ISO standard
Year spelled out; S prefixes Be date with -
Be/AD indicator

YYY or YY or Y
Y,YYY
[YYY,IYY,IY,I

SYEAR or YEAR
Be or AD
B.e. or A.D.
Q Quarter of year

Month, two-digit value
Name of month, padded with blanks to length
of nine characters
Name of month, three-letter abbreviation
Roman numerical month
Week of year or month
Day of year; month or week
Name of day padded with blanks to length of 9
characters
Name of day; three-letter abbreviation
Julian day; the number of days since 31
December 4713 BC

MM
MONTH

MON
RM
WWorW
DDD or DD or D
DAY

,DY
J

TIME FORMATS
AM or PM Meridian indicator

Meridian indicator with periodsA.M. or P.M.

122 Self Instructional Materia!

HH or HH12 or HH24 Hour of day or hour (1-12) or hour (0-23)

Minute (0-59)

Second(0-59)

Seconds past midnight (0-86399)

Database Development

MI

ss
sssss
OTHER FORMATS NOTES

/. Punctuation is reproduced in the result

Quoted string is reproduced in the result

Original number (for example, DOTH for 4th)

Spelled out number (for example, DDSP for
FOUR)

Spelled out ordinal numbers (for example,
DDSPTH for FOURTH)

“of the”

TH

SP

SPTH or THSP

NVL Function and its Usage

This function is used to return data from one expression if another expression is
NULL. NVL can be used with most data types, however, the value and the substitue
must be the same data types. The syntax for this is:

NVL('VLAUE', 'SUBSTITUTION')

For example,
SELECT NVL(SALARY, '00000') PROM EMPLY_TBL;

This statement finds NULL values and substitutes 00000 for any NULL values.

DECODE Function and its Usage

\

This function is used to search a string for a value or string, and if the string is found,
an alternate string is displayed as,part of the query results. The syntax is:

DECODE(COLUMN NAME, 'SEARCHl', yRETURNl', ['SEARCH2', •
'RETURN2', 'DEFAULT VALUE^'x])

For example,
SELECT DECODE (LAST_NAME, 'BANGIA', 'RAMESH', '■OTHER') FROM

. STUDENT_TBL;

This query searches the value of all last names in EMPLOYEE_TBL; if the value
BANGIA is found, RAMESH is displayed in its place. All other names are displayed
as OTHER, which is called the default value.

Remember; When embedding functions within functions in an SQL
statement, remember that the innermost fitnction is resolved
first, and then each function is subsequently resolved from the
inside out.

GROUP FUNCTIONS

Typical group functions—those that are used with the GROUP BY clause to arrange
Self Instructional Material 123

data in groups—include AVG, MAX, MIN, SUM, and COUNT. You will learn about
them in the next para.

Types of group functions
The various type of group functions are: MAX, MIN, SUM, AVG and COUNT.
They are discussed and their usage shown below.

Using MAX Function
Returns the maximum value associated with an expression. The syntax is:

MAX(sql_expression)
The sql_expression is typiccilly a column name, although arithmetic expressions can
be used. ALL and DISTINCT may be used to qualify sqLexpression, although
DISTINCT has no real meaning in the context of this function. There is only one
maximum value for any given expression. ALL forces the function to apply to all
values of the expression; it is the default mode of operation for the function. Te
return type matches that of sqLexpression. For example,

SELECT MAX (ytd_sales) FROM titles

Using MIN Function'
Returns the minimum value associated with an expression. The syntax is: •

MIN (sgl expression)
The sqLexpression is typically a column name, although arithmetic expressions can
be used. ALL and DISTINCT may be used to qualify sqLexpression, although
DISTINCT has ho real meaning in the context of this function. There is only one
minimum value for any 'given expression. ALL forces the function to apply to all
values of the expression; it is the default mode of operation for the function. Te
return type matches that of sqLexpression. For example,

SELECT minCytdsales) FROM titles
^ j

Using AVG Function
Returns the average of the values in a group defined either by AVG or GROUP BY.
The syntax is

AVG (sqlexpression)
The sqLexpression is typically a column name, but it can be a more corriplex
expression. ALL or DISNTINCT can be used to modify the expression. The return

, value matches the' data type of the sqLexpression. For example,
SELECT AVG(DISTINCT price) FROM titles

Using SUM Function . •' .
Returns the sum of the items designated in^h^K^ression. The syntax is

SUM(sql_expression) '' ■
The sqLexpression is typically a column name. However, other types of expressions
can be used. SqLcxpression, must represent numeric data and NULL are discarded.
ALL and DISTINCT may be used to' modify sqLexpression' and ALL is the default.
DISTNCT forces the sum of only the unique values’ duplicate values are discarded.
The sum data type matches that of sqLexpression. For example.

Database Systems

NOTES

124 Self Instructional Material

SELECT SUM(advance) PROM titles

Using COUNT Function

Returns the count of the number of items in a group defined by COUNT or GROUP
By. The syntax is;

COUNT(sql_expression)

The sqI_expression is typically a Column name, although more complex expressions
are possible. ALL and DISTINCT may be used to qualify sql_expression. The return

' type is an integer representing the count. For example,
SELECT COUNT(city) FROM authors

Database Development

NOTES

Using COUNT(*)

This function is used to count all rows in a table. So when you give the command
COUNT(*), it will give you the number the rows the table has.
For example,

SELECT COUNT!*) FROM STUDENT_TBL;

This will give you,
4

Since there are only 4 rows in the table, the result value 4 has been given.

DISTINCT clause with COUNT(*)
DISTINCT as we know is the command to eliminate the duplicates. So when you
use this with the COUNT function, the counting is done on the number of rows
which are unique and not duplicate in nature. For example, -

SELECT DISTINCT COUNT!*) FROM STUDENTTBL;

This will result in following:
4

Since there are no duplicates, the value return has been the same.
Using NVL Function with Group Functions

All the group functions expect COUNT ignore the NULL values in the column. For
example, •

. SELECT AVG_SALARY FROM EMPLOYEE_TBL;

When the above command is executed, the AVG function will find the average of all
the records excluding the ones which have the NUT T, values.

JOIN

An SQL JOIN clause combines records fi-om two tables in a database. It creates a set
that can be saved as a table or used as is. A JOIN is a means for combining fields
ft'om two tables by using values common to each. ANSI standard SQL specifies four
types of JOlNs; INNER, OUTER, LEFT, and RIGHT. In special cases, a table (base
table, view, or joined table) can JOIN to itself in a Self-join.
A programmer writes a JOIN predicate to identify the records for joining. If the

Self Instructional Material 125

evaluated predicate is true the combined record is then produced in the expected
format, for example a record set or a temporary table.

Sample tables
All subsequent explanations on join types in this article make use of the following
two tables. The rows in these tables serve to illustrate the effect of different types of
joins and join-predicates. In the following tables, Department. DepartmentlD is the
primary key, while Employee.DepartmentID is a, foreign key.

Employee Table

LastName DepartmentlD
Rafferty
Jones
Steinberg 33
Robinson 34
Smith
Jasper . NULL

Department Table
DepartmentlD DepartraentName

Sales
Engineering

Clerical
Marketing

i

Note: The “Marketing” Department currently has no listed, employees. Employee
“Jasper” has not been assigned to any Department yet.

Inner join
inner join requires'each record in the two joined tables to have a matching record.

An inner join essentially combines the records from two tables (A and B) based on a
given join-predicate. The result of the join can be defined as the outcome of first
taking the Cartesian product (or cross-join) of all records in the tables (combining
every record in table A with every record in table B) - then return all records which
satisfy the join predicate. Actual SQL implementations will normally use other
approaches where possible, since computing the Cartesian product is not very efficient.
This type of join occurs most commonly in applications, and represents the default
join-type.
SQL specifies two different syntactical ways to express joins. The first, called “explicit
join notation”, uses the keyword JOIN, whereas the second uses the “implicit join'
notation”. The implicit join notation lists the tables for joining in the FROM clause

• of a SELECT statement, using commas to separate them. Thus, it specifies a cross­
join, and the WHERE clause rnay apply additional filter-predicates. Those filter-
predicates function comparably to join-predicates in the explicit notation.

Database Systems

NOTES

31
33

34

31
33

34
35

' /

126 Self Instructional Material

One can further classify inner joins as equi-joins, as natural joins, or as cross-joins (see
below).

Programmers should take special.care when joining tables on columns that can contain
NULL values, since NULL will never match any other value"(or even NULL itself),
unless the join condition explicitly uses the IS NULL or IS NOT NULL predicates.

As an example, the following query takes all the records from the Employee table
and finds the matching record(s) in the Department table, based on the join predicate.
The join predicate compares the values in the DepartmentID column in both tables.
If it finds no match (i.e., the department-id of an employee does not match the
current department-id from the Department table), then the joined record remains
outside the joined table, i.e., outside the (intermediate) result of the join.

Example of an explicit inner join;
SELECT *
FROM employee

. Database Development

NOTES

INNER JOIN department
ON employee.DepartmentID = department.DepartmentID

is equivcilent to:
SELECT *

FROM
WHERE

Explicit Inner join result:

employee, department
employee.DepartmentID department.DepartmentIDS i

Emphyee.LastName Employee.DepartmentID DepartmentDepartmentName Department.DepartmentlD

Clerical 34Smith 34

Engineering

' Clerical

Engineering

Sales

3333Jones

34 34Robinson

' Steinberg

Rafferty

3333
3131

Notice that the employee “Jasper” and the department “Mcirketing” does not appear.
Neither of these has any matching records in the respective other table: “Jasper” has
no associated department and no employee has the department ID 35. Thus, no
information on’Jaspef or on Marketing appears in the joined table. Depending on the
desired results, this behavior may.be a subtle bug. Outer joins may be used to avoid it.

Equi-join
An equi-join, also known as an equijoin, is a specific type of comparator-based join,
or theta join, that uses only equality comparisons in the join-predicate. Using other
comparison operators (such as <) disqualifies a join as an eqtii-join. The query shown
above has already provided an example of an equi-join;

SELECT ' EmpT oyee . las tMame , Employee.DepartmentID,'
Department.DepartmentKame

FROM Employee INNER JOIN Department
/

Self Instruaional I^erial 1^7^

Database Systems ON Employee.DepartmentID s Department.DepartmentID;
SQL provides optional syntactic sugar for expressing equi-

joins/ by way of the USING construct (Feature ID
F402) :

Employee.1astName/
Department.DepartmentName

FROM Employee INNER JOIN Department
USING(DepartmentID);

The USING clause is supported by MySQL, Oracle and PostgreSQL.

DepartmentID/SELECT
NOTES

Natural join
A natural join offers a further specieilization of equi-joins. The join predicate arises
implicitly by comparing all columns in both tables that have the same column-name
in the joined tables. The resulting joined table contains only one column for each pair
of equally-named columns.

The above sample-query for inner joins can be expressed as a natural join in the
following way:

SELECT *
FROM employee NATURAL JOIN department

The result appears slightly different, however, because only one DepartmentID column •
occurs in the joined table.

EmployeeJLastName DepartmentJDepartmentName.DepartmentID

Clerical

Engineering

Clerical

Engineering

Sales

34 Smith

Jones

Robinson

Steiriberg

Rafferty

33

34

33

31

The Oracle database implementation of SQL selects the appropriate column in the
naturally-joined table from which to gather data. An error-message such as “ORA-
25155: column used in NATURAL join cannot have qualifier” is an error to help
prevent or reduce the problems that could occur may encourage checking and precise
specification of the ,columns named in the query, and can also help in providing
compile time checking (instead of errors in query).

Cross join

A cross join, cartesian join or product provides the foundation upon which all types
of inner joins operate. A cross join returns the cartesian product of the sets of records
from the two joined tables. Thus, it equates to an inner join where the join-condition.

. always evaluates to True or join-condition is absent in statement.

If A and B are two sets, then the cross join is written as A x B.

The SQL code for a cross join lists the tables for joining (FROM), but does not
include any filtering join-predicate.

128 Self Instructional Material

Example of an explicit cross join;
SELECT *

FROM employee CROSS JOIN department
Example of an implicit cross join;

SELECT *

FROM employee, department;

Database Development

NOTES

Employee.IastName Employee.DepartmentID Department.DepartmentName pepartment.DepartmentID

3131 Sales
Sales
Sales
Sales
Sales
Sales
Engineering
Engineering
Engineering
Engineering
Engineering
Engineering
Clerical -
Clerical
Clerical
Clerical
Clerical
Clerical
Marketing
Marketing
Marketing
Marketing
Marketing
Marketing

Rafferty
Jones 3133

3133Steinberg
Smith
Robinson

3134
3134
31NULLJasper

Rafferty
Jones
Steinberg
Smith
Robinson

3331
3333

3333
3334
3334
33NULLJasper

Rafferty
Jones
Steinberg
Smith
Robinson

3431
3433
3433
3434
3434
34NULLJasper

Rafferty
Jones
Steinberg
Smith
Robinson

3531
3533
3533
3534
35 •34 •
35NULLJasper

The cross join does not apply any predicate to filter records from the joined table.
Programmers can further filter the results of- a cross join by using a WHERE clause.

Outer joins
An outer join does not require each record in the two joined tables to have a matching

Self Instructional Material 129

record. The joined table retains each record—even if no other matching record exists.
Outer joins subdivide further into left outer joins, jight outer joins, and full outer
joins, depending on which table(s) one retains the rows from (left, right, or both).
(For a table to qualify as left or right its naine hcis to appear after the FROM or JOIN
keyword, respectively.) ' ,
No implicit join-notation for outer joins exists in standard SQL.

Left outer join

Database Systems

NOTES

The result of a left Outer join (or simply left join) for table A and B always contains
all records of the “left” table (A), even if the join-condition does not find any matching
record in the “right” table (B). This means that if the ON clause matches 0 (zero)
records in B, the join will still return a row in the result—but with NULL in each
column from B. This means that a left outer join returns all the values from the left
table, plus matched values from the right table (or.NULL in case of no matching join
predicate).

, For example,, this allows us to find an employee’s department, but still shows the
employee(s) even when their depeirtment does not exist (contrary to the inner-join
example above, where employees in non-existent departments are excluded from the
result).
Example of a left outer join, with the additional result row italicized:

SELECT * .

FROM employee LEFT OUTER JOIN department
ON emp1oyee.DepartmentID

department.DepartmentID

Employee.LastName Employee.DepartmentID Department.DepartmentName Department.DepartmentID

Jones.
Rafferty .
Robinson
Smith
Jasper
Steinberg

33 Engineering

Sales '
Clerical
Clerical

33

31 31
34 . 34

• /
34 34
NULL NULL NULL
33 Engineering 33

Right outer joins
A right outer join (or right join) closely resembles a left outer join, except with the
treatment of the tables reversed. Every row from the “right” table (B) wiU appear in
the joined table at least once. If no matching row from the “left” table (A) exists,
NULL will appear in columns from A for those records that have no match in A.
A right outer join returns all the values from the right table and matched values from
the left table (NULL in case of no matching join predicate).
For example, this allows us to find each employee and his or her department, but still
show departments that have no employees.

130 Self Instructional Material

Example right outer join, with the additional result row italicized: ''
SELECT *
FROM

Database Development

es^loyee RIGHT OUTER JOIN department
employee.DepartmentID =ON

department.DepartmentID
NOTES

Employee.LastName Employee.DepartmentID Department.DepartmentName Department.DepartmentID

Smith 34 Clerical
Engineering
Clerical
Engineering
Sales
Marketing

34
Jones 33 33
Robinson
Steinberg
Rafferty
NULL

34 34
33 33
31 31
NULL 35

In practice, explicit right outer joins are rarely used, since they can always be replaced
with left outer joins (with the table order switched) and provide no additional
functionality. The result above is produced also with a left outer join:

SELECT *
PROM department LEFT OUTER JOIN employee

emp1oyee.DepartmentID sON
department.DepartmentID

Full outer join
A full outer join combines the results of both left and right outer joins. The joined
table will contain all records from both tables, and fill in NULLs for missing matches
on either side.
For example, this allows us to see each employee who is in a department and each
department that has an employee, but also see each employee who is not part of a
department and each department which doesn’t have an employee.
Example full outer join:

SELECT *
FROM employee

FULL OUTER JOIN department
employee.DepartmentID =ON

department.DepartmentID

Employee.LastName Employee.DepartmentID Department.DepartmentName Department.DepartmentID

Smith 34 Clerical
Engineering
Clerical

- 34
Jones 33 33
Robinson 34 34
Jasper NULL NULL NULL

Self Instructional Material 131

Engineering

Sales

Marketing

33Database Systems Steinberg

‘ Rafferty

NULL

33

3131

35NULL

Some database systems (like MySQL) do not support this functionality directly, but
they can emulate it through the use of left and right outer joins and unions,. The same
example can appear as follows:

SELECT *
FROM

NOTES

employee
LEFT JOIN department

ON employee.DepartmentID
department.DepartmentID

. XJNION
SELECT *

employee
RIGHT JOIN department

FROM

ON employee.DepartmentID
department.DepartmentID

WHERE employee.DepartmentID IS NULL

Self-join
A self-join is joining a table to itself. This is best illustrated by the following example.

Example

A query to find all peiirings of two employees in the same country is desired. If you
had two separate tables for employees and a query which requested employees in the
first table having the same country as employees in the second table, you could use a
normal join operation to find the answer table. However, all the employee information
is contained within a single large table.

Considering a modified Employee table such as the following:

Employee Table

EmployeelD LastName

Rafferty

Jones

Country

Australia

DepartmentID

123 31

124 Australia 33

145 Steinberg

Robinson

Australia 33

201 United States 34

Smith

Jasper

An example solution query could be as follows:
SELECT F.EmployeelD, F.LastName, S.Bn^loyeelD, S.LastName,

F.Country
.FROM Employee -F, Employee S'

305 United Kingdom'

United Kingdom

34

306 NULL

132 Self Instructional Material

WHERE P.Country = S.Country
AND F.EmployeelD < S.EmployeelD
ORDER BY F.EmployeelD, S.EmployeelD;

Which results in the following table being generated.

Employee Table after Self-join by Country

Database Development

NOTES

Employeetsj LastName EmployeeW LastName Country

123 Rafferty

Rafferty

.Jones

Smith

124 Jones

Steinberg

Steinberg

Jasper

Australia
123 145 Australia
124 145 . Australia

United Kingdom305 306

For this example, note that:

F and S are aliases for the first and second copies of the employee table.

The condition F. Country = S.Country excludes pairings between employees in different
countries- The excimple question only wanted pairs of employees in the same country.

The condition F.EmployeelD < S.EmployeelD excludes pairings where the
EmployeelDs are the same.

F.EmployeelD < S.EmployeelD also excludes duplicate pairings. Without it only the
following less useful part of the table would be generated (for the United Kingdom
only shown):

EmployeeW LastName EmployeeW LastName Country

United Kingdom .

United Kingdom

United Kingdom

United Kingdom

305 Smith

Smith

Jasper

Jasper

305 Smith

305 • 306 Jasper

Smith306 305

306 306 Jasper

Only one of the two middle pairings is needed to satisfy the original question, and
the topmost and bottommost are of no interest at all in this example.

Alternatives

The effect of outer joins can also be obtained using correlated subqueries. For example
SELECT employee.LastName , employee.DepartmentID ,

department ..DepartmentName
eotployee LEFT OUTER JOIN departmentFROM

employee.DepartmentIDON
department.DepartmentID

/
•' can also be written as

SELECT employee.LastName, employee.DepartmentID,
(SELECT department.DepartmentName

FROM department Self Instructional Materia! 133

Database Systems WHERE employee.DepartmentID « department.DepartmentID
)

PROM employee

. Implementation
Much work in database-systems has aimed at efficient implementation of joins,
because relational systems commonly call for joins, yet face difficulties in optimising
their efficient execution. The problem arises because (inner) joins operate both
commutatively and associatively. In practice, this means that the user merely supplies
the list of tables for joining and the join conditions to use, and the database system
has the task of determining the most efficient way to perform the operation- A query
optimizer determines how to execute a query containing joins. A query optimizer

. has two basic freedoms: . . ,
Join order: Because joins function commutatively and associatively, the order in
which the system joins tables does not change the final result-set of the query. However,
join-order does have an enormous impact on the cost of the join operation, so choosing
the best join order becomes very important.
Join method: Given two tables and a join condition, multiple algorithms can produce
the result-set of the join. Which algorithm runs most efficiently depends on the sizes
of the input tables, the number of rows from each table that match the join condition,
and the operations required by the rest of the query.
Many join-algorithms treat their inputs differently. One can refer to the inputs to a
join as the “outer” and “inner” join operands, or “left” tind “right”, respectively. In
the case of nested loops, for example, the database system will scan the entire inner
relation for each row' of the outer relation.
One can classify query-plans involving joins as follows:
left-deep: using a base table (rather than another join) as the inner operand of each

■ join in the plan " •
right-deep: using a btise table as the outer operand of each join in the plan ,
bushy: neither left-deep nor right-deep; both inputs to a join may themselves result -
from joins
These names derive from the appearance of the query plan if drawn as a tree, with
the outer join relation on the left and the iimer relation on the right (as convention
dictates).
Join algorithms: Three fundamental algorithms exist for performing a join operation.

Nested loops
Please refer to main articles: Nested loop join and block nested loop
Use of nested loops produces the simplest join-algorithm. For each tuple in the outer
join relation, the system scans the entire inner-join relation and appends any tuples '
that-match the join-condition to the result set. Naturally, this algorithm performs
poorly with large join-relations: inner or outer or both. An index on columns in the
inner'relation in the join-predicate can enhance performance.
The block nested loops (BNL) approach offers a refinement to this technique: for

NOTES

134 Self Instructional Material

every block in the outer relation, the system scans the entire inner relation. For each
match between the current inner tuple and one of the tuples in the current block of
the outer relation, the system adds a tuple to the join result-set. This variant mearis

' doing more computation for each tuple of the inner relation, but far fewer scans of
the inner relation.

Database Development

NOTESMerge join
If both join relations come in order, sorted by the join attribute(s), the system can
perform the join trivially, thus:

' Consider the current “group” of tuples from the inner relation; a group consists of a
set of contiguous tuples in the inner relation with the same value in the join attribute.
For each matching tuple in the current inner group, add a tuple to the join result.
Once the inner group has been exhausted, advance both the inner and outer scans to
the next group.
Merge joins offer one reason why many optimizers keep track of the sort order
produced by query plan operators—if one or both input relations to a merge join
arrives already sorted on the join attribute, the system need not perform an additional
sort. Otherwise, the DBMS will need to perform the sort, usually using an external
sort to avoid consuming too much memory.

Hash join
A hash join algorithm can only produce equi-joins. The database system pre-forms
access to the tables concerned by building hash tables on the join-attributes. The
lookup in hash tables operates much faster than through index trees. However, one
can compare hashed values only for equality, not for other relationships.

SUB QUERIES

The most common operation in SQL databases is the query, which is performed with
the declarative SELECT keyword. SELECT retrieves data from a specified table,
multiple related tables in a database or the result of an expression. While often grouped
with Data Manipulation Language (DML) statements, the standard SELECT query
is considered separate from SQL DML, as it has ho persistent effects on the data
stored in a database. Note that there are some platform-specific variations of SELECT

• that can persist their effects in a database, such as the SELECT INTO syntax that
exists in some databases.
SQL queries allow the user to specify a description of the desired result set, but it is
left to the devices of the database management system (DBMS) to plan, optimize,
and perform the physical operations necessary to produce that result set in as efficient
a manner as possible. An SQL query includes a list of columns to be included in the
final result immediately following the SELECT keyword. An asterisk (“*”) can also
be used as a “vrildcard” indicator to specify that all available columns of a table (or
multiple tables) are to be returned. SELECT is the most complex statement in SQL,
with several optional keywords and clauses, including:

. The FROM clause which indicates the source table or tables from whiv . • be data is
to be retrieved. The FROM clause can include optional JOIN clauses i* , -un related
tables to one another based on user-specified criteria.

• Self Instructional Material 135

The WHERE clause includes a comparison predicate, which is used to restrict the
number of rows returned by the query, The WHERE clause is applied before the
GROUP BY clause. The WHERE clause eliminates all rows from the result set where
the comparison predicate does not evaluate to True.

The GROXJP BY clause is used to combine, or group, rows with related values into
elements .of a smaller set-of rows. GROUP BY is often used in conjunction with
SQL aggregate functions or to eliminate duplicate rows from a result set.

The HAVING clause includes a comparison predicate used to eliminate rows after
the GROUP BY clause is applied to the result set. Because it acts on the results of
the GROUP BY clause, aggregate functions can be used in the HAVING clause
predicate.

The ORDER BY clause is used to identify which columns are used to sort the resulting
data, and in which order they should be sorted (options are ascending or descending).

' The order of rows returned by an SQL query is never guaranteed unless an ORDER
'BY, clause is specified.

The following is an example of a SELECT query that returns a list of expensive
books. The query retrieves all rows from the Book table in which the price column
contains a value greater than 100.00. The result is sorted in ascending order by tide.
The asterisk (*) in the select list indicates that all columns of the Book table should
be included in the result set,

SELECT *
- FROM Book

WHERE price > 100.00
ORDER BY title.

The example below demonstrates the use of multiple tables in a join, grouping, and
aggregation in an SQL query, by returning a list of books and the number of authors
associated with each book.

SELECT Book.title,
count(*) AS Authors

Database Systems

NOTES

FROM Book
JOIN Bookauthor ON Bobk.isbn = Book_author.isbn

GROtJP BY Book, title ,

Example output might resemble the following;

Title

SQL Examples and Guide

The Joy of SQL

How to use Wikipedia

Pitfalls of SQL

Under the precondition that isbn is the only common column name of the two tables
and that a column named title only exists in the Books table, the above query could
be rewritten in the following form: ,

SELECT title.

Authors

3

1

2

1

136 Self Instruaional Material

Database Developmentcount(*) AS Authors
FROM Book

NATURAL JOIN Book_author
GROUP BY title

However, many vendors either do not support this approach, or it requires certain
column naming conventions. Thus, it is less common in practice.

Data retrieval is’ very often combined with data projection when the user is looking
for calculated values and not just the verbatim data stored in primitive data types,, or
when the data needs to be expressed in a form that is different frorh how it’s stored.
SQL allows the use of expressions in the select list to projea data, as in the following
example which returns a list of books that cost more than 100.00 with an additional
sales_tax column containing a sales tax figure calculated at 6% of the price.

SELECT isbn,
title,
price,
price * .0.06 AS sales tax .

FROM Book
WHERE price > 100.00
ORDER BY title

Universal quantification is not explicitly supported by sql, and must be worked out
as a negated existential quantification.

NOTES

SUMMARY

1. The database is used to store information useful to an organization.
2-. The entity-relationship data model (E R Model) grew out of exercise of using commercially

available DBMSs to model application databases.
3. The relationship between entity sets is represented by a model named E-R relationship.
4. Conceptual modeling is a very important phase in designing a successful database

application.
5. A database model is a collection oflogical constructs used to represent the data structure

and the data relationships found within the database.
6. Tranditional data models are the hierarchical, network and relational models.
7. Semantic data modes were influenced by the semantic networks developed by artificial

intelligence researchers.
8. Coniposite attributes can be divided into smaller subparts, which represent more basic

attributes with independent meanings.
9. Most attributes have a single value for a particular entity.

10. There can be multivalued attributes too.
11. Some attribute values can be derived from related entities.
12. In some cases a particular entity may not have an applicable value for an attribute. It is

called the NULL value.
13. A database usually contains groups of entities that are simUar.
14. An entity type describes the schema or intension for a set of entities that share the same

structure.
Self Instructional Material 137

Database Systems 15. An important constraint on the entities of an entity type is the key or uniqueness constraint
on attributes.

16. It is a constraint that prohibits any two entities from having the same value for the key
attribute at the same time.

17. Each simple attribute of an entity type is associated with a value set (or domain of values),
which specifies the set of values that may be assigned to that attribute for each individual
entity,

18. Database models can be grouped into two categories: conceptual models and
implementation models.

19. The conceptual model focuses on the logical nature of the data representation.
20. An implementation model places the emphasis on how the data are represented in the

database or on how the data structures are implemented to represent what is modeled.
21. Each database model is evolved from its predecessors.
22. The degree of a relationship type is the number of participating entity types.

'23. It is sometimes convenient to think of a relationship type in terms of attributes.
24. Each entity type that participates in a relationship type plays a particular role in the

relationship.
25. The process of database design is an iterative rather than a linear or sequential process.
26. During the design process, the database designer does simply depend on interviews to

help define entities, attributes and relationships. ‘
27. Converting any E-R model to a set of tables in a database is followed by a specific set of

rules that govern such a conversion.
28. The normalization process, as first proposed by Codd (1972a), takes a relation schema

through a series of tests to “certify”, whether it satisfies a certain normal form.
29. Codd proposed three normal forms, which he caOed First, Second, and Third normal

form. - ' •
30. A stronger definition of 3NF—called Boyce-Codd Normal From (BCNF)—was proposed

later by Boyce and Codd.
31. Normalization of data can be looked upon as a process of analyzing the given relation

schemas based on their FDs and primary keys to achieve the desirable properties of:
minimizing redundancy and minimizing the insertion, deletion, and update anomalies.

32. Normal forms, when considered in isolation from other factors, do not guarantee a good
database design.

33. Normalization is carried out in practice so that the resulting designs are ofhigh quality
and meet the desirable properties.

34. The process of storing the join of higher normal form relations as a base relation which is
in a lower normal form—is known as denormaJization.

3 5. The problem of database inconsistency and redundancy of data are similar to the problems
that exist in the hierarchical and network models.

36. The first normal form states that the domain of an attribute must include only atomic
(rimple, indivisible) values and that the value of any attribute in a tuple must be a single
value from the domain of that attribute.

37. The only attribute values permitted by INF are single atomic (or indivisible) values.
38. First normal form also disallows multivalued attributes that are themselves composite,
39. Second normal form (2NF) is based on the concept of full functional dependency.
40. Third normal form (3NF) is based on the concept of transitive dependency.
41. In terms of the normalization process, it is not necessary to remove the partial dependencies

NOTES

/

138 Self Instructional Material

Database Developmentbefore the transitive dependencies, but historically, 3NF has been defined with the
assumption that a relation is tested for 2NF first before it is tested for 3NF.

42. Boyce-Codd normal form (BCNF) was proposed as a simpler form of 3NF, but it was
, found to be stricter than 3NF.
42. In practi«, rnast relation schemas that are in 3NF are also in BCNF.
43. SQL statements have 3 Data Definition Lan^age (DDL) statements, CREATE, ALTER

and DROP.
44. SQL also has Data Manipulation Language (DML)statements such as SELECT, UPDATE,

and DELETE.
45. Data Control Commands (DCL) allow us to control access to data within the database.
46. Some data control commands are: ALTER PASSWORD, GRANT, REVOKE and

CREATE SYNONYM.
47. TCL (Transactional Control Commands are the commands which allow the user to manage

database transactions. For example commands like: COMMIT, ROLLBACK,
SAVEPOINT and SET TRANSACTION.

48. SELECT command accompanied by many options and clauses, is used to compose queries
against a relational database.

49. INSERT command is used to insert new data into a table.
5 0. UPDATE command does not add new records to a table, nor does it remove records—it

simply updates existing data.
•51. DELETE command is used to remove entire rows of data from a table.
52. CREATE command allows yoti to create a schema under which all the controls will be

mentioned.
53. DROP command can be used, for example, to drop a user from using the database.
54. ALTER command is used to change the attributes like user, password, privileges, etc.

.55.- RENAME allows you to rename a table from the database.
56. TRUNCATE 2illows you to truncate the running job.
57. GRANT command is used to grant both system-level and object-level privileges of an

exising database user account.
58. REVOKE command removes privileges that have granted to database users.
59. COMMIT is the transactional command used to save changes invoked by a transaction to

the database.
60. ROLLBACK is the transactional control command used to undo transactions that have

not already been saved to the database.
61. ADDITION is performed using (+) symbol.
62. SUBTRACTION is performed using (-) symbol.
63. MULTIPLICATION is performed using (*) symbol.
64. DIVISION is performed using (/) symbol.
65. Arithmetic operators are performed in the sequence of Division, Multiplication, Addition

and Subtraction.
66. NULL is used where you have to specify that there is nothing in it.
67. CONCATENATION is the process of .combining the two separate strings into one string.
68. The DISTINCT option is used when you have to display only one of the duplicate

records..
69. WHERE command is used when you have to make selection based on some facts.
70. The character means the various alphabets which are used in the language.

NOTES

i '

Self Instructional Material 139

Database Systems 71. REPLACE function is used to replace every occurence of a diaracter(s) with a specified
character(s).

72. The LIKE operator is used to compare a value which is similar to values given by the
. wildcards- ' . •

73. The EXISTS operator is used to search for the presence of a row in a specified table that
meets certain criteria.

74. UNIQUE operator searches every row of a specified table for uniqueness, i.e., no duplicates.
■ 75. The ALL operator is used to compare a value to all values in another values set.

76. The ANY operator is used to compare a value to any applicable value in the list according
to the condition.

77. AND operator allows the existence of multiple conditions in an SQL statement’s WHERE
clause.

78. OR operator is used to combine multiple conditions in an SQL statement’s WHERE
clause.

79. ORDER BY clause is used in sorting.
80. You can choose multiple columns too for sorting.
81. CHR function returns the character equivalent of the number it uses as an argument.
82. INITCAP function makes the first character to the uppercase and all other characters to

lowercase. - ' .
83. INSTR function is used to find out where in a string a particular pattern occurs.
84. LEFT function returns the leftmost character from the string.
85. LENGTH function is used to find the length of a string, number, date, or expression in

bytes.
86. LOCATE function is used to the first occurance of the substring in the string.
87.. LTRIM is used to clip a part of a string.
88. RIGHT function returns the rightmost charaaer from the string. '
89. NUMBER functions are; ABS, ACOS, ASIN, ATAN, CEIL, COS, COSH, EXP. FLOOR,

LN, LOG, MOD, NVL, POWER, ROUND, SIGN, SIN. SINH. SQRT, TAN, TANK,
TRUNCandVSIZE.

90. LAST^DAY function is used to return the last day of a specified month.
91. M0NTHS_BETWEEN function is used to retum'the number of months elapsed between

two months.
92- NEXT_DAY function is used to return the first day of the week that is equal to or later

than another specified date.
93. ADD_M0NTH function is used to add a number of months to a specified date.
94. ROUND rounds off date according to.forfTiat.

NOTES

;\

SELF ASSESSMENT QUESTIONS
I •

1. What do you understand by Data Modeling?
2. Describe Entity Relationship Model-
3. Describe the various Data Models.
4. Write a short note on Entities and Attributes.
5. What are Entity Types and Entity Sets?

' 6. Write a short note on Key Attributes of an Entity Type.
7. Write a short note on Relationship among Entities.
8. What is E-R Diagram? ^

140 Set/ Instruaional Material

9. What do you underetand by Functional Dependencies?
10. What are Trivial and Non-Trivial dependencies?
11. Describe the Closure of a set of dependencies and attributes.
12. What do you understand by Irreducible set of dependencies?
13. Describe the Non-loss decomposition.
14. Describe the working of First normal form with example.
15. What do you understand by Second normal form?
16. What is Third normal form?
17. Describe in details the Boyce/Codd normal form.
18. Write short notes on :

Database Development

NOTES

Full Functional dependenciesFunctional dependencies
Prime Attribute and Nonprime Attribues Transitive Dependency
Genera] Definition of Second normal form General Definition of Third normal form.\File Based Primitive Models
Semantic Data Models
Single Value versus Multivalues Attributes Null Values
Complex Attributes

_ One-to-Many relationship
One-to-one relationship
Relationships as Attributes
Converting an E-R Model into a database structure.

19. Which are the Data Definition Language statements?
20. Which are Data Manipulation Language statements?
21. What are the Data Control Commands?
22. Which are Transactional Control Commands?
23. Describe with example the use of the foUowing functions:

INSERT
•DELETE,,
DROP
RENAME
GRANT
COMMIT
ADDITION
MULTIPLICATION
NULL .
DISTINCT
GREATER THAN
LIKE .
UNIQUE .
AND
ORDER
INITCAP
LEFT,
LOCAT^'
RIGHT)
LAST_DiY
MONTH^BETWEEN

ROUND

T raditional Data Models
Composite versus Simple Attributes

Value Sets of Attributes
Many-to-Many relationship
Degree of a Relationship Type

!

\UPDATE
CREATE
ALTER
TRUNCATE
REVOKE
ROLLBACK
SUBTRACTION
DIVISION
CONCATENATION
WHERE
LESS THAN
EXITS
ANY'
C«.
CHR
INSTR
LENGTH
LTRJM
NUMBER
NEXT_DAY
ADD.MONTH

Self Instructional. M<iteriQl 141

Multiple Choice-Questions
1. E-R represents the relationship between ;

(a) attributes
2. Tranditional data models are the hierarchical, network and _

(b) relational
3. Entities not having an applicable value for an attribute are called :

. (b) NIL

Database Systems

(c) entitites(b) Data

(c) manual(a) physical
NOTES

(c) NO(a) NULL
models and4. Database models can be grouped into two categories:

implementation models;
(a) concurrent (c) conceptual(b) clumsy

data modes were influenced by the semantic networks developed by5.
artificial intelligence researchers :
(a) Semantic

6. Codd proposed three normal forms, which he called First, Second, and
form; •

(c) Primitive(b) Traditional
normal

(c) Third(a) Fourth (b) Many
7. A stronger definition of 3NF—called Boyce-Codd Normal From (BCNF)—^was proposed

. by Boyce and _________ ;,
(c) Bill Gates(b) Codd

8. The process of storing the join of higher normal form relations as abase relation which is
in a lower normal form—is known as_________ :

(a) Paul Allen

(b) denormalization
9. Third normal form (3NF) is based on the concept of^_____

(b) functional
10. In practice, most relation schemas that are in 3NF are also in

(a) INF.

• (a) normalization
_ dependency:
(c) none of above(a) transitive

(c) 3CNF(b) 2NF
11, Data Definition Language (DDL) statements are: CREATE, ALTER and:

(c) REVOKE(b) UPDATE(a) DROP
12. Out ofthe following which are Data Manipulation Language (DML) statements: '

(c) EVOKE' (b) UPDATE
13. Out of the following which are Data Control Commands:

(b) PASSWORD

(a) SELECT •

(c) GRANT(a) ALTER
. 14. ROLLBACK is a:

(a) TCL (Transactional Control Command)
(b) ' DML (Data Manipulation Language)
(c) Data Definition Language)

15. For entering new data we use:
(a) UPDATE

16. !For creating a new database/table we use:'
(a) CREATE

17. For changing the user, password, etc, we use:
(b) INSERT

18. A privilege is given to a user by command:
(a) GRANT

19. ADDITION is performed using :
(a) (-) symbol

(c) INSERT(b) CREATE

(b) UPDATE (c) INSERT

(c) ALTER(a) UPDATE

(c) COMMIT- (b) REVOKE

(c) (*) symbol(b) (+) symbol
20. MULTIPLICATION is performed using :

(b) (+) symbol (c) (-) symbol• (a) (*) symbol

142 Self Instructional Material

21. INITCAP function makes which character to the uppercase :
(b) Second

22. To find out the len^ of a string, we use the function caUed:
(b) LENGTH

Database Development
(a) Last (c) First

(a) STRING (c) FUNCTION

True/False Questions
1, The entity-relationship data model (E R Model) grew out of exercise of using commercially

available DBMSs to model application databases.
2- The relationship between entity sets is represented by a model named E-R relationship.
3. A database model is a collection of logical constructs used to represent the data structure

and the data relationships found within the database.
4. Semantic data models were not influenced by the semantic networks developed by artificial

intelligence researchers.
5. Most attributes have a single value for a particular entity.
6. There cannot be multivalued attributes.
7. In some cases a particular entity may not have an applicable value for an attribute. It is

called the NULL value.
8. An entity type does not describe the schema or intension for a set of entities that share the

same structure.
9. It is a constraint that prohibits any two entities from having the same value for the key

attribute at the same time.
10. Database models cannot be grouped into two categories: conceptual models and

implementation' models.
. 11. An implementation model places the emphasis on how the data are represented in the

database or on how the data structures are implemented to represent what is modeled.
12. It is sometimes convenient to think of a relationship type in terms of attributes.
13. The process of database design is an iterative rather than a linear or sequential process.
14. Converting any E-R model to a set of tables in a database is followed by a specific set of

rules that govern such a conversion.
15. The normalization process, as first proposed by Codd (1972a), takes a relation schema

through a series of tests to “certify” whethci it satisfies a certain normal form.
16. Codd proposed three normal forms, which he called First, Second, and Third normal form.
17. Normalization of data can be looked upon as a process of analyzing the given relation

schemas based on their FDs and primary keys to achieve the desirable properties of :
minimizing redundancy and minimizing the insertion, deletion, and update anomalies.

18. Normal forms, when considered in isolation from other frctors, do guarantee a good database
design. ‘

19. The problem of database inconsistency and redundancy of data are similar to the problems
that exist in the hierarchical and network models.

20. The oidy attribute values not permitted by INF are single atomic (or indivisible) values.
21. First normal form also disallows multivalued attributes that are themselves composite.
22. Third normal form (3NF) is based on the concept of transitive dependency.
23. In practice, most relation schemas that are in 3NF are also in BCNF.
24. SQL statements have 3 Data Definition Language (DEIL) statements, CREATE, ALTER

and DROP.
2 5. Data Control Commands (DCL) does not allow you to control access to data within the

database.
26. TCL (Transactional Control Commands are the commands which allow the user to manage

database transactions. For example commands like:-COMMIT, ROLLBACK,
■ SAVEPOINT and SET TRANSACTION.

27. INSERT command is used to insert new data into a table.

NOTES

Self Instructional Material 143t •

28- DELETE command is not used to remove entire rows of data from a table.
29. DROP command cannot be used, for example, to drop a user from using the database.
30. RENAME allows you to rename a table from the database.
31. GRANT command is not used to grant both system-level and object-level privileges to ah

exising database user account.
32. COMMIT.is the transactional command used to save changes invoked by a transaction to

the database-
33. ADDITION is performed using (-) symbol.
34. MULTIPLICATION is performed using (/) symbol.
35. Arithmetic operators are performed in the sequence ofDivision, Multiplicaipn, Addition

and Subtraction.
36. CONCATENATION is the process of combining the two separate strings into one string:
37. WHERE command is used when you have to make selection based on some facts.
38. The ALL operator is used to compare a value to all values in another values set.
39. AND operator allows the existence of multiple conditions in an SQL statement's WHERE

clause-
40. ORDER BY clause is used in sorting.
41. CHR function returns the character equivalent of the number it uses as an argument.
42. INSTR function is used to find out where in a string a particular pattern occurs.
43. LENGTH function is used to find the length of a string, number, date, or expression in

bytes.
44. LTRIM is not used to clip a part of a string.
45. NUMBER functions are: ABS, ACOS, ASIN, ATAN, CEIL, COS, COSH, EXP, FLOOR,

LN, LOG, MOD, NVL, POWER, ROUND, SIGN, SIN, SINH, SQRT, TAN; TANK,
TRUNCandVSIZE.

46. MONTHS_BETWEEN function is used to return the number of months elapsed between
two months.

Database Systems

NOTES

Short Questions with Answers
1. What is an entity-relationship model?

Ans. The entity-relationship model is a generalization of these models. It allows the
representation of explicit constraints as well as relationships. Even thoughthe E-R model
has some means of describing the physical database model, it is basically useful in the
design and communication of the lofical database model.

2. What is conceptual modeling?
Ans. Conceptual modeling is a very important phase in designing a successful database

application. Generally, the term database application refers to a particular database and the
associated programs that implement the database queries and updates. For example, a
BANK database application that keeps track of customer accounts would include progrcims
that implement database updates corresponding to customers making deposits and
withdrawals.

3. What is an entity?
Ans. The basic object that the ER model represents is an entity, which is a “thing” in the real

world with an independent existence. An entity may be an object with a physical existence
(for example, a particular person, car, house, or employee) or it may be an object with a
conceptual existence (for example, a company, a job, or a university course). Each entity
has attributes—the particular properties that describes it.

4. What is entity type?
Ans. An entity type describes the schema or intension for a set of entities that share the same

structure- The collection of entities of a particular entity type are grouped into an entity set,
which is also called the extension of the entity type..

144 Self Instructional Material

Database Development5. What type of relationships exist in terms of databases?
. Ans. There are three main type of relationships; One to one relationship; On to many relationship

and Many to Many relationship.
• 6. What is a functional dependency?

Ans. A functional dependency is basically a.constraint between two sets of attributes from the
database. It is due to the consequence of the interrelarionship.among attributes of an entity
represented by a relation or due to the relationship between entities that is also represented
by a relation,

7. What is normalization? . ^
Ans. The normalization process, as first proposed by Codd (1972), takes a relation schema

through a series of tests to “certify” whether it satisfies a certain normal form. The process,
which proceeds in a top-down fashion by evaluating each relation again the criteria for
normal forms and decomposing relations as necessary, can thuVbe considered as relational
design by analysis.

8. How many normal forms are there?
Ans. Initially, Codd proposed three normal forms, which he called First, Second, and Third

normal form. A stronger definition of 3NF—called Boyce-Codd Normal Form (BCNF)—
was proposed later by Boyce and Codd. All these normal forms are based on the functional
dependencies among the attributes of a relation. Later, a fourth normal fortn (4NF) and a
fifth normal form (5NF) were proposed, based on the concepts of multivalued dependencies
and join dependencies, re’spectively. " .

9. What are the properties of first normal form?
Ans. First normal form disallows having a set of values, a tuple of values, or a combination of

both as an attribute value for a single tuple. In other words, INF disallows “relations
within relations” or “relations as attribute values within tuples.’ The only attribute values

■ permitted by INF are single atomic (or indivisible) values.
10. What is second normal form based on?

Ans. Second normal form ,(2NF) is based on the concept of full functional dependency.
11. What is third normal form based on?

Ans. Third normal form (3NF) is based on the concept of transitive dependency.
12. Write the syntax of the following; CREATE, ALTER, DROP, TRUNCATE, SELECT,

DATES, AND, OR, Not EQUAL, Not BETWEEN, Not IN, Not LIKE, Is Not NULL,
-• Not EXISTS, Not UNIQUE, GROUP BY, INSERT, UPDATE SQL commands.

Ans. CREATE •
CREATE TABLE NewTable (NewValue) INT)
ALTER
ALTER TABLE MyTable ADD MyColumn VARCHAR (20) NULL
DROP
DROP TABLE [dbo].[friends]
TRUNCATE
DELETE FROM authors
TRUNCATE TABLE authors
SELECT
SELECT [* I ALL I DISTINCT COLUMN!, COLUMN2] FROMTABLEI [, TABLE2

NOTES

DATES
SELECT GETDATEO
AND
WHERE ROLLNO = “1033” AND NAME = “RAHUL”
OR
WHERE ROLLNO = “1033” OR ROLLNO = “1030” ' Self Instructional Material 145

Database Systems Not EQUAL
WHERE ROLLNO <> “1050”
Not BETWEEN

• WHERE ROLLNO NOT BETWEEN “1000” AND “2000”.
Not IN
WHERE ROLLNO NOT IN (“1000”., “1200”, “1300”) '
Not LIKE
WHERE ROLLNO NOT LIKE-“2000”
IsNotNULL
WHERE ROLLNO IS NOT NULL
Not EXISTS
WHERE NOT EXISTS (SELECT ROLLNO FROM STUDENT.TBL WHERE
ROLLNO'= “1033")
NotUNIQUE
WHERE NOT UNIQUE (SELECT ROLLNO FROM STUDENT.TBL)
GROUP BY
SELECT LAST_NAME, FIRST_NAME, CITY
FROM EMPLOYEE.TBL
GROUP BY LAST_NAME;
INSERT
INSERT INTO SCHEMA.TABLE_NAME
VALUES (‘valuer, ■Value2’, [NULL]);
UPDATE
UPDATE TABLE.NAME
SET COLUMN_NAME =’VALUE’
(WHERE CONDITION)

NOTES

ANSWERS
Multiple Choice Questions

I. c
5. a
9. a

13, b
17. c
21. a.

True False Questions ‘
1. T

4. c .2. b 3. a
7. b

11. a
15. c
19'. a

8. b6. c
12. a ••
16. a
20. b

10. c
14. a
18. a
22. c

2. T 3. T
7. T

11. T
15. T

• 19. T
23. T
27. T
31. F
35. T
39. T
43. T

4, F
8. F5. T 6. F

12. T
16. T
20. F
24, T
28. F
32. T
36, T .
40. T
44. F

9. T ' 10, F
14. T
18. F
22, T
26. T
30. T

. 34, F
38; T
42. T ■
46. T

13. T
17. T
21. T
25. F
29. T
33. F
37. T
41. T
45. T

146 Self Instructional Material

CHAPTER 3

DATA ADMINISTRATION

Learning Objectives
After going through this chapter, you should appreciate the following:

• Data Administration
• Client/server and Distributed Databases Data administration functions
• Data administration tools - Repositories
• CASE Tools
• Concurrency Control
• Database Security -
• Database Recovery
• Client/server Architecture
• Functions of Client/Server
• Advantages
• Issues ■ .
• Distributed Databases
• Objectives
• Distributed DBMS
• Location transparency . •
• Replication transparency
• Failure transparency
• ■ Commit protocol
• Concurrency transparency.

Database Systems DATA ADMINISTRATION

In any organization where many persons use the same resources, there is a need for a
chief administrator to oversee and manage these resources. In a database environment,
the primary resource is the database itself, and the secondary resource is the DBMS
and related software. Administering these resources is the responsibility of the
DataBase Administrator (DBA). The DBA is responsible for authorizing access to
the database, for coordinating and monitoring its use, and for acquiring software and
hardware resources as needed. The DBA is accountable for problems such as breach
of security or poor system response time. In large organizations, the DBA is assisted
by a staff that helps carry out these functions.

NOTES

CLIENT/SERVER AND DISTRIBUTED DATABASES DATA

ADMINISTRATION FUNCTIONS

Architectures for DBMSs have followed trends similar to those for general computer
system architectures. Earlier architectures used mainframe computers to provide the
main processing for all system funaions, including user application programs and
user interface programs, as well as all the DBMS functionality. The reason was that
most users accessed such systems via computer terminals that did not have processing
power and only provided display capabilities. Therefore, ah processing was performed
remotely on the computer system, and only display information and controls were
sent from the computer to the display terminals, which were connected to the central
computer via various types of communications networks.
As prices of hardware declined, most users replaced their terminals with PCs and
workstations. At first, database systems used these computers similarly to how they
had used display terminals, so that the DBMS itself was still a centralized DBMS in
which all the DBMS in which all the DBMS functionality, application program
execution, and user interface processing were carried out on one machine. Gradually,
DBMS systems started to exploit the available processing power at the user side, •
which led to Client/Server DBMS architectures.

Basic Client/Server Architectures
First, we discuss client/server architecture in general, then we see how it is applied to
DBMSs. The client/server architecture was developed to deal with computing
environments in which a large number of PCs, workstations, file servers,'printers,
database servers, Web servers, and other equipment are connected via a network.
The idea is to define specialized servers with specific functionalities. For example, it
is possible to connect a number of PCs or small workstations as clients to a file-
server that maintains the files of the client machines. Another machine can be
designated as a printer server by being connected to various printers; thereafter, all
print requests by the clients are forwarded to this machine. Web servers or e-mail
servers also fall into the specialized server category.
In this way, the resources provided by specialized servers can be accessed by m£iny
client machines. The client machines provide the user with the appropriate interfaces
to utilize these servers, as wel as with local processing power to run local applications.
This concept can be carried over to software, with specialized programs—such as a

148 Self Instructional Material

Data AdministrationDBMS or a CAD (computer aided design) package—being stored on specific server •
machines and being made accessible to multiple clients.
The concept of client/server architecture assumes an underlying framework that
consists of many PCs and workstations as well as a smaller number of mainframe ,
machines, connected via LANs and other types of computer networks, A client in
this fi-amewoik. is typically a user machine that provides user interface capabilities
and local p-“^cessing. When a client requires access to additional functionality—such
as database access—that does not exist at the machine, it connects to a server that
provides the needed functionality, A server is a system containing both hardware and
software that can provide services to the client machines, such as file access, printing,
archiving, or database access. In the general case, some machines install only client
software, others orily server software, and still others may include both client and
server software. However, it is more common that client and server software usually

' run on separate machines. Two main types of basic DBMS architecture were created
on this underlying client/server framework: two-tier and three-tier.

Two-Tier Client/Server Architectures for DBMSs
The client/server architecture is increasingly, being incorporated into commercial
DBMS packages. In relational database management systems (RDBMSs), many of
which started as centralized systems, the system components that were first moved
to client sider were the user interface and application programs. Because SQL provided
a standard language for RDBMSs, this created a logical dividing point between client.
and server. Hence, the query and transaction functionality related to SQL processing
remained on the server side. In such architecture, the server is often called a query
server or transaction server because it provides these two functionalities. In an RDBMS
the server is also often called SQL server.
In such a client/server architecture, the user interface programs and application
programs can run on the client side. When DBMS acess is required, the program

. establishes a connection to the DBMS, which is on the server side; once the connection
is created, the client program can cornmunicate with the DBMS. A standard called
Open Database Connectivity (ODBC) provides an application programming interface
(API), which allows client-side programs to call the DBMS, as long as both client and
server machines have the necessary software installed. Most DBMS vendors provide
ODBC- drivers for their systems. A client program can actually connect to serveral
RDBMSs and send query and transaction requests using the ODBC API, which are
then processed at the server sites. Any query results are send back to the client
program, which can process or display the results as needed, A related standard for
the Java programming Inaguage, called JDBC, has also been defined. This allows
Java client programs to access the DBMS through a standard interface.

Three-Tier and n-Tier Architecture for Web Application
Many Web applications use an architecture called the three-tier architecture, which
adds an intermediate layer betweeii the client and the database server. This immediate •

' layer or middle tier is sorhetimes called the application server and sometimes the
Web server, depending on the application. This server plays an intermediary role for
storing business rules, procedures or constraints, that are used to access data fi'om the
database server. It can. also improve database security by checking a client’s credentials
before forwarding a request to the database server. Clients contain GUI interfaces
and some additional application-specific business rules. The intermediate server accepts

NOTES

Self Instructional Materia! 149

Database Systems . requests from the client, processes the request and sends database commands to the
database server, and then acts as a conduit for passing (partially) processed data from
the databaser server to the clients, where it may'be processed further and filtered to
be presented to users in GUI format. Thus, the userr interface, application rules, and
data access act as the three tiers.
Advances in encryption and decryption technology make it safer to transfer sensitive
data from server to client in encrypted form, where it will be decrypted. The latter
can be done by the hardware or by advanced software. This technology gives higher
levels of data security, but the network security issues remain a major concern. Various
technologies for data compression also help to transfer large amounts of data from
servers to clients over wired and wireless networks.

NOTES

DATA ADMINISTRATION TOOLS ■ REPOSITORIES

Data administration is, in computing science, the administration of the organisation
of data, usually as stored in databases under some Database Management System or
alternative systems such as electronic spreadsheets.
In many smaller organisations, Data Administration is not performed at all, or is but
a small parcel of the Database Administrator’s work. •
Data Administration ideally begins at software conception, ensuring there is a data
dictionary to help keeping consistency and avoid redundancy and modelling the
database so as to make it logical and usable, by means of the normalisation technique.
Quite often such modelling is mistaken as diagramming, because of the prevalence
of entity-relationship diagrams.
Data Resource Management refers to the development and maintenance of data
models to facilitate data sharing between different systems, particularly in a corporate
context, DRM is concerned with both data quality and compatibility between data
models.
A large amount of multimedia data as well.as metadata is stored for retrieval purposes.
A central repository containing multimedia data may be maintained by a DBMS and
may be organized into a hierarchy of storage level—local disks, tertiary disks and
tapes, optical disks, and so on. Examples include repositories of satellite images,
engineering drawings and designs, space photographs, and radiologhy scanned pictures.

CASE TOOLS

CASE (Computer-aided Software/System Engineering) refers .to the methods
dedicated to an engineering discipline for the development of information systems
together with automated tools that can be used in this process.
CASE can be described as harboring two key ideas ;

• Computer Assistance in software development and/or maintenance
• An engineering approach to the software development and/or maintenance.

Some typiccil CASE tools are:

150 Self Instructional Material

• Code generation tools
• Data modeling tools

' • UML
• Refactoring tools
• QVT or Model transformation Tools

Classification of CASE Tools

Existing CASE Environments can be classified along 4 different dimensions :
• Life-Cycle Support
• Integration Dimension
• Construction Dimension
• Knowledge Based CASE dimension

Let us take the meaning of these dimensions along with their examples one by one :
Life-Cycle Based CASE Tools

This dimension classifies CASE Tools on the basis of the activities they support in
the information systems life cycle. They can be classified as Upper or Lower CASE
tools.
Upper Case Tools support strategic, plannuig and construction of conceptual level
product and ignore the design aspea. They support traditional diagrammatic languages
such as ER Diagrams, DFD, Structure charts etc.
Lower Case Tools concentrate on the back end activities of the software life cycle
and hence support activities like physical design, debugging, construction, testing,
integration of software components, maintenance, reengineering and reverse
engineering activities.

Integration Dimension

Three main CASE Integration dimension have been proposed ;
• CASE Framework
• ICASE Tools
• Integrated Project Support Environment(IPSE)

Data Administration

NOTES

History of CASE
All aspects of the software development lifecycle can be supported by software tools,

. and so the use of tools from, across the spectrum can, arguably, be described as CASE;
from project management software through tools for business and functional analysis,
system design, code storage, compilers, translation tools, test software, and so on.
However, it is the tools that are concerned with analysis and design, and with using
design information to create parts (or all) of the software product, that are most
frequently thought of as CASE tools. CASE applied, for instance, to a database
software produa, might normally involve: '

• Modelling business / real world processes and data flow

Self. Instructional Material 151

• Development of data models in the form of entity-relationship diagrams

• Development of process and function descriptions

• Production of database creation SQL and stored procedures

The term CASE was originally coined by software company, Nastec Corporation of
Southfield, Mich, in 1982 with their original integrated graphics and texfeditor
GraphiText, which also was the first microcomputer-based system to use hyperUnks
to cross-reference text strings in documents — an early forerunner of today's web
page link. GraphiText's successor product, DesignAid was the first microprocessor-
based toot to logically and semantically evaluate software and system design diagrams
and build a data dictionary. Under the direction of Albert E Ccise, Jr. vice president.
for product management and consulting (the rumor that he changed his last, name is
untrue), and Vaughn Frick, director of product management, the DesignAid product
suite was expanded to support analysis of a wide range of structured analysis and
design methodologies, notably Yourdon/Demarco, Gane & Sarson, Ward-Mellor (real-,
time) SA/SD and Warnier-Orr (data driven). The next entrant into the market was
Excelerator from Index Technology in Cambridge, Mass; While DesignAid ran on
Convergent Technologies and later Burroughs Ngen networked microcomputers, Index
launched Excelerator on the IBM PC/AT platform. While, at the time of launch,
and for several years, the IBM platform did not support networking or a centralized '
database as did the Convergent Technologies or Burroughs machines, the allure of
IBM was strong, and Excelerator came to prominence.

CASE tools were at their peak in the early 1990s. At the time IBM had proposed
AD/Cycle which was an alliance of software vendors centered around .IBM's
mainframe:

The application development tools can be from several sources: from IBM, from
vendors, and from the customers themselves. IBM has entered into relationships
with Bachman Information Systems, Index Technology Corporation, and
Knowledgeware, Inc. wherein selected products fi'om these vendors will be marketed
through an IBM complementary marketing program to provide offerings that will
help to achieve complete life-cycle coverage.

With the decline of the raainfi-ame, AD/Cycle and the Big CASE tools died off,
opening the market for the mainstream CASE tools of today. Interestingly, nearly all
of the leaders of the CASE market of the early 1990$ ended up being purchased by
Computer Associates, including lEW, lEF, ADW, Cayenne, and Learmonth & Burchett
Management Systems'(LBMS).

Many CASE tools not only output code but also generate other output typical of
various systems analysis and design methodologies such as SSADM. e.g.:

• database schema

• data flow diagrams

• entity relationship diagrams

• program specifications

• user documentation

Database Systems

NOTES

152 Self Instructional Material'

Data Administration
CONCURRENCY CONTROL

yIn computer science, especially in the fields of computer programming (see also
concurrent programming, parallel programming), operating systems, multiprocessors,
and databases, concurrency control ensures that correct results for concurrent
operations are generated, while getting those results as quickly as possible.

Concurrency control in databases
Concurrency control in database management systems (DBMS) ensures that database
transactions are performed concurrently without the concurrency violating the data
integrity of a database. Executed transactions should follow the ACID rules, as
described below. The DBMS must guarantee that only serializable (unless Serializability
is intentionally relaxed), recoverable schedules are generated. It also guarantees that
no effect of committed transactions is lost, and no effect of aborted (rolled back)
transactions remains in the related database.
Transaction ACID rules

• Atomicity - Either the effects of all or none of its operations remain when'a
transaction is completed - in other words, to the outside world the transaCTion
appears to be indivisible, atomic.

• Consistency - Every transaction must leave the database in a consistent state.
« Isolation - Transactions cannot interfere with each other. Providing isolation

is the main goal of concurrency control.
• Durability - Successful transactions must persist through crashes.

Concurrency control mechanism
The main categories' of concurrency control mechanisms are:.

• Optimistic - Delay the synchronization for a transaction until its end vvithout
blocking (read, write) operations, and then abort transactions that violate
desired synchronization rules;

•.Pessimistic - Block operations of,transaction that would cause violation of
synchronization rules.

There are several methods for concurrency control. Among them:
• Two-phase locking

Strict two-phase locking

, • Conservative two-phase locking
• Index locking
• Multiple granularity locking

A Lock is a database system object associated with a database object (typically a
data item) that prevents undesired (typically synchronization rule violating) operations
of other transactions by blocking them. Database system operations check for lock
existence, and halt when noticing a lock type that is intended to block them.
There are also non-lock concurrency control methods, among them:

NOTES

' Self Instruaional Material 153

Database Systems • Conflict (serializability, precedence) graph checking
• Timestamp ordering
■ commitment ordering.

Also Optimistic concurrency control methods typically do not use locks.
Almost all currently implemented lock-based and non-lock-based concurrency, control
mechanisms guarantee schedules that are conflict serializable (unless relaxed forms
of serializability are needed). However, there are many research texts encouraging
view serializable schedules for possible gains in performance, especially when not'too
many conflicts exist (and not too many aborts of completely executed transactions
occur), due to reducing the considerable overhead of blocking mechanisms.

Concurrency control in operating systems
Operating systems, especially real-time operating systems, need to maintain the illusion
that many tasks are all running at the same time. Such multitasking is fairly simple
when all tasks are independent from each other. However, when several tasks try to
use the same resource, or when tasla try to share information, it can lead to confusion
and inconsistency. The task of concurrent computing is to solve that problem. Some
solutions involve "locks" similar to the locks used in databases, but they risk causing
problems of their own such as deadlock. Other solutions are lock-free and wait-free
algorithms.

NOTES

DATABASE SECURITY

Database security is the.system, processes, and procedures that protect a database
from unintended activity. Unintended activity can be categorized as authenticated
misuse, malicious attacks or inadvertent mistakes made by authorized individuals or
processes. Database security is also a specialty within the broader discipline of
computer security.

Definition: Database security is the system, processes, and procedures that
protect a database from unintended activity.

Traditionally databases have been protected from external connections by firewalls
or routers on the network perimeter with the database environment existing on the
internal network opposed to being located within a demilitarized zone.

Additional network security devices that detect and alert on malicious database
protocol traffic include network intrusion detection systems along with host- •

based intrusion detection systems.

Process Controls
Database security is more critical as networks have become more'open. Databases
provide many layers and types of information security, typically specified in the data
diaionary, including the following controls:

• Access control
• Auditing

154 Self Instructional Material

Data Administration• Authentication

• Encryption •
. I

• Integrity controls

Database security-can begin with the process of creation and publishing of appropriate
security standards for the database environment. The standards may include specific
controls for the various relevant database platforms; a set of best practices that cross
over the platforms; and linkages of the standards to higher level polices and
govermnental regulations. An important procedure when evaluating database security
is performing vulnerability assessments against the database. A vulnerability
assessment attempts to find vulnerability holes that could be used to break into the
database.

NOTES

Database administrators or information security administrators run vulnerability
scans on databases to discover misconfiguration of controls within the layers

mentioned above along with known vulnerabilities within the database software.

The results of the scans should be used to harden the database in order to mitigate
the, threat of compromise by intruders.

A program of continual monitoring for compliance with database security standards
is another important task for mission critical database environments. Two crucial
aspects of database security compliance include patch management and the review
and management of permissions (especially public) granted to objects within the
database. Database objects may include table or other objects listed in the Table link,
The permissions granted for SQL language commands on objects are considered in
this process. One should note that compliance monitoring is similar to vulnerability
assessment with the key difference that the results of vulnerability assessments
generally drive the security standards that lead to the continuous monitoring program,
Essentially, vulnerability assessment is a preliminary procedure to determine risk
where a compliance program is the process of on-going risk assessment.

The compliance program should take into .consideration any dependencies at the
application software level as changes at the database level may have effects pn the
application software or the application server. In direct relation to this topic is that of
application security.

Application level authentication and authorization mechanisms should be
considered as an effective means of providing abstraction -from the database

- ' layer.

The primary benefit of abstraction is that of.a single sign-on capability across multiple
databases and database platforms. A Single sign-on system should store the database

, user’s credentials (login id and password), and authenticate to the database on behalf
of the user. Another security layer of a more sophisticated nature includes the real­
time monitoring of database protocol traffic (SQL) over the network. . Analysis can
be performed on the' traffic for known exploits or network traffic baselines can be
captured overtime to build a normal pattern used for detection of anomalous activity_
that |could be indicative of intrusion. These systems can provide a comprehensive
Datable audit trail in addition to the intrusion detection (and potentially protection)
mechanisms. ' ' . ■ ' ' i

I

\ Self Instructional. Material 155

Database Systems When a network level audit system is not feasible a native database audit program
should be instituted. The native audit trails should be extracted on a regular basis and
transferred to a designated security system where the database administators do not
have access. This ensures a certain level of segragation of duties that may provide
evidence the native audit trails were not modified by authenticed administrators.
Generally, the native audit trails of databases do not provide sufficient controls to
enforce separation of duties; therefore, the network and/or kernel module level host
based monitoring capabilities provides a higher degree of confidence for forsenices
and preservation of evidence.
After an incident occurs, the usage of Database Forensics can be employed to
determine the scope.
A database security program should include the regular review of permissions granted
to individually owned accounts and accounts used by automated processes. The
accounts used by automated processes should have appropriate controls around
password storage such as sufficient encryption and access controls to reduce the risk
of compromise. For individual accounts, a two-factor authentication system should
be considered in a database environment .where the risk is commensurate with the
expenditure for such an authentication system.
In coiijunction with a sound database security program, an appropriate disaster
recovery program should exist to ensure that service is not interrupted during a security
incident or any other incident that results in an outage of the primary database
environment. An example is that of replication for the primary databases to sites
located in different geographical regions.

Access Control
Access control is the ability to permit or deny the use of a particular resource by a
particular entity. Access control mechanisms can be used in managing physical
resources (such as a movie theater, to which only ticketholders should be admitted),
logical resources (a bank account, with a limited number of people authorized to
make a withdrawal), or digital resources (for example, a private text document on a
computer, which only certain users should be able to read).
Item Control or Electronic Key Management is an area within (and possibly integrated
with)an access control system which concerns the managing of possession and location
of small assets or physical (mechanical) keys.
Access Control System Operation
When a credential is presented to a reader, the reader sends the credential’s information,
usually a number, to a control panel, a highly reliable processor. The control panel
compares the credential’s number to an access control list, grants or denies the
presented request, and sends a transaction log to a database.

I
When access is denied based on the access control list, the door remains locked.
If there is a match between the credential and the access control list, the control

panel operates a relay that in turn unlocks the door.

The control panel also ignores a door open signal to prevent an alarm. Often the
reader provides feedback, such as a flashing red LED for an access denied and a
flashing green LED for an access granted.

NOTES

156 Self Instructional Material

The above description illustrates a single factor transaction. Credentials can be passed
around, thus subverting the access control list. For example, Alice has access rights
to the server room but Bob does not. Alice either gives Bob her credential or Bob
takes it; he now has access to the server room. To prevent this, two-factor
authentication cah be used. In a two faaor transaction, the presented credential and
a second factor are needed for access to be granted. The second factor can be a PIN,
a second credential, operator intervention, or a biometric input. Often the factors are
charaaerized as

• something you have, such as a credential,
• something you know, e.g. a PIN, or
• something you are, typically a biometric input.

Access Control System Components

An access control point, which can be a door,'turnstile, parking gate, elevator, or
other physical barrier where granting access can be electrically controlled. Typically
the access point is a door. An electronic access control door can contain several
elements. At its most basic there is an electric lock.
The lock is unlocked by an operator with a switch. To automate this, operator
intervention is replaced by a reader. The reader could be a keypad where a code is
entered, it could be a card reader, or it could be a biometric reader. Readers do not
usually make an access decision but send a card number to an,access control panel
that verifies the number against an access list. To monitor the door position a magnetic
door switch is used. In concept the door switch is not unlike those on refiigerators or
car doors.

Data Administration

NOTES.

Generally only entry is controlled and exit is uncontrolled. In cases where exit is
also controlled a second reader is used on the opposite side of the door. In cases
where exit is not controlled, free exit, a device called a request-to-exit (REX) is

used.
/Request-to-exit deices can be a pushbutton or a motion detector. When the button

is pushed hr the motion detector detects motion at the door, the door alarm is
temporarily ignored while the door is opened. Exiting a door without having to
electrically unlock the door is called mechanical free egress. This is an important
safety feature. In cases where the lock must be electrically unlocked on exit, the
request-to-exit device also unlocks the door.

Credential
A credential is something you know, such as number or PIN, something you have,

• such as an access badge, something you are, such as a biometric feature, or some
combination of these. The typical credential is an access card, key fob, or other key.
There are many card technologies including magnetic stripe, bar code, Wiegand, 125
kHz proximity, contact smart cards, and contactless smart cards. Typical biometric
technologies include fingerprint, facial recognition, iris recognition, retinal scan, voice,
and hand geometry.

Bar Code Technology

A bar code is a series, of alternating dark and light stripes that are read by an optical
scanner. The organization and width of the lines is determined by the bar code protocol

Self Instructional Matericd 157

• selected. There are many different protocols but code 39 is the most popular in the
security industry. Sometimes the digits represented by the ckrk and light bars are also
printed to allow people to read the number without an optical reader.

The advantage of using bar code technology is that it is cheap and easy to
generate the credential and it can easily be applied to cards or other items.

Database Systems

NOTES

The disadvantage of this technology is that it is cheap and easy to generate a credential
making the technology susceptible to fraud and the optical reader can have reliability
problems with dirty or smudged credentials. One attempt to reduce fraud is to print
the bar code using carbon-based ink and then cover the bar code with a dark red
overlay. The bar code can then be read with' an optical reader tuned to the infrared
spectrum, but can not easily be copied by a copy machine. This does not address the •
ease with which btir code numbers can be generated from a computer using almost
any printer. '

Magnetic Stripe Technology

Magnetic stripe technology, usually called mag-stripe, is so named because of the
stripe of-magnetic oxide tape that is laminated on a card. There are three tracks of
data on the magnetic stripe. Typically the data on each of the tracks follows a specific
encoding standard, but it is possible to encode any format on any track.

A mag-stripe card is cheap compared to other card technologies and is easy to
program.

The magnetic stripe holds more data than a bar code can in the same space. While a
mag-stripe is more difficult to generate than a bar code, the technology for reading
and encoding data on a mag-stripe is widespread and e£isy to acquire. Magnetic stripe
technology is also susceptible •to misreads, card wear, and data corruption.

Vriegand Card Technology

Wiegand card technology is a patented technology using embedded ferromagnetic
wires strategically positioned to create a unique pattern that generates the identification
number. Like magnetic stripe or bar code, this card must be swiped through a reader
to be read. (Unlike those other technologies the identification media is embedded in
the card and not susceptible to wear: This technology once gained-popularity because
of the difficulty in duplicating the technology creating a. high perception of security.
This technology is being replaced by proximity cards because of the limited source
of supply, the relatively better tamper resistance of proximity readers, and the
convenience of the touch-less functionality in proximity readers.

Proximity Card Technology

The Wiegand effect was used in early access cards. This method was abandoned in
favor of other technologies. The new technologies retained the Wiegand upstream
data so that the new readers were compatible with old systems. Readers are still
called Wiegand but no longer use the Wiegand effect. A Wiegand reader radiates a 1"
to 5” electrical field around itself. Cards use a simple LC circuit.

When a card is presented to the reader, the reader’s electrical field excites a coil
. in the card. The coil charges a capacitor and in turn powers a integrated circuit.

■ ISb Self Iristruaiom} Material

The integrated circuit outputs the card number to the coil which transmits it to the
reader,

A common proximity format is 26 bit Wiegand. This format uses a facility code,
sometimes also called a site code. The facility code is a unique number common to

, all of the cards in a particular, set. The idea is that an organization ,will have their own
facility code and a set of numbered cards incrementing from 1. Another organization
has a different facDity code and their card set also increments from 1. Thus different
organizations can have card sets with the same card numbers but since the facility
codes differ, the cards only work at one organization. This idea worked fine for a
while but there is no governing body controlling card numbers, and different
manufacturers can supply cards with identical.facility codes and identical card numbers

■'to different organizations.

Thus there is a problem of duplicate cards. To counteract this problem some
manufacturers have created formats beyond 26 bit Wiegand that they control

and issue to organizations.

Data Administration

NOTES

In the 26 bit Wiegand format, bit 1 is an even parity bit. Bits 2-9 are a facility code.
Bits 10-25 are the card number. Bit 26 is an odd parity bit. Other formats have a
similar structure of a leading facility code followed by the card number and including
parity bits for error checking.

Smart Card

There are two types of smart cards; contact and contactless Both have an embedded
micrqprocessor and memory. The smart card differs from the card typically called a
proximity card in that the microchip in the proximity card has only one function: to
provide the reader with the card’s identification number. The processor on the smart

■ card has an operating system and can handle multiple applications such as a cash
card, a pre-paid membership card, and even an access control card.

The difference between the two types of smnrt cards is found in the manner
with which the microprocessor on the card communicates with the outside

world.

A contaa smart card has eight contaas, which must physically touch contacts on the
reader to convey information between them. A contactless smart ceird uses the same
radio-based technology as the proximity card with the exception of the frequency
band used. Smart cards allow the access control system to save user information on a
credential carried by the user rather than requiring more memory on each controller.

PIN

A personal identification number (PIN) falls in the category of what you know rather
than what you have. The PIN is usually a number consisting of four to eight digits.
Less and the number is too easy to guess. More and the number is too difficult to
remember.

The advantage to using a PIN as an access credential is that once the number is
memorized, the credential cannot be lost or left somewhere.

The disadvantage is the difficulty some people have'in remembering numbers that
are not frequently used and the ease with which a PIN can be observed and therefore

Self Instructional Material 159

Database Systems used by unauthorized people. The PIN is even less secure than a bar code or magnetic
• stripe card.

Computer Security
In computer security, access control includes authentication, authorization and audit.
It also includes measures such as physical devices, including biometric scans and .
metal locks, hidden paths, digital signatures, encryption, social barriers, and monitoring
by humans and automated systems.
In any access control model, the entities that can perform actions in the system are
called subjects, and the entities representing resources to which access may need to
be controlled are called objects. Subjects and objects should both be considered as
software entities, rather than as human users: any human user can only have an effect
on the system via the software entities that they control. Although some systems
equate subjects with user IDs, so that all processes started by a user by default have
the same authority, this level of control is not fine-grained enough to satisfy the
Principle of least privilege, and tirguably is responsible for the prevalence of malware
in such systems.
In some models,'for example the object-capability model, any software entity can
potentially act as both a subject and object.
Access control models used by current systems tend to fall into one of two classes:'
those based on capabilities and those based on access control lists (ACLs). In a
capability-based- model, holding an unforgeable reference or capability to an object
provides access to the object (roughly analogous to how possession of your house
key grants you access to your house); access is conveyed to another party by
transmitting such a capability over a secure channel. In an ACL-based model, a
subject’s access to an object depends on whether its identity is on a list associated
with the object (roughly analogous to how a bouncer at a private party would check
your ID to see if your name is on the guest list); access is conveyed by editing the list.
Different ACL systems have a variety of different conventions regarding who or
what is responsible for editing the list and how it is edited.
Both capability-based and ACL-based models have mechanisms to allow access rights
to be granted to aU members of a group of subjects (often the group is itself modeled
as a subject).
Access control systems provide the essential services of identification and
authentication (I&A), authorization, and accountability where: . .

• identification and authentication determine who can log on to a system, and
the association of users with the software subjects that they are able to control .
as a result of logging in;

• authorization determines what a subject can do;

NOTES

• accountability identifies what a subject (or all subjects associated with a user)
did.

Identification and Authentication (I&A)
Identification and authentication (I&A) is the process of verifying that an identity is
bound to the entity that asserts it. The I&A process assumes that there was an initial

‘vetting of the identity, during-which an authenticator was established. Subsequently,
the entity asserts an identity together with an authenticator as a means for validation.

160 Self Instructional Material

The only requirements for the identifier is that it must be unique within its
security domain.

Data Administration

Authenticators are commonly based on at least one of these four faaors:
' • Something you know, such as a password or a personal identification number

(PIN). This assumes that only the owner of the account knows the password
or PIN needed to access the account.

• Something you have, such as a smart card or token. This assumes that only
the owner of the account has the necessary smart card or token needed to'
unlock the account.

« Something you are, such as fingerprint, voice, retina, or iris characteristics.
• Where you are, for example inside or outside a company firewall, dr proximity

of login location to a personal GPS device.

NOTES

Authorization

Authorization applies to subjeas rather than to users (the association between a user
and the subjects initially controlled by that user having been determined by I&A).
Authorization determines what a subject can do on the system.
Most modem operating systems define sets of permissions that are variations or
extensions of three basic types of access:

• Read (R): The subject can
• Read file contents
• List directory contents

• Write (W): The subject can change the contents of a file or direaory with the •
following tasks:
• Add
• Create
• Delete
• Rename'

• Execute (X): If the file is a program, the subject.can cause the program to be
run. (In Unix systems, the ‘execute’ permission doubles as a ‘traverse directory’
permission when granted for a directory.)

These rights and permissions are implemented differently in systems based on
Discretionary Access Control (DAC) and Mandatory Access Control (MAC).
Accountability

Accountability uses such system components as audit trails (records) and logs to
associate a subject with its actions. The information recorded should be,sufficient to
map the subject to a controlling user. Audit trails and logs are important for

• Detecting security violations
• Re-creating security incidents

If no one is regularly reviewing your logs and they are not maintained in a secure and
consistent manner, they may not be admissible as evidence. • Self Instructional Material 161

Database System

STUDENT ACTIVITY 3.1
I

What do you understand by Database Security?

2. How a Database is Proteaed?

162, Self Intructiona! Material

Database Adminstration '

3. What is Data administration?

4. What are CASE (Computer-aided Software/System Engineering) tools?

Self Intruaional Material 1^3

Database Systems Many systems can generate automated reports based on certain predefined criteria or
thresholds, known as clipping levels. For example, a clipping level may be set to
generate a report for the following:

• More than three failed logon attempts in a given period
• Any attempt to use a disabled user account

These reports help a system administrator or security administrator tO more easily
identify possible break-in attempts.
Access Control Techniques

Access’control-techniques are sometimes categorized as either discretion^ or non­
discretionary. The three most widely recognized models are Discretionary Access
Control (DAC), Mandatory Access Control (MAC), and Role Based Access Control
(RBAC). MAC and RBAC are both non-discretionary.
Discretionary Access Control
Discretionary access control (DAC) is an access policy determined by' the owner of
an object. The owner.decides who is allowed to access the object and what privileges
they have.
Two important concepts in DAC are

• File and data,ownership: Every object in the system has an owner. In mosf
DAC systems, each object’s initial ovraer is the subject that caused it to be
created. The access policy' for an object is determined by its owner.

• Access rights and permissions: These are the controls that an owner can assign ,
to other subjects for specific resources.

Access controls may be discretionary in ACL-b^ed or capability-based access control
systems. (In capability-based systems, there is usually no explicit concept of ‘owner’,
but the creator of an object has a similar degree of control over its access policy.)
Mandatory Access Control
Mandatory access control (IvLf^C) is an access policy determined by the system,, not
the owner. MAC is used in multilevel systems that process highly sensitive data,
such as classified government and military information. A multilevel system is a
single computer system that handles multiple classification levels between subjects
and objects. .

• Sensitivity labels: In a MAC-based system, all subjects and objects must
have labels assigned to them. A subject’s sensitivity label specifies its level of
trust. An object’s sensitivity label specifies the level of trust required for
access. In order to access a given object, the subject must have a sensitivity- .
level equal to or higher than the requested objeCT.

• Data import and export: Controlling the import of information from other
systems and export to other systems (including printers) is a critical function

, of MAC-based systems, which must ensure that sensitivity labels are properly
maintained and implemented so that sensitive information is appropriately
protected at all times.

Two methods are comirionly used for applying mandatory access control:

NOTES

164 Self Instructional Material

• Rule-based access controls: This type of control.further defines specific
conditions for access to a requested object. All MAC-based systems implement
a simple form of rule-based access control to determine whether access should
be granted or denied by matching: .

• An object’s sensitivity label .;
• A subjeci‘s_ sensitivity label
• Lattice-based access controls: These can be used for complex access control

decisions involving multiple objects and/or subjects.-A lattice model is a
mathematical structure that defines greatest lower-bound and least upper-
bound values for a pair of elements, such as a subject and an object.

Few systems implement MAC. XTS-400 is an example of one that does.
Role Based Access Control . '
Role-based access control (RBAC) is an access policy determined by the system, not
the owner. RBAC is used in commercial applications and also in military systems,

• where multi-level security requirements may also exist. RBAC differs from DAC in
that DAC allows users to control access to their resources, while in RBAC, access is
controlled at the system level, outside of the user’s control. Although RBAC is non­
discretionary, it can be distinguished from MAC primarily in the way permissions are
handled. MAC controls read and write permissions based on a user’s clearance level
and additional labels. RBAC controls collections of permissions that may include
complex operations such as an e-commerce transaction, or may be as simple as read
or write. A role in RBAC can be viewed as a set of permissions.
Three primary rules are defined for RBAC:

1. Role assignment: A subject can execute a transaction only if the subject has
selected or been assigned a role.

2. Role authorization: A subject’s active role must be authorized for the subject.
With rule 1 above, this rule ensures that users can take on only roles for
which they are authorized.

3. Transaction authorization: A subject can execute a transaction only if the
transaction is authorized for the subject’s active role. With rules 1 and 2, this
rule ensures that users can execute only transactions for which they are
authorized. *

Additional constraints maybe applied as well, and roles can be combined in a hierarchy
where higher-level roles subsume permissions owned by sub-roles.

• Most IT vendors offer RBAC in one or more products.
Public Policy

In public policy, access control to restrict access to systems (“authorization”) or to
track or monitor behavior within systems (“accountability”) is an implementation
feature of using trusted systems for security or social control.

Auditing
The most general definition of an audit is an evaluation of a person, organization, .
system, process, project or product. Audits are performed to ascertain the validity

Data Administration

NOTES

Self Instructional Material 165

Database Systems and reliability of information, cind also provide an assessment of a system’s internal
control. The goal of an audit is to the person/organization/system etc. under
evaluation based on work done on a test basis.

Due to practical constraints, an audit seeks to provide only reasonable assurance
that the statements are free from material error.

NOTES
Hence, statistical sampling is often adopted in audits. In the case of financial audits,
a set of financial statements are said to be true and fair when they are free of material
misstatements - a concept influenced by both quantitative and qualitative factors.

Traditionally audits were mainly associated with gaming information about financial
systems and the financial records of a company or a business. However recently
auditing has begun'to include other information about the system, such as information
about environmental performance. As a result there are now professions that conduct
environmental' audits.

In financial accounting, an audit is an independent assessment of the fairness by
which a company’s financial statements are presented by its management. It is
performed by competent, independent and objeaive person or persons, known as
auditors or accountants, who then issue an auditor’s report on the results of the audit.

Such systems must adhere to generally accepted standards set by governing bodies
. that regulate businesses. It simply provides assurance for third parties or external
users that such statements present ‘fairly’ a company’s financial condition and results
of operations.

Authentication

In art, antiques, and anthropology, a common problem is verifying that a given artifact
was produced by a certain famous person, or was produced in a certain place or
period of history.

There are two types of techniques for doing this.

The first is comparing the attributes of the object itself to what is known about
objects of that origin.- For example, an art expert might look for similarities in the
style of painting, check the location and form of a signature, or compare the object
to an old photograph. An archaeologist might use carbon dating to verify the age of
an artifact, do a chemical analysis of the. materials used, or compare the style of
construction or decoration to other artifacts of similar origin.-The physics of sound
and light, and comparison with a known physical environment, can be used to examine
the authenticity of audio recordings, photographs, or videos.

Attribute comparison may be vulnerable to forgery. In general, it relies on the fact
that creating a forgery indistinguishable from a genuine artifact requires expert
knowledge, that mistakes are easily made, or that the amount of effort required to do
so is considerably greater than the amount of money that can be gained by selling the
forgery.

Criminal and civil penalties for fraud, forgery, and counterfeiting can reduce the
incentive for falsification, depending on the risk of getting caught;

The second type relies on documentation or other external affirmations. For example,
the rules of evidence in criminal courts often require establishing the chain of custody

166 Self Instructional Material

of evidence presented. This can be accomplished through a written evidence log,' or
by testimony from the police detectives and forensics staff that handled it. Some
antiques are accompanied by certificates attesting to their authenticity. External records
have their own' problems of forgery and perjury, and are also vulnerable to being
separated from the artifact and lost.
Currency and other financial instruments commonly use the first type of authentication
method. Bills, coins, and cheques incorporate hard-to-duplicate physical features, such
as fine printing or engraving, distinctive feel, watermarks, and holographic imagery,
which are easy for receivers to verify.
Information content
The authentication of information can pose special problems, and is often wrapped
up with authenticating identity.
Literary forgery can involve imitating the style of a famous author. If an original
manuscript, typewritten text, or recording is available, then the medium itself (or its
packaging - anything from a box to e-mail headers) can help prove or disprove the
authenticity of the document.

However, text, audio, and video can be copied into new media, possibly leaving
only the informational content itself to use in authentication.

Data Administration

NOTES

. Various systems have been invented to allow authors to provide a means for readers
to reliably authenticate that a given message originated from or was relayed by them. .

• These involve authentication factors like:
• A difficult-to-reproduce physical artifact, such as a seal, signature, watermark,

special stationery, or fingerprint.
• A shared secret, such as a passphrase, in the content of the message.
• An electronic signature; public key infrastructure is often used to

cryptographically guarantee that a message has been' signed by the holder of
a particular private key.

The opposite problem is detection of plagiarism, where information from a different
• author is passed of as a person’s own work. A common technique for proving

plagiarism is the discovery of another copy of the same or very similar text, which
has different attribution. In.some cases excessively high quality or a style mismatch
may raise suspicion of plagiarism. • \
Factual verification
Determining the truth or factual accuracy of information in a message is generally
considered a separate problem from authentication. A wide range of techniques,
from detective work to fact checking in journalism, to scientific experiment might be
employed. ' .

/

DATABASE RECOVERY

, Database protection can begin with the process of creation and publishing of
appropriate protection standards for the database environment. The standards may
include specific controls for the various relevant database platforms; a set of best

Seif [nstruaional Material 167

Database Systems practices that cross over the platforms; and linkages of the standards to higher level
polices and governmental regulations. An important .procedure when evaluating
database security is performing vulnerability assessments against the database. A
vulnerability assessment attempts to find vulnerability holes that could be used to '
break into'the database.
A database protection program should include the regular review of permissions
granted to individually owned accounts and accounts used by automated processes.
The accounts used by automated processes should have appropriate controls around
password storage such as sufficient encryption and access controls to reduce the risk
of compromise. For individual accounts,'a two-factor authentication system should
be considered in a database environment where the risk is commensurate with the
expenditure for such an authentication system.

NOTES

CLIENT/SERVER ARCHITECTURE

Three of the four important characteristics of the database approach are;
1. insulation of programs and data (program-data and program-operation

independence),
2. support of multiple tiser views, and
3. use of 3 catalog to store the data-base description (schema).

Here, we specify an architecture for database systems, called the Three-Schema
Architecture, that was proposed to help achieve and visualize these characteristics.

The Three-Schema Architecture
The goal of the three-schema architecture is to separate the user applications and the
physical database. In this architecture, schemas can be defined at the following three
levels:

The External level
.The external or view level includes a number of external schemas or user views.
Each external schema describes the part of the database that a particular user group
is interested in and hides the rest of the database from that user group. Here, each
external schema is typically implemented using a representational data model, possibly
based on an external schema design in a high-level data model.

The Conceptual level
The conceptual schema hides the details of physical storage structures and
concentrates on describing entities, data types, relationships, user operations, and
constraints. Usually, a representational data model is used-to describe the conceptual
schema when a database system is implemented. This implementation conceptual
schema is often based on a conceptual schema design in a high-level data model.

The Internal level
. The internal level has an internal schema, which describes the physical.storage structure
of the database. The internal schema uses a physical data model and describes the
complete details of data storage and access paths for the database. The conceptual

168 Self Instruaioml Material

Data Administrationlevel has a conceptual schema, which describes the structure of the whole database
for a community of users.
The three-schema architecture is a convenient tool with which the user can visualize
the schema levels in a database system.

Most DBMSs do not separate the three levels completely, but support the three-
schema architecture to some extent. Some DBMSs may include physical-level

details in the conceptual schema.

■ NOTES

In most DBMSs that support user views, external schemas are specified in the same
data model that describes the conceptual-level information. Some DBMSs allow
different data models to be used at the conceptual and external levels.

Mappings
Notice that the three schemas are only descriptions of data; the only data that actually
exists is at the physical level. In a DBMS based on the three-schema architecture,
each user group refers only to its own external schema. Hencej the DBMS must
transform a request specified on an external schema into a request against the
conceptual schema, and then into a request on the internal schema for processing
over the stored database.
If the request is a database retrieval, the data extracted from the stored database
must be reformatted to match the user’s external view. The processes of transforming
requests and results .between levels are called mappings. I'hese mappings may be
time-consuming, so some DBMSs—especially those that are meant to support small
databases—do not support external views. Even in such systems, however, a certain
amount of mapping is necessary to transform requests between the conceptual and
internal levels.

The processes of transforming requests and results between levels are called
mappings.

FUNCTIONS OF CLIENT/SERVER—ADVANTAGES AND
ISSUES

A Client Server system has one or more client processes and one or more server
processes, and a client process can send a query to any one server process. Clients are
responsible for user-interface issues, and servers manage data and execute transactions.
Thus, a client process could run on a personal computer and send queries to a server
running on a mainframe.
This architecture has become very popular for several reasons. First, it is relatively
simple to implement due to its clean separation of functionality and because the
server s centralized. Second, expensive server machines are not underutilized by dealing
with mundane user-interactions, which are now relagated to inexpensive client
machines. Third, users can run a graphical user interface that they are familiar with,
rather than the (possibly unfamiliar and unfiiendly) user interface on the server.
While writing Client Server-applications, it is important to remembef e boundary
between the client and the server and keep the communication betweci.' them as set-

/
Self Instnfctional Material 169

oriented as possible. In particular, opening a cursor and fetching tuples one at a time
generates many messages and should ,be avoided. Even if we fetch serveral tuples
and cache them at the client, messages must be exchanged when the cursor is advanced
to ensure that the current row is locked.

Database Systems

DISTRIBUTED DATABASES OBJECTIVESNOTES

A distributed database is a database that is under the control of a central database
management system (DBMS) in which storage devices are not all attached to a
common CPU. It may be stored in multiple computers located in the same physical
location, or may be dispersed over a network of interconnected computers.
Collections of data (eg. in a database) can be distributed across multiple physical
locations. A distributed database is distributed into separate partitions/fragments.
Each partition/fragment of a distributed database may be replicated (ie. redundant
fail-overs, RAID like).
Besides distributed database replication and fragmentation, there are many other
distributed database design technologies. For example, local autonomy, synchronous
and asynchronous distributed database technologies. These technologies'
implementation can and does depend on the needs of the business and the sensitivity/
confidentiality of the data to be stored in the database, and hence the price the business
is willing to spend on ensuring data security, consistency and integrity.,

Basic architecture
A database Users access the distributed database through:
Local applications: applications which do not require data from other sites.
Global applications: applications which do require data from other sites.

Important considerations
Care with a distributed database must be taken to ensure the following:

• The distribution is transparent — users must be able to interact with the
system a^s if it were one logical system. This applies to the system's
performance, and methods of access amongst other things.

• Transactions are transparent — each transaction must maintain database
integrity across multiple databases. Transactions must also be divided into
subtransactions, each subtransaction affecting one database system..,

Advantages of distributed databases
• Reflects organizational structure — database fragments are located in the

departments they relate to. • . •
• Local autonomy — a department can control the data about them (as they

are the ones familiar with it.) ■ ,
• • Improved availability — a fault in one database system will only affect one

fragment, instead of the entire database.
• Improved performance — data is located near the site of greatest demand,

and the database systems themselves are parallelized, allowing load on the
170 Self Instructional Material

databases to be balanced among servers. (A high load on one module of the
database won't affect other modules of the database in a distributed database.)

• Economics — it costs less to create a network of smaller computers with the
power of a single large computer.

» Modularity — systems can be modified, added and removed from the
distributed database without affecting other modules (systems).

Disadvantages of distributed databases
• Complexity — extra work must be done by the DBAs to ensure that the

distributed nature of the system is transparent. Extra work must also be done
to maintain multiple disparate systems, instead of one big one. Extra database

. design work must also be done to account for the disconnected nature of the
database — for example, joins become prohibitively expensive when performed
across multiple systems. .

• Economics — increased complexity and a more extensive infrastructure means
extra labour costs. .

• Security — remote database fragments must be secured,, and they are not
centralized so the remote sites must be secured as well. The infrastructure
must also be secured (e.g., by encrypting the network links between remote
sites).

• Difficult to maintain integrity — in a distributed database, enforcing integrity
over a network may require too much of the. network’s resources to be feasible.

• Inexperience — distributed databases are difficult to work with, and as a
young field there is not much readily available experience on proper practice.

• Lack of standards - there are no tools or methodologies yet to help users
convert a centralized DBMS into a distributeci DBMS.

» Database design more complex - besides of the normal difficulties, the design
of a distributed database has to consider fragmentation of data, allocation of
fragments to specific sites and data replication.

Data Administration

NOTES

DISTRIBUTED DBMS

Distributed databases bring the advantages of distributed computing to the database
management domain. A distributed computing system consists of a number of
processing elements, not necessary homogenous, that are interconnected by a computer,
network, and that cooperate in performing certain assigned tasks. As a general goal,
distributed computing systems partition a big, unmanagable problem into smaller
pieces and solve it efficiently in a coordinated manner. The economic viability of
this approach stems from two reasons: more computer power is harnessed to solve a
complex task, and each autonomous processing element can be managed
independently and develop its own applications.
We can define a distributed database (DDB) as-a collection of multiple logically
interrelated database distributed over a computer network, and a distributed database
management system (DDBMS) as a software system that manages a distributed
•database while making the distribution transparent to the user.

Self Instructional Material 171

Database Systems A collection of files stored at different nodes of a network and the maintaining of
interrelationships among them via hyperlinks has become a common organization
on the Internet, with files of Web pages. The common functions of database '
management, including uniform query processing and transaction processing, do not
apply to this scenario yet. The technology is, however, moving in a direction such
that distributed World Wide Web (WWW) databases will become a reality in the
near future. ' '

NOTES

LOCATION TRANSPARENCIES—LOCATION,
REPLICATION, FAILURE, COMMIT PROTOCOL AND
CONCURRENCY, ETC.

Following types of transparencies are possible:
•. Distribution or network transparency. This refers to freedom for the user from

the operating details of the network. It may be divided into location
transparency and naming transparency. Locations refers to the fact that
command used to perform a task is ind^endent of the location of data and
the location of data and the location of the system where the command was
issued. Naming transparency implies that once a name is specified, the named
objects can be accessed unambiguously without additional specification.

• Replication transparency. Copies of data may be stored at multiple sites for
better availability, performance, and reliability. Replication transparency makes
the user unaware of the existence of copies.

• Fragmentation transparency. Two type of fragmentation are possible.
Horizontal fragmentation distributes a relation into sets of tuples (rows).
Vertical fragmentation distributes a relation into subrelations where each
subrelation is defined by a subset, of the columns of the original relation. A'
global query by the user must be transformed into several fragment queries.
Fragmentation transparency makes the user unaware of the existence of

• fragments.
• Other transparencies include design transparency and execution

transparency—referring to freedom from knowing how the distributed database
is designed and where a transaction executes.

I

/
172 Self Instructional Material

Data AdministrationSUMMARY

1. Database security is the system, processes, and procedures that protect a database from
unintended activity.

2. Databases provide many layers and types of information security, typically specified in
. the data dictionary,!

3. Two crucial aspects of database security compliance include patch management and the
review and management of permissions (especiaUy public) granted to objects within the
database.

4. A Single sign-on system should store the database user’s credentials (login id and password),
. and authenticate to the database on behalf of the user.

5. Access control is the ability to permit or deny the use of a particular resource by a
particular entity.

6. An electronic access control door can contain several elements. At its most basic there is
an electric lock.

7. The bar code can then be read with an optical reader tuned to the infrared spectrum, but
can not easily be copied by a copy machine.

8. Wiegand card technology is a patented technology using embedded ferromagnetic wires
strategically positioned to create a unique pattern that generates the identification number.

9. There are two types of smart cards: contact and contactless. Both have an embedded
microprocessor and memory.

10. The PIN is usuaOy a number consisting offour to eight digits.
11. Identification and authentication (I&A) is the process of verifying that an identity is

bound to the entity that asserts it.
12. Authorization determines what a subject can do on the system.
13. AccountabOity uses such system components as audit traOs (records) and logs to associate

a subject with its actions. The information recorded should be sufficient to map the
subject to a controlling user

14. Discretionary access control (DAC) is an access policy determined by the owner of an
object. The owner decides who is allowed to access the object and what privileges they
have.

15. Mandatory access control (MAC) is an access policy determined by the system, not the
owner.

16. Role-based access control (RBAC) is an access policy determined by the system, not the
owner.

17. The most general definition of an audit is an evaluation of a person, organization, system,
process, project or product.

18. The authentication of information can pose special problems, and is often wrapped up
with authenticating identity.

19. In cryptography, encryption is the process of transforming information (referred to as
plaintext) usii^ an algorithm (called cipher) to make it unreadable to anyone except those
possessing special knowledge, usually referred to as a key.

20. Data integrity is a term used in computer science and telecommunications that can mean
ensuring data is “whole” or complete, the condition in which data are identically
maintained during any operation.

21. In any organization where many persons use the same resources, there is a need for a chief
administrator to oversee and manage these resources.

22. The client/server architecture was developed to deal with computing environments in

NOTES

I
Self Instructional Material 173

Database Systems which a large number of PCs, workstations, file servers, printers, database servers, Web
servers, and.other equipment are connected via a network.

23- Marly Web applications use an architecture called the three-tier architecture, which adds
an intermediate layer between the client and the database server.

24, Data administration is, in computing science, the administration of the organisation of
data, usually as stored in databases under some Database Management System or
alternative systems such as electronic spreadsheets.

25- CASE (Computer-aided Software/System Engineering) refers to the methods dedicated
to an engineering discipline for the development of information systems together with
automated tools that can be used in this process.

26. A Lock is a database system object associated with a database object (typicaOy a data item)
that prevents undesired (typically synchronization rule violating) operations of other
transactions'by blocking them.,

27. Database protection can begin with the process of creation and publishing of appropriate
protection standards for the database environment-

28. A Client Server system has one or more client processes and one or more server processes,
and a client process can send a query to any one server process.

29- A distributed database is a database that is under the control of a central database
management system (DBMS) in which storage devices are not all attached to a common
CPU.

30. Distributed databases bring the advantages of distributed computing to the database
management domain.

NOTES

SELF ASSESSMENT QUESTIONS

1, What do you understand by Database Security?
•2. What are Process Controls?

3- How a Database is Protected?
4. What are 2-phase Command and Working Protocols?
5. What is Data administration?
6. What are CASE (Computer-aided Software/System Engineering) tools?
7. How would you lock a database?
8. How database can be protected?
9. What is a Client Server system? .

10. 'What is a distributed database?
11. Describe the followings:

Access Control System Operation
Credential
Magnetic Stripe Technology
Proximit)' Card Technology
PIN
Identification and Authentication (I&A)
Accountability
Public Policy

Access Control'System Components
Bar Code Technology
Wiegand Card Technology
Smart Card
Computer Security
Authorization ;
Access Control Techniques

/
174 Self Instructional Material

Multiple Choice Questions Data Administration

1. REXis:
- (a) Request to exit

2. PIN is:
(a) Private Identification Number
(b) Personal Identification Number
(c) Persona] Information Number

3. ACL is:
(a) Alter Control List

4. I&Ais:
(a) Identification and Authentication
(b) Information and Authentication
(c) Identification and Access

5. DACis:
(a) Discretionary Add Control
(b) Discretionary Access Control
(c) Direct Access Control

6. MAC is:
(a) Man Access Control
(b) Mandatory Access Clear
(c) Mandatory Access Control

7. RBACis: ' • ’

(a) Role Based Access Control
(b) Role Basic Access Control
(c) Real Based Access Control

. 8. DBA is:
(a) Database Administrator (b) Database Advisor '

9. RDBMS is : .
(a) Relative Database Management System
(b) Relational Database Management System
(c) Rotational Database Management System

10. CASE is:
. (a) Computer Aided Software/System Engineer

(b) Computer Added Software/System Engineering
(c) Computer Aided Software/System Engineering

11. DDBis:
(a) Distributed Database - .
(b) Deleted Database . -
(c) DUuted Database

12. DDBMSis:
(a) Deleted Database Management System
(b) Distributed Database Management System
(C) Diluted Database Management System

(b) Request to exist (c) Ready to exit

NOTES

(b) Access Clear List (c) Access Control List

(c) Database Accurator

Self Instructional Material 175

Database Systems Triie/False Questions

1. Databases provide many layers and types of information security, typicaUy specified in the
data dictionary.

2. Access control is the ability to permit or deny the use of a particular resource by a particular
entity. '

3. An electronic access control door cannot contain several elements. At its most basic there
is an electric lock.

4. Wiegand card technology is a patented technology using embedded ferromagnetic wires
strategically positioned to create a unique pattern that generates the identification number.

5. Identification and authentication (I&A) is the process of verifying that an identity is bound
to the entity that asserts it.

6. Authorization determines what a subject cannot do on the system.
\ 7. Discretionary access control (DAC) is an access policy determined by the owner of an

object. The owner decides who is aUowed to access the object and what privUeges they
have. ■ -

8. Mandatory access control (MAC) is an access policy determined by the owner.
9. The most general definition of an audit is an evaluation of a person, organization, system,

process, project or product.
10. The authentication of information can pose special problems, and is often wrapped up with

authenticating identity.
1]. Database protection can begin with the process of creation and publishing of appropriate

protection standards for the database environment.

Short Questions with Answers
• 1. What is Access Control? /

' Ans. Accesscontrolistheability to permit or deny the use ofa particular resource by a particular
entity. Access control mechanisms can be used in managing physical resources (such as a
movie theater, to which only ticketholders should be admitted), logical resources (a bank
account, with a limited number of people authorized to make a withdrawal), or digital
resources (for example, a private text document on a computer, which only certain users
should be able to read).

2. What is Wiegand Card Technology?
Ans. Wiegand card technology is a patented technology using .embedded ferromagnetic wires

strategically positioned to create a unique pattern that generates the identification number.
Like magnetic stripe or bar code, this card must be swiped through a reader to be read. .
Unlike those other technologies the identification media is embedded in the card and not
susceptible to wear.

3. What is Bar Code Technology?
Ans. A bar code is a series of alternating dark and light stripes that are read by an optical scanner.

The organization and width of the lines is determined by the bar code protocol selected.
• There are many different protocols but code 39 is the most popular in the security industry.

Sometimes the digits represented by the dark and light bars are also printed to allow people
to read the number without an optical reader.

4. What is Bar Code Technology?
Ans. There are two types of smart cards: contaCT and contactless. Both have an embedded

microprocessor and memory. The smart card differs fiom the card typicaOy caOed a
proximity card in that the microchip in the proximity card has only one function: to
provide the reader with the card’s identification number. The processor on the smart card

NOTES

I

I

\

176 Self Instmaional Material

Data Administrationhas an operating system and can handle multiple applications such as a cash card, a pre-paid
membership card, and even ah access control card.

5- What is PIN?
Ans. A personal identification number (PIN) faUs in the category of tvhat you know rather than

what you have. The PIN is usually a number consisting of four to eight digits. Less and the
number is too easy to guess. More and the number is too difficult to remember,

6. What are Disaetionary Access Control (DAC), Mandatory Access Control (MAC), and
Role Based Access.Control (RBAC)?

Ans. Discretionary Access Control
Discretionary access control (DAC) is an access policy determined by the owner of an
object. The owner decides who is aUowed to access the object and what privileges they
have. ' \

Mandatory Access Control
Mandatory access control (MAC) is an access policy determined by the system, not the
owner. MAC is used in multilevel systems that process highly sensitive data, such as
classified government and military information. A multilevel system is a single computer
system that handles multiple classification levels between subjects and objects.
Role Based Access Controlr

Role-based access control (RBAC) is an access policy determined by the system, not the
owner. RBAC is used in commercial applications and also in military systems, where
multi-level security requirements may also exist, RBAC differs from DAC in that DAC
allows users to control access to their resources, while in RBAC, access is controlled at the
system level, outside of the user’s control.,

7, What is Factual Verification?
Ans. Determining the truth or factual accuracy of information in a message is generally considered

a separate problem from authentication. A wide range of techniques, from detective work •
to fact checking in journalism, to scientific experiment might be employed.

8'. What is a Client Server?
The client/server architecture was developed to deal with c^jmputing environments in
which a large number of PCs, workstations, file servers, printers, database servers, Web
servers, and other equipment are connected via a network. The idea is to define specialized
'servers with specific functionalities. For example, it is possible to connect a number of PCs
or small workstations as clients to a file-server that maintains the files of the client machines.
Another machine can be designated as a printer server by being connected to various
printers; thereafter, aU print requests by the clients are forwarded to this machine. Web
servers or e-mail servers also fall into the specialized server category. ^

9. What does Data Administrator do?
Ans. Data Administration ideally begins at'pftware conception, ensuring there is a data dictionary

to help keeping consistency and avoid redundancy and modelling the database so as to
make it logical and usable, by means of the normalisation technique.

10. What arc CASE Tools?
Ans. CASE (Computer-aided Software/System Engineering) refers to the methods dedicated to

an engineering discipline for the development of information systems together with
automated tools that can be used in this process.

11. What is Concurrency Control?
Ans. Concurrency control in database management systems (DBMS) ensures that database

transactions are performed concurrently without the concurrency violating the data integrity
of a database. Executed transactions should follow the ACID rules. The DBMS must
guarantee that only serializable (unless Serializability is intentionally relaxed), recoverable

NOTES

f

\
Ans.

/

Self Instructional Materia! 177

Database Systems schedules are generated. It also guarantees that no effect of committed transactions is lost,
and no effect of aborted {rolled back) transactions remains in the related database.

12. What are Distributed databases?
Ans. A distributed database is a database that is under the control of a central database management

•system (DBMS) in which storage devices are not all attached to a common CPU. It may be
• stored in multiple computers located in the saihe physicd location, or may be dispersed

over a network of interconnected computers.
Distributed databases bring the advantages of distributed computing to the database
management domain. A distributed computing system consists of a number of processing
elements, not necessary homogenous, that are interconnected by a computer network, and
that cooperate in performing certain assigned tasks.

ANSWERS

NOTES

Multiple Choice Question
1. a
5. b
9. b

True False Questions
1. T

2. b 3.- c
7. a

II. a

4. a
6. c 8. a

10. c 12. b

2. T 3. F
7. T

11. T

4. T
5. T 6. F 8. F
9. T 10. T

178 Self Instruaioml Material

CHAPTER 4

DATABASE APPLICATIONS

Learning Objectives
After going through this chapter, you should appreciate the following:

• Financial Systems
• Marketing System
• Foreign Trade
• Inventory Information Systems.

Database Systems
FINANCIAL SYSTEMS

An important area of computerization is the Accounting System. Usually this is the
second application to be computerized in any organization, the first being the Payroll
System, A well maintained accounting setup with capabilities of the quick production
of reports and summaries is an asset to any business activity in that the management
is aware of the latest up to date financial standing of the business thereby facilitating
right decision making. In a non computerized accounting system the books of
accounts are normally completed only by two to thee months after closing of the
period and knowledge of what happened before two or three .months is only of
historical importance.

An accounting system is ideally suited 'for computerization, since the system involves
mass processing of data which otherwise take many man hours to complete. Accuracy
is of paramount important as regards accounting data is concerned which is often
lost in a manual system. Also the type of accounting data are of simple numerical in
nature involving large volumes and laborious calculations.

In olden days, in a manual system, closing of accounts of production of periodical
reports were done rather infrequently after days of poring over the books of accounts
and painstakingly arriving at the required totals during which time all routine
accounting activities were to be suspended. Today, with the advent of computers, it
has become possible to prepare profit and loss figures monthly or if necessary even
on a daily basis.

Unfortunately to the technical uninitiated, the accounting system will remains a
mystery and except for students with a commerce background, computer professionals
are generally unaware of the nuances of the system. This is primarily because the
terminologies used and the concept of accounts are rather strange to students of
other faculties.

To understand a computerized accounting system it is therefore imperative that one
should have a clear background to this field of study as otherwise when talking to the
accounting personnel, he would be faced with terminologies like debits and credits
which would be rather incoherent to a software personnel.

Let us now try to understand the accounting system using our household as a typical
example. You must have heard many a times “to put your house in order” usage
when things go wrong. Is it not?

While a household is strictly not a business organization, we need to make “both
ends meet” in a household. What does this means? You should be able to live off
well without much difficulties with your income from all sources. In other words,
you should control your expenditure so that it never exceeds your income and even
if at some stage it exceeds due to unavoidable reasons, you should be able to mobilize
enough funds to offset such expenses. This is exactly what is required in a business
organization too, except that in a business, success is measured in terms of profits
you make. Even in a household, if you can mtike a saving, well and good. Is it not so.

How do we achieve this objective? First and foremost is that we should account very
pisa that is being spent and earned under different heads of accounts. We will now
see what are the different heads of accounts possible in a household to maintain a
typical accounting system.

NOTES

180 Self Instructional Material

1. Land and Buildings.

2. Machineries - for e.g. Mixer Grinder, Refrigerator etc.

3. Furniture - e.g. Cots, Chairs, table etc.

4. Tools - e.g. Stove, Utensils, Hammer, Screw driver etc.

5. Stocks - Many items Like Rice, Sugar, Bulbs, etc kept-in stock.

6. Cash - Amount of cash kept in a Cash box for day to day minor expenditure.

7. Bank - Amount kept,in a Bank account for expenditure of a larger nature.

8. Debtors - There may be persons who owe money to you for various reasons.
For e.g, you have given a loan to Mr. X.

9. Creditors - You may perhaps owe money to M/s ABC traders for purchases
made.

10. Loans taken - From may be the Bank for construction of the house.

11. Salaries and allowances - Paid to domestic systems.
12. Telephone charges

13. Electricity charges

14. Cost of stationery

15. Travelling expenses

16. Cost of Provisions

17. Cost of Milk

18. Cost of Vegetables '

19. School Fees

20. Entertainment Expenses

21. Salary received from employer

22. Proceeds of Coconut Sales

23. Interest received on deposits from the bank

24. Proceeds of sale - other agriculmral products

25. M/s. ABC Coconut traders - They buy Coconut from you regularly

26. M/s. XYZ Agricultural traders - They buy other agricultural products from
you

27. Varkey’s supermarket - From whom you regularly buy your domestic
requirements.

28. Pramod Kumar - The milk man who supplies milk regularly

29. Moosa Koya - Supplier of Vegetables

30. Bank of India - A loan has been taken from this bank for an emergency

The above accounts heads are by no means all that there is to it. There could be-
many more account heads. But for understanding an accounts system, the above
heads would suffice.

Database Applications

NOTES

Self Instmaional Material 181

Database Systems On analysis, you can find heads 1 though 8 are of a peculiar nature. They are all some
from of an ASSET as far as a household is concerned. You could sell them and get
money according to the worth of the assets. Cash is hard cash, you can use them,
money in the bank can be encashed, money from debtors can be realized and so on.
If you decide to migrate to America, you can convert these heads into solid cash. Do
you get the concept of an ASSET?

ASSETS are of two kinds. Fixed Assets and Current Assets. Items 1 through 4 are
fixed assets, while items 5 through 8 are examples of current assets. Fixed assets are
those which cannot be very easily sold while it is easy liquidity as far as current assets
are concerned, i.e. easy it convert to into cash. Items 9 and 10 are LIABILITIES to
the household. If you are going away for good. Creditors should be paid off, loan
taken should be repaid. Thus these items are a burden to you. Isn’t it?

In an actual business environment, there will be appearing a major account head
under the caption “LIABILITIES”, titled Capital Account. This represents the initial
investment or money received from shareholders to start the organization or for further
expansion of business. Until the organization is wound up or liquidated, these funds
received remain as a liability in the books of accounts.

Items 11 to 24 represents heads coming under the Profit and Loss accounts (generally
known as P & L account heads). These are further divided into INCOME heads
(items 21 to 24) and EXPENDITURE heads (item 11 to 20). Expenditure coiild also
be subdivided into direct and indirect expenditure heads. We have considered here
only direct expenditures and indirect expenditure will be discussed later.

Finally items 25 and-26 are the debtors to the household while items 27 to 30 are the
creditors. Debtors are those who owe you money for whatever reasons it may be like
in this case, they owe you money for purchases made from you. Creditors are those
to whom you owe money in the course of business transactions with them. Here we
owe them money for purchases made form them. In the case of item 30, you owe
Bank of India money to be repaid against a loan taken from them.

With the above background, let us now study the various procedures of book keeping
involved in an Accounting System.

Double Entry System of Book Keeping

You would have heard in your Physics classes that “matter can neither be created nor
be destroyed”. It only changes form. Similarly in an accounting system, we have a
parallel.

Income and Expenditure, direct or indirect are what constitutes an accounting
environment. When an expenditure is incurred, you always get something in return.
You can say that the expenses under any head of account gets converted into an
income under some other head of account. Remember that income or expenditure
need not necessarily be in the form of hard currency, it could be in any other form
which has an equivalent value in terms of money. So it follows that any transaction
has two sides to it one affecting an expenditure head and the other an income head.
We have here used the terms income and expenditure in the literal sense. In accounting
parlance, the corresponding items are Debits and Credits. Translating our concept of
income and expenditure to accounting terminology, we say that for every Debit
transaction,, there is a corresponding Credit transaction. We will illustrate this by an
example.

NOTES

182 Self Instructional Material

Suppose we spend Rs. 20 from our C£ish box in the household and purchase vegetables
for use at dmner. We debit Rs. 20 to the head of account “Cost of vegetables” and
Credit Rs. 20 to the head of account titled “Cash”. What does this mean? Rs. 20 has
gone out of the cash box (expended) and ‘Cost of vegetables’ account has gained by
a- similar amount. You can visualize the various heads of accounts as boxes where
you are going to keep money pertaining to that account. Thus ‘Gash’ is box as is the
‘Cost of vegetables’. What really has happened here, money has changed boxes. Rs.
20 from Cash has gone to the box ‘Cost of vegetables. You will now wonder than
where do the vegetables come from. Actually you have paid the money to the vegetable
vendor and got in return vegetables worth Rs. 20. so when we say the ‘Cost of
vegetables’ head has gained by Rs. 20, it only means that vegetables worth Rs. 20 has
gone into this box. For accounting purposes, the actual material purchased is of little
consequence, but accounts are only interested in the money equivalent to the item
purchased.
Thus if a cheque payment is made to your servant for Rs. 500 towards his salary for
the month, we credit ‘Bank’ account with Rs. 500 and debit “Salaries and allowances”
account with an equivalent amount. (In fact, the payment is made to your servant
and this is of no consequence to your Accounting Syste,).
You will find the above concept is rather strange, but you will get used to it as we
move along. This is primarily because, we confuse accounting terms with their
meanings in the literal sense and it will take time to comprehend these terms in the
spirit of a real accounting system,
We have now seen that the real difficult task in accounting to decide which accounts
is- to be debited and which corresponding account is to be credited when there is a
transaction in a business or household. Fortunately, this is the job of an Accountant
and we as computer students are not very much interested in this aspect. However,'
we should try to understand these concepts generally to have some superficial
knowledge of the system.
Account heads are basically divided into Personal Accounts and Impersonal 'accounts.
Impersonal accounts are further classified into Property or Real and Nominal or
Fictions Accounts.

Database Applications

NOTES

Personal A/C

Where an accounting transaction affects a person such as individual or any body of
individuals such as an association, club or a company and the like in a Credit
transaaion, is known as a Personal a/c e.g. Debtors such as M/s. XYZ agricultural
traders. Creditors such as Veirkey’s Super Market, Pramod Kumar etc.
Suppose we sell coconuts worth Rs. 5000 to M/s ABC Coconut traders. We debit
ABC Coconut trades with Rs. 5000 and credit a similar amount to the head “Proceed
of Coconut Sales”
Similarly if we buy vegetables worth Rs. 30 from Moosa Koya, we debit the account
“Cost of vegetables” with Rs. 300 while crediting Moosa Koya with a similar amount.
The general principle in respect of a Personal a/c'is to debit the Receiver and Credit
and Giver.

In the above example, Moosa Koya is the giver of vegetables worth Rs 300 and who
receives it, the head titled “Cost of vegetables”. Now verify the above principle with
what we have done with the transaction.

Self Instructional Material 183

Datable Systems Property or Real A/c

All commodities having commercial value cind which can be -touched and seen are
known as properties in real existence normally involved in either exchange or transfer
transaaions are called as such.

For e.g. Land and Buildings, Machineries, Furniture etc.

Proceeds of Coconut sales and other agricultural sales.

Suppose you buy 3 chairs against payment of Cash from a furniture shop. You debit
the cost of say Rs 1200 of the chairs to “furniture” Account while crediting it to
“Cash”account. Here Rs 1200 has goneout of ‘Cash’- a/c and ‘Furniture a/c’ where
the Rs. 1200 worth of chairs has come is in debited.

Nominal or Fictions A/c

Expenses and Income of , various types incurred or earned on availing or rendering .
services of any nature which do not cause any property go away are called Nominal
-or Fictions Accounts. Expenses result in permanent losses which cannot be recovered
at all while income received cannot be claimed by any person.

For example, Electricity charges, Salaries and allowances etc.

Interest received, Commission received for services rendered etc.

The general principle in respect of this type of account is to debit expenses or losses
while crediting incomes or gains.

The above principles enumerated are known as the Golden rules of Accounting.

Journal

Journal is the prime book of entry. It is also known as the first book of an accounting
entry. Every accounting transaction is first required to be recorded into this journal
debit transactions are entered into the debit column and credit transactions into the
‘Credit’ column. The account number (Head of accounts are coded) and the particulars
of the transactions are written into the appropriate columns. Given below is a typical
format of a Journal.

NOTES

. ^

JOURNAL

Date Reference No. Particulars
Credit

A/c. Head Debit •

3-11-02 CV/327 Cash Paid for 3 chairs BL006 1200.00

3-11-02 CM/135/02 Furniture A/c. BL0003 1200.00

The reference number shows the document number of the source document from
which entries are made into the Journal. BL006 is the code no. for Cash account and
BL003 the code number for the furniture account. When cash is paid out, a cash
payment voucher is prepared and authorized by the Accounts Officer and this voucher
number is entered in the ‘reference’ column. The supplier of the chairs ABC traders
would give.you a Cash bill when payments are received and this bill number is entered
as ‘Reference’ against the Furniture A/c.

We will now study the various source documents from which an accounting
transaction is normally generated.

184 Self Instructional Material

Invoice (Bill)
When items or services are sold on credit for e.g. sale of coconuts to M/s. ABC
traders, a bill is prepared and issued to the customer describing the goods or services
sold, their quantity and value. Form this bill, an entry of sale of goods or services on
credit is recorded into the journal. In case of a sales invoice the bills will be serially
numbered and this bill number is entered in the ‘Reference’ column of a journal.
Similarly, when goods or services are purchased on credit, from a supplier of such
goods or services, a bill is received from the. supplier as detailed above from which
the entry for purchases on credit is reordered into the journal. Purchase bill will not
be serially numbered since they are received from various suppliers.
The format of invoices has already been elaborated in the chapters on sales and
purchases.

Cash Memo
When purchase are made from a supplier against payment of cash, the supplier issues
a cash memo which is subsequently journalized. This cash memo is very similar to
an invoice in nature except that this memo also serves the purpose of a receipt of
payment for goods supplied. Purchase Cash memos also contain a number, which
may not be serial in nature since purchases are made form various suppliers.
Likewise, when items or services are sold for cash payment, a cash bill is issued to the
customers in the same format of a sales invoice with numbers given serially. This
also serves as an acknowledgement for payment received for goods or services sold.

Receipts ' '
Whenever payments are made either in cash or by cheque for any purpose, a receipt
is issued by the receiver and likewise when money is received, receipts are issued bin
acknowledgement. When we issue receipts, they.will be,serially numbered. Receipts
from others will contain a receipt number, but not in any serial order.

Cash/Cheque payment Voucher
Whenever payment is made in cash or cheque for expenses of any nature for which
an official receipt cannot be obtained form the receiver of the money as in the case
of say travelling expenses paid to an employee, a payment voucher is prepared by the
payer and the signature is obtained thereon from the receiver, wherein the details of
such expenses are recorded together with the account number to which it should be
debited. The entries from these vouchers are also entered into the journal. Vouchers
are serially numbered for reference.

Debit Note
When purchases are made on credit and later on, if any part of it or whole of it are
returned for any genuine reasons, to the supplier,' a memo is issued to the supplier
indicating therein, the reason for the return of the items and the value thereof. At the
same time, the supplier is informed that his account which was previously credited
with the value of purchases as giver of, items or services has now been debited with
the value of items returned to him, As a receiver of value of the returned items his
account is debited. This sort of a memo is called a Debit Note.

Database Applications

NOTES

/

Self Instructional Material 185

Database Systems Credit Note
When items come in as returned or services rendered are disapproved by the customers
to whom they were supplied or offered on credit, a memo is issued to the customers
acknowledging the receipt of items returned or accepting the disapproval of services
rendered and the value of returns. Thus the customer is informed that this account in ,
the books of the supplier, which was previously debited as receiver is now credited
with the value of returns as giver of that value. This sort of a memo is called a Credit
note.

We.will consider an indirect expenditure. -For example. Depreciation of an asset.
When you buy a chair, though it is an expense is not considered as such for calculating
profit or loss of an organization. This is because a chair can be used for many years
and taking the full cost of the chair as an expense in the year of purchase is not quite
right. So what do we do. Let us assume that the cost of the chair- is Rs 400 and that
this chair can be used for 10 years. Then every year the chair gets depreciated by
10%. It is not so. This amount Rs. 40 is treated as an expense in the year of purchase.
So. we create the following transaction.

To depreciation of a chair - Furniture a/c - Credit Rs 40

“Depreciation a/c - Debit Rs. 40

Thus the “furniture account” gets reduced by Rs 40 and the ‘Depreciation Account”
gains by Rs 40. This depreciation account is reckoned for profit and loss calculations.

Note that the net asset value of the chair has now become Rs 360 and next year, it
will be depreciated only by Rs 36 i.e. 10% of Rs 360. You will observe that the net
asset value of the chair never becomes zero.

How a certain asset is depreciated depends on tax laws of the land and directions
contained in the company’s Act for the relevant financial year.

Such sort of transactions which are of indirect nature are written up in a Journal
Voucher and this document also becomes a Source document of an accounting system.
Given below is the format of a Journal Voucher.

Every journal voucher is authorized by an officer of the accounts department to
confirm that the debits and credits are charged to the correct account heads.

Now to summarize, we have the following source documents in an accounting system.

Bill (Invoices)

Cash Memos

Receipts - -

Cash/Cheque Payment Vouchers

Debit notes

Credit notes •

Journal vouchers

Using the above documents as input, an accounting system is computerized. We '^ill
now study how this is done in detail. The various statements and reports produce^ in
an accounting system will be explained at the appropriate placed.

NOTES

I.

2.

1.

2.

3.

4.

5.

6.

7.

186 Self Instructional Material

Computerfzation
The first step in computerizing an accounting system is to identify the heads of
accounts required and code them as appropriate. We have already done this at the
beginning of this chapter. In an actual business environment there would be many
more heads of accounts and these should be studied in detail and classified, into
major and minor groups, such as Fixed Assets and within fixed assets, Land and
Buildings, Plant & machinery etc. A suitable coding structure should then be designed.
A typical coding structure is given below.
The account heads in a business can generally be classified as follows: .

i
Balance Sheet Heads
Within this major grouping, we can have various subgroups as under.
1. ASSETS
2. LIABILITIES
Within ASSETS, minor grouping’can be done cis
1. FIXED ASSETS: Within which sub grouping can be done as

Land
2, Building

Plant & Machinery

4. Furniture etc.

Database Applications

NOTES

N

1.

3.

etc.
CURRENT ASSETS: sub groups within as

Stocks

Cash

Bank

Debtors etc.
Similarly within liabilities, there can be Capital a/c and Current liabilities with in
which Creditors, Loans etc. can be classified.

Profit & Loss Account Heads:
These are classified into

Income - Account Heads representing income within which there could be

Direct income Heads like
Sales A/c - Coconuts

Sales A/c - Other agricultural products..
Indirect Incorrie Heads like

Interest gained from deposits

Refunds received

Sale of Assets etc. ' ,

2.

1.

2.

3.

4.

\

1.
1.

1.

2.

2.

1.
. 1/2. V ■

3. Self Instructional Material 187

Expenditure - Account Heads representing expenditures wthin which there,
could be .

2.Database Systems

Direct Expenditure like

I.. Salaries & Allowances
2. Travelling expenses
3. Cost of Raw materials consumed

1.

NOTES

etc.
Indirect Expenditure like
1. Depreciation of an Asset
2. ■ Bad debts vmtten off

• 2,

etc.
DEBTORS : All debtors are given a Head of account like

ABC traders

Metro Trading Co.
Global Enterprises

3.

1.

2.

3.

etc.
Sometime debtors can be classified as
1. Customers who are regular buyers of your product.
2. Individual debtors with whom you have occasional transactions

3. Staff members of the organization etc. _
,4. CREDITORS: All creditors are also given a Head of account like

1. Varkey’s Super Market
2. Delhi Hardware Stores
3. S.K. &F
4. Fertilisers & Chemicals of Travancore
5. Mr. Pramod Kumar - '
etc.

Creditors can also be classified as
1. Suppliers of Raw materials
2. . Suppliers of Machinery and Space parts
3. Machinery Maintenance companies
4. Sundry creditors
etc. depending on the type of creditors in any organization.

Classification of account heads as above is not a very difficult job as you can seek

188 Self Instructional Material

the help of the Accountant who are quite familiar with the specific requirements of
an organization. After such classifications, codes can be allotted using any of the
coding technique. For example

BL/01/01/01 -

Database Applications

could represent Land under fixed assets under

ASSETS head under Balance Sheet a/c heads.
Balance Sheet - Major Group

“ - Asset - Inter-Group
Fixed Assets

NOTES
BL -
BLOl
BLOIOI ((n

Minor Group
BLOIOIOI - - Land etc.

can represent Buildings

Creditors etc.

H <<

BL010102 -
BL020I04 -

BL - Balance Sheet
02 - Liabilities

Current Liabilities
04 - Creditors ' ''
Can represent Sale of assets under indirect
income under Income head • •;
of P & L Account.

A good coding system, needless to say, goes a long way in efficient computerisation
of an accounting function.
After the codes are thus allotted, the next step is to design the Master Files. In a
typical accounting system, thee are two Master Files.

Account Master File |
Budget Master File - used in Budgetory control system which will be
discussed later.

Accounts Master File ^
This master file is designed depending on whether you are going to do batch processing
or on line processing. In a batch processing the master'files are updated only
periodically, normally once in a month. In an on line processing environment, the
master file are updated immediately on a transaction taking place and will alw;ays

, reflect the latest financial position of the organization.

Master File Layout

01

Similarly PL/OI/02/03 -

1.
2.

SI No. Description Width Dec Type Remarks

Account Number
Description of the account 30.

1. 8 Character Code allotted I
2. Character Name of account I

Self Instructional^Material 189

Year ending date e.g.
-31/03/02

DateFinancial Year ending 83.Database Systems

Numeric210Current Balance^
Todate debits

Todate credits

Opening Balance - April
“ - May

“ - June

“ - July.
“ — August
“ - September
“ - October
“ - November
“ - December
“ - January
Opening Balance - February 10

“ - March
Closing Balance for the year 10

We have assumed here that the financial year of the organizkion is April to March
of the succeeding year, which also happens to be the Tax year. Some organization do
have a separate financial year e.g. July to June of next year or .the Calender year
itself

4.
Numeric210.5. J

/iNumeric10 26NOTES

Numeric10 27
Numeric10 28
Numeric10 29
Numeric21010

Numeric10 211
Numeric '10 212

Numeric10 213
Numeric10 214
Numeric10 215
Numeric10 216
Numeric217
Numeric10 218
Numeric2*19

Current Balance
This is the latest balance up to the last transaction entered into the computer.
This can be a positive or negative figure. Negative figures are preceded by a minus
sign e.g. -6325.00. In other words, the current balance represent the sum total of all
debits and credits of all transactions that has occurred in the current financial year
plus any opening balance for the respective financial year. In computers, credits are
considered as negative figures and debits as positive ones, normally. There is no harm
done even if you enter a debit as a negative figure as when balancing is done, usual

: mathematical rules of addition or subtraction are followed.

To date Debits/Credits -
These fields are used to store the total of all debit transaction and credit transactions
that has occurred in a financial year in respect of the given account number contained
in the file layout.

Opening Balance:
This is the balance in respect of the account number as at the beginning of every

\

\ ■

)

\
190 Self Instructional Material

calendar month, The usage of this is primarily for selective printing of a ledger for a
given month, which will be explained later in this chapter.

Closing Balance for (he year
This is the balance as the end of the financial year which can again be positive or
negative in respect of the account number.,
The above master file is usually maintained in the account number order. At the
beginning of the financial year. To date debits/credits fields as well as opening balances
from May through March are initialized to Zero, The closing balance for the year also
is set to zero. The fields current balance and opening balance for April would be the
closing balance of the account for the previous year in respect of all balance sheet,
Debtors & Creditors account heads. In Profit & Loss.accounts, these are also initialized

■ to zero. 1
At any point of time, the current balance would be equal to. (Opening balance for
April + To date Debits - To date Credits), Similarly the Closing balance for the year
would be the same figure as that of the current balance at the end of the year. So this
field is strictly superfluous and can be removed. If you have understood this, you are
doing ^ell with the comprehension of the accounting system.
The first program to be written in an accounting system thus would be to create,
maintain and query the Accounts Master File. Normally, the data contained in this
file should never be modified except at the beginning of a financial year when the
Numeric fields of the file would be initialized to zero.
The Program should check that when modifications are done, the current balance
and opening balance for April should be the only fields where data other than zero
can be entered in respea of non P & L accounts. For all ofiier fields if the data is I®*
April of any yem, you can zeroise the fields. For any other, month, no changes to data
should be permitted. In other words, data in the above file should never be manually
changed except at the begiiming of every financial year to initialize the file. Querying
this file is always allowed.
When the master file creation is complete we should next prepare the transaction
files. Any for of expenditure or income is entered into this transaction file. In-a
manual system, transactions which are authenticated through any one of the source
documents described earlier are first posted into a journal. In the computerized system,
this is not necessary. Records are created and appended to the transaction file direa
from the source documents. Often transaction records are generated automatically
when the source document is itself prepared on a computer. For example, when an
invoice is printed, the corresponding transaaions are appended to the accounting
transaction file by the sales system. Thus we see that all other systems computerized
in an organization is ultimately linked to the accounting system. We will discuss this
aspect a little more in detail later.
We will now look at a transaction file layout.

IVansaction File Layout

Database Applications

NOTES

SI No. Description Width Dec RemarksType

Date of transaction1. 8 Date
Self Instmctional Material 191

Character e.g. 1/94/032 '2. Source document Number 8Daiabase Systems

3. • Document Date 8 Date

Character4. Document Code 3

Narration 30 Character5.
NOTES Account Number 8 Character6.

(Minus for Credit
amount)

10 2 Numeric7. Amount

Numeric8. Cost Centre code 2

9. Bank Code 2 Numeric (For cheque
payments &

receipts)

• 10, Cheque Number 8 Character

All tfansactions emanate from a source document and it is this source document
number and date of document which are entered into Fields 2 & 3. For e.g. 1/94/032
may be an invoice number representing sale of items to a specific customer.

All document are coded as under

Invoices

Cash Memos

Receipts - Cash

Cash payment Voucher

Receipts - Cheque

Cheque Payment Voucher

Debit Note

Credit Note

Journal Voucher etc.

Details in brief regarding the transaction are entered into the ‘narrations’ Field.

While a debit mount is entered as such, a credit amount is prefixed by a minus sign.

Expenses and income are sometimes analyzed department wise or cost centre wise.
A cost centre is a department or section which dir^tly contributes to the cost of
production of an item. Accounts department, Personnel department etc. are generally
non profit earning departments and expenses incurred by them do not directly affect’
the cost of production. These cost centres are coded and keyed in into-the last field
of the transaction record.

.Data are entered into the transaction file either through a data entry program or
directly from linked computerized systems like Payroll, Inventory, Sales or Purchase
systems. We will first concentrate on a data entry procedure done in line.

We had earlier mentioned that for every transaction there will a debit and credit
entry. That is for every transaction two heads of accounts are affected. The ‘Reverse
Account Number; shown in the screen layout is to generate the second transaction.

INV

CM

RPT\

CSH

RPQ -

CQP ' ^

DN

CN

JV

192 Self Instructional Material

When after data entry, you respond with a “Y” to the prompt “Confirm Recording”,
two records will be generated, the first one charged to the account number and the ^
second one charged to the reverse account. The amount in the first record if a debit,
in the second record, it will be created as a credit (with a minus sign prefixed) or vice
versa.. These two records are appended to the transaction file which is generally
maintained in Account Number, date of transaction order. Apart from this the
accounts Master File would be updated to reflect the latest current balances and
todate debits and credits in respect of the two account numbers affected in the
transaction. This result in some amount of duplication of data which can be
eliminated by using certain short cuts which will be described later. However, with
storage space becoming cheaper with technological advances in the field of computers,
this draw back can easily be ignored. Needles to mention, data entered should be well
validated and visually verified before recording and updating.

Direct Data Entry through linked systems

From Sales System:
When an invoice is printed, it represents a sales activity. The customer to whom the
invoice is being sent in' a debtor to the organization, if the sale is done on credit basis.
Therefore the grow value of the invoice is debited to the ‘customer’s personal account’
and credited to .‘Sales account’. These transactions automatically generated and
appended to the accounts transaction file and the master updated.
Similarly when a cash Sale is made to a customer, a cash bdl is prepared. The amount
of the bill has been received in cash and therefore debited to' ‘Cash account’ and
credited to ‘Sales Account’ and suitable transactions are generated and appended to
the transaction file and the corresponding master record updated.
From Payroll System:
Salaries and allowances are calculated in this system and when department wise
earnings summary is being prepared, the total salories-and allowances of the employees
in the departments are computed and transaction records created by debiting such
amount to the head ‘Salaries and allowances’ and credited to ‘Cash account’ when
salary payments are made in cash. If payments are being made by cheque, the amount
will be credited to the ‘Bank account’. Accounts master file is then updated as
appropriate.
From inventory control System:
Whenever an issue is made form the stores, the value of items issued is credited to
stock account and debited to the corresponding account pertaining to the usage of
the items. For examples if raw materials are issued from stores to the produaion
department, the value of issues is debited to ‘Cost of raw materials’ Master records
are also updated' automatically.

From Purchase System:
When purchases are made from suppliers on credit, the supplier sends an invoice
showing value of items supplied. The value of goods thus received is debited to
Stock account and credited to the suppliers account (Creditor). If purchases are made
against cash, the value of items purchased is credited to ‘Cash account’ and debited
to ‘Stock account’ and master records are automatically updated.

Database Applications

NOTES

Self Instructional Material 193

Similarly when debit notes or credit notes are prepared consequent to purchase returns
or issue / sales returns, the corresponding transactions are generated by the system
and appended to the transaction file while updating the accounts master file.

Subsidiary Book of Accounts
In the manual accounting system, the main journal of accounts is subdivided into
many subsidiary journals like

Cash Book
Bank Book ’
Sales Joumal/Register
Purchase Joumal/register
Debit note Journal or Goods Returns Outward Book.
Credit note Journal or Goods Returns Inward Book.
Etc. ' " .

These subsidiary books of accounts can easily be prepared in a Computerized
accounting system periodically. Cash book is prepared on a day to day basis for
reconciliation of the cash balances, to find out whether there has been under/over
payments or whether a transaction has been omitted to be entered into the transaction

Database Systems

NOTES

1,

2-

. 3.

4.

5.
6.

file.

Let us now see how cash reconciliation is done. The input to this program is the
account transaction file. The documents codes CSH and RPT representing Cash
payments and receipts are only selected for this purpose. The opening balance of
cash at the beginning of the day is keyed in as a parcimeter or retrieved from a file,
specially kept to store daily cash opening and closing balances.
We thus see that all cash transactions made during a day are listed in this Cash book
together with the opening balance of cash at the beginning of the day. When the last
transaction is printed, the total cash receipts for the day and total cash payments are
printed and the closing cash balance is computed and given as the last entry of the
cash book.
If this cash closing balance does not tally with the cash in the cash box, an error has'
occurred in either the receipts or payments or in data entry which must be investigated
and the errors corrected. The cash closing bcilance will be the opening cash balance
for tomorrow.
Earlier we talked about duplication of data in the account transaction files when on
line data entry of transactions are made. Cash Receipts are debited to Cash account

. while cash payments are credited. To do this for every transaction would be urmecessary
duplication of data in the Cash accounts. To avoid this, while on line data entry is
made, the cash account related transactioris are omitted and when the cash book is
printed and reconciled at the end of the day, the total receipts of cash can be debited
to the Cash account while crediting cash payments to Cash account. This practice is
generally not recommended.
Similar to Cash book preparation. Bank books and other subsidiary books of accounts
can also be prepared on the computer periodically usually at the end of the month.
Observe that the opening balances of each account head is provided in the Accounts

194 Self Instructional Material

Master for each month of the financial year. This figure together with the related
transactions in respea of Sales a/c, Purchase a/c etc. are used to prepare the relevant

. journals, at the end giving the total debits and credits of all transactions and the
closing balance of the month computed in respect of the account.
These books can also be prepared either quarterly, half yearly or annually as desired.
In an online accounting system, the transactions are entered as and when they take
place and provide an'upto date record of the financial position of the organization.
Let us now see what other reports are,prepared form the data thus stored to m£ike
meaningful analysis and consequent decision making or strategical finance planning.

Database Applications

NOTES

Ledger
This the main book of accounts and is the final book of accounting entries. All
transactions are posted into the ledger from either the source documents or from the
journal book in such a manner that every account head and transactions pertaining to

• die account appears in the ledger separately and independent of each other, together
with their debit and credit effects to provide summarized information of all heads of
accounts in respect of all associated transactions.
In a computerized accounting system, the ledger is prepared monthly when all the
transactions pertaining to the month are data entered into the accounts transaction
file. Together with the Accounts master file, the ledger is printed.
A ledger is printed account headwise with £ill the transactions listed datewise with the
document reference numbers, particulars of transaction and a debit or credit amount
as appropriate. The ledger account details for the ‘month are preceded by the opening'
balance figure for the respective account and at the end of all transactions listed, the
closing balance figure is computed by adding up all debit amounts and credit amounts
separately and the difference calculated by subtracting credit total from the debit
total and if this total is positive the net balance is printed under the debit column and
if other wise the balance printed under the credit column. The closing balance for the
month is entered into the Accounts Master record as the opening balance for the
succeeding ifionth,
At the end of the ledger, total of all debit and credit transactions excluding the closing
balance figures are printed in respect of all account heads put together.
Obviously these two figures would be the same since in a double entry book keeping
system, for every debit there is a corresponding credit. If it is not, there is some
mistake somewhere and it has to be localised and.corrected and the ledger reprinted.
This ledger can be printed selectively, i.e. either monthly, quarterly or annually and
such, selections are provided to the program through input parameters at the time of
running the program. For e.g. you can give the ‘from date’ and ‘to date’ and transaaions
will be picked out to fall between the dates supplied and the appropriate opening
balance extracted from the Accounts Master. You can also print the ledger for seleaed
account heads too.
In a manual accounting system, you will hear about the balancing of the Ledger
accounts and this is achieved automatically in a computerized accounting system,
the method of which is explained above. The user is transparent to such intricacies in
a computerized system.

Self Instructional Material 195

Database Systems Understanding Ledger Accounts

Personal Accounts
Every persona! account showing debit balance (i.e. excess of debit side over credit
side) will reveal the amount by which the debit side is more than the credit side.
Debit side. Debit balance is recoverable from the person whose account, shows a
debit balance. A debit balance to a personal account is an asset and therefore the
more debit balance to a personal account is an asset and therefore the more debit
balances to personal accounts, more the assets are in the form of outstanding
recoverables.
Similarly a personal account showing credit balance means such balances are payable
to the person whose account shows a credit balance. So credit balances to personal
accounts are a liability. More the credit balances to personal accounts, more the
amounts payable to others.
Property or Real Accounts
All real accounts show a debit balance in the ledger except Sales and Returns outward
accounts which show credit balances as they represent goods. A dehit balance to
every other real account shows the value of the properties in possession of an
organisation on any day. It represents the wealth and.financial position of the company

' in the form of properties owned and therefore more the debit balances in such
accounts, the more wealthy the organization is.

Nominal or Fictitious Accounts
Nominal accounts which represent non-recoverable expenses will have debit balances
and is a loss of the company. More such debit balances, more are the losses of the
organization.
Nominal accounts with credit balances represent gains to the organization and it is

' quite welcome to the organization. More the nominal accounts with credit balances,
■ more incomes and gains to the organization.

The duty of analysing a ledger is the function of the accounts department and computer
users need not normally worry about such things.

Trial Balance
A ledger for -a month when printed will run into many pages and it would be very
difficult for anyone to go through them in detail. You can imagine what would be the
volume when a ledger is printed which could be in the order of 5000 to 10,000 .
transactions in a medium sized organized in a month. To make rhis.ledger more
readable and comprehensible often the. summary of all transactions together with the
opening balances is computed and an account headwise summary report of the closing
balances in respect of all account heads are printed. This is known as Trial Balance in
a computerized system.
Every account head preparing in a ledger is listed in this trial balance. At the end the
total of debits and credits in respect of all accounts are also printed. As mentioned
before these totals should be the same if we have meticulously entered all transactions .
into the computer. If they do not tally, the reasons should be investigated in depth.
In a manual accounting system, the trial balance has a different definition. It is a
statement of balances of all the ledger accounts, extracted from the ledger at the end

NOTES

/

196 Self Instructional Material

, Database Applicationsof a specific period to determine whether the grand total of debits and credits tally
and thus (find out that all transactions have been properly journalised and) posted
into the ledger. In contrast, the computer ledger tallies or not. Moreover, in the manual
system. Cash and Bank expenses are only posted as debits and the corresponding
credits are posted as a total extracted from the cash book or the Bank Book at a later
date, may be a: the end of the month when the subsidiary books are individually
reconciled
A computerised accounting system is thus less prone to errors in posting and accuracy
of accounts can be ascertained, if necessary even on a day to day basis. And the
ledger at any point of time is exhaustively maintained and no short cuts are ever to
be employed to save posting efforts in contrast to the manual system. When the trial
balance tallies, it only means arithmetic accuracy in respect of the double entry book
keeping system. It'is not a proof of accounting accuracy. Many mistakes could still
be there through trial balance be tailed arithmetically. Let us look at them. •

Errors of Principles
Where accounts are wrongly debited or credited due to improper application of the
golden rules of accounting, we call them tin error of principles. For example a Personal
account rule is applied to a transaction where it whould have been considered as a
Property account. Suppose Rs 500 were paid to Ms. ABC Enterprises for purchase
of an electric iron. We had in the transaction debited Ms. ABC enterprises with Rs
500 and credited a similar amount to Cash account. Actually it should have been
debited to a Property account ‘Plant & Machinery’. The trial balance would tally
with this error, but the accounts is still incorrea. Is it not so? How do we correct such
a mistake.

■ Rectification of the entry referred above can be done by creating a Journal Voucher
debiting the said amount to ‘Machinery account’ and crediting it to ‘Ms. ABC
Enterprises’ account which was wrongly-debited earlier. This journal voucher should
be duly authorised by an officer of the accounts department. Given below is the.
appropriated journal voucher specimen.
This journal voucher is now keyed in into the accounts transaction file and the master
records would be updated accordingly to rectify this error of principle.'

Error of Commission
This is an error where principles of accounts are not violated, but there has been a
transcription error. For example instead of debiting and crediting the affected account
heads as above with Rs. 500 only Rs. 50 were debited tind credited. In an online
accounting system, this type of error is quite common, that we key in the amount
only once and the other corresponding account^ is automatically created by the
computer and updated as appropriate by referring to the Reverse Account (Refer the
screen layout of transaction data entry).

' Now both debit and credit side has a shortfall of Rs 450 and the trail balance will
tally.
To rectify this error, create a journal voucher debiting the ‘Machinery account’ by Rs
450 and crediting ‘Cash account’ by a similar amount with a suitable narration in the
Pcirticular column, duly authorised by the Accounts officer. This voucher is then data
entered into the transaction file and master updated accordingly.

NOTES

Self Instructional Material 197

Errors of Compensation

When an error on one side of an account gets compensated by an error on the other
side, they are called ‘Compensatory errors’ As in the previous example, the shortfall
of Rs 450 can be considered as this type of error since the short debit of Rs. 450
compensates short credit of Rs. 450.
Another example of this type of error is when goods worth Rs. 5000 was bough from
M/s. Varkey’s supermarket and by mistake, this was treated as a sales transaction
and the' following wrong entries were made.

Debited Rs. 5000 to M/s. Varkey’s supermarket account.
Credited Rs. 5000 to Sales Account

Though the trial balance would tally, the entries are not correct, one mistake covers
the other mistake. Isn’t it? To rectify this error, we have to completely reverse the.
entries as follows.

Credit M/s. Varkey’s super market A/c. With Rs.- 5000
Debit Sales a/c with Rs 5000
Debit Stock a/c with Rs 5000
Credit M/s. Varkey’s supermarket with Rs. 5000

The journal voucher should be prepared with the above entries, duly authorised and
data entered and master updated.
This sort of an error could also happen during data entry by keying in the wrong
account code. A transaction a/c number DB004 was wrongly entered as CR004., To
correct this type of errors too you should reverse the entries as explained above.
Suitable narrations should be given in the particulars column to explain the transactions
as incident to error corrections.

Errors of Omission ■

When both of the debit and credit aspects in respect of a transaction is omitted while
data entry or when a whole document is omitted to be data entered, an error of
omission occurs. In such cases, do what should have been done. Enter the data omitted
prepare the trial balance once ovef again.
Validation procedures of Hash total checking or Control total checking could eliminate
such errors of omission.

Suspense Account
If the trial balance does not tcilly due to a small difference and finding out the error is
going to delay the preparation of the final accounts, in such cases, in order to avoid
such delays, the amount of the difference between the debit and credit sides is
temporarily placed in a Suspense a/c and the trial balance tallied. For example, if the
debit side total of the trial balance is Rs 20,000 and that of the credit side is Rs
19,500 the difference of Rs 500 is placed into the. credit side of the Suspense a/c and
journalised which is data entered and the trial balance would then tally.
After the final accounts are prepared, the error will be localised and suitable reverse
entries are passed to eliminate.any balances in the suspense a/c.

Database Systems

NOTES

1.

2.

1.

2.

198 Self Instructional Material

There is another occasion when you can make use of the Suspense a/c. Say for
example, you have received from a customer a cheque for Rs. 5000 without any
explanations as to why this amount is being paid. While you would debit this amount
to Bank a/c you do not know where this amount is to be credited since you do not
know the customer number or his name (Possibly he had forgotten to attach a covering
letter along with the payment). In this case, you credit the amount to suspense account.
Then at a later date, the position become clear, the suspense a/c is debited with the
amount and credited to the right account and appropriately date entered.

Final Accounts
Final Accounts consist of 3 parts.

Trading Account
Profit & Loss Account
Balance Sheet

A tallied trial balance is the base for preparing the final accounts.

Trading Account
This is prepared to find out the result of direct trading or manufacturing and trading
activity in the form of gross profit or gross loss, that is the difference between the
value of sales and cost of purchases or cost of manufacture without taking into
consideration the indirect costs or expenses. It is prepared in the form of a ledger
account, by debiting it with such of the expenses or debit balances from the trial
balance, which makes up the total cost of purchases and cost of manufacture. The
account is then credited with the sales balances after deducting there from purchase
returns if any.
In a trading account, the first entry on the debit side is normally the opening stock if
any. The next entry will be the purchases after deducting purchase returns if any.
Thereafter, expenses such as clearing and forwarding charges, packing charges, sala’ries,
handling charges and such other expenses incurred on purchase and which are directly
attributable to purchase or direct cost of manufacture are entered on the debit side .of
the trading account to arrive at the-direct cost of goods sold.
In manufacturing organizations, the same account is called Trading and Manufacturing
account and in addition to the accounts already shown above, other expenses directly
incurred on account of manufacturing and specifically attributable to cost of
manufacture, such as factory expenses, lighting and electricity charges of the factory,
power and fuel charges, salary of factory staff and labour and similar other expenses
on account of production or manufacturing activity are debited to this account. Credit
side of the trading account will usually have the Sales account balances as the first
entry after deducting therefrom sales returns if any. The last entry on the credit side
would be the closing stock value determined on physical verification of stock and
valuation at the end of the financial year. The excel of credit side total of this account
over the debit side totals reveal the Gross profit and if the debit totals are in excel of
the credit totals, it reveals the Gross loss, which are carried forward or brought down
to the Profit.and Loss account. Following is the format of a trading Account.
To prepare this report in a computerized system, it is just a matter of extraction of
the relevant accounts details from the transaction and accounts master files. Or

Database Applications

NOTES

1..

2.

3.

Self Instruaional Material 199

alternatively, this can be taken from a temporary file created on preparing the trial
balance consisting of the relevant accounts heads and their balances. This file should
have the account number, particulars of the account, debit or credit balances in respect
of all account pertaining in the trading activity.
The trick in organizing this reports is by allotting such account code number from
which you can easily pick out the heads participating' in the trading function. For
example, we have an account head titled “Stock a/c” in the Accounting system. If
we’were to subclassify this*head into say

Raw materia] Stocks
Finished Goods Stocks
Machinery Stock - Factory
Machinery Spaces - Non Factory related
General Stock

•etc. it would be fairly easy to find out Purchase of stock required to appear in the
trading account. Similarly notional accounts should eilso be classified as the ones that
are affecting the trading account and others.
In most of the organizations where the accounting system is computerized the practice
is the to create the containing all the account heads affecting the trading account.

- Using this file and the accounts,master file, appropriate records are selected and the
trading account printed. Value of closing stock is input through the keyboard after
physical verification and valuation.

Profit and Loss Account
The purpose of preparing the account is to find out the net profit made by the
orgeinization, during a particular period. The gross profit or gross loss is not the actual
indicator of the net results of the business operation, because while arriving at the
gross profit or loss, the indirect expenses are not taken into consideration.
While preparing the P & L account, the first entry on the credit side is the gross profit
brought down from the trading a/c. If the trading a/c shows a loss,-this would appear
on the debit side of the P & L account. Thereafter all expenses of a nominal or
fictitious nature are entered into the debit side of the P & L account.
Incomes of a nominal nature are entered into the credit side of the account. This
account is then balanced and if the credit side is more than the debit side,- the excess
of credit side over the debit side will be the net profit whereas the excess of debit
side over credit side indicate the net loss.
In a computerized accounting system, P & L accounts are coded separately to easily
identify them. In our example, of heads of accounts, P & L heads are coded starting
with ‘PL’ for example, ‘PLOT shows “salaries & Allowances” etc. These account
heads are picked up from the Accounts master and together with the results of the
trading accounts, P & L account is printed. Before the certain notional expenditures
are computed like depreciation of fixed assets etc. and included in'the input data of _
P & L programs.
Data to prepare .this report is extracted from the Accounts Master using the P & L
account heads file and the heads are groups into Income and Expenditure and printed

Database Systems

NOTES

1.

2.

3.

4.

5. •

\

200 Self Instructional Material

as above without any rounding off and finally net profit / loss is computed and
printed in the end.

Balance Sheet
The entries in the balance sheet are classified as follows

Assets -
They are the value of properties in possession of the company including all the
receivables and fecove'rablles from debtors and other sources. They are further
classified:

Database Applications

NOTES

Fixed Assets.1.
Investment in Securities2.

3. Current Assets
Loans and Advamces
Stocks, Cash and Bcink Balances etc.

4.
5, •

Liabilities / ,
They are the source or causes of all liabilities which the organization owes to or is
indebted to pay to others including the liabilities to the owners of the organization in
the form of capital, net profit, reserves, accumulated profits in any form, provisions
for various purposes and funds created out of profits. ■
While preparing a balance sheet, assets can be listed on one side and the liabilities on
the other side or liabilities can be listed first followed by the assets.
At the end, both the assets and the liabilities are totalled both side totals will be the
same if everything is done in order. Those accoimt balances taken in the P & L or
trading a/c musfnot be included while preparing the balance sheet. Only the dosing
stock shown on the credit side of the trading a/c should be taken into the balance
sheet, being assets still in possession of the organization. The net profit or loss from
the P & L a/c is taken into the liabilities side for giving effect to the Capital a/c. The
Capital of an organization is the asset in excel of aU liabilities towards the owners as
well as others.
When a computerized Accounting System is designed, the staff in the accounts
department should be consulted to get the fiiU idea about their requirements and Che
nature of the heads of accounts so that preparation of the final accounts is made
easier from the Accounts Master maintained on an up to date basis. Using a properly .
designed system, it would be possible to take the P & L account and Balance sheet of
an organization at any point of time. Usually these are prepared only at the end of a
financial year.
Apart from the above reports, many other useful statements are also prepared as
byprodua of a good computerized accounting system. Let us look at them briefly.

Bank Reconciliation Statements
Any organization who buys or sells items on credit usually make use of banking
facilities and for this purpose accounts are opened with one or more banks. Opening
an accounts and depositing money with the bank is like transferring one of the cash

Self Instructional Material 201

Database Systems boxes into tiie safe custody of a bank referred to as a bank account, which money is
rightftilly owned by the depositor. So, the organization normally keeps only a small
amount of money in the cash a/c, while the lion’s share is kept in a bank a/c. They
use money from both these accounts to meet their expenses.
When money is received by means of a cheque, they are deposited in the bank and is
debited to the Bank a/c of the organization’s books of accounts. Similarly when
cheque payments are made by the compciny, they are credited to the bank a/c. Often
money is transferred from Cash a/c to Bank a/c when cash balances accumulate and
vice versa when cash balances deplete. Such transactions which result in neither an
income nor an expense are called ‘Contra Entries’ in accounting parlance. However
the transactions are journalised and data entered in a computerized accounting system.
When an account is opened with a bank, a debtor - creditor relation comes into
existence between the organisation and the bank. Amounts are deposited into the
bank a/c as well as withdrawn from time to time. Payments are made by a cheque
from the bank account and often receipts are got by cheques which are deposited in
the bank. -
Records of these transactions are entered into the Bank a/c of the company.
Simultaneously the bank also maintains a record of such transactions. But often the
records maintained by the bank may not tally with Bank a/c maintained by the
organization due to various reasons. Therefore it is necessary to keep a check on the
bank transactions maintained by the company with the statements of transactions
provided by the bank normally once in a month. This is done by a Bank Reconciliation
statement.
We will now look into the possible reasons why the bank statement and the bank
a/c maintained by the company differ.

1. The bank might have credited to your account by interest accrued on your
balances or debited interest on overdraft amount drawn.

2. A cheque issued by the organization might not have been presented to the
bank.

3. A cheque received from a party, though deposited in the bank might not have
been cleared as yet and credited to your account.

At the end of the month, when the statement of account is received from the bank
which would include details such as cheque number, amount deposited or withdrawn,
date of transaction etc., these details are keyed into a file and is compared with the
records in the transaction file (only RPQ and CPQ document codes are considered
for this purpose) and varying records can be identified and printed out.
The net balances of such accounts when added to your bank balances at the end of
the month as per your records would give the balances to tally with the balance
shown in the statement of account provided to you by the Bank. This process is
knOwTi as Bank Reconciliation. The fields compared are cheque number and amount
which are available in the accounts transaction file as well as the statement of account
received from the bank. If the company has accounts with more than one bank, the
bank reconciliation,statement is prepared in respect of each bank.
Input parameters are opening bank balance, Closing bank balances as well as the '
dates between which the reconciliation is to be prepared. The simple rule observed in

• NOTES

202 Self Instnctioml Material

preparing a bank reconciliations is “Do what the bank has done”. If the bank has not
deducted an amount which we have deducted, then we add back the amount to be in
line with the Bank records. We correct ourselves by reversing our act, to be in line
with the act of bank.

Ratio Analysis .
The statements described above are prepared purely based on accounting principles
and'fall short of management requirements'to take proper decisions. Ratios help to
express performances, results arid financial information either in terms of percentages
or in terms of relations between different sets of values to enable management to
understand how well the financial resources are being utilized and to determine what
remedial measures are to be taken for improved performances.
Let us look at some of such ratios.

Database Applications

NOTES

Current Ratio
This is also known as working capital ratio or solvency ratio. This reveals the relation
between current assets and liabilities. Current assets are convertible into cash within
the current period (normally for the period of one financial year) to meet the current
liabilities arising during the same period.

Current Ratio = Current Assets / Current Liabilities
The more the current assets are in relation to the current liabilities, the better the
financial ability of the organization to meet its financial liabilities. A cunent ratio of
a figure less than 1 is quite dangerous.
Current assets include cash in hand and in the bank; stock of raw materials, finished
goods, debtors from whom money is recoverable, short term investments etc. while
current liabilities include bank overdrafts, creditors to whom money is payable, bills
and other short term liabilities. If these heads are so coded to identify them easily,
the computer using the Accounts master file as Input can quickly work out this ratio
and displayed whenever needed.

Acid Text Ratio ,
This is also known as quick ratio or liquid ratio, which is an improvement over the
current ratio. This involves the testing of the liquidity of the current assets into cash
in the shortest possible time without difficulties to meet the immediate currq|rit
liabilities. ■ .

Acid Test Ratio = Quick Assets / Quick Liabilities
Stock which is strictly speaking saleable into cash generally not considered as quick
assets. Similarly a bank overdraft is not a quick liability since'it is a long term facility
offered to you by a bank.
A 1:1 quick ratio between quick assets and liabiliries can be considered as a safe ratio.
With proper coding to identify quick assets and liabilities, this ratio can be worked-
outhy the computer using accounts master file as input to the program.

Stock turnover Ratio:
This is used to find out how fast the stocks are utilized or disposed, i.e. the rate at

Self Instructional Material 203

which stocks are sold and thus converted to money. The faster .such conversion, the
better will be the business performance.

Stock Turnover ratio = Cost of goods sold / Average iriventory at cost •-
Average inventory at cost = Opening stock + Closing Stock / 2

When the Sales system and the accounting system are integrated this ratio can easily .
be calculated on a computer. Cost of goods sold is not the sale proceeds, since it
includes a profit element in it. It is the actual cost of the gopds, in other words the
cost of production of the goods.

Debtor turnover ratio:
This ratio is prepared to find out as to how much of the total sale is held by debtors
without having paid for them. It indicates the number of days credit facility extended
to or availed by the customers. Ratio reveals the number of days the sales remain
unpaid. It enables management to have control on the debtors and to make efforts in
recovering outstanding from debtors in time.

Debtor Turnover Ratio = Debtors balances / Sales per day
Sales per day = Net Sales / Number of working days (360 approximately)

Gross Profit Percentage
Gross Profit Percentage = Gross Profit *100/ Net Sales

This reveals margin of profit on sales. Increase in gross profit do not necessarily
indicate good performance since increase in selling price with out a corresponding
decrease in manufacturing cost is unfoverable. Decrease in gross profit can also be
due to uneconomic purchase of raw materials, improper valuation of stock balances

Daiabase Systems

NOTES

etc.

Net Profit Ratio
This is a more realistic indicator of the success in business since this includes all
direct and indirect cost of the trading or manufacturing activity and indicates the
actual returns on investment in a business.

Net Profit Ratio = Net Profit * 100 / Net Sales

Return on Capital
Return on Capital employed = Net Profit * 100 / Gross Capital Employed ,

Gross capital is the,share capital received form the shareholders as well as borrowed
capital by way of long term loans, debentures and reserves of a capital and revenue
nature. Capital is represented by the assets in existence with the organization and
employed for the purpose of generating profits. That portion of the assets of a
fictitious nature like goodwill, investments outside the organization etc. are excluded
while computing the gross capital employed.

Net Worth
This indicates the relation of capital (Share Capital, Reserves and Surplus, accumulated
profits etc.) with the fixed assets of the organization. Value of fixed assets must be
reasonably low in comparison to the capital as otherwise it shows non productive

204 Self Instructional Material

investments. Higher the value of current assets in comparison to fixed assets, better
the financial strength of the organization. More the owners capital in relation to
outside capital by way of loans, debentures etc. better the financial structure and
represent sound policies and profitable activities of a business with least dependence
on creditors for finances.

The above ratios can be excellent by product of a good computerized accounting
System. The trick in preparing these ratios lie in a good coding system from which
appropriate figures can easily be extracted for computations. A very good interaction
and involvement of the accounting personnel while designing the system can pay
rich dividends in the form of good management information emanating from the
Accounting system.

Cash Flow Analysis

This shows the inflow and outflow of cash during the individual months of this year
in each major and minor heads of accounts. The relevant figures can be extracted
from the Accounts Master file and transaction files. Let us look at the usual format
of a Cash flow statement. The above report can be prepared monthly, quarterly, half
yearly or annually as desired.

All transactions relating to the bank and Cash accounts are only considered for this
purpose. A cash flow statement for- a given period is usually a good indicator to the
possible cash flow of the next ensuing period and therefore similar statements are
also prepared by managers to forecast their cash requirements for a period yet to
come. This is normally, done using an Electronic spread sheet and doing ‘What-if
analysing with varying parameters of cash inflow and outflow.

Apart from'what we have discussed so far, a computerized accounting system should
have the following Sub systems.

Accounts Receivable

Accounts Payable

Depreciation of Fixed assets calculations

Preparation of various schedules in support of the Balance sheet.

Budgetory Control System etc.

Database Applications

NOTES

1,

2.

3. -

4.

5.

MARKETING SYSTEM

A market system is any systematic process enabling many market players to bid and
ask: helping bidders and sellers interact and make deals. It is not just the price
mechanism but the entire system of regulation, qualification, credentials, reputations
and clearing that surrounds that mechanism and makes it operate in a social context.

Because a market system relies on the assumption that players are constantly involved
and unequally enabled, a market system is distinguished specifically from, a voting
system where candidates seek the support of voters on a less regular basis. However,
the interactions between market and voting systems are an important aspect of
political economy, and some argue they are hard to differentiate, e.g. systems like
cumulative voting and runoff voting involve a degree of market-like bargaining and
tradeoff, rather than simple statements of choice.

Self Instructional Material 205

Database Systems lypes
In economics, market forms are studied. These look at the impacts of a particular.

. form on larger markets, rather than technical characteristics of how bidders and sellers
interact.
Heavy reliance on many interacting market systems and forms is a feature of
capitalism, and advocates of socialism often criticize market features. This article
does not discuss the political impact of any particular system nor applications of a
particular mechanism to any particular problem in real life.
For more on specific types of real-life markets, see commodity markets, insurance
markets, bond markets, energy markets, flea markets, debt markets, stock markets,
online auctions, real estate market, each of which is explained in its own article with
features of its application, referring to market systems as such if needed.

. I

Protocols
The market itself provides a medium of exchange for the contracts and coupons and
cash to seek.prices relative to each other, and for those to be publicized. This,
publication of current prices is a key feature of market systems, and is often relevant
far beyond the current groups of buyers and sellers, affecting others' supply and
demand decisions, e.g. whether to produce more of a commodity whose price is now
falling. Market systems are more abstract than their application to any one use, and
typically a 'system' describes a protocol of offering or requesting things for sale.
Well-known market systems that are used in many applications include:

• auctions - the most common, including:
Dutch auctions
reverse auctions

silent auctions
• rationing (including the command economy of some states)
• regulated market (including most real-life examples as above)
• black market (the term hlack’ indicating lack of regulation)

The term 'laissez-faire' ("let alone") is sometimes used to describe some specific
compromise between regulation and black market, resulting in the political struggle
to define or exploit "free markets". This is not an-easy matter to separate fi'om other
debates about the nature of capitalism.
There is no such thing as a "free" market other than in the sense of a black market,
and most free-market advocates favor at least some form of regulated market, e.g. to
prevent outright fraud, theft, and retain some degree of credibility with the'larger
public. This political debate is out of the scope of this article, other than to note that
the "free" market is usually a "less regulated" market, but not qualitatively different
from other regulated markets, in any society with laws, and that what opponents of
"free markets" usually seek is some kind of moral purchasing rather than pure
rationing.
As this debate suggests, key debates over market systems relate to their accessibility,
safety, fairness, and ability to guarantee clearance and closure of all transactions in a
reasonable period of time.

NOTES

206 Self Instructional Material

Importance of trust
The degree of trust, in a political or economic authority (such as a bank or central
bank) is often critical in determining the success of a market. A market system
depends inherently on a stable money system to ensure that units of account and
standards of deferred payment are uniform across all players - and to ensure that the
balance of contracts due within that market system are accepted as a store of value,

. i.e. as "collateral" of the holder of the contract, which justifies "credit" from a lender
of cash.
Banks, themselves, are often described in terms of markets* as "transducers of trust"
between lenders (who deposit money) and borrowers (who take it out again). Trust in
the bank to manage this process makes more economic activity possible. However,
critics say, this trust is also quite easy to abuse, and has many times proven difficult
to limit or control (see business cycle), resulting in ’runs on banks' and other such
'crises of trust' in 'the system'.
However, market systems are usually flexible enough to be refined and have its detailed
rules adjusted so as to regain the trust of participants relatively quickly - most market
systems tend to degrade gracefully, with a few exceptions, e.g. hyperinflation, South
Sea bubble, tulip boom, dotcom boom, depression, that are very damaging, but
nonetheless relatively infrequent.

Database Applications

' NOTES

I.FOREIGN TRADE

Computer is very much used in the various calculations of foreign trade. It is more or
less on the lines of the Inventory System, discussed next.

INVENTORY INFORMATION SYSTEMS

An inventory information approval system, or HAS, is a point-of-sale technology
used by retailers that accept FSA debit cards, which are issued for use with medical
flexible spending accounts (FSAs), health reimbursement accounts (HRAs), and some
health savings accounts (HSAs) in the United States.
By the end of 2007, all grocery stores, discount stores, and online pharmacies that
accept FSA debit cards must have an HAS; by the end of 2008, most chain pharmacies
must have an HAS as well.
The first HAS was developed by the online retailer drugstore.com for its "FSA store"
in 2005; it was first introduced to brick-and-mortar retailing by Walgreens in 2006.
Wal-Mart became the first discounter with an HAS in late 2006.

How HAS works
HAS is similar to the system used by grocery stores ever since they introduced the
first barcode scanners in the 1970s to separate items eligible for purchase under the
Food Stamp Program from those that are not eligible. Every item in the grocery
store's database is flagged "yes" or "no" for food-stamp eligibility; the scanner
automatically keeps a separate total for food-stamp items. In the beginning, the cashier
pressed a special "food-stamp total" key, and the customer presented paper food

Self Instructional Materia! 207

Database Systems stamps; today, the customer swipes an Electronic Benefit Transfer (EBT) card and
selects the "food stamp” account, and the register charges only the food-stamp total
to the EBT card. The remaining balance must be paid for by other means.

IIAS works in much the same way, but with medical FSAs, HRAs, or HSAs instead
of food stamps: (Usually, the term "FSA" is used to cover all of them; HRAs, HSAs,
and non-medical FSAs are relatively rare, and HSAs can also have regular debit cards
though many of them have FSA debit cards instead.)

Every item in the store's scanner database is flagged "yes" or "no" for FSA eligibility.
(This flag is obviously separate from the one for food stamps, if there is one.)

Prescription drugs are usually not in the main scanner database (though they may be
made scannable by tying the pharmacy system into the scanners), but they are almost
cilways FSA-eligible; therefore, the pharmacy department is often categorically flagged
as FSA-eligible, the only department to be so treated. (In contrast, multiple
departments of most grocery stores are categorically flagged as food-stamp eligible,
including the meat, produce, and dry-grocery departments.)

At checkout, the scanner (for brick-and-mortar retailers) or shopping cart (for online .
retailers) keeps a separate total for those items that are "FSA-eligible".

If an FSA debit card is presented for payment, the scanner or shopping cart will
charge the card, but for no more than the "FSA-eligible" total. -

If there are other items in the order (or if the FSA debit card didn't pay for all eligible
items), the scanner or shopping cart then demands another form of payment, such as
cash, check, credit card or debit card, to pay-for the remaining items.

IIAS does have one additional requirement that is not normally found with food
stamps, though the U.S. Department of Agriculture can audit retailers directly for
similar purposes: Beginning January 1, 2007, the merchant must make a record of
each transaction available to the employer, or more commonly, to the .employer's
FSA or HRA provider. This can be done contemporaneously with the transaction, or
it may be provided later if the Internal Revenue Service ever audits the employer.

Please note that the terminology used by the IRS in its descriptions of IIAS may
seem obtuse; this is not only because it's the IRS, but also because IIAS was first
developed by an online retailer (drugstore.com) and only later adapted to brick-and-
mortar retailing. For example, IIAS is described by the IRS as an "inventory control"
system tied to SKUs; but it's generally easier to understand as it was implemented by
Walgreens and Wal-Mart, i.e., as a point-of-sale system tied to UPC codes.

IRS requirements to use IIAS
Though IIAS was first used in 2005, it was not officially approved by the Internal
Revenue Service until July 2006, in IRS Notice 2006-69. At the same rime, the IRS
decided to crack down on FSA/HRA providers that were not following prior IRS
guidance on FSA debit CcU-ds. As part of this, the IRS decided that grocery and discount
stores would not be allowed to accept FSA debit cards unless they installed an IIAS;
they decided it would be too easy to misuse the cards if they could be used at grocers
and discounters for anything they sold, even if the grocer or discounter also had a
pharmacy. However, they permitted stand-alone chain or independent pharmacies
(known as "true pharmacies") to accept the card without an IIAS.

NOTES

208 Self Instructional Material

1

Database ApplicationsGrocers and discounters immediately challenged the IRS ruling, claiming that their
pharmacies were being discriminated against, and that since most "true pharmacies"
sold ineligible goods as well, the risk from them was just as great. Therefore, two
changes were made by IRS Ruling 2007-02 in December 2006:

Grocers and discounters are allowed to keep accepting the cards until December 31,
2007; this was to give them sufficient time to install an HAS.

"True pharmacies" are required to install an IlAS after December 31, 2008, unless at
least 90% of the individual pharmacy's sales are of "FSA-eligible" items, i.e.,
prescription drugs or over-the-counter (OTC) items.

Most major pharmacy chains report that' 60-65% of their sales come from the
pharmacy; therefore, OTC would have'to account for 25-30% of their total sales for
them to qualify, which is unlikely-especially since each individual pharmacy must

' qualify separately. Therefore, only independent pharmacies are likely to qualify for
the exemption.

Because of this ruling, by 2009 most grocers, discounters, and chain or Internet
pharmacies in the U.S. must have an HAS in place in order to accept FSA debit cards.

Importance of HAS
In addition to the above IRS requirements, HAS is important in promoting the use of
tax-favored health accounts, especially FSAs (which are usually set up by employees),
for these reasons:
While other IRS-approved "auto-adjudication" systems for electronic substantiation
of FSA debit card charges are geared towards health plan expenses, such as copay
matching or electronic transmittal of explanations of benefits, HAS is the only one
that is designed for use with over-the-counter drugs and similar items (OTC) as well
as prescription drugs; '

HAS is the first system with 100% "auto-adjudication” of an entire class of FSA
debit card charges that has been widely adopted by the FSA industry. A few FSA
vendors had previously used proprietary systems which provided 100% auto­
adjudication of prescription charges thru a pharmacy benefits manager, but they ran
into numerous technical and educational issues .and were not adaptable to OTC.

Some of the IRS rules on what OTC items are and aren’t eligible for FSAs have
proven rather arcane in practice; for example, condoms are OK since they prevent
pregnancy, but K-Y Jelly isn't if it's used to lubricate them. HAS effectively manages
this problem by verifying eligibility of each OTC item at point-of-sale.

Both paper claims and manual substantiation of FSA debit card charges often required
the submission of receipts with "full names" of OTC items; but many stores
abbreviate item names in such a way that it is almost impossible to tell if the item is
eligible or not. Also, most providers did not reimburse sales tax on paper claims with
"mixed" FSA/non-FSA receipts because they could not "split” the tax line item
without being versed in the sales tax laws of.every state and locality in the U.S., a
near impossibility. HAS avoids this by having the retailer itself verify item eligibility
and "split" the sales tax.

/
The process of demanding receipts or reimbursement for FSA debit card charges
that are not "auto-adjudicated”, known as "pay and chase" in the industry (a term
recognized by the IRS in Notice 2007-02), proved particularly cumbersome for OTC

NOTES

Self Instructional Material 209

pv:^
items diie to the lack of "auto-adjudication" systems and the high potential for
fraudulent or erroneous charges; HAS eliminates this by providing an "auto-.'
adjudication" system for OTC while preventing many fraudulent or erroneous charges
at retailers. '
Since HAS eliminates many of the roadblocks that previously existed for use of
medical FSAs at retailers (especially for OTC items), it is hoped that it will lead to
increased enrollment in medical FSAs.

Database Systems

NOTES

210 Self Instructional Material

