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| ~ METHODOLOGIES

% LEARNING OBJECTIVES %

1.1 Introduction

1.2 Characteristics of a Good Program

1.3 Techniques of Problem Solving )
" 14 Structured Progrélﬁming

1./5- Modular Programming

1.6 Top-down Programming

1.7 Bottom-up Programming

1.8 Summary

1.9 Test Yourself

1.1 INTRODUCTION

A program is a sequence of instructions written in a programming language.
There are various programming languages, each having its own advantages for
program development. Generally every program takes an input, manipulates it
and provides an output as shown below : C

_____+. _,_,_....,..’ .
_’ . L4

Output .
— —

Input Program code

Fig. 1. A conceptual view of a program.

John Von Neumann propolsed that if a program was stored in memory, program
instructions could be easily changed just by loading a new prograin. Also as the
~ program executed, it could easily change the instructions in memory. This is
called the stored program concept. ‘ '
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For better designing of a program, a systematic planning must be done. Planning
makes asprogram more efficient and more effective. A programmer should use
planning tools before coding a program. By doing so, all the instructions are
properly interrelated in the program code and the logical errors are minimized.

There are various planning tools for mapping the program logic, such as
flowcharts, pseudocode, decision tabhles and hierarchy charts etc. A
program that does the desired work and achieves the goal is called an effective
program whereas the program that does the work at a faster rate is called an
efficient program. .

T

The software designing includes mainly two things—program structure and
program representation. The program structure means how a program should
be. The program structure is finalised using top-down approach or any other
popular approach. The program structure is obtained by joining the subprograms,
FEach subprogram represents a logical subtask.

The program representation means its presentation style so that it is easily
readable and presentable. A user friendly program (which is easy to understand)
can be easily debugged and modified, if need arises. So the programming style
should be easily understood by everyone to minimize the wastage of time, efforts

. and cost. .

Change is a way of life, so is the case with software. The modification should

. be easily possible with minimum efforts to suit the current needs of -the

organization. This modification process is known as program maintenance.

Flowcharting technique is quite 'uéeful in describing program structuré and
explaining it. The other useful techniques for actually designing the programs
are : )

(i} Modular programming
#i) Top-down design (Stepwise refinement)

(iii) Structured programming.

1.2 CHARACTERISTICS OF A GOOD PROGRAM

The different aspects of evaluating a program are : efficiency, flexibility,
reliability, portability and robustness etc. These characteristics are given

?

below :

(&} Efficiency. Tt is of three types : programmer -effort, execution time and
memory space utilization. The high level languages are-used for
programmer efficiency. But, a program written in machiné language or
assembly language is quite compact and: tak'qs less machine time, and
memory space. So depending on the requirement, a compromise between
programmer’s effort and execution time can be made.



(it} Flexibility. A program that can serve many purposes is called a flexible
program. For example, CAD (Computer Aided Design) software are used
for different purposes such as : Engineering drafting, printed circuit board
layout and design, architectural design. CAD can also be used in graphs
and reports presentation.

(iii) Reliability. It is the ability of a progran'i to work its intended function
accurately even if there are temporary or permanent changes in the
computer system. Programs having such ability are known as reliable.

{iv) Portability. It is desirable that a program written on a certain type of
computer should run on different type of computer system. A program is
called portable if it can be transferred from one system to another with
easeé. This feature helps a lot in research work for easy movement of
programs. High level language programs are more portable than the
programs in assembly language. '

(v) Robustness. A program is called robust if it provides meaningful results
for all inputs (correct or incorrect). If correct data is supplied at run tir.ne,
it will provide the correct result. In case the entered data is incorrect, the
robust program.gives an appropriate message with no run time errors.

{vi) User friendly. A program that can be easily understood even by a novice
is called user friendly. This characteristic makes the program easy-to
modify if the need arises. Appropriate messages for input data and with
the display of result make the program easily understandable.

(vii) Self-documenting code. The source code which uses suitable names for
the identifiers is called self-documenting code. A cryptic (difficult to
understand) name for an identifier makes the program complex and
difficult to debug later on (even the programmer may forget the purpose
of the identifier). So a good program must have self-documenting code.

1.3 TECHNIQUES OF PROBLEM SOLVING

Computer problem-solving can be summed up in one word—it.is demanding ! -

It is a combination of many small parts put together in a complex way, and
therefore difficult to understand. It requires much thought, careful plarmmg,
logical accuracy, continuous efforts, and attention to detail. Simultaneously it
can be a challenging, exciting, and satisfying experience with a lot of room for
personal creativity and expression. If computér problem-solving is approached
in this spirit then the chances of success are very bright.

For solving a problem on a computer a set of explicit and unambiguous
instructions is written in a programming language. This set of instructions is
called a program. An algorithm (step by step procedure to solve'a problem in
unambiguous finite number of steps) written in a programming language is a
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program. So, an algorlthm corresponds to a solutlon to a problem wh1ch is
independent of any programming language.

Problem solving is a creative process which largely defies systematization and
mechanization. Everyone acquires some problem-solving skills during his/her
student life which he/she may or may not be aware of.

Some steps for problem solvihg improve the performance of the problem'solvgr.
No universal methods are available for it. Different people use different strategies.
In simple words we can say logically that computer problem solving is about

. understanding.

1.3.1 Understanding of the Problem

When lot of efforts are made in understanding the problem we are dealing with,
chances of success are also bright. We cannot hope to make useful progress in
solving a* problem until it is clear, what it is we are trying to solve. The
preliminary investigation may be ‘thought of as the problem definition phase.
The problem definition defines what the problem is without any reference to the
possible solutions. It is a simple statement, may be one to two pages and should
sound like a problem. The problem definition should be in user language and it
should be described from the user’s point of view. It usually should not be
defined in technical computer terms. As the analyét assigns the programs to :'
different programmers module-wise, the programmers understand the problem
given to them. The programmers define the problem of each program on a
document and proceed for the next step. In si'mplé words, a lot of care should

‘ be taken in working out precisely what must be done.

The problem solver should obtain information on the following three aspects of
the problem after the analyses : ’

1. Input sr;eciﬁcation

2. Qutput specificatibn

3. Special processing, if any.

1. Input Specifications

The in-put specifications should give the following information :
(i) Specific data values to be used as input in the program.
(@) Input data format i.e., order, spacing, accuracy and units.
(iti) The valid range of input data.

(iv) Restrictions, if any, on use of these data values and what to do if an input
data is not accepted by the computer, should it be ignored or modified.

(v) The.indication of end of input data (if specified b‘y a special symbol).

Seff-fnsrructional Material



‘2. Output Specifications
The output is obtained on executing a program. The output specifications must

clearly define the values required and their formats etc. The output specifications
must include the following information :

W\

({) The output data values required.

(@) Output data format i.e., preqision (number of significant digits), accuracy,
units, the position on the output sheet and suitable headings for making
the output readable. _

(iii) Amount of output required because the program has to be coded according
to the number of output data values required. .

3. Special Processing; if any

It means processing of input data under some conditions. If conditions are
violated, certainly results are going to be incorrert. The processing under special
condition(s). and the recovery action should be handled carefully. If the special
processing conditions are ignored and left in the problem definition phase, it
may be a costly affair later on.

So, in the problem definition phase, detailed information about input, output
and special processing is gathered. These conditions are taken into consideration
while solving the problem. The method of solution is not specified in this phase.

- 1.3.2 Step by Step Solution for the _Problém

There are many ways to solve most of the problems and also many solutions to
most of the problems. This situation makes the job of probllem-solving a difficult

" task. When we have many ways to solve a problem it is usually difficult to"

recognize quickly which paths are likely to be fruitless and which paths may be
productive. : ‘

A block often occurs after the problem definition phase, because people become
concerned with details of the implementation before they have completely
understood or worked out an implementation-independent solution. The problem
solver should not be too concerned about detail. That can be taken into account
when the complexity of the problem as a whole has been brought under control.
The old computer proverb states, “the sooner you start coding your program
the longer it is going to take”. '
An approach that often allows us to make a start on a problem is to take a
". gpecific example of the general problem we wish to solve and try to work out the
' mechanism that will allow us to solve this particular problem (e.g., if you want
to find the tép scorer in an éxamination, choose a particular set of marks and
work out the mechanism for finding the highest marks in this set).

This approach of focusing on a particular problem can often give us a platform
we need for making a start on the solution to the general problem. It is not
always possible that the solution to a specific problen or a specific class.of
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problems is also a solution to the general problem. We should specify our
problem very carefully and try to establish whether or not the proposed
algorithm (step by step procedure in a finite number of steps to solve a problem)

can meet those requirements. If there are ‘any similarities between the current ‘
problem and other problems that we have solved or we have seen solved, we
should be aware of it. In trying to get a better solution to a problem, sometimes

“too much study of the existing solution or a-similar problem forces us down the

same reasoning pa-h (which may not be the best) and to the same dead end.
Therefore, a better and wiser way to get a better solution to a problem is, try
to solve the problem independently.

Any problem we want to solve should be viewed from. a variety of angles. When
all aspects of the problem have been seen, one should start solving it. Sometimes,
in some cases it is assumed that we have already solved the problem and then
try to work backwards to the starting conditions. The most crucial thing of all
in developing problem-solving skills is practice. -

-Probably.the most widely known and most often used principle for problem-

solving is the divide-and-conquer strategy. The given problem is divided into
two or more subproblems which can hopefully be solved more efficiently by the
same technique. If it is possible to continue in this way we will finally reach the
stage where the subproblems are small enough to be solved without further
splitting.’ : ‘

.This way of breaking down the solution to a problem has been widely used with

searching, selection and sorting algorithms.

1.4 STRUCTURED PROGRAMMING

The main objectives of structured programming are :
» Readability | : /
¢ Clarity of programs

e Easy modification

® Reduced testing problems.

The goto statement should be avoided so far as possible. The three basic builciing
blocks for writing structured programs are given below :

1. Sequence Structure
2. Loop or Iteration
3. Binary Decision Structure

Selﬁlnstruc;i'anal Material
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Fig. 2. Sequence structure.

It consists of a single statement or a sequencc of statements with a single entry
and single exit as show above. '

2. Loop or Iteration :

Fig. 3. Loop or iteration.

It consists of a condition (simple or compound) and a sequence structure which
is executed condition based as shown above.

3. Binary Decision Structure :

s

F

]

- Fig 4. Binary decision structure.
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It consists of a condition (simple or compound) and two branches out of which
one ig to be followed depending on the condition being true or false as shown
above. '

1.5 MODULAR PROGRAMMING

Breaking down of a problem into smaller independent pieces (modules) helps
us to focus on a particular module of the problem more easily without worrying

“about the entire problem. No processing outside the module should affect the
processing inside the module. It should have only one entry point and one exit
point. We can easily modify a module without affecting the other modules.
Using this approach the writing, debugging and testing of programs becomes
easier than a monolithic program. A modular program is readable and easily
modifiable. Once we have checked that all the modules are working properly,
these are linked together by writing the main module. The main module’
activates the various modules in a predetermined order. For example, Figure
5 illustrates this concept : ’

Main Module
Main Module
Perform A >
Vs
PerdormB «
Perform C j
Perform D
p
. Module D
"Independent modules
are activated by the Module B
main module,
Each module returns ﬁ .
the control bacleto - Module A =
the main module —
Module C
A
Fig. 5.

-|- It must be noted that each medule can be further broken into othgr submodules.

Self-Distructional Material
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1.5.1 Characteristics of Modular Approach

{i) The problem to be sélvgd is broken down into major components, each of
-which is again broken down if required. So the process involves working
from the most general, down to the most specific.

(zi} There is one entry and one exit point for each module.

(fiz) In general each module should not be more than half a page long. If not
s0, it should be split into two or more submodules

(iv) Two-way decision statement are based on IF. THEN iF. THEN JELSE,
and nested IF structures. -

(v) The loops are based on the consistent use of WHILE..DO and
REPEAT..UNTIL loop structures.

1.5.2 Advantages of Modular. Approach

@) Spfne modules can be used in many different problems.
(i) Modules being small units can be easily tested and debugged.

(iit) Program maintenance is easy as the malfunctioning module can be quickly
identified and corrected.

(zv} The large project can be easily finished by dwldmg the modules to different
programmers.

{(v) The complex modules can be handled by expenenced programmers and
the simple modules by junior ones. '

(vi) Each module can be tested independently.

(vii) The unfinished work of a programmer (due to some unavoidable
circumstances) can be easily taken over by someone else.

(viii) A large problem. can be easily monitored and controlled.
(ix) This.approach is more reliable.

(x} Modules are quite helpful in clarification of the interfaces between major

pzliljts of the.prolz_rlfy A Y C),j

1.6 TOP-DOWN PROGRAMMING

Program’ development includes designing, coding, testing and. verification of
a program in any computer language. For wx:iting a good, program, the top
. down design approach can be used. It is also called systematic programming
or hierarchical program design or étepwise refinement. A complex problem
is broken into smaller subproblems, further each subproblem is-broken into
. a number of smaller subproblems and so on till the subproblems at the lowest
level are easy to solve. Similarly a large program is broken inté a number of

Programming
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subprograms and in turn each subprogram is farther decomposed into subprograms
and so on. Suppose we want to solve.a problem S, which can be decomposed
into subproblems S1, S2 and S3 and so on. Let the program for 8, S1, 82, S3
be denoted by P, P1, P2, P3 respectively. Further suppose that S2 is solved
by decomposing it into subproblems §21 and S22 and program P21 and P22
are written for these. This operation of coding a subprogram in terms of
lower level subprograms is known as the process of stepwise refinement.
Figure 6 shows the hierarchical decomposition of P into its subprograms and
sub-subprograms.

P21 -~ P22

Fig. 6.

The advantages of the top-down design approach are :

-

1. A large problem is divided into a number of smaller problems using this
approach. The decomposition is continued till the subproblems at the
lowest level become easy to solve. So the overall problem solving becomes

easy.

2. If we use the top-down approach for a problem then top-down programming
method can be used for coding modules at various stages. So, the top level

modules can be coded without coding the lower level modules earlier. This.

approach, is better than the bottom-up approach where programming starts
first at the lowest level modules.

3. It helps in top-down testing and debugging of pi‘ograms.

4. The programs become user friendly (that is easy to read and understand) and
easy to maintain and modify.

5. Different programmers can write the modules for different levels.

Self-instructional Material
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1.7 BOTTOM-UP PROGRAMMING . Methodologies® ~

The bottom-up programming approach is the reverse of the top-down program-
ming. The process starts with identification of a set of modules which are_either - NOTES
available or to be constructed. An attempt is made to combine the lower level
modules to form modules of a high level. This process of combining modules is -
ontinued until the program is realised. The main drawback of the bottom-up
programming approach is the ‘assumption that the lowest level modules can be
completely specified beforehand, which in reality is seldom possible. Thus, in ;.
the bottom-up approach, quite often it is found that the final program obtained,
by combining the predetermined lowest level modules does not meet all the
- requirements of the desired program.

Here no attempt is made to compare the advantages and disadvantages of
the top-down and bottom-up programming. However, program development
through top-down approach is widely accepted to be better than the bottom-
up approach.

1.8 SUMMARY

* A program is a sequence of instructions written in a programming language.

¢ John vohn Neumann proposed that the programs be stored in memory.
This is called the stored program concept.

¢ Modular programming is breaking down ofa problem into smaller independent
pieces (modules). :

¢ The main objectives of structured progrémming are i‘eadability, clarity of
prograins, easy modification and reduced testing problems.

. Top-down'programming is also known as the process of stepwise reﬁ;aemenf.
. .Bottom-up programming approach is the reverse of the top-down programming,

1.9 TEST YOURSELF

Answer the following guestions :
1. What are the characteristics of a good program?
2. Discuss the techniques of problem solving,
8. Write a short note on the following :
{a) Structured ‘pmgramm:ing concepts
(b) Modular programming - ]
- 4. Explain the concept of top-down aﬁd bottom-up programming.

Qo
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CHAPTER 2 CONCEPTS OF DATA
| TYPES AND DATA
STRUCTURES

2.1 Introd_uc_tion

2.2 Concept of Data

+ 2.3 Concept of_Daté Type
2.4 Concept of a Data Structure
2.5 Concept of Primitive Data Type
2.6 Logical versus Physical Representation
2.7 Primitive and Simple Data Structures
2.8 Types of Data Structures _
/9 Operations on the Data_Str\ictures
2.10 | ‘

" Summary

”

2.11 Test Yourself

2.1 INTRODUCTION

The fundamental nature of programming and data processing requires efficient
algorithms for access of the data in-main memory and storage devices. The
effectiveness is directly linked to the structure of the data being processed. The
data structure describes the way the data is organized and stored in memory for
the convenience of processing. This Chapter gives an introduction to Data Types
and Data Structures. )

Generally learners are asked to wrlte programs which solve snnple problems
and'use small amount of data. Therefore, they need not concern’themselves
about how the data are stored in computer’s main memory and how slowly or
quickly the operations of retrieval and updations are performed. However, when
a complex and .. ue-consuming problem is to be solved or when a large amount
of data is to be used then it is very important that the data be organized in main
memory so as to give faster access to data and the program be written accordingly.
Otherwise, main memory space as well as computer time required for various
operativns may be wasted. -

Self-Instructional Material



2.2 CONCEPT OF DATA ' ’

A collection of facts, of observa‘cions, of occurences ete., is called data. Elements
of this collection are called data items. It is sorething raw that is processed
by the computer program to give useful information. Data can be represented

<2

numencally, alphabetically, usmg special symbols such as ‘+’, ‘', ‘%', ', ‘<, ete.

2.3 CONCEPT OF DATA TYPE

Data is a collection of facts, observations etc. This collection of data items can
be divided into groups such that the members of each group share a common set
of properties. Such groups are called data types.

For example, integers. These can be added, subtracted, multiplied and compared.

- Consider another example of the set of sets—elements of this set are sets which
can undergo the operations of union, intersection- and difference.

Consider a collection of 3 x 3 matrices—These can be added multiplied and
inverted (non-singular ones).

Consider’ a collection of strlngs—Stnngs can be compared concatenated and
broken into parts.

The first example shows. that integers have a number of properties in common
viz. all integers can be added, all integers can be subtracted, all integers can be
compared etc. Integers are commonly written as -3, -2,-1,0, 1, 2, 3, ..... In this
* case, values of data type integer can be from the set of integers. ’
Similarly, all 3 x 3 matrices can be added, multiplied etc., and these can be
cornmonly written in the following form :

\
@y Q2 Oy3

@9y Qgy Qgg
%31 Gz O33
In this case, the data type 3 x 3 matrix can hssume values from the set of all
3 x 3 matrices. '

Thus, different data items belonging to different groups have different
representations and have different sets of operatidbns-that can be performed on

them. This gives rise to the concept of a data type. Commonly known data types

are integers, real numbers and characters

2.3.1 Definition of Data. Type

A data type is a name given to the set of all data items possessing a given
ensemble of properties. When we say that the number 7 is an integer, 7 shares
a number of properties with other integers. In case of integers, we need not

\

Concepts of Data Types
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specify what properties are shared and how the various operations can be
performed on integers because it is automatically understood. However, in the
case of other data types, the properties and the operations must be specified by
means of a set of axioms. Thus, we can define many data types by means of an
appropriate set of axioms.

9.4 CONCEPT OF A DATA STRUCTURE

New data types can be defined in terms of previously defined one or more data
types. Suppose data-types A, B and C have already been defined and a new data
type D is defined in terms of A, B and C. Then values of data type D, can be
decomposed into values of previously defined data types A, B and C. We call
A, B-and C as component data types. For example, consider an employee with
attributes : Name, Age and Salary. Name is of String type, Age is of integer type
and salary is of real number type. By combining three different types, we build
a new data type and call it EMPLOYEE which has its component types as
string, integer and real. The string data type itself is defined in terms of another
data type character. ' '

Such data ty-pes that are composed of previously defined data types are called
Data Structure. EMPLOYEE’ is an example of a value or instance of a data
structure called record. The Name itself is an instance of data structure called
string. The organization of data items in a data structure is characterized by

accessing mechanisms that are used to store and retrieve individual data items.
R

- , L’f‘ _
2.5 CONCEPT OF PRIMITIVE DATA TYPE

In the above example ‘EMPLOYEE’ is an instance of a data structure. As in
this example, it is possible that components of a structured data type may
themselves be structured. Components of the components of structured data.
type may again be themselves structured and so on. Therefore, values of data
structure may be decomposed into values, of component data types, values of
component data types may further be decomposed into values of component
data types and so on. Finally, we reach a stage, where we can not further
decompose a value of component data types, i.e., it is indivisible or atomic. The

" data types that are atomic are commonly called primitive, unstructured data
.types. (Truly speaking what one person may regard as indivisible, the other
person may regard it as divisible. However, here we regard those data types as
indivisible, whose further decomposition is not meaningful).

Examples of ‘primitive data types are integeré real numbers, characters and
boolean. On most computers, these data types are available as thelr ‘built-in
features. These primitive data types are dlscussed below :

" Self-Instructional Material



2.5.1 Integer

Integer is the simplest data type. Mathematically, it is an element of the set of
integers {..., -0, -(n ~ 1), ... = 2, - 1,0, 1, 2, ....}J. In case of computers,
integer data type can assume values only from a subset of the set of integers
which is determined by the word length of the computer. For example, if the

word length is- of 16 bits and two’s complement method is used for storing’

negative integer, the data type integer can.assume values in the range of
~-32768 to 32767.

Operations that can be performed on pairs of integers are standard arithmetic
operations such as addition, subtraction, multiplication and integer division.
Integer division gives the quotient after 1gnor1ng the remainder. Negation can
be performed on single integers.

2.5.2 Real

Real is another simple data type which 1is also used very commonly. A variable
of data type real can assume values from a subset of real numbers. This subset
of real numbers is again determined by representation and number of bits used
to store the number.

Operatlons that can be performed on them are addition, multlphcatlon division ‘

and subtraction. -

The result of arithmetic operations performed on real numbeérs may not be
 accurate. Accuracy agam depends on real number representation in computer
memory.

2.5.3 Boolean

Third simple'data type is Boolean or logical data type. A variable of this type
can have only one of the two values denoted by “True” or “False”.

The operations that can be performed on these are AND’ ‘OR’ and ‘NOT These'
operations_are defined as given in Table 1:

"Table 1. Operations on Boolean Data Type

! X Y XAND Y -XORY NOT X
True True True True False
True False False True Fa.]se
False True False True _ True
False " False - False . False True

The ‘True’ or ‘False’ values may also arise as a result of comparisons such as
12 > 16 gives False’value and 12 < 19 gives ‘True’ value.

2.5.4 Character

Fourth primitive data type is character. Values that can be assumed by a
variable of the type character, are from the set of characters defined for the
- computer system. Different computers may have different chatacter sets.

1

. Concepts of Data Types
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For example, a character set might be {0; 1,..,9AB, ....Z ab, ..,z - +
*, f} which includes digits, upper and lower case alphabets and special characters.
The character set defined by American National Standard Institute is the ASCII
character set which is the most commonly available on computers. The set of
characters is ordered and therefore operation of comparison of characters can be
performed.

2.5.5 Data Type : Pointer - .

The data type pointer is an unstructured data type The pomter type variable
contains the address of the location of another variable.

Operations that can be performed on pointers are comparison of ‘pointer variable
for equality/inequality assigning value of one pointer variable té another pointer
variable and assigning NULL pointer i.e., no valid address In C language,
pointer variables are declared using the symbol *.

2.6 LOGICAL VERSUS PHYSICAL
REPRESENTATION

The primitive data types discussed in this chapter and the structured data types

mentioned earlier are at logical level. A programmer can use these data types
in his/her programs and can perform operations defined on them without requiring
any knowledge of how these data types are represented in memory and how the
operations are implemented. For any giver data structure, there may be several
different physical re}ﬁresentations in memory. Following are the examples of._
different physical representations of integers and characters.

2.6.1 Integers : Physical Representation

One method of storing an integer in main memory is sign and magnitude

form. In this method, one bit is used to represent sign and rest of the bits of-

* the computer word are used to represent magnitude of the integer.

Second method of representing an integer in memory is using one’s complemént
method. '

Third method is two’s complement method. Each method has its advantages as
well as 'disadvantages. The range of values assumed by integers and the -
algorithms for addition, subtraction, division and multiplication all depend on
the physical representation of integers. The user neéd not concern himself/
herself about the physic;al representation. His/Her concern is at logical level

only.

2.6.2 Characters : Physical Representation

Characters are represented in main memory using some encoding scheme. Most

commonly used encoding schemes are ASCII and EBCDIC. There are other
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~ encoding schemes also such as BCD code. EBCDIC (Extended Binary Coded
Decimal Interchange Code) was developed by IBM for IBM computers where as
ASCII (American Standard Code for Information Interchange) was developed by
the American National Standard Institute. Both codes have different physical
representation. EBCDIC alwayé uses 8 bits per character and ASCII uses either
7 bits or 8 bits~per’ché1racter. When it usés 8 hits per character then 8th bit is
either for parity check or for extending the character set, because with 7 bits

only 128 character can be encoded. Order of ASCII characters is 0-9 digits -

followed by letters A-Z and a-z respectively whereas in EBCDIC code the order
is a-z, A-Z followed by 0-9. The order of characters is called a collating sequence.
The operation of comparison of character strings depends on the coding scheme
used.

2.6.3 Conclusion _

The physical represéntation of a data type determines 3
(i) The values, a data type can assume and .
(it) algorithms for various operations that can be performed on the data type.

Therefore, while choosing the most appropriate representation for a data type
one must consider the following : ‘ ’

({) The range of values the data type must have.
(z1) The operations that have to be performed on the data type.
(iii) The word length of main memory.

(v) The other relévant characteristics of computer.

Varipus physical representatlons and algonthms for operations on logical data’

type will be discussed in this book.

2.7 PRIMITIVE AND SIMPLE DATA STRUCTURES

The important aspect to be considered is the structuring of data at their most
primitive level within a computer i.e., the data structures that typically are
directly operated upon by the machine level instructions. Primitive data constitute
the numbers and characters, which are built into a programming language. The
examples of Primitive Data Structures are Integer, Boolean and Characters.
The other data stfuctures can be constructed from one or more primitives. The
simple data structures built from primitives are Stnngs, An'ays, and Records,
supported by many programmmg 1anguages ’

Concepts of Data Types
and Date Structures

NOTES
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Data Structures Table 2. Types of Data Structures

"Through ‘C -
' Dﬁta Structures Types
Primitive data str'uctures Integer
NOTES .
Boolean
Character
Simple data structures - String
Array
Record

Compound Data structures
Linear - Stack
’ ' Queue
Linked List

Non-linear

Binary . Binary Trees
Binary Search Tree
N-ary Graph.

General Tree
M-way Search Tree
" B-Tree
File Ofganizatinns . ' Sequential
Relative

Indexed—Sequential

2.8 TYPES OF DATA STRUCTURES

A data structure is a logical method of representing data in memory using the
simple and complex data types provided by the language.

The data structures can be classified into following two typés :

2.8.1 Simple Data Structures

These data structures are generally built from fundamental data types i.e.,
| int, float, char etc. Following data structures can be termed’ as simple data
structures :

(z) Array ' ‘ (@) Structure.

2.8.2 Compound Data Structures

These data structures are formed by using simple data structures dnd are more
complex. Its two types are :

(i) Linear data structures_ {if) Non-Linear data structures.

18 Self-Instructipnal Material



({} Linear data structures. These are single level data structures, having Concepts of Date Types

their elements in a sequence. Examples of linear data structures are :
(a) Stack e () Queue ’ (¢) Linked list.

(ii) Non-linear data structures. These are multilevel data structures
Examples of non-linear data structures are :

(@) Tree ’ (6) Graph.

. Figure 1 shows all the data structures :

L Data Structures |

Simple Data "t Compound Data
Structures Structures

D T
Stack lQueuel I Linked List | I Tree ]

Fig. 1. Different types of data structures

2.8.3 Array

It is a collection of homogeneo-us (similar type) data elements. An array is also
called linear data structure. It’s elements are stored in computer memory in a
Emear fashzon Figure 2 shows this :

Memory Address ?
2000 -40 4—— beginning of array
2001 15
2002 93
2003 70
2004 24 <4+—— end of array

. Fig. 2. A Sequential representation of an array having 5 elements

2.8.4 Structure

It is a collection’ of logically related fields in which the fields may be of same or
different types. The fields that construct the structure are called members of the

Self-Instructional Material
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structure. For example, a student record or structure may contain the following
fields : ‘ '

Roll Number, Student Name, Class, Address, Marks.

2.8.5 Stack

it is defined as a list (a linear data structure) in which all the insertions and
deletions are performed at one end called the TOP of stack. The insertion operation
is known as PUSH and the deletion operation as POP. The information is
processed in LIFO (Last In First Out) way. For example, Pile of books.

Top—»| Mastering C++ Programs

-

Bottom——» Computer Science XII

Fig. 8. Books kept in the form of a stack

2.8.6 Queue

It.is defined as a list (a linear data structure) in which deletion and addition
(insertion) operations are performed- at FRONT and REAR réspectively. The

“information is processed in FIFO (First In First Out) or FCFS (First Come First

Served) way. For example, Persons entering airway reservation counter.

Snd
~e0%%0e
ST
GONQE;E;:&P-\P‘W >
G

e

Fig. 4. Queue of persons at a reservation counter

-2.8.7 Linked List

It is defined as a linear collection of data elements called nodes, where each node
consists of two parts i.e., information and pointer to -next node. The last node

Self-Instructional Materiol



contains NULL pointer. A list pbinte;' variable FIRST or START contains the
address of the first node in the list. A linked list having no node is called NULL
list or empty list. Figure 5 illustrates a linked list having 4 nodes :

— » ’ » . »

Start , - NULL
Fig. 5. A linked list

It is o dynamic data structure which can grow or shrink as per our requirement.

2.8.8 Tree

It is defined as a non linear collection of nodes (having' no loops} having a -
specially designated node called the root and the remaining nodes can be

partitioned into m (m > 0) disjoint subsets. In computer science the conventional
" way of representing a tree is upside down i.e., the root on the top and the
remaining nodes downward. '

A special class of tree in which each node except root can’t have more than two
nodes known as left and right subtrees of the original tree is called binary
tree. T

Figure 6 illustrates a binary tree :

Fig. 6. Binary Tree

. 2.8.9 Graph

It is defined as a set of nodes (or vertices) and a set of arcs (or edgés) rwhere
each arc in it is specified.by a pair of nodes. Figure 7 shows a graph :

el

ng. 7. Graph representation

Self-Instructional Material
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fo{{i Sf”;:{“fes In case the arcs are ordered pairs, the graph is said to be a directed graph
rough °C (or diagraph). Figure 8 illustrates a diagraph :

NOTES

. Fig. 8. Didgraph representation

2.9 OPERATIONS ON THE DATA STRUCTURES

The operations performed on the data structures include the following :

Traversal is a techmque in which each element is processed 1nd1v1dually and
separately. :

Search is an activity in which a particular record or item is to be found.
" Insertion is a process in which a new element is added into the structure.
Deletion is a process in which a given item is removed from the structure.

Sortmg is a process in which all elements are arranged in a speclﬁc order so
that each item can be retrieved easily..

Merging is a process in which two structures are combined into a single
structure, :

2.10 SUMMARY

~ * A data structure is a logical method of representing data in memory using
the simple and complex data types provided by the language.

¢ Data structures can be classified into two types-—szmple data structures and
compound_ data structures.

* Simple data structures are ‘generally built from fundamental data types. /

¢ Compound data structures are formed using simple data structures and are
more complex.

* The two types of compound data structure are linear and no'n'-finear.

* Linear data structures aré single level data structures, having their elements
In a sequence. For example, stack, queue, linked list.
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* Non-linear data structures are multilevel data structures. For example, tree, Concepts of Data Types
. and Data Structures
graph.

¢ The operations performed on the data structures are—trauersal searching,
insertion, deletwn sorting and merging etc- ' ‘

¢ A linear data structure may be implemented using either a sequent1al storage NOTES :

allocation or linked storage allocation.

2.11 TEST YOURSELF

Answer the fbllowing questions :
1. Describe, in brief, the various data structures.
2. Define the followi;lg:_
{a) Data_
(b) Data Type -
3. Discuss t}-l(‘? concept of primitive data type.

4. Describe the various operations that, in general, can be performed on-different
data structures.

Qua

- Self-;'nstruction;zf Material
1 -
' 23



Data Structures

Through ‘C’. SECTION B

NOTES

CHAPTER 3 CONCEPTS OF
POINTERS

% LEARNING OBJECTIVES *

3.1 Introduction

" 8.2 Declaring and Initializing a Pointer
3.3 Accessing a Variable Using Pointer
3.4 Static Variable
3.5 Summary )
3.6 Test Yourself

3.1 INTRODUCTION

Pointers are very useful land‘ important feature of C language. A beginner
may find it a little confusing to start with. But once the concept of pointers
is clear the user can write complex code with great ease, using this powerful
tool, making C an excellent language. '

A pointer is a variable which holds a memory address which is the location
of some other variable in memory. As a 'poi'nter iIsa variable, its value is also
stored in another memory location. Any variable declaved in a C program has
two components : ‘ ' '

| (i) Address of the variable
(i) _Value stored in the variable.
For example,
int x = 587;
The above declaration tells the C compiler for :
(@) Reservation of space in memory for storing the value.

- (b) Associating the name x with this memory location.

(¢} Storing the value 587 at this location.
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It can be represented with the following figure :

‘Here, the address 4000 is assumed one, it may be some other address also.
Remember that the dddréss of a variable is the address of the first byte occupied
by that variable in memory. Also the values are stored in binary form inside
the memory.

Let the address.of x be aséigned to a variable ptr having address 4036. Since
the value of ptr is the address of the variable x, the value of x can be
accessed using the value of ptr or in other words we can say that the variable

- ptr ‘points to’ the variable x so it is called a ‘pointer’. The above concept can
be represented as given below : ' .

Pointers are frequently used in C language, as they offer 2 number of benefits
to the users. They include :

1.
2.

7. For reducing the size and complexity of programs.

8. For fast execution of programs.

. Pointers allow -C to support dynamic memory management {i.e., allocation/

. Dynamic data structures such as structures, linked lists, stacks, queues

location name ———: X

value at location 587

= 4000 . - NOTES

Fig. 1. Representation of a variable.

location number

Variable Contents Location
name
X 4000
ptr 4038

Fig. 2. Hlustration of a pointer as a variable.

Pointers are more efficient in handling arrays and data tables.

Pointers can be used to return multiple values from a function via function
parameters.

Pointers permit references to functions and thereby allowing passing of
functions as parameters to other functions. :

For sa\.ring the storage space by using the pointer arrays for character
strings. : :

decllocation of memory at run time).

and trees can be easily mampulated using pointers.

Seif-Instructional Material
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3.2 DECLARING AND INITIALIZING A POINTER

For storing the addfe_ss of a variable, we must declare the appropriate pointer
variable for it. The syntax for a pointer declaration is given below :

tvpe *ptr_name;

hHere type specifies the type of the varlable that is to be pointed to by the

pointer ptr_name,

* represents the variable ptr_name as a pointer variable and it needs a
memory location too.

For example,

int '*ptr;_ /* declaration of an integer pointer */
int' X = 547; . ' :
ptr = &x; /* ptr stores the address of x */

The actual address of a variable in memory is not known to us. So the &
(address operator) is needed for returning the address of the variable following
it i.e., a variable name is followed after &. Similarly, the following statements

’

float =*fptr, fvalue;
char *cptr, ch;
fvalue = 40.5;

ch = 'A';
fptr = &fvalue; * .
cptr = &ch; . -

show the pointer initialization, by first declaring the pointer variables and
then making the pointer variables to peint to their respective data type variables.
A pointer variable contains garbage until it is Enitialized. We should not use
a pointer before initializing it. )

Remember that the definition for a pointer variable allocates memory only for the .
pointer variable, not for the variable to which it is pointing.

—‘\ The data type of the pointer must be same as the data type of the variable
NOTE to which it points.

In C, the assignment of an absolute address is not allowed to a pointer
variable. For example,

int *ipty;
iptr = 288; /* invalid assignment */




We can initialize a pointer variable while declaring it, as given below :°

int num = 85; i
“int *iptr = &num;  /* initialization while declaration */
Note that variable num is first declared and then its address stored in
pointer variable iptr.

The following program prints the different types of variables and their addresses.
As the memory addresses are unsigned integers so we can use %u or %lu
format for printing the address values in integer form or %x format for pi'i.nting
the address values in hexadecimal form. -

/* illustration of address of (&) operator for getting address */

#includec<stdio.h>
main )y . . .
{ )

char ch;

int x;

float vy;

x=376;

y=12.5; _

ch='J";" /* ASCII value of INE gets stored in ch */

clrscr(); : ; .

printf ("The addresses are shown in decimal form\n\n") ;

printf ("You may get some other addresses on your system\n\n");

printf ("\nVvalue of ch = %c",ch};

printf ("\nAddress of ch is %u", &ch);

printf ("\n\nvalue of x = %d",x)}; C

printf ("\nAddress of x.is %u",&x);

printf ("\n\nvalue of y = %.2f“;y);

printf ("\nAddress of y is %u",&y);

Address of x is 65490
Value of y = 12.50
Address of v is 65492

getch(); /* freeze the monitor */
} | _
o PROGRAM 1
| The output of Program 1 will be :
i. The addresses are shown in decimal férm
§ You ma; get some other addresses on your system
: E‘Value ofch=d
: Address of ch is 65489
. { Value of x = 376 X
?
&

o
T

- Concepts of Pointers

NOTES
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3.3 ACCESSING A VARIABLE USING POINTER

In C, the value of a variable {once its address has been assigned to a pointer
variable) can be accessed using the unary operator * {(asterisk) known as the

-indirection operator.

The operator * is followed by an address and it can be kept in mind as _‘value
at address’. For example,

int value, -num, *iptx;
value = 2007;

iptr = &value;

num = *iptr;

| .
after the execution of the above statements num and value both have 2007.

In C, the pointers and addresses are utilized by means of symbolic names. A
statement like *376 will not work at all. The following program prints the
value of variables using the.indirection operator ‘ ** alongwith the addresses.

/* illustration of indirection operator (*) for printing values */

#include<stdio.h>
main()H
(. ‘ .
char ch, *cptr; “
int x, *iptr;
float y, ¥Eptr;
x=376;
y=12.5; .
ch='J"'; /* ASCII value of 'J' gets gtored in ch */
cptr=&ch; ) -
iptr=&x;
fptr=&y;
clrscr();
printf ("The addresses are shown in Hexadecimal form\n\n");
printf (“You may get some other addresses on your system\n\n");
printf ("\nValue of ch = %c", *cptr); )
printf ("\nAddress of ch ig %x",cptr);
printf (*\n\nValue of x = %3", *iptr};
printf ("\nAddress of x is %x",iptr);
printf ("\n\nvalue of y = %.2f",*fptr);
printf ("\nAddress of y is %x",fptr):
getch(); /* freeze the monitor */

Self-Instructional Material o R



£ : PROGRAM 2

. The output of Program 2 will be :

: The addresses are shown in Hexadecimal form

+ You may get some other addresses on your system
| Value of ¢h = J
, Address of ch is ffch
! Value of x = 376
' Address of ch is ffce
. Value of y = 12.50
' { Address of y is ffce

R4 N Ama——~ 3 *

"The operation of writing the value or manipulating it by using * as a prefix

with a pointer variable or pointer expression is called dereferencing pointers.
In C, a pointer stores the address of another variable which in turn can store
address of another variable and so on. Therefore we can have a pointer that
stores -another pointer’s address. For example,

int val=336, *ptr, **ptr_ to_ptr;
ptr=&val; . - .
. ptr_to ptr=&ptr;

Here *ptr denotes an ihteger pointer -
*¥ptr_to_ptr denofes a pointer to an integer pointer.

The following program illustrates different ways to print the value of addi‘esses
-and data pointed to by simple variable, pointer and pointer to pointer :

- /* 11lustrate concept of pointers */
#include<stdio.h>

main{)
{ .
int val=336,*ptr, **ptr_to ptr;
rr=fval; /* store address of val in ptr */
ptr_to ptry=&ptr; /* store address of ptr in ptr_to_ptr */
clrscr{);

printf ("The addresses are shown in decimal form\n")
printf ("\nYou may get some other addresses on your system\n");
printf ("\nAddress of val ig %u", &val);

printf ("\naddress of val is %u",ptr);ﬂ

printf ("\nAddress of val is %u", *ptr_to_ ptr):

printf ("\nAddress of ptr is %u",&ptr);

printf ("\nAddress of ptr is %u",ptr to_ptr);

printf (”\nAddress of ptr_to_ptr is %u”, &ptr_to_ptr);.
printf ("\nvalue of ptr igs %u",ptxr); .
printf ("\nvalue of ptr _to ptr is %u",ptr to_ptr) v
printf (“\nvalue of wal = %d",val); :

Concepts of Pointers

NOTES
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Data Structures printf ("\nvalue of val gdh, * (&val));
Through ‘C’ printf ("\nvalue of val &4, *ptr);
printf ("\nValue of val = %d",**ptr_ to ptr};
getch(); /* freeze the monitor %/

NOTES e

. PROGRAM 3

| The oﬁtput of Program 3 will be :
. The addresses are shown in decimal form
- You may get some other addresses on your syst-eml
" Address of val is 65480
Address of val is 65490
Address of val is 65430
Address of ptr is 65492
* Address of ptr is 65492
! Address of ptr_to_ptr is 65494
3 Value of ptr is 65490
‘ Value of ptr_to_ptr is 65492
Value of val = 336
" Value of val = 336
., Value of val = 336
«  Value of val = 336

Figure 3 makes the output of the above program more clear :

Variable name Contents Location
val 336 65490
ptr 65490 65492

ptr_to_ptr 65492 65494

¥ig. 8. Illustration of pointer to a pointer.

3.4 STATIC VARIABLE

In computer programming, a static variable is a varicble that has been
allocated statically—whose lifétime extends across the entire run of the program.
This is in contrast to the more ephemeral automatic variables, whose storage
is allocated and deallocated on the call stack; and in contrast to object whose
storage is dynamically allocated.

In many programming languages, such as Pascal, all local variables are
automatic and all global var{ables are allocated statically. In these languages,
\ the term “static variable” is generally not used since “local” and “global”
| suffice to cover all the possibilities. '
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3.5 SUMMARY

.A pointer is a variable that represents the location (rather than the value)
of a data item, such as a variable or an array element.

Do not store the address of a variable of one type into a poinfer variable .

of another type.

The vlaue of a variable cannot be assigned' to a pointer variable.

Before initialization a pointer variable contains gé.rbage. Therefore, we -

‘must not use a pointer variable before it is assigned, the address of a
variable.

The definition of a pointer variable allocates memory only for the pointer
variable, not for the variable to which it points.

The indirection operator * is-a unary operator as it operates only on a
pointer variable.

Pointers can be used to make a function return more than one value
simultaneously.

3.6 TEST YOURSELF

Answer, the ‘follow‘ing questions :

1. In what way can the assignment of an initial value be included in the declaration
- of a pointer variable ?

2. Differentiate between & and * operators.

:?;. What do you understand by a pointer to a pointer ? Can this be extended to any

level ? Verify.

4, What is a static variable ?

0aa

Concepts of Pointers

NOTES
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4.1 INTRODUCTION

An array is the most commonly used data structure. Almost all programming

languages have arrays as their built-in data types. We may have one dimensional

arrays or multi-dimensional arrays.

An array is a finite, ordered set of homogeneous eleinents. By ordered set, we
mean that each element of the set has a unique position and can be accessed
by referring to its position within the set. By homogeneous, we mean that all
the elements of the set are of same type. All the elements are either real or
integer or character or any other type.

Stack is an important subclass of list in which insertion or deletion of an element
are allowed only at one end insertion and deletion operations are known as
PUSH and POP respectively. A queue is a subclass of lists in which insertion
and deletion take place at specific ends i.e., REAR and FRONT respectively. The
term %ist’ means a linear collection of elements. In a linked representation of a
simple list, the address of the next element must also be stored explicity with
each element. '

4.2 ARRAYS

An array is a collection of the homogeneous (same type) elements that are referred
" by a common name. It is also called a subscripted variable as the elements of an
array are used by the name of an array and an index or subscript. Arrays are
of two types :

(i) one-dimensional arrays (i) multi-dimensional arrays (2 or more).

4.2.1 One-dimensional Arrays
The syntax of declaring a single-dimensional array in C is as follows :
type variable name[SIZE] ;

An array must be explicitly defined so that the compiler can allocate memory
for it. In the above declaration, type defines the base type of the array i.e. type
of each element. SIZE defines the number of elements the array can store. For
example,
int arxr[10] ;

Here arr is the name of the array, SIZE is 10 and it is of int type. The a'rray
subscrlpt always starts from zero. So, arr [4] would refer to the fifth element in
the array arr where 4 is the array index or subscript.

Arrays, Stacks, Quenes

and Linked List

NOTES
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The entire array can be shown as in figure 1.

- Contents -
Element number |8 ¢ 82 l«—— ari0}
or index .
1 57 — arr{1]
2 66 — arnf2]
3 98 ——— arr{3]
4 25 " [e— arr{4]
5 12 . e—— arr5]
6 90 l— arr{6]
7 47 . |[¢— arr[7]
8 36 — arn[8]
UB 9 77 «—— arr[9]

‘Fig. 1. Schematic representation of an ar}ﬁy arr [10]

Here LB denotes lower bound of the index or subscript and UB the upper
bound. The elements of one dimensional array are stored in the memory locations
by sequential allocation technique. ’

NOTE .

In the memaory arr actually refers to the starting position or the address of
the area which gets allocated for storage of elements of the array. So, arr
stores the address of arr{0], the starting element of the array.

A vector is a mathematical term used for the collection of numbers which are
analogous i.e. one-dimensional’ (linear) array. So in C, a vector can represent
only integers and floating point numbers. e

4.2.2 Address Calculation

The array elements are stored in contiguous memory -locations by sequential
allocation technique. The address of ith element of the array can be obtained if -
we know : '

1. The starting address i.e. the address of the first element called Base address
denoted by B. -

2. The size of the element in the array denoted by S.
Consider the array arr in which LB<=UB, i.e. arr [LB.: UB]

Where LB denotes the lower bound of the index and UB the upper hound of
index. The address of ith element is given by :

. address of arr[ij = B+G-LB)*S

where LB <=i<=UB

NOTE W  InC array index always start from 0 for one-dimensional arrays..
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4.2.3 Two-dimensional Arrays (Multi-dimensional Array)

A two-dimensional array is a grid having rows and columns in which each

element is specified by two subscripts. It is the simplest of multi-dimensional .

arrays. The first subscript identifier is the row number and the second subscript
identifier is the column number. For example,

An array a [m] [n) is an m by n table having m.rows and n columns containing
" m x n elements. The size of the array (total number of elements) is obtained by
calculating m x n.

n
“ ~ Columns »
1 2 < i .. 1. n
F 3 B
- 1
2
. 1<«= i.'<= m
m Rows i - -alijli] T<=j<=n
m--1
m
v
Fig. 2

Here al[i][j]l-denotes the element in the ith row and jth column. Size of the array
ism x n.
Theé syntax of declaring a two-dimensional array in C is as follows :
type variable_name [number of rows] [number of columns];
" For example, int al[5][5];
Here ‘a’ is the name of the array of type int of size 5 by 5.
T}_le array elements are a[0][0], a[0][1], ...... , af4i[4]. |
So, the two dimensional array is defined using two subscripts in the form of a
matrix. _ |
4.2.4 Sequential Allocation for Two-dimensional Array

Suppose we have a two dimensional array a[l : 3 1: 4] of type int. An integer
_requires two bytes of storage.

Since the main memory of a computer is linear, two-dimensional array cannot
be stored in its natural grid form: The array elements are stored linearly using
one of the following methods :

(f) Row Major: Storage
(i1) Column Major Storage.
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The Row Major Storage is shown in figure 3. Using this method a two dimensional
array is stored with all the elements of first-row in sequence followed by the
elements of second row and so on.

Main Memory
Address ¢

-

——————————————— a[111]

: % _______ —eee- |2
a[1] :
Frm=mrms a1]3] .

col- ¢col ¢ol col
1 2 3 4 e alil4]

~
P

SadN | SEECESEELITELE al2f1]

row 2 ;——i_am ———————————— ==~ al2li2
row 3 J }

--------------- al2)(3]
Array a{3][4] I B a[2][4]

————————————— ] am

_______________ a[3)i2]

------------- --| a3

foroemmeeseees alalf4

row 1

N al3]

Fig. 8. Row major storage of array afl : 31 : 4]

4.2.5 Address Calculation of Elements of Array a[LB1 : UB1, LB2 :
. UB2] _ .
Let i, j denote the row and column index where LB1<=i<=UB1 and LB2<=j<=UB2
Address of an element = B+{number of elements before it) * S )
Wl}ere P is base address and S denotes size of éach element.
Also the number of rows = M = (UB1 - LB1 + 1)
and the number of columns = N = (UB2 -~ LB2 + 1)
Using Row Major order the address of a [i] [j] is given by,
Address of ali][jl = B + (Number of elements before a ii] G * 8
= B + (Number of elements in (i — LB1) rows
+ numbéer. of elements in ith row before column j) * S
=B+ [ -LBU* N+ G- LB2) * 8
The Column Major Storage of the array a[l : 3, 1 : 4] is shown in figure 4.
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Main Memory

Address 4]

-

F~"""""""""°"°°1 a{1](1]

--------------- a[2]f1]

fooooomamooees al3)l1]

L — a[1)[2]

e ee—— s al2)2]

I al3)[2]

............... al1]13)

Array a[3](4]

............... a(2)3]

Lo JEPS— a[3][3]

D EECETErE. a[1]i4]

IERDEEEEPPEEERE af2l(4)

<]
r___'L__ﬁ{___k___'ﬁ{——__A“-__ﬁ(___J____'ﬂ

P oo al3ye]

Fig. 4. Column Major Storage of array afl : 31 : 4]
The Column Major Storage stores all the_élemenfs of first-column in sequence
followed by the elements of second column and so on.
Using Column Major order ‘tl;e address of alil{j] is given by,
Address of alilljl = B + (Number of elements before ali][j]) * S
| - B + (Number of elements in jth cﬁlumn before row i
'+ number of elements in (j — LB2) columns) * S
—B+[-LBD)+(G-LBD*M *S

NOTE .

start from 0 in C.

Example 1. An arrfiy X[7]{20] is stored in the memory with each element requiring
2 bytes of storage. If the base address of array is 2000, calculate the location of
X{3][5] when the array X is stored in column major order.

ﬁ X[7]207 means valid row indices are 0 to 6 and valid column indices é:re
NOTE . :
0 to 19. -
Solution. Here, Base address B = 2000
Size of an element S = 2 bytes

The array index for row and column for two dimensional arrays always -
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6—0+1"=7'

| - M=UBL-LBl+1 (LBl =0)
19-0+1=20

| ~ N=UB2-LB2+1(LB2=0)

Number of rows o M

Number of columns N

+ The array is stored in column major order.

Address of X[} = B + [(i - LB1) + ( - LB2) * M] * ¢
Address of X[3][5] = 2000 + [(3 — 0) +-(5 — 0) * 7] * 2
" =2000 + [3 + 35] * 2 = 2000 + 76 = 2076.

4.3 ONE-DIMENSIONAL ARRAY

Traversal

It means visiting each element (from start to end) one after the other. For example,
traversal in the array shown in figure 5 :

12 | 80 | 49 | 34 | 25 | 75 | 50 | 92 | 83 | 47

index 1 2 3 4 . 5 6 7 8 9 10
Array af{10]
Fi_g. 5
would be processing of a[1], al2], al3], ......, a[10].

4.3.1 Algorithm for Traversal

Let A be an array of size N. We have to traverse through the array (i.e., visit
each element) and perform some desired operation on each element. Let the
desired operation be denoted by OPERATE. I denotes the array index. Assuming
lower bound starts with 1. :

1. Repeatlfor I= 1, 2, ... , N
OPERATE on Afl)
2. End

m In C the array index starts from 0.

The following function in ‘C’ illustrates the concept of traversal in a one
dimensional array :

e e ——eeerrem—]

/* function definition add() */

float add{float all,int n)
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int 'i; /* local variable */
. float total=0.0;
for(i=0;i<n;i++)

total += al[i];

return(total) ;

4.3.2 Insertion of an Element in an Array

Let A be an array of size N, having M elements (M < N). DATA is the element
to be inserted at position POS (POS < M + 1). For insertion elements from
positiohs M,M-1M-=2 , POS are shifted downward by one position
and the element DATA is 1nserted at position POS. After insertion there are
M + 1 elements in the array Figure 6 illustrates this concept :

index 1 10 index 1 10
2 28 44— Position of 2 99 — New element
3 59 insertion 3 o8
4 40 (POS) 4 59
5 51 5] 40
6 47 5 51
M 7 32 7 47
8 M 8 32
Elements are
shifted .
downwards ' .
N-1 ©N-1
N ’ N
Array before Insertion Array after Insertion
' of 99 at position 2
" Fig. 6. Insertion in an array at.a specific position
‘m Insertion is not possible if the array is already ﬁdi but replacement of an

existing element is possible.

4.3.3 Algorithm .I_nsertion of an Element in an Array at a Specific
Position '

Let A be an array as explained above. I denotes the array index. Assuming
array index starts at 1.

1. Repeat for I=M, M -1, M - 2, ...... , POS
All + 1] = Al '

Self-Instructional Material
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.

2. A[POS] = DATA

3 M=M+1
4, End

The follbwing function in ‘C’ illustrates the above concept :

/* function definition insert() =*/

void inser-t(int all, int n,int data, int position)
{
int i; /* local variable =*/ -
'/*-back shifting of elements */
for{i=n-1;i>=pogition-1;i--)
ali+1]=afil; '
/* insertion.of élement */

al[position-1] =data;

4.3.4 Insertion of an Element in a Sorted Array given in Ascending Order

Let A be an array of size N, having M elements in ascending order (M < N).
DATA is the element to be inserted. It is required that the array remains sorted
after insertion. As the element is to be placed at its proper position, insert the

-index 1 10 index 1 10
2 27 o2 27
3 3¢ 3 33 [—— New glement
4 47 4 39 ' S
5 50 5 47
6 73 6 50 .
M 7 80 7 73
8| . ‘M 8 80
N-1] - ) N-1
N N
Sorted array before Insertion Sorted array after

Insertion of 33

Fig. 7. Insertion in a sorted array

DATA in the end'if it is greater than or equal to last element otherwise the
position of insertion is found first by using linear search method and we stop at
the location where an element greater than DATA is present. Start from beginning
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and after getting the position of insertion (say POS), the elements are shifted

" downwards from last position (i.e., M) to POS and then DATA is inserted. After

insertion there are M + 1 elements in the array. Figure 7 illustrates this concept. .

4.3.5 Algorithm Insertion of an Element in a Sorted Array

Let A be an array havirig M elements in ascending order of size N (M < N).
DATA is the element to be inserted. Array remains sorted after insertion. I and
POS denote array indices. Assuming array index begins with 1. '

1. If (DATA > AIM]) Then , .

' { - . ‘ T \
A(M+1] =DATA '
goto step 6

}
2. POS ='1

3. Repeat while (A[POS] < DATA)
POS=POS+1
4. Repeat for I = M, M-1,M- 2, ...... , POS
A +1] = Al '
5. A[POS] = DATA
6. M=M+1
7. End

The following function in ‘C’ illustrates the above concept with array index

beginning at 0 :

/* function definition-ipsert() */

void insert(int all,int n,int data)
{ . -
int .i,position; /* local variables *x/
if (datas>=a[n-1]) /* when data is »= last element */
al[n]l=data;
else
{ .
position=0; /* initialise position */
while (a[position] <= data)

position++;

Self-Instructional Materiol
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/* back shifting of elements */
for{i=n-1;i>=position-1;i--)

a [i+1_] =alil;
/* insertion of elemént */

. a[position] =data;

4.3.6 Deletion of an Element froxh an Array

" Let A be an array having N elements. Deletion of an element means its removal

from the array. Deletion may not be possible if the element does not exist.
Deletion can be done in any one of following ways :

() Deletion of an element from an array from a specific posiﬁion
_(#2) Deletion of an element from an.unsorted array

(tii) Deletion of an element fmm a sorted array (say ascendmg order).

() Deletion of an Element from an Array from a Specific Position

In this case the elements are shifted from the next position to the last position,
one position upwards taking into consideration the position of deletion. For
example, figure 8 shows the deletion of element from position 5 in array A
having 8 elements

index 1 10 1 10
2 34 2 34
3 29 3 29
Posit 4 56 4 56
osiiIon
of deletion > 2 27 5 89 .
6 89 8 77
-7 4 N7 45 After shifting 0 stored
N8 45 8 0 4 atlast position
QOriginal array A Array A after deletion :

of element from position 5

Fig. 8. Deletion of an element from an array from a specific position

4.3.7 Algorithm Deletion of an Element from an Array from a Specific
Position -

Let A be an array having N elements. POS is the posmon of deletion (POS < N).

Let I denote the array index. Assume that the array index begins at 1 and the

value 0 is stored in the last position after deletion of element. N — 1 elements -

are left after :...; deletion.

1. RepeatforI—POS+1 POS +2, ., N
All-1] = All}
2. AlN' - 3
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3.N=N-1
4. End.

The following function in ‘C’ Iillustratés the 'above concept with array index

beginning at 0 :

/* function definition del() */

void del (int a[j ,int n,int pos)

{

int i; /* local variable */
/* deletion of element */
for (i=pos;i<n;i++)
ali-1]l=afil;
aln-11=0; /* enter 0 for last element */w

(ii) Deletion of an Element from an Unsorted Array

. In this case the element to be deleted is searched first using linear search and
then deleted (if present). Only first occurrence of the element will be deleted.
For example, figure 9 shows the deletion of element 66 from an array A having
8 elements. ' :

index 1 - 10 1| 10
2 36 2 36
3 29 . - 3 29
4 40 ' 4 40
° i Element t > 2
. (o] .
¢ i be delefed 6 88 .
7 58 ! . 48 After shifting 0 stored
N 8 45 8 0 at last position
Original array A - - Array A after deletion .

of element 66 |

" e . . )
Fig. 9. Deletion of an element from an unsort[ed array

4.3.8 Algorithm Deletion of an Element from an Unsorted Array

Let A be an array ha:ving N elements. DATA is the eleme1|1t to be deleted. I, POS
denote the array indices. If DATA is available then its first occurrence is deleted.
Assuming airay index begins at 1. N-1 elements are left after deletion Gf
possible). l

1. Repeat for =1, 2, ..., N
{

If (A[I]=DATA) Then

{

Arrays, Stacks, Queues
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Datae Structures Repeat for POS=I+1,I+2,...,N

Through ‘C’ {
- - A[POS-1] = A[POS]
}
NOTES Alnf =0
. : : N = N-1
- goto step 3
. _ } )
- }
| 2. Write (DATA, “ Can’t be deleted”)
3. End. <

" The following function in ‘C’ illustrates the above concept with array index
beginning at 0 : ' '

/* function definition del () */

int del(int al],int data,int n)

{
int i,pos; /* local variableg */
_/* deletion of data only first occureﬁce */
for(i=0;ien;i++) ‘
{
:|.f(a[:|. == data}
{ ;o .
: fo;r (pOoS=1+1;posS<n; PosS++)
alpos-1]l=alpos]; »
- " aln-1)=0; /* enter O for last element */
~return(i) ; '
¥
)
. return(-1);
}

(iit) Deletion. of an Element from a Sorted Array (say ascending
order)

First of all it is checked whether the element to be deleted is smaller than first
element or larger than the last elemerit, if so the deletmn is not possible.

The element i~ a sorted array can be searched by any one of the two searchmg
techniques ‘.e., linear search or binary séarch. If the element is found, it is

removed and the remaining elements after it are shifted upwards by onel'posiltli‘qn.'
For ex. - e, figure 10 shows the deletion of element 50 from array A. &

¢
) p,o !
-5
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13
20
34
50

index 1
' 2
3
4
5 &8
6
7
B

Element to
be deleted

|4__.

71 '
87 N
99 )
Original array A

Q@ =N W N

Fig. 10. Delet;ion of an element from a sorted array

4.3.9 Alg;)rithm Deletion of an Element from a Sorted Array (given in

ascending order)

"Let A be an array having N elements in as_cénding order. DATA is the element

to be deleted. I, POS denote array index.

occurrence is deleted (using linear'search method). Assuming array index begins

at 1. N1 elements are left after deletion.
1. If (DATA < Al1] ) OR (DATA > AIN] )
{ .

write (DATA, % Car’'t be deleted”)
goto step 3

'
2. Repeat for I = 1, 2, 3, vy N
O
If (A[I] > DATA) Then
{ .
write (DATA,” Can‘t be deleted”)
goto step 3
}
else
{ .
If (A[I] =.DATA) Then
{
Repeat for POS=I+1,I+2,...,N
{
. A[POS-1] =A (POS)
}
-A[N)=0
N=N-1
goto step 3
' }
.o
}

3. End.

and Linked List

13
20
34
68
7
87
99
0

Array A after defetion
of element 50

NOTES

After shifting 0 stored
" atlast position

If DATA is available then.its first

Then
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Data Structures The following function in ‘C’ illustrates the above concept with array index

Through *C beginning at 0 :
- /*function dafinition del() */ -
NOTES

int del{int all],int-n, int data}
{ .
int i, position; /* local variables */
/* deletion of only first occurence of data (if possible} */
if { data<al0] || datasaln-1]1) /* when data out of range */
-return(-1) ;
position=0; ‘
while (a[position] <data}
position++;
if(a[position] == data)
{
/* shifting of elements */
for (i=position+l;i<n:i++)
ali-11=alil; B
aln-11=0; /* enter.0 for last element */
return (position) ; :
-}

return(-1); /* when data not found */

44 TWO-DIMENSIONAL ARRAYS

Traversal

It means visiting each element one after the other.

4.4.1 Algorithm for Traversal

Let A be an array of size M x N, We have to traverse through the array and
perform some desired operation on each element. Let the desired operation be
denoted by OPERATE. I, J denote the array indices. Assuming lower bound
start at 1 for both row and column. -

1. Repeat for I = 1, 2, ..., M

{
Repeat for J=1,2,... N
r OPERATE' on A[I,J] ° i _ C
} NN ) . o .'I " .
2. End . | - .

. -
ool vy
Cl i
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‘Nm In C the array indices start from 0. Arrays, Stacks, Queunes
_ ) . . ’ and Linked List

The following program illustrates the concept of traversal in a two dimensional
array a of order 5 x 5 by displaying the elements we will enter and then the
elements divisible by 10. When a two dimensional array is read 01:_disp1ayed, NOTES
actually we are traversing through it. :

|

./* Traversal of a two dimensional array

display elements of a two dimensional array divisible by 10 -*/
#include<stdio.h>

void main{) - : : . ’
{ ) o ' .
void displayl0(int a[5] [5]); /* function prototype */ :
int.al5] [5],1,3; .
clrscr(); i : . . : .
printf {"Enter the array of order 5 % s\nv); '
/* row wise reading */
for(i=0;i<5;i++)
{ )
for{3=0;9<5;j++)
scanf ("%d", &a (1] [3))
) .
/* echo the data */
printf("\néiven array is:\n\n");
- for(i=0;1i<5;i++)
{ : \
for(§=0;3<5;3++)
printf("%a",al(i] [j1);
"printf ("\n");
}
displayloia}; /* function call */ )
getch(); /* freeze the screen until some key is pressed */

} - .

/* function definition displaylo(} =*/
void displayl0{int a[5] [5]) -
{. R
int i,j,count = 0; /* local variables */
printf ("\nElements divisible by 10 are :\n\n");
for (i=0;i<5;i++) 1_ 4
{
for{j=0;3<5;j++) . R .
( | - - o

~7
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{
count++;
}
}
}
if{count==0}

if( afil1j) % 10 ==0 )-

printf(" %d ",a1i] [(§1);

printf (*Not present in the array\n\n");

The cutput of program 1 will be :
Enter the array of order 5 * 6

35
67
80
12
29

35
67
80
12

28

Elements di;riéible by 10 are :
10 3G 50 40 8¢ 90 20 70 10
Enter the array of order 5 * 5

11
93

i 78

16

" 87
. Given array is :
© 11

93
78
16

- 87
¢ Elements divisible by 10 are g

10
19
18
34
16

30
28
56
68
10

10
19
18
34

.16

76

41

13
29
84

28
32
51
45
91

76

41

13
29

84

50
40

90"

78

88_

Given array i8 :

30
28
56
68
16

43
54
98

81
47

28
32
51

45
91

26
32
20
70
22

50
40
.90
75
88

37
39
26

61 -

71

48
54
98
‘81
47

26
32
20
70
22

37
39
26
61
71

+ Not present in the array

*

PROGRAM 1

e ——
T ————— A —————
_



In the above program first of all an array a of size 5 x 5 is read and then echoed
or displayed. So in writing each element of the array we are traversing through

it. The function display10() is called, having argument—the array. The function -

displays all the elements which are divisible by 10 and keeps their eount also,
so that if no element in the array is divisible by 10 an appropriate message is
_displayed. _

Let us consider some additional examples to perform the specified operations on
the two dimensional arrays :

4.4.2 Algorithm Finding Sum of Elements on Either Diagonals

of a N x N Array

Let A be an array of size N x N. I, J dénote array'iﬁdices for rm;v and column
respectively. SUM stores the sum of elements on both diagonals. Assuming
array indices I, J begin with 1. .
1.SUM =0
2. Repeat for 1 =1, 2, .., N

{

Repeat for J=1,2,...,N

{

If (-(I=J) OR ( (I+J) =N+1 ) ) Then
SUM = SUM + A[I,J)

) . _ ,<
3.-Write SUM
4. End ' . 4 .

The following examples show the two dimensional arrays of order 2 x 2 and
3 x 3 alongwith the sum on either diagonals : '

8 9
4 7
Here sum of elements on either diagonals is 28, and the array
1 2 3 ‘
4 5 K 6
7 8 9

has sum of eléments on either diagonals as 25 {(element 5 is addedionly once).

The following function in ‘¢ implements the above concept with array indices
beginning at 0 : - ’

/* function definition sum_diagonal() */

int éum_diagonal(int a [8IZE) {SIZE] ,int order)

Self-Instructional Material
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‘Data Structures . {
Through *C’ int i,3j,sum=0;
/* sum of elements on both diagonals */
for(i=0;i<order;i++)
NOTES {
for(j=0;j<order;j++)
{
if( (i==3) |}. {i+J == oxder-1) )
sum+=a (1] [j]; '

}

return (sumj} ;

4.4.3 Algonthm Prmtmg of the Upper Half and Lower Half of
a N x'N Array '

Let A be an array of size N x N. We want to print the upper half of the array.
I, J denote the array indices for row and column respectwely Assuming that
indices begin with 1. '

1. Write (‘Upper Half is’)
2. Repeat for I = 1, 2, ...... . N
{

" Repeat for J=I,I+1,....°, N

‘Write(A[I,J]} properly

3.-Write (‘Lower Half is’) ,

4, Repéat for I - 1,2, ... N~ ‘

Repeat for J=1,2,....,T
' Write(A[I,J]) properly

}

5. End_

.. The following function in ‘C’ implements this concpet with array indices beginning
| “at0: : ‘

/* function definition print triangles{) */

void print triangles(int a[SIZE] [SIZE], int order)

{

int i,3,k; /* local-variables */
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/* upper trianglé */

printf ("\nUpper triangle of matrix is\n");

for(i=0;i<order;i++)
{
for(k=0;keci;k++)
printf{"\t"};
for(j=1i;j<order;j++)
printf ("$8d",ali]l [));
printf("\n");
}

/* lower triangle -*/ .

printf ("\nLower triangle of matrix is\n"};

for(i=0;i<order;i++}

{
for(j=0;j<=i:j++)
printf ("%8d",ali} [3]);
printf ("\n");
I

)

4.4.4 Matrix Multiplication

Let A and B be matrices of orders m x n and q x p respectively. The product
AB of matrices A and B is defined only when the number of columns in A equals
the number of rows in B, ie., n = q. When n = q, the product is a m x p matrix

C with the property

C(l, J) ] ZA(lyk)*B(k,])’ 1<i« m, 1 Sj < p
k=1

In the product AB, A is called the pre-factor of AR and B, the post-fac'tor of

AR, , :

The procedure of writing elements of AB is shown below diagrammatically :

mxn

" ith row.of A jth column of B

Fig. 11

P
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L ar by bz by
For example, let A = | aw} and B = [H . ]
P [021 Gon LBar D2 By

Here the product AB is defined, because the number of columns (=2) of A equals

. the number of rows (=2) of B. In this case,

a a ’
o " 2 aiy] by, by
AB = |——»
. “ib b b
_ By, 2y 2 22 23

_ [a'nbn + 15051 @yybyy +@igbgy @yybi3 +ag9bag ]
Ao byy +@gobay Qg1big +@asbay @91byg +@g5bys |

To take another example, let A = [6 9] and B = [3 g g}

<

Tile produgt AB_ is defined, bgcause number of columns (=2} of A is equal to
number of rows (= 2) of B. The order of product AB is 2x3.

The product AB is calculated by following the procedure given.below :
For first row of AB '

6{ (0 | [8i2) + 97)] [8(6) + 9(9)] |6(0) + 9(8})
x - b 3 Y
2 3 9 8 h
L
. Fig. 12 :
For second row of AB
sl [o 75 7 72
of [8]}

[2(2) + 3(7)] [2(6) + 3(9)} {2(0) +3(8)]
F 3 F Y i

_ . Fig. 13
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" In short, the product AB is written as

59 |:2 l & o:| I:G(z) +9(7) 6(6)+9(9) 6(0) +9{8]:|
- » =
s 3 v9 8 2(2) +3(7)  2(6) +3(9) 2(0) + 3(8)
12468 36+81 0+72] - [75 117 72
=T [ 4+21 12427 0+24| T {25 39 24

Fr the above matrices, the product BA is not defined, because number of columns -

(= 3) of B is not equal to number of rows (=2) of A.

4.4.5 Algorlthm Matrix Multlpllcatlon

" Given two matrices A and B of orders mxn and gxp respectlvely This algorithm

multiplies the two matrices (if possible) and stores the result in matrix C (of
order mxp). IJ and K denote array indices.

“1. If n = q Then

Begin
Repeat for I = 1, 2, ...y m
Begin ' '
—‘ ' Repeat for J =1, 2, .........; P .
Begin
o ClId] « 0
‘Repeat for K = 1, 2, ........ ', n
CILJ] « C[LJ] + (A{LK)*BIK,J])
End
: - End
End
Else
. Write (‘Matrix multiplication not possible’)
2. End. | .

The following function in ‘C’ 111ustrates the above concept with array mdlces
beginning at 0 :

/* function definition matmul () */
. N !
void matmul (int x([1[S],int y(] [S).int z[][S),int rowl, int colml,int

colm2} -

1
1

int i;9,k; /* local variables */

if (colml==row2)
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~for{i=0;i<rowl;i++)
{ k
for(j=0;j<colm2;j++)
{ }
z{1] [3]=0;
for (k=0;k<colml;k++)
z[1] [G1+=x{i] [kl *y (k] [3];

}

else

printf ("\n\nMatrix multiplication not possible\n")}

N

4.5 RECORDS

In commercial data processing, we need to store all information about one
object at one place and that it as a single unit, For example,.in a payroll
application, we need the following mformatmn about an employee :

Employee number, Employee name, Department, Basic Pay, Date of increment

and Pay scale.

In examination processing, .we need to store data about students. This data
may be :

Student roll number, ‘Student Name, Class, Section, Marks and Student
Address.

In both the above cases, we have a collection of elements which are of
different types but still they are to be treated as a single unit. A finite,
ordered set of elements of same or different types is called a record structure,
It is a compound structure made up from constituent type elements. Thus
the complete information about an employee or a student may be called a -
record. The constituent types in these cases are of types integers, real
number and string. The string itself is a data structure made f'rom data type
character.

In general, we have a record structure R = {R1, R2, ..., Rn), in \ivhich there
are elements R1, R2, ..., Rn of different types. These Rl,_ R2, ..., Rn are called
fields of a record. A field which may further be divided into other fields is

Self-Instructional Material



called a group field. For exa:ﬁple, ‘Date’ field may‘be divided into “Year’,
‘Month’, ‘Day’. So ‘Date’ is a group field. A field which cannot be divided into
subfields is called an elementary field.

In C, we can create and use the data types other than the fundamental data
types. These are known as user-defined data types. Data types using the
keyword struct are known as structures. As seen earlier arrays have similar
data type elements. In C, a étrﬁcture is a collection of mixed data types
referenced by a single name. It is a group of related data items (structure
elements) of arbitrary types. L '

4.6 DEFINING A STRUCTURE

The general syntax of declaring a structure is :

struct <name:x

{
<type> <memberls;
<type> <member2s;

<type> <memberN>;

} <«<struct variables>; /* this semicolon is a must */

where <name> — is the name of the structure i.e., name of the new data type.
The keyword struct and <name> are used to declare structure variable(s).

<struct variables> — name(s) of structure variables.

The individual members of a structure can be ordinary variables, array, or
other structures. The member names within a particular structure must be

distinct from one another, though a member name can be the same as the .
name of a variable defined outside of the structure. A storage class however, .

can’t be assigned to an individual member, and individual members can’t be
initialized. within a structure type declaration. '

NOTE We can omit either the <name> or. the <struct variables> but not both.

For example,

struct employee

{

int empl_no;
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char name[30};
char designation ['ZO] ;
char deptt[20];

} emp;

The structure variable can also be declared as :

struct employee

{

int empl_no;
char name{30];
char designation[20];
char _deptt (207 ;
b . ‘

struct employee emp;

Thus, emp i§ a variable of type émployee. In other wordé, emp is structure

" type variable whose composition is identified by the tag employee.

When we declare a structure, a data type is defined, that is no Memory space
is reserved.

Thé C compiler automatically allocates sufficient memory to store all the
elements that constitute the structure, when we declare structure variable.
All the members of the structure are stored in contiguous memory locations
in the order of their declaration.

More. than one variables can also be declared at the same time.

4.7 STACK

It is an important subélass of lists in which insertivn or deletion of an element
are allowed only at one end. The insertion and deletion operations are known as
PUSH and POP respectively. The most accessible element denotes the top and
least accessible element the bottom of the stack. It is known as a LIFO (Last
In First Out) list as the elements are removed in the opposite order from that
in which they were added to the stack. For example, pile of trays in a cafeteria
figure 14, railway shunting system for cars as shown in figure 15 : '
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Top tray of pile
N p tray of p

N Stacked trays

Spring

Fig. 14. A cafeteria-tray holder.

From a pile of trays in a cafeteria, only one tray is made available to any person
from the top by the action of a spring at the tray counter. Whén a top tray is
removed, the load on the spring becomes lighter and next available tray appears
at the surface of the counter. When a tray is placed on the top of the pile the
entire pile is pushed down and this tray appears above the tray counter.

) Input (insertion) Qutput (deletion)

L 4

Stack

Fig. 15. A railway sﬁunting system shown in the form of a stack. .

In the railway shunting system, the last car to be placed on the stack will be
removed as the first one.

From above discussion we conclude that a stack is an ordered collection of

elements into which new elements may be inserted and from which existing -

elements may be deleted at one end, called the top of the stack.

48 STACK AS AN ARRAY (ARRAY
IMPLEMENTATION OF STACK)

We know that array is a static data structure. So the s‘pace is allocated according
to maximum number of elements present at that point of time. Therefore, creation
of a stack as an array requires the number of elements in advance. Figure 16
shows the representation of a stack as an array : '
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Dt-:ﬂlf:etion—lv T '

45 +—— Top

20

Insertion

97

50

38

12

85

42 l+—— Bottom

Fig. 16. Array implementation of a stack having size 10.

4.9 OPERATIONS ON STACK

Self-Instructional Material

PUSH (66} on the stack -

66

<+—— Top

45

20

97

n

50

38

12

BS

42

4+—— Bottom

Fig. 17

When we add an element to a stack, we say that we PUSH it on the stack and
if we delete an element from a stack, we say that we POP it from the stack. Let
~us see how stack of figure 16 grows or shnnks when we PUSH or POP an
element.

PUSH (40) on the stack

40 «— Top

66 N
45
20
97
50
. 38
12 -
85

42 +—— Bottom

Fig. 18

Now, we cannot PUSH any other element as the stack is already full. If we do
'so, an overflow takes place.

When POP operatmn is performed the stack looks like,
POP an element from the stack



66 +—— Top

45 : - Popped element = 40
20 .
g7
50
38
12

. . 42 +—— Bottom

Fig. 19

When a stack is empty, it contains no element, and it is not possible to POP the
stack. Therefore, before popping an element we must check that the stack is not
empty. If we do so, an underflow takes place.

4.9.1 Algorithm Insertion (I”USH) in a Stack as an Arrey
"Let S be a stack having size N and DATA an element to be inserted. TOP

denotes the position of the top element in the stack Assuming the index in

stack begins with 1 and go upto N.
1. I (TOP = N) Then
S

write(’Stack Overflow’)

goto step 4
o : , .
2. TOP=TOP + 1 '
3. S[TOP] = DATA

4. End.
-_\ In C the array index always begins with 0 and if the array size is N it varies
NOTE .

from 0 to N-1.

4.9.2 Aigorithm Deletion (POP) in a Stack as an Array

Let S be a stack having TOP as the position of the top element. DATA stores
the value of the deleted element (if possible). Assuming the-index in the stack
begins with 1. . . )
1. If (TOP = 0) Then

{

write{’Stack Underflow on POP’)
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goto step 4
) -
2. DATA = S[TOP]
3. TOP=TOP-1
4.  End.

The following functions in C implemenfs the PUSH and POP operations discussed
above with array index beginning with 0 :

-

/* function definition PUSH() */

void PUSH(int Si]}int data) /* function to insert element .*/

{

.. if (top==SIZE-1)

{

printf ("\nStack Overflow\n");
exit(1);

else

S[++top]=data;
if (top==8IZE-1)
printf ("\nNo element will be inserted next time\n");

} .

/* function definition POP{} to delete element */
void POP{int. S[])
{ -
if (top<0)
printf ("\nStack Underflow\n");

exit (1) ;

printf ("\nPopped element : %d",S[top--1}; ‘
if (£op<D) ) .
printf {("\n\nNd element left in the stack now\n");

} .




)

4.10 STACK AS A LINKED LIST (LINKED
IMPLEMENTATION OF STACK)

When the number of elements are not specified in a stack, the array
implementation may not be useful. As mentioned earlier a linked list is a dynamic
data structure and it can store any number of elements (The limitations of the
memory are always there).

Let us assume that an available area of storage (memory) for the node structure
consists of available nodes as shown in figure 20, where AVAIL is a pointer
variable storing the address of the top node in the stack.

Here, NEWPTR stores the address of next available node which was orig‘inaﬂy
pointed to by AVAIL. LINK(AVAIL) shown in figure 20 (i) becomes AVAIL after
taking topmost nede from the availability stack as shown in figure 20 (ii). A
node cannot be taken if AVAIL is NULL. Availability stack is also known as
free storage pool. '

AVAIL . NEWPTR ' To successor node
— . »

his nod
LINK (AVAIL) this node

AVAIL
e

(i) Before {ii) After
Fig. 20. Availability stack before and afier taking a node from it.

4.10.1 Algorithm for Getting a Node from Availability Stack

1. If(AVAIL = NULL) Then
{

Write(’Availability Stack Underflow’)
goto step 4.

. _
NEWPTR = AVAIL
AVAIL = LINK(AVAIL)
-End. '

— in list which will have - -
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After getting a node it can be used as per our reqﬁirement. The dyna'mic allocation
of memory in C is done by using the function malloc() as shown : -

. The node structure can be declared first as

typedef struct nodetype /* Aeclare node type */

{

int iffo;

struct nodetype *next;
}node; f

Now the following statement creates a node dynamically :

node *newptr = (node *) malloc(sizeof (node));
if (newptr==NULL) R
printf ("\nAvailability Stack Underflow\n");

When a node is deleted (when it is no longer required) it is returned to the
availability stack for further use. If the address of the deleted node is given by
the variable FREEPTR, then the link field of this node is set to'the current
value of AVAIL and then FREEPTR becomes the new value of pointer AVAIL.
Figure 21 illustrates this :

FREEPTR
FREEPTR ~ | _ Previous AVAIL '
— : Address ..  —|
. i h 4
AVAIL
. -‘_’I
4 D h

(i) Before (i) After
Fig. 2‘1, Avaiiability stack before and after returning a node to it.

4.10.2 Algorlthm for Returnlng a Node to Avallablllty Stack
1. LINK(FREEPTR) = AVAIL
2. AVAIL = FREEPTR

3. End.
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The deallocation of memory (when we donot requzre at) in C is done by usmg
the ﬁmctwn free() as shown :

If freeptr is the address of a node which we want to delete where the appropriate

changes have been performed in a linked list, the following statei‘n.ent deletes
the node and then the memory again becomes available for use.

fr'ee(freeptr)l; /* make the memory free for use */

As the basic concepts of taking a node from availability stack and returning it

back when it is no longer required have been explained. So, let us concentrate

on actual implementation of stack as a hnked llst ‘ -

We know that stack 18 a linear data structure in which insertions and deletlons

are done only from one end called TOP of the stack. Linked implementation of |

stack is preferred over array implementation when length of the stack is
unpredictable. Figure 22 shows the linked implementation-of a stack heving 5
elements 20, 25 15, 17 and 42 with the element 20 at the top of

stack : . . N
TOP
H 20
F
25
15

(17

42 NULL E’:oﬁom

Fig. 22. Linked rep}'es:entation of a stack,
. Here, TOP is a pomter variable that contains a pointer to the top node of the
stack.

After IPUSH operation of DATA havihg value 55 the linked list ' looks
- as shown in figure 23 : )
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TOP
. 3—> 55
! . - - A
NOTES 20
Y
25
|
15
¥
17 _L

l 42 NULL | Bottom

Fig. 23. Linked represgntation of a stack after PUSH.

” b

Whén POP operation is performed the stack looks like,
" POP an element from the stack

TOP I
O3—» 20

K

15

¥ Popped element = 55

4

I : I[ '42 NULL ‘Bo‘nom
. ' O

Fig. 24. Linked representation of a stack after POP.
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TOP
=— 25
! Popped element = 20 NOTES
15 l
h 4
17-|

42 NULL | Bottom

Fig. 25. Linked representation of a stack after POP.

When a stack is empty, TOP points to NULL and it is not possible to POP the
stack. If we try to pop an element now, an underflow takes place.

4.10.3 Algorithm Insertion (PUSH) in a Stack as a Linked List

Let DATA be the element to be inserted in a stack having TOP as the pointer -
containing the address of the top element. AVAIL is a pointer to the top element
of the availability stack. NEWPTR denotes address of new node ‘

1. If (AVAIL NULL) Then .
{ : ) ’
Write(‘Availability Stack Underflow’)
goto step 6 '

} :
NEWPTR = AVAIL

3. AVAIL = LINK(AVAIL)
INFO (NEWPTR) = DATA
LINK (NEWPTR) = TOP

5. TOP = NEWPIR -

6. End.-

Using this representation we are using the pool of available nodes and we will -
never have to teqt whether a partlcular stack is full.

4. 10 4 Algorithm Deletion (POP) in a Stack as a Linked Llst

Let TOP be the pointer having the address of the top element of the stack. After
deletion the node is returned back to the availability stack having its top pointer
as AVAIL. ' '
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1. If (TOP = NULL) Then
{ .

Write (‘Empty Stack, Underflow’ }

goto step‘ 7 ‘
)
FREEPTR = TOP
WriteCInfo of deleted node is ' INFO(FREEPTR))

" TOP = LINK(TOP)"

LINK(FREEPTR) = AVAIL -
AVAIL = FREEPTR
End.

The C implementation for getting a node when requ:red and deletmg a node
have been given earlier.

.

n

7

Following functions in C implements the PUSH and POP operations on a stack
using linked implementation : -

/* function ‘definition PUSH() */

void PUSH(int data) /* function to push a nede x/ .
{ .
/* get memory for a node */
node *newptr= (node *) malloc(sizeof (node)) ;
if (newptr) - .
{. ' Y
newptr->info= data; -
newptr->next= top;
top=newptr;
}
_else
{
printf ("\nCannot create new node\n\n");
getch(};
exit{l);

/* function definition POP() .*/ -

void POP() [/~ functioﬁ to pop a node from a linked stack x/

{

node *freeptr=NULL;
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if(!top)
{
printf ("\nEmpty Stack, Underflow\n\n");
exit (1) ;

else

freeptrétop;
'printf("\ﬁPopped element : %d\n", freeptr->info);
top=top->next;
frée(freeptr); /* make the memof? free for use */
iff!topﬁ '
pr%ntf(f\nNo element left in the stack now\n\n");

4,11 RECURSION

One of the important applications of stacks is recursion. It is an important
facility in many programming languages such as PASCAL, C and -C++. Many
problems can be described in recursive manner. Recursionis the name given to
the technique of defining a process in terms of itself. For example, '

The factorial function can be recursively defined as

1 if N=0- :
FACTORIAL (N) = {N * FACTORIAL (N — 1), otherwise

Here FACTORIAL (N) is defined in terms of FACTORIAL (N — 1), which in turn

is defined in terms. of FACTORIAL (N — 2), etc., until finally FACTORIAL (0) -

is reached, having value as 1.
A stack is used for calculating the factorial of a number.

One more example of recursion is the algorithm for finding the greatest common
divisor of two integers, i.e., Euclid’s algorithm defined as :

'GCD (n, m), ifn>m

GCD(II’]_, n) ] m, if n=20 . .
K { GCD (n, MOD (m, n)), otherwise

Here MOD (m, n) is m modulo n—the remainder on_ dividing m by n. A stack
is used for finding the GCD or HCF (highest common factor) of two integers.

.
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A queue is o subclass of lists in which insertion and deletion take place at
NOTES ., specific ends i.e., Rear and Front respectively. It is a FIFO (First In First Out)
or FCFS (First Come First Served) data structure which is often used to simulate
real world situations. Figure 26 represents a queue and illustrates how an
insertion is made to the right of the right most element in the queue i.e., Rear,
and how a deletion is made by deleting the leftmost element of the queue i.e.,
Front. '

«— 70 | 25 | 20 | 40 | 80 | 55 |e—
Deletion - lnsertion

T

Front * Rear

Fig., 26. Representation of a queue.

Some examples of a queue are
(i) Persons entering a cinema hall.

(i) A time sharing computer system where many users share the
system simultaneously. Here the user programs that are waiting to
be processed form a waiting queue. The queue may not be operated in
FIFO basis, but on some complex priority scheme known as a priorily
queue. .

(1it) The line of vehicles waiting to proceed in some fixed direction at an
intersection of roads.

(iv) Selection of next file to be printed from a list of files on a printer.

4.13 OPERATIONS ON QUEUE

The basic operations that can be performed on a queue are :

(i) Creation of queue ’ (iZ) Check for empty queue
(iii) Check for full queue (iv) Insert an element in queue
(v) Delete an element from queue (vi) Display queue,

A queue can be either implement as an array or a linked list depending on the
requirement,

Self-Instructional Material



Arrays. Stacks, Queues

4.14 QUEUE AS AN ARRAY ' and Linked List

| I | Empty

tt o | ' NOTES

] .
[ 70[ | | Insert 70 .

20 Insert 20

FR ’
F R ‘ i
70 |.25

F

‘ ‘ 25 Delete 70

EREEl
.m 401 Insen 40 ’

F
.- 401 insert 80

F R (Overflow)
Fig. 27. Insert and delete operations on a simple queue.

Consider an example where the size of the queue is four elements. Initially, the
queue is empty. It is required to insert elements 70, 25 and 20, delete 70 and -
25 and-insert 40 and 80. The queue status is shown in figure 27. Note that an
overflow occurs on trying to insert element 80, even though the first two locations
have no elements. Here F and R denote Front and Rear position respectively.

4.14.1 Algorithm Insertion in.a Queue as an Array

Let Q be queue having size N. DATA is the element to be inserted. F and R
denote the front and rear positions in the queue. Assuming the mdex begins
at 1 Initially F and R are 0.

1. If{R=N) Then

{

Write('Insertion not possible’}
goto step 5

}
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4. If(F=0) Then
F=1
NOTES 5. End.

4,14.2 Algorithm Deletion from a Queue as an Array

Let Q be a queue. F and R denote the front and rear positions in the queue.
DATA is a temporary variable which stores the deleted element (if possible).
- | Assuming the index begins at 1.

1. I£{(F=0) Then
{
Write('Deletion not possible’)
goto step 4

}
. 2. DATA=Q[F]
3. If{F=R) Then

{

4. End.

The above algorithms can waste a lot of memory if the front index F never
reaches upto rear index R. Actually, an arbitrary large amount of memory
would be needed to store the elements. This method should be used only when
the queue is emptied at certain intervals.. o

NO"I’E~ In C the array index always begins with 0.

‘Following'functions in C implement the queuglas an array with array index
beginning at 0 and performs the insert and delete operations :

/* funlctior'i definition -insert (} */ .

void insert (int Qf{],int data)

{

if (rear == SIZE-1)

{

. printf{"\nInsertion not posgible\n"};
exit (1) ;
}_

élsg .
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Ql++rear] =data;

if(rear == 0) /* if first elemenb”w;;uT;serted * / '
front=rear; I '
if{rear == SIZE-1) N
printf ("\nNo element will be inserted .next. time\n\n");
} ' ‘ -
/* function definition del() */

void del(int Qf]V

¢ e

if(front<0) 3
{
printf ("\nDeletion not possible\n");
exit (1) ;
} . -
else
{ .
printf ("\nDeleted element : %d\n",Q[front]);
if (front==rear) :
%ront:rear:—l;
else
front++;
} \]
}

Using the above method, it is possible to come across a situation when the queue
is empty but it is not possible to insert any new -element in the queue. So this
implementation is not acceptable. . .

To overcome this drawback, we can implement the queue like a stack where one
end of the stack is fixed i.e., in the queue also, we fix the front of the queue so
that it always represents the first element of the array. On deletion of an
element (if possible) the entire (iueué is shifted towards the beginning of the
array. In this case only the rear index is required, since the front element of the

queue is always at the starting position of the array.

This technique can be easily implemented but it is too inefficient as each deletion
requires shifting of elements and the logic is not correct. If a large number of
elements are present in the queue, the shifting takes a lot of time and in turn
makes it a costly affair. ‘

A better solution to this problem is to use the a-rray holding the queue as a
circular array. '
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4.15 LINKED IMPLEMENTATION OF A QUEUE

Another way to implement queues is as linked lists. It overcomes the drawback
of a queue used as an array because many times the locations in an array
remain unused or the array size may not be enough to store the desired number
of elements if we wish more than the array size at run time. In linked
1mplementat1on two pointers, front and rear point to the first and last element
of the list as shown in figure 28 :

rear

{50 ] - 0] 35

front

Fig. 28. Linked representation of o queue having three nodes.

We can check whether a queue is empty or not by checking its front pomter
whether it is NULL or not.

A new element can be 1nserted at the end of the list after the last node which
is pointed to by the pointer rear. A care must be taken when an element is
inserted into an empty queue as in this case we need to adjust the front pointer
to the new node. -

When an element is to be deleted from a quete, we must check that the queue
is not empty. If only one node is present in the queue and we are deleting it,
we must set rear to NULL, indicating that the queue is now empty.

'4.15.1 Algorithm Insertion in a Linked Queue

Let DATA be the element to be inserted in a queue having FRONT and REAR
as the pointers containing the addresses of the front and rear elements. The
new element is always inserted only at the rear end, i.e., REAR gets modified .
when insertion takes place. AVAIL is -a pointer to the top element of the
availability stack. NEWPTR denotes address of new nouae. Initially FRONT and
REAR are NULL.

1. If (AVAIL=NULL) Then
{ . .
'Write (‘Availability stack underflow’)
goto step 6
} .
2. NEWPTR=AVAIL
3. AVATL=LINK(AVAIL)
4. INFO({NEWPTR)=DATA
LINK (NEWPTR) =NULL
5. If(REAR=NULL) Then

{

FRONT=NEWPTR
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REAR=NEWPTR
o
Else

{

LINK(REAR) =NEWPTR
REAR=NEWPTR

}

6. End.

Using this representation we are using the pool of available nodes and we will

never have to test whether a particular queue is full.
The insertion in a linked queue is shown in figure 29 :
’ 'REAR

N i I =

Fig. 29 (@) Linked riueue having three nodes.

FRONT

REAR

0 | {0 [ {3 [ e [ 7]

Fig. 29 (b) Linked queue after insertion of a node having data 24.

FRONT

4.15.2 Algorithm Deletion fmm a Linked Queue .

Let FRONT be the pointer having the address of the first element of the queue.
As the deletion always takes place from the front of the queue, so FRONT gets
modified when deletion takes place. The deleted node is returned back to
availability stack having its top pointer as AVAIL. TEMP is a temporary pointer.

1. If{FRONT=NULL) Then

{
Write{’'Empty Quéue') _: . ' .
goto step 8 .

}

TEMP=FRONT

Write(’'Deleted element is ’, INFO(TE:MP)}

 FRONT=LINK (FRONT)

o wON

. If(FRONT=NULL) Then
REAR=NULL
6. LINK(TEMP)=AVAIL
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8. End.

Here steps 6 and 7 are used for making the memory free for further use ie.,the
node is returned to availability stack after deletion.

NOTES ‘
The deletion in a linked queue is shown in figure 30 :
REAR
s 7] (=]
FRONT ' ' .
" Fig. 30 (@) Linked queue having three nodes.”
. REAR
[3— 10| ——] 35
FRONT | - L] .
N Fig. 80 (b) Linked queue after deletion of ¢ node

Following functions in C implements the insert and delete operations on a
queue .using linked implementation :

/* function definition insert{() */

void insert (int data)
{ 3 _ ,

/* allocate memory for a node */ ' .

node *newptr= (node *) malloc (sizeof (node)) ;

newptr->info=data;

newptr->1ink=NULL;

if( front == NULL && rear == NULL } /+* function call */
front=rear=newptr; :

else ’

{

_rear->link=newptr;
rear=newptr;

/* function definition del () */

int del () - . -

{

node *temp; /* local variable declared */

if (lfronk)

74 Self-Instructionnl Muaterial

ey



printf ("\nQueue -Underflow\n!);
return(l); -/* return error signal */

else

A
temp=front;
front=front->link;
if(!front) /* if queue becomes empty on deletion */ .

rear=NULL; . '

pfintf("\nDelgted element : %d\n",temp->info);
return(0) ; .

4.16 IMPLEMENTATION OF A QUEUE AS A
CIRCULAR LINKED LIST

A queue can be implemented as a circular linked list also. In a circular linked
list we need only a REAR pointer and the following node is its front. For inserting
an element into the rear of a circular queue, the element is inserted into the
front of the queue and the circular list pointer is then advanced one element,
so that the new element becomes the rear. Figure 31 illustrates a circular
list :

. Rear

First Node . Last Node l '

i s O

Fig. 31. First and last nodes of a circular list.

4.17 DEQUEUE (DOUBLE ENDED QUEUE)

It is a linear list in which insertions and deletions are made to or frpm_ either end
of the structure. Figure 32 illustrates this : .

Deletl.on ] 0 15 90 o4 6 -7 +— Inserfion
Insertion —» . — Deletion
. Front ‘ Rear

Fig. 32. A deque.
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It is more general than a stack or a queue. It is of two types :

(&) Input-restncted deque : Insertion allowed at only one end but deletions,
allowed at both ends. :

Figure 33 illustrates this :

—— |nsertion
Deletion 4——

— Deletion -

Fig. 33. Input restricted deque (insertion allowed at only one end).

(i) Output-restricted deque : Delétion'allowed at only one end but insertions .
allowed at both ends. Figure 34 illustrates this :

t

- Inser‘tion\
insertion —M
/

+—» Deletion

Fig. 34. Output restricted deque (deletion ailou;ed at only one end).

4.18 PRIORITY QUEUE

A queué in which we can insert or delete (remove) items from any ﬁositfan
depending on some priorily is known as a priority queue. For example; in a
multiuser system, the CPU is needed by many programs and it is utilised by the
~ programs one at a time dependmg on some pnonty The CPU is first used by
the program having the highest priority. A priority queue can be sphtbed into
- several queues if needed. Figures 35 and 36 illustrate a priority queue :

I

Task identification

A, A - -63_1 ‘B, B, BH- C, - C,; l e Gy
11 t 212} 2|33 |-]3
Priarity 1 ‘- - ¢ ’ +

A 8, G
Fig. 35. A priority queue as a single queue with insertions allowed at any position.
Priority 1 '
Al AL AL a——A
Priority 2
BB B}—1 “'—\_Bi
Priority 3
G, G| |G| - ——C

Fig. 36. A priority queue viewed i_xs a set of queue{s:



4.18.1 Priority Queue Using Array

To maintain a priority queue in memory, we use multidimensional array, ie.,

use a separate queue for each level of priority (priority number). Each queue-

will appear as a separate circular array and have its own set of pair of pointers

called Front and Rear. Assume that each queue is of same size. So, we need only
" a two-dimensional array in which number of rows is equal to number of priorities
and the elements are added to the respective queue depending upon its priority
number. Figure 37 illustrates a priority queue of size 5.

F R S0 12 3 &
o] 1 1 A
1| o 2| | e8| c|x
2| -1
3| 3 4 ' . G [ H

Fig. 37. Priority queue using arrays.

In the above priority queue, F[i] and Rli] contain the front and rear elements
- of row i of queue, i.e, the row maintains the queue of elements with a priority
number ;. Whenever we are performing the insertion operation, we have to read
the data item along with priority number. Then it will search for that row for
empty cell, if it is found then place the item in that cell.and rear and front
pointers are modified as in a circular queue. If it is full, then it indicates
overflow condition for that row or priority number. To delete an item from the
priority queue, first it will cheek for the element in first row, if it is not empty,
simply it deletes the element like normal queue. If it is empty, then it check for
next row, if it not empty, delete the element from that row otherwise it checks
for next row.If all front and rear items are -1, then it indicates underflow
condition if we try to delete the element. So, the deletions are taken first from
first row to last row. )

4.18.2 Priority Queue Using Singly Linked List

In 2 singly linked list, the data items are maintained ‘according to the priority.
Each node in this queue contains three fields. One is actual data item, the
second field is the priority number of the data item and the third field is link
to next item in the list. At any point of time the highest priority element is in
-the front of the list,l so that directly we can delete the item from the front of the
list. If the two data items have the same priority, then we can consider their
entry sequence in FIFO order. Figure 38 illustrates the implementation of pnorlty
queue using linked list.

I';Iw—"l—’ielzlHc(alﬂ—%vis[—lﬁli[al\l

Front Rear

. Fig. 38. Priority qucue. e II" '

A
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Data Structures

Through ‘C’ 4.19 LINKED LIST

The term ‘list” means a linear collection of elements. Array is an example of
NOTES linear lists which we studied earlier. However, the problems of sequential .
' representation of lists (e.g., of array_sj are fixed size, wastage of time in shifting
of elements for insertions and deletions and réquirement of homogeneity of
elements. Thus, if size of memory réquired is not known in advance, or if many
insertions and deletions are expected or the elements are of different types,
linked representation can be used. Here, we will study linked representation of
only simple lists in which all the elements are of same type.

In a linked representation of a simple list, the address of the next element
must also be stored explicitly with each element. For example, if we have
list of names say (Apoorva, Aanchal, Aman, Ankit, Anjali) then assuming that
one name is stored in one memory location, figure 39 shows the linked

representation :

START :

Apoorva
1001 1004

. 1002

1003 ]
1004 Aanchal
1005 1006 |
1406 . Aman
1007 1010
1008 |
1009 .
1010| Ankit
1011 1012
1012 Anjali
1013 Null

Fig. 39. Linked implementation o}’a list' of names

Here, Null means that no next element exists in the list. This linked list can

be shown as follows : 1

START | apoorva [1004] | anchal |1008 Aman [1010} f  ankit  [1912] ) Anjali

—»
1000

Fig. 40. Linked list of 5 nodes

» ' N . 5
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Here, START contains the address of first element. The elements of linked list
are called nodes. In general, a node must have some information and a link
‘or pointer for storing the address of next node (if any) as shown in figure 41.

Pointer or
DATA ADDRESS

NEXT or
INFO LINK

Fig. 41. A node in a linked list

We follow the addresses-to access the elements in the logical order. It must be
noted that the list in memory may not be physically contigeous or sequential.
“Also’ the binary search method cannot be applied on linked lists due to the
fact that the location numbets of the elements may not be continuous.

The memory allocation for arrays is always static, as the number of elements
is generally known in advance.

" The memory allocation during program run time is known as d).mamic memory
allocation. Memory can be allocated or used (when required) and released or
deallocated (when not required any more) using this technique. Data structures
like linked lists, trees and graphs use this technique for their memory
allocation. -

4.20 ADVANTAGES OF LINKED LIST OVER
ARRAYS

The main advantages of linked lists over arrays are :

1. It is not necessary to know the number of elements and allocate memory for |-

them beforehand. Memory can be allocated as and when necessary.

2. Insertions and deletions can be han\giled efficiently without having to
_restructure the list. : :

3. The individual elements i.e., nodes can be scattered anywhere in memory
and no contiguous space is required like array elements

421 TYPES OF LINKED LISTS .

There are different types of linked lists. These are given below : |
(i) Singly linked lists
(i) Circular linked Lists
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Data Structures (iii) Doubly or two-way linked lists

. Through C’
(iv) Circular doubly linked lists.
(i) Singly linked lists. In a singly linked list each node contains data or
NOTES info and a single link which attaches it to the next node in the list. It is

shown in figure 40.

‘(it) Circular linked lists. A circular linked list contains a pointer from the
last node to the first node as shown in figure 42. In fact, there is no first
or last node, as all the nodes are linked in a circular way. One can always
start traversing the list from any node and visit all the nodes, provided,
pointer to any node in the list is known.

Fig. 42. Ilustration of o circular linked list

({ii) Doubly linked lists. In a doubly linked list each node contains data and
two links, one to the previous node and one to the next node. Figure 43
. illustrates a doubly linked list.

FIRST
o ——=——p 7|
START

' Fig. 43. lllustration of a doubly linked list

(tv) Circular (ioubly linked lists. For reaching any node from any other
node, a circular list is very useful. In a similar way, it is useful to make

a doubly linked list also a circular list. F igure 44 illustrates a circular
doubly linked list. '

Y

START —¥

&

Fig. 44. Hlustration of a circular doubly linked list

4.22 OPERATIONS ON SINGLY LINKED LISTS

]

Like other languages having pointer facility, we can treat a linked lists as a
abstract data type and perform the following basic operations :

.. (.
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(ii) Traversal _
(iii) Count the number,of elements (nodes) _ X
(iv) Searching | “ . : NOTES
(v) Insertion of a node ' '
(vi) Deletion’of a node
(vit) Modifying the contents of node
(viii) Reversal of a list
(ix) Concatenation of two iists
(x) Merging of two lists
(xi} Splitting of a list
(xii) Dividing a list into odd positionéd and even positioln-ed nodes
(xiii) Sorting etc. ' '
Before we discuss the algorithms and implement the basic operations, we give

below the vairables that are used in the algorithms with their meanings :

FIRST or START : This variable is of data type pointer which.
contains the address of the first node in the
linked list. If FIRST or START contains NULL
it means an empty linked list.

PTR . : This is a variable of type pointer and contains
the address of a node.

‘INFO{PTR) or DATA(PTR) : This variable contains the value stored in the
data portion of the node pointed to by the pointer
vairable PTR.

LINK(PTR) or NEXT(PTR) : This variable contains the value stored in the
link field or next field of the node pointed to by
the pointer variable PTR, which is the address
of the next node-in the linked list.

Successive nodes of the linked list can be accessed through the pointer variable
PTR (say). The symbol < in algorithms denotes the assignment operation.

4.22.1 Algorithm for Traversal in a Linl;ed. List

Traversing in a linked list means accessing each node in it successively starting
from the beginning and making the desired changes in one or more data fields
of the node. Let the desired operation be denoted by CHANGE without actually
specifying what changes are to be made. For example CHANGE may specify
-printing data of all the nodes, count the number of nodes currently available etc.
Initially, the PTR must have the value of START or FIRST and then Successively,
it must have the address of the next node so as to access the next node in the

Self-Instructional Material
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linked list. The algorithm will terminate when the entire linked list has been
traversed, i.e., when PTR is NULL. The nodes contain INFO and LINK fields as
information and address to next node.

1.PTR « START

2. Repeat upto step 4 while PTR  NULL and goto step 5
3. Apply CHANGE to INFO(PTR)

4. PTR « LINK(PTR)

5. End

" Figure 45 illustrates the concept discussed above showing the different addresses

stored at different times in vairable PTR (nntlal]y havmg START and ﬁna]ly
NULL pointer) :

LINK(PTR) LINK(PTR} LINK(PTR) L!NK(PTH)

g BTN T R e e R e o
- P

Fig. 45. Traversmg a Linked List

4 22.2 Algorlthm for Countmg Number of Elements (Nodes)

Gwen FIRST, a pointer to the first element of linear list whose node contains
INFQO and LINK fields as information and address to next node. Suppose we
want to count the number of nodes in hnked list then the following algorithm
will accomplish it : '

1.COUNT « 0

2 PTR « START

3, Repeat upto step 5 while PTR = « NULL and goto step 6

4. COUNT « COUNT+1

5. PTR « LINK(PTR)

6. Write COUNT

7. End.

4.22.3 Searching an Element

As mentioned earlier, the binary search method cannot be applied on linked
lists due to the fact that the location numbers of the elements (nodes) may not

. be continuous. It is one of the limitaions of linked lists as there is no way to find

the location of the middle element of the list. Further, we may have the linked
list as sorted or unsorted.

4.22.4 Linked List is Unsorted

Supposé we have a list of elements stored in a linked list. W,é want to find out
whether the element VALUE is in the list or not. The pointer variable PTR is
assigned the adress START, i.e., the address of the first node in the linked list.
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The searching process continuous until VALUE is found or the entire linked list -

is traversed. LOC gives the address of the desired element (VALUE). LOC
is NULL if VALUE.is not found in the linked hst The algorithm is given
below :

1. PTR « START
2. Repeat steps 3 and 4 while PTR # NULL and goto step 5
~ 3. If INFO(PTR) = VALUE Then -
goto step 5,
4. PTR « LINK(PTR)
5. LOC « PTR
6. End.

Figure 46 shows the searchmg of a node having VALUE 8 in an unsorted linked
list :

START .
—» 40 » 15 » 72 » 8 » 33 NULL
PTR
Fig. 46 (a) Linked list hauing' § nodes
START ) .
—» 40 —» 15 » 72 » 8 » 33 NULL

PTR
Fig. 46 (b) Appropriate location searched for VALUE 8 in the linked list

Searching is unsuccessful in case the des:red element (VALUE) is not present
in the linked list.

The following function in C.implements the above concept :

/* function definition.search()*/

void search{int value)

{ .
node *ptr=start; /* local variable */
while(ptr) /* while ptr != NULL */

{
if {ptr->info == value}
{

printf ("\n\n%d found at location number %lu\n",value,ptr);

return;
y -
ptr=ptr->link;

} .

printf {"\n%d not found in the link list", value:}l“-‘f
) ' __%____A
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' 4.22.5 Linked List is Sorted

Suppose we have a list of elements given in ascending ordr in a linked list, we

want to find whether the element VALUE is in the list or not. The pointer
variable PTR is assigned the address START, i.e., the address of the first node
. in the linked list. The searching procéss may terminate when we get the desired
VALUE or if any element of the linked list is found greater than VALUE or the
“entire linked list is traversed. LOC gives the address of the desired element
(VALUE). LOC is NULL if VALUE is not found in the linked list. The algorithm,
is given below :

1. PTR « START ,
2. Repeat while (LINK(PTR) # NULL and INFO(PTR)<VALUE}
PTR « LINK(PTR)

3. If INFO (PTR) = VALUE Then

LOC « PTR
Else
'LOC « NULL
4. End

Figure 47 shows the searchjhg of a node having value 58 in a sorted Linked
list : :

: N \

Fig. 47 (@) Linked list having 5 nodes in ascending order .of info

START, :
10 | 1 2 -

Flg 47 (b) Appropriate location searched for VALUE 58 in the ordered linked list

‘Search is unsuccessfal in case the desired element (VALUE) is not present in

the linked list.

Following function in C implements the above concept : -

/* function definition search() */ .

void search{int wvalue)

{

‘node *ptr=start; /+*.local variable */ ) T

’ wh‘Lle( ptr->link != NULL && ptr->info <« Value) )
ptr=ptr- >11n]* -
if{ptr-»info == value)

{

printf {"\n\n%d found at location number %lu\n", value,ptr);

) ~=



else . ) . ’ -

{ _ .
printf {"\n\%d not found in the link 1list", wvalue};
} T

*

4.22.6 Insertion into a Linked List

For inserting an element in a linked list, we first of all get a free node, assign
the element to be inserted to the INFO field of the node; and finally place the
new node at the appropriate position by proper pointer adjustment. The insertion
can take place at any of the following positions : )

* Insertion in the beginning of the linked list.
* Insertion in the end of the linked list.
 Insertion at the desired: position in the linked list.

¢ Insertion into an ordered linked list (say in asc»nding order).

4.22,7 Insertion in the Beginning

Given VALUE a new element to be inserted, START a pointer which pbints to
the first elements of the linear list whose node contains INFO and LINK fields
as information and address of the next node. This algorithm inserts VALUE
before the node being pointed to by START. AVAIL is a pointer that points to
the top element of the availability stack. NEWPTR is a temporaly pointer
variable. - :

Figure 48 shows the insertion of a node in the beginning of linked list :

~ START

hLIN B M 15 » 2 | 34 [NULL
—— 36
NEWPTR
Fig. 48 (a) Before inserting the node
START | 36 » 80 Mo15 | —a 72 |- » 34 |NULL

Fig. 48 (b) Afier inserting the node in the beginning

The algorithm for insertion in the beginning is given below :
1. {Check for memory availability?] '

If AVAIL = NULL Then

{

Write (‘Availability stack underflow’)
goto step 6
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Data Structures 2. [Obtain éddres.s of next free node]

Throuet °C  NEWPTR « AVAIL
3. [Remove free node from availability stack]
NOTES AVAIL « LINK(AVAIL) -

4. [Initialise fields of the new node obtained}
INFO(NEWPTR) « VALUE ‘
LINK(NEWPTR) « START

5. [Make newnode as the first node of the list]

START « NEWPTR

6. End.

The above Eoncept has been implement in Program 1.

4.22.8 Insertion-in 't]_1e End

Given VALUE a'new element to be inserted, START a pointer which points to
the first element of the linear list whose node contains INFO and LINK fields
as information and addfess of the next node. This algorithm inserts VALUE
in the end of the linked list. AVAIL is a pointer that points to the top element
of the availability stack. NEWPTR and PTR temporary pointer variables. Figure
49 shows the insertion of a node in the end of linked list :

L T N g I N L e RN 7 T
' e I T

Fig. 49 (a) Before inserting the node

S N I IV I I I T = T )

PTR LINK(PTR)

Fig. 49 (b) Aﬁer inserting the node in the end

The algorithm for insertion in the end is given below :
1. [Check for memory availability 7I

If AVAIL = NULL Then

[ .

Write(‘Availability stack underflow’)
goto step 9.

1 ‘
‘2. [Obtain address of next free nodel
NEWPTR « AVAIL
3. [Remove free node from availability stack]
* AVAIL « LINK(AVAIL)
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4. {Initialize fields of the new node obtained]
INFO(NEWPTR) « VALUE
LINK(NEWPTR) « NULL
5. [Check whether the link list is empty 7]
If START = NULL Then ‘ N
{ START ¢ NEWPTR
goto step 8

} _
6. [Initialise search for the last node of list]

PTR « START
7. [Search for end of the list]
Repeat while (LINK(PTR) # NULL)
PTR « LINK(PTR)
8. [Add the node in the end]
LINK(PTR) « NEWPTR
9, “‘End.

The above concept has been implemented in Program 2

‘4,22.9 Insertit_m.at the Desired Posifion ' '

This involves a&ding a new node to the linked list. The node, can be added
anywhere. Figure 50 shows the insertion of a node at the 4th position in the
list :

STARL[ [+ 25 T35 [ J-—[ 7 [ I 2 Jud
NS Tl

. Fig. 80 (a) Before inserting the node

T T8 Tl 5 [ ({7 [+

PTR = LINK(PTR) -

Flg 50 (b) After msertmg the node at 4th position

For insertion we perform the following steps :
(i) Allocate memory for the new node. .
(if) Enter data for the info part of the node.
" .(iii) Search for the appropriate ﬁosition of insertion.

(fv) Modify the pomter(s) so that the new node is inserted at the desired
" position. :

Arrays, Stecks, Queunes

t

' and Linked List

NOTES

Self-Instructional Material

87



Data Str H“’g es The algorithm’ for insertion of VALUE at the desired positon (POSITION) is -
Through C’

. given below : -
1. [Check for memory availability ?)
N O'TE S If AVAIL = HULL Then

{ .
" Write(‘'Availability stack underflow’)
goto step 8

}
2. [Obtain address of next free node]

NEWPTR « AVAIL
3. . [Remove freenode from availability stack]
AVAIL « LINK(AVAIL)

4. [Initialise fields of the new node obtéined]
INFO(NEWPTR) < VALUE |
LINK(NEWPTR) « NULL

5. [Initialise search for the desired position]
PTR « START '
STEPS « 1 _

6. [Search for the desired position]

. Repeat while(STEPS < POSITION - 1)
{ PTR ¢ LINK(PTR) .
~ STEPS « STEPS + 1
) :
7. [Add the node in the list]
If (POSITION = 1) Then

{

LINK(NEWPTR) < START
START < NEWPTR

LINK (NEWPTR) ¢« LINK(PTR)
LINK(PTR) <« NEWPTR

.k
8. End
The following function in ‘C’ inserts a node at the desired position in’a linked
list : ' ' )
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/* function definition “nsert() */
i

void. insert (int position,int data)
node *newptr=NULL; /* local variable */
node *ptr=start;

int steps=1;
/* create a new node */

newptr= {(node*) malloc {sizeof (node));

newptr->info=data

/* search for the desired position */
while (steps<position-1)
{
ptr=ptr->link;
Steps++; s
} -
if(position==1) /* if node ig to be inserted at the first placé */?
( : . .

newptr->link=start;

!
start=newptr;

elgze

{
newptr->link=ptr->link;

ptr->link=newptr

4.22.10 Iﬁsertion in an orderéd!(ascendiﬂg order) linked list

This involves adding a new node to the linked list. The node is added in such’
a way that the ordering is preserved (i.e., linked list remains sorted after
insertion). Figure 51 shows the insertion of a node in a sorted linked list :

PTR -

42
PTR LINK(FTR) INFO(LINK (PTR))

Fig. 51 (a) Before inserting the node
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Fig. 51 (b) After inserting the node

NOTES 4.22.11 Algorithm for Insertion in an Ordeped Linked List

" Given START the pointer variable having the address of the first node-in the
linked list having its elements in ascending order. VALUE is the new element
to be inserted. AVAIL is address of the topmost node of the availability stack.
NEWPTR and PTR are temporary pointer variables. It is required that after
insertion of new element the ordering of ‘into fields is preserved.

1. [Check for memory availability 7
If AVAIL = NULL Then
R

Write(‘Availability stack underflow’)
. goto step 6
}
2. [Obtain address of next free node] .
NEWPTR « AVAIL
3. [Remolve free node from availability stack]
~AVAIL-« LINK(AVAIL} -
4. [(Initialize info field of the new node obtained)
INFO(NEWPTR) « VALUE
5. {Check if list is empty or new node preceéds all other nodes 7]
If ( (START = NULL) OR (INFO(NEWPTR) < INFO(START) ) Then
{ . _ VAR
LINK(NEWPTR) « START
START « NEWPTR
)
Else
{

<

[Search for the proper place of insertion, i.e., intialize search]
PTR « START
[Search for predecessor of new node]

Repeat while( (LINK(PTR) # NULL) AND (INFO(LINK(PTR))<
INFO(NEWPTR)))

AN

PTR « LINK(PTR)
{Insertion]
LINK(INEWPTR) « LINK(PTR)
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LINK(PTR) « NEWPTR
}

6. End

The following function in C implements the above concept :

*/* function definition insert() =/

void insert{int data)

{

node *newptr=NULL; /* local variabkle */
node *ptr;

./* create a new node and initialise it */

ﬁewptr= {node *) malloc(size of (node));
newptr->info=data;

/* check if list is empty or new node preceedes all other nodes */

if( (start==NULL) || (newptr-s>info <= start-s>info) )

{ .
newptr->link=start;
start=newptr;

}

else

{ - : : -

/* search for the proper plaée of insertion */

ptr=start; /+ initialse ptr with start =/

while ((ptr->1ink!=NULL) &&({ptr->1link)->info< (newptr->info)}))
ptr=ptr->link;.

/* insertion */
newptr->link=ptr->1link;

ptr->link=newptr;

[
——————————————————————————————————————
o e e ]

4.22.12 Deletion of a Node

This involves the deletion of a node from the linked list. The deletion can be from
any where in the list. For example,

i T [ B e KT e N I R T

Fig. 52 (@) Linked list before deletion. .
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Fig. 52 (b) Linked list after deletion of .node from position 5. -

NOTES The following steps are followed to delete a node’ from a given position :
‘ ' (i) Store the address of START in a temporary pointer (say PTR).
" (ii) Search for the desired position by traversing the list.

(m) If the first node is to be deleted then make the pointer LINK' (STAR’I‘}
as the new START and free i.e., deallocate the memory occupied by the
temporary pointer which was having the address of initial START poitner
and stop. '

(iv) Store the pointer of the LINK field of the node to be deleted in the LINK

of the previous of the node to be deleted and free the memory occupied
by thé temporary pointer having the address of the node to be deleted.

The algorithm for deletion from any position in a linked list is given below :
Given POS the position of deletion, START a pointer which pbints to the first ~
element of the linear list whose node contains INFO and LINK fields as
information and address of the next node. This algorithm deletes the node from
the specified position (if possible). AVAIL is a pointer that points to the top
element of the availability stack. PTR and TEMP are temporary pointer variables.
After deletion the deleted node is returned to the availabliiy stack. START will
be changed only when POS is 1. Also POS’ lies between 1 and TOTAL (total
number of nodes in the linked list). -

1. If (START = NULL) Then
{ .

Write (‘Linked list has no nodes so deletion not possible’)
goto step 8 '
} | ’
2. If (POS < 0 OR POS » TOTAL) Then
{
Write('Wrong position number given')
goto step 8
! ‘
3. If POS = 1 Then
. v
TEMP <« START
START < LINK(START)
goto step 7
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4. STEPS « 1
PTR « START
5. Repeat while (STEPS < POS - 1)
{
‘PTR ¢ LINK(PTR)
STEPS = STE;.:PS w1

} ; .
6. TEMP « LINK(PTR)

LINK(PTR} « LINK(LINK‘(PTR))‘
7. [Return hode to availability stack]
LINK(TEMP) « AVAIL
~ AVAIL « TEMP
8. End.

The following function in C implements the above concept :

]* function definition del node()*/

void del node(int position)

{
node *temp,*ptr=NULL; /* local variable */
int steps=1;

/* search for desired position */

if (position==1) /* if element 55 to be deleted'from start */
{ .

-temp = start;

start=start->link;

free(temp); /* deallocate memory */

}

else

ptr=start;
while (steps<position-1)
{ .
ptr=ptr->link;
steps++;
}
temp = ptr->link;
ptr->link=ptr->link->link;
freel{temp); /* deallocate memory */ i

b e ————————rep e P St
1 v ——— L —
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 Data Structures - 4,22.13 Modifying the Contents of a Node

Through ‘'C’ '
. This involves the replacement of the info of an existing node by a new
value. It is shown in the following example :
. NOTES START : T ,
- 95 > 7 ~ 25 » 89 » 13 40 INULL
PTR |-
PTR INFO{PTR)
Fig. 53 (a) Linked list before modification
~ START . -
—> g5 » 7 » 25 » 89 {5 S —— 40 INULL

Fig. 53 (b) Linked list after modification of contents of node number 5

The following steps are followed to delete a node from a giveﬁ position :
(z) Store the address of START in a tempo'rary'pointer (say PTR).
(i) Search for the.desired position by traversing the list. | '
(iif) Replace the old contents by new contents (value), if node found.
The élgorithm for modifying the contents of a node is given below :

Given START a pointer variable storing the address of the first element in the
- linked list. Each node in the linked list (if any) has INFO and LINK as its -~
information and pointer field (having the address of new node) respectively. .’
PTR is a temporary pointer. OLDVALUE is the info to be replaced and - '
NEWVALUE is the info to replace it. -

1. If (START = NULL) Then .
{

. Write{‘Linked list has no nodes so modification not possible’)
.goto step S '

}
2. PTR«START

3. Repeat while ( INFO(PTR) = OLDVALUE) AND (LINK(PTR)=NULL) )
PTR«-LINK(PTR) ’
4. If (INFO(PTR) = OLDVALUE)
" INFO(PTR) + NEWVALUE
Else . . -
Write(‘The node to be modified not found in the linked list)
5. End

The following function in C implements the above concept :
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/* function. definition modify() */

vo_id-modify(inf: oldvalue, int newvalue)

{

node *ptr=start; /* initialise ptr with stért */ -
"/* search” for the desired info (first occurence only) */

while (ptr->info- I= oldvalue && ptr->link != NULL)
ptr=ptr->link;

/* 1if info found then replace oldvalue by newvalue */

-

if (ptr->info == oldvalue)

ptr-»>info=newvalue;
elge
{ .
- printf("\n\n%d not found in.the linked llst\n“,oldvalue}
del list(); /* deallocate the memory */
getch () ; : .
exit () ; ' -

4.22.14 Reversal of a Linked List

Given a linked list pointed to by START whose nodes have INFQ and LINK
fields respectively. PREVIOUS, CURRENT and NEXTPTR are temporary pointer
variables used for swapping of pointers and traversal in the lmked list. Let us
take a linked list of 4 nodes as shown below :

M,l 30 |_|_..[ 25 | “ 70 12 NULL

Fig. 54 () Linked list having 4 nodes.

The foiiowing steps are followed for reversing it :

1. We begin traversing the linked list by initially taking the address of first
node as CURRENT and address of its predecessor node as PREVIOUS which
is presently NULL. While traversing the linked’list we perform the following
changes in the address of nodes (i.e., pointers)' until we reach in the end of
the hnked list. -

(z) Store the LINK(CURRENT) in NEXTPTR
(it} Replace the LINK(CURRENT) by PREVIOUS
(iii) Make the CURENT pointer as PREVIOUS
(iv) Make the NEXTPTR as CURRENT o
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'9. At last when CURRENT is NULL, set START to store the addi‘ess of the last
node in the given linked- list, i.e., PREVIOUS.

These pointer changes are’ shown in ﬁgure 54(b) :

| PREVIOVS 0 T3 25 1] o 70 |+—.| 12 NOL
NULL CURRENT LINK(CURRENT} ’ '
—(5 o & (7 [
PREVIOUS NEXTPTR

CURRENT

!

v
R [ O |+—-m

PREVIOUS NEXTPTR
: CURRENT
i 1 *li 1 ‘
Caofwe] [ 25 J] — 70 |] — 12 puy
_ . PREVIOUS NEXTPTR
CURRENT,

sofnit] [ 25 '] 0 70 [ — 12 [ "] nexterm
N PREVIOUS CUNHUHLéNT

v - vl vl . ! .
30 [nu] | 25 || [ 70 |} 12 [ ]

START -
Fig. 54 (b) Hlustration of reversal of a linked list.

The alégorithm for reversing a linked list is given below :

Given START the address of the first node in the linked list. PREVIOUS,
CURRENT and NEXTPTR and temporary pointer variables for swapping of
pointers. The node of the linked list has INFO and LINK as information and
address of next node respectlvely

1. If (START = NULL OR LINK(START) = NULL) Then

goto step 5.
2. PREVIOUS <« NULL
CURRENT « START
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3. Repeat while (CURRENT = NULL)
{

NEXTPTR . < LINK{CURRENT)
LINK (CURRENT) <« PREVIOUS

PREVIOUS ¢ CURRENT

CURRENT « NEXTPTR

} . )
4. START « PREVIOUS _
5. End - coo T

4.22.15 Concatenation of Two Smgly Lmked Lists

Suppose we are given two linked lists havmg FIRST and SECOND as the
addresses of their first nodes as shown below :

e NN I S I S e T
SECOND, 77 |} ot ] F——{ 5]

. Fig. 55 (a) Linked lists before concatenation

- We want to produce a new singly linked list which is to be pointed to by al

pointer variable THIRD. This new list is to be obtained by concatenating the
- two linked lists pointed to by FIRST and SECOND as shown below :

THIRD, 7z 28 [ 57 | 12 | -+ 8¢ ] Jf 5 e

Fig. 55 (b) Concatenated linked list’

The following steps are peformed for concatenation :
1. Copy the pointer FIRST to THIRD.

2. Traverse the first list until the end of the hnked list is reached usmg a
temporary pointer variable PTR.

3. Change the NULL pomter in the last node of the first linked list so as to
point to the first node of the second linked list pointed to by pointer variable
SECOND. :

" The algonthrn for concatenation of two linked lists is given below :

Given two linked lists being pointed to-by pointer variables FIRST and SECOND
respectively. We are to concatenate these two linked lists such that the second
linked list is joined after the.first linked list. PTR is a temporary pointer variable.

1. THIRD « FIRST

2. If (FIRST = NULL) Then
{

THIRD ¢« SECOND
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goto step 7

}
8. If (SECOND = NULL) Then

goto step 7

4. PTR .« FIRST

5. Repeat while (LINK(PTR) # NULL)
PTR « LINK(PTR)

6. LINK(PTR) « SECOND

7. End

' 4,23 CIRCULAR LINKED LINEAR LIST

‘So far we have discussed linked linear lists in which the last node contains the

NULL pointer. A slight change in the linked linear list results in a further
improvement in processing of list. This is done by replacing the NULL pointer
in the last node of a linked list with the address of its first node. Such a .
linked list is called a circular linked linear list or simply a circular list.
Figure 56 illustrates the structure of a-non-empty circular list havmg no
NULL pomter

S%H—JH—*LH—#IHI“

Fig. 56. Circular linked list hauiﬁg ‘5 nodes

In a circular linked list travessal is only in the forward direction

4.23.1 Advantages of Clrcular List Over Slngly Linked Lists
Main advantages are given below :

1. In a circular list every node of the list is accessible from a given node. That
is, from this given node, all nodes can be v1s1ted by simply chaining through
the list.

2. The deletion of a node does not require the address of the first node of the

linked list (as in case of singly linked list, where sear_ching takes place from
the first node of the list). The searching of an element can take place from
the address of node itself,. when its address is given.

.3. Operations like concatenation and splitting become more efficient in case of .

circular lists.

The memory declarations and allocation for representmg circular linked lists
are the same as for linedr linked list.
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All the operations that are allowed on singly linked linear iists_ can be easily
implemented for circular linked lists, except the following :

1. The LINK field of the newly inserted last node in the hnked list points to the
first node.

2. While checking for the end of the circular linked list, we compare the LINK
field with the address of the first node.

4.23.2 Dlsadvantage of Circular Lists

When we are traversmg a circular list, we must be careful as there is a possiblity

to get into an infinite loop! In processing a circular list, it is important that we
are able to detect the end of the list. We can help guarantee the detection of the
end by placing a special node which can be easily identified in the’ circular
linked list. This special node is often called the header node of the circular
linked list. The main advantage of this technique is that the linked list can
never be empty. As most of the algorithms require the testing of a linked list
as to whether it is empty, we observe that this' advantage is really important.
Figure 57 shows a circular linked list with a header node, where the variable
HEAD denotes the address of the heder node.

HEADER

(f%%ﬂ T +— T+ [ +— “—4::[%)

Fig. 57. A circular linked list with a heder node

Note that the INFO field in the header node is not used, which is shown
by shaded field. Header node may contain length of the list or any other
information in its INFO field. An empty circular linked list is represented by
~ having LINK (HEAD) = HEAD, as shown in figure 58 :

HEADER

i

Fig. 58. An empty circular linked list with a-header node.’

The algorithm for insertion of a node at the head of a c1rcular linked list with
a header node i is given below :

Given a circular linked list having startlng address denoted by HEAD. Avail
denotes the address of the top most node of the availability stack. NEWPTR 1is
a temporary pointer. VALUE denotes the INFG of the node to be inserted.

1. [Check the availability stack ?]
IF (AVAIL = NULL) Then
{ _
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Write ('No free memory’)
goto step 5

} )
2. [Obtain address of next free nodel

NEWTPR « AVAIL
3. [Remove free node from availability stack]
AVAIL « LINKAVAIL)
4. [Initialize fields of new node and its link to the list]
INFONNEWPTR) < VALUE
LINK(NEWPTR) « LINK(HEAD) ]
LINK(HEAD) « NEWPIR - o .
5. End '

Figure 59 illustrates the msertlon of a node at the head of a circular linked
list :

HEAD, HEADER

] H-zp R lj

‘Fig. 69 (@) A circular linked list having 3 nodes

I 15

Fig. 59 (&) Circular linked list after insertion of node at the head with info 22

' 4.24. APPLICATIONS OF LINEAR LINKED LISTS

Like arrays, linked list is a very useful data structure. It can be used for
implementing the fo]lowmg .

{i) To model many different abstract data types such as stacks, queues, trees
and graphs. : :

(1) Polynomial representation and manipulation.
(z1z) To maintain a dictionary of names.
(iv) To perform arlthmetlc operations to some arbitrary premsmn

(v) To represent sparse matrices.
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Let us describe polynomial representation and manipulation. Arrays, Stacks, Queues
: and Linked List -

4241 Polynomial representatlon and manipulaton using
~ linked lists _ S
We can represent a polynomial such as : - L NOTES

x* + 5x% - Tx +'4_
using a linked list shown in figure 60 : & : : o - -

Coefficient Power

s, A e I R N N

Fig. 60. Representation of a polynomial using a linked list

Here, each term of the polynomial is represented by a node. A node is of fixed
size having three fields, first representing the coeflicient, second representing
the power or exponent and the third is a pointer to the next node of the list.

So the node structure is represented as shown in figure 61 :

. | Coefficient of tarm | Power or exponent | Link

. Fig: 81. Node structure to represented a poiynomial term

Thus the declaration of above shown node type in C language, havmg integer
coefficients are given below : _
typedef struct nodetype /* crea;e node type */
{ * ° -
int coeff;
int power;
_struct nédetype *1link; /* pointer to.the next node */
}node; -

node *sgtart;

In order to achieve greater efﬁcxency in processing, the polynomial can be stored
in decreasing order of powers by term

4.25 DOUBLY LINKED LIST OR TWO WAY CHAINS

So far, we have been restricted to traversing linked linear lists in one direction.
 There are situations when it is required and many times indispensable that a
- list be traversed in both directions, that is, either forward or backward. In such
a situation each node must have two link or pointer fields instead of usual one
link field. The links are used to denote the predecessor and successor of a node
in the doubly linked list. The link or pointer storing the address of the predecessor
-of a node is called the left link, and the link or pointer that storing the address
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of its successor its right link. A linked list having this type of node is called a
doubly linked list or a two way chain. Figure 62 represents a doubly linked list,
where START and LAST are pointer variables storing the address of the left-
most and right- most nodes in the linked hst repectively.

D e o e B

LPTR

Flg 62. A doubly linked linear list havmg 3 nodes

The lef’t link of the left-most node and the right link of the right- most node are
both NULL, representing the end of the list for each direction, that is, the first
node in a doubly linked list has no predecessor and the last node has no successor.
The variables LPTR and RPTR are used to denote the left and right links of a
node, respectively.

4.25.1 Representation of Doubly Linked Lists

Suppoée we wish to have a doubly linked list storing integers, then the following -
declaration in C language can be used for a node structure :

typedef ‘struct doubly_list

{

struct doubiy_list *1ptr;

int info; )

struct doubly_ list *rptr;
} node;

- node #*start, *last;

s

Now the following statement creates a node dynamically :
start = (node *) malloc (sizeof (node)); -

if (start == NULL)

printf{"\nAvailability stack underflow\n");

4.26 OPERATIONS ON A DOUBLY LINKED LIST

The followmg operatlons can be performed on a doubly linked hst
1. Make an empty doubly linked list-

2. Traverse the given doubly linked list

3. Insért new no.des in the doubly linked list

4. Delete existing nodes from the doubly linked list

1. Make an empty doubled linked list

After declaring the node structure an empty doubly linked list is créated Just -
by the following statement :

start = last = NULL,;
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2. Traverse the given doubly linked list

Traversing a doubly linked list is similar to traversing a singly linked list. But

Arrays, Stacks, Queues

in a doubly linked list traversing can be done in both directions. For traversing

the doubly linked list in forward direction, we make use of forward links
whereas for traversing the doubly linked list in reverse direction there are

two ways

(i) ‘First we traverse the list in forward direction and then in the backward
direction. This type of traversal is generally used when the LAST pointer

is not mentioned.

(i) Traverse the doubly linked list from end to beginning, that is, in the, |
backward direction using the pointer LAST to begin the traversal and

using backward links,

The algorlthm for traversal in a doubly linked list is given below:

Given START and LAST, the pointers to the first and last nodes of the doubly
linked list whose node contains LPTR, INFO arrd RPTR fields as left link,
information and right link respectively. MOVE denotes a temporary pointer
variable. Let the desired operation while traversing be denoted by CHANGE.

1. MOVE « START
2. [Traversing in the forward direction]

Repeat while MOVE # NULL

{

Apply CHANGE to INFO{MOVE)
MOVE < RPTR (MOVE) ,
.
3. MOVE « LAST
4. [Traversing in the backward _directit)n]

Repeat while MOVE # NULL

{
Bpply CHANGE to INFO{(MOVE)
MOVE « LPTR(MOVE)

5. End

3. Insert new nodes in the doubly linked list

For inserting an element in a doubly linked list, we first of all get a free node,
assign the element to be inserted to the INFO field of the node, and finally place
the new node at the appropridte position by proper peinter adjustment. The
insertion can take place at any of the following positions :

¢ Insertion in the beginning of the doubly linked list
» Insertion in the end of the doubly linked list
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» Insertion at the desired position in the doubly linked list

+ Insertion into an ordered doubly linked list (say in ascending order)

4.26.1 Insertion in the -beginning of the doubly linked list

Given VALUE a new element to be inserted, START and LAST the pointers
which point to the first-and last element of the doubly linked list whose node
contains LPTR, INFO and RPTR fields as left link, information and right link
respectively. This algorithm inserts VALUE before the node being pointed to by
START. AVAIL is a pointer that points to the top element of the availability
stack. NEWPTR is a temporary pointer variable. Initially START and LAST are
NULL. Figure 63 shows the insertion of a node in the beginning of the doubly
linked list : . ] o

a

SPALE AT ] Fe [ R [ sl ™
([t |

NEWPTR

Fig. 63 (a) Before inserting the node

R I ) e S 0 e S Y

Fig. 63 (b) After inserting the node in the beginning

“The algorithm for insertion in the beginning of thé doubly linked list is given

below : _ .
1. [Check for memory availability?]

IF AVAIL = NULL Then

{

Write(‘Availability stack underflow')

goto gtep 6

}

2. [Obtain address -of next free node]
NEWPTR « AVAIL

3. [Remove free node from availability stack]
AVAIL  LINKAVAIL)

4, [Initialize fields of the new node obtained]
INFO(NEWPTR) « VALUE,
LPTRINEWPTR) « NULL
RPTR(INEWPTR) « START
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5. [Make new node as the first node of the doubly linked list]

If (LAST = NULL) Then

{.

START ¢ NEWPTR

Arrays, Stacks, Queues

and Linked List

LAST « NEWPTR NOTES
-
Else.
{
LPTR (START} « NEWPTR .
. START « NEWPTR :
Yo
6. End ) -
4.26.2 Insertion in the end of the doubly linked list
Given VALUE a new element to be inserted, START and LAST the pointers
which point to the first and last element of the doubly linked list whose node
contain LPTR, INFO and RPTR fields as left link, information and right link
respectively. This algorithm inserts VALUE in the end of the doubly linked list .
AVAIL is a pointer that points to the top element of the availability stack. ‘
NEWPTR is a temporary pointer variable. Initially START and LAST are NULL.
Figure 64 shows the insertion of a node in the end of the doubly linked list : -
S ATse] Fel Too] et T A"
NEWPTR
Fig. 64 (a) Before inserting the node _
- STARLY Tss| T2 | 70] Tl 2] fe——2f Taa] 7 LAST
~ Fig. 64 (b) After inserting the node in the end of the doubly linked list
The algorithm of insertion in the end of the doubly linked list is given below D
1. [Check for memory availability 7] ]
IF AVAIL - NULL Then
{ :
Write(‘Availability stack ‘underflow’ )
goto step 6
) |
2. [Obtain address of next free node] .
NEWPTR « AVAIL
- ' Self-Instructional Material
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Da;;;_fi;f{lgf’s 3. [Remove free node from availability stack]
AVAITL « LINK(AVAIL)
4. (Initialize fields of the new node obtained]
NOTES INFO(NEWPTR) « VALUE
' ' RPTR(NEWPTR) « NULL
. 5. [Make new node as the Iastl node of the doubly linked list]

If (LAST = NULL) Ther

{
LPTR (NEWPTR) ¢« NULL
START <« NEWPTR
LAST ¢ NEWPTR

b

Else : )

{ . ) . .
RPTR{LAST) < NEWPTR
LPTR (NEWPTR) « LAST ‘

. LAST <« NEWPTR

}
. 6. End

The following functions in ‘C’ implement the insertion in the beginning -and at
end of a doubly linked list :

/* function definition insert_beginning() */

N void insert beginning(int data)

{

:

node, *newptr=NULL; /* local variable */

’

/* create a new node and initialise it */

newptr = (node *) melloc(size of{node)}; .
newptr->info=data;
newptr->lptr=NULL;
newptr->rptr=start;

/* make new node as the first node of the doubly iinked list */

’

. if(last==NULL) /* if the linked list is empty */

start=last=newptr;

else
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{

start->1ptr=newptr;
start:newppr;

)

/* function definition insert_end() */

void insert_end(int data)

{

node *newptr=NULL; /* local  variable */
/* create a new node and initialise it */

newptr = (node *) malloc(size of(node});
newptr -> info = data;
newptr -> rptr = NULL;

/* make new node as the last node of the doubly linked 1iist * {

if (last==NULL) /* if the linked list is empty =/
{ -
newptr->1ptr=NULL;

- start=last=newptr;

else . . .

'} ' o
/* insert the node in the end of linked list /
last->rptr=newptr; - ‘ '
newptr->1§tr=1ast;
last=newptr; ’

4.26.3 Insertion at the desired poéition in a doubly linked list

This involves adding a new node to the doubly linked list. The node can be
added anywhere. Figure 65 shows the insertion of a node at the 3rd position in
_the doubly linked list :

SUALTAT ] e (o] W [ e

NEWPTR

Fig. 65 (a) Before inserting the node
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Fig. 65 (b) After inserting the node at 3rd position

NOTES Fo? insertion we perform the following steps :
(i) Allocate memory for the new node.
.(i-i) Enter data for the info part of the node.
(iii) Search for the appropriate position of insertion. N
@iv) Modlfy the pointers so that the new node is mserted at the desn'ed position.

The algorithm for insertion of VALUE in a doubly linked lisi {ha\nng C()UNT
number of nodes) at the desired position is given below :

1. [Check for memory availability ?]
IF AVAIL = NULL Then I
{
Write('Availability stack underflow’)
gote step 8

} : .

[Obibain aﬂdreés of next free node}
NEWPTR « AVAIL

. [Remove free node from availability st:«ick]
AVAIL « LINK(AVAIL)

[Initialize info field of the new node obtained]
INFONEWPTR) « VALUE

5. [Check if insertion is in the beginning]

o

o

-~

IF (POSITION = 1) Then

{

" LPTR(NEWPTR) « NULL
RPTR {NEWPTR) + START
If LAST = NULL Then

START ¢ NEWPTR
" LAST ¢« NEWPTR

LPTR (START) <« NEWPTR
START < NEWPTR

goto step 8
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6. [Check if insertion is in the end]

IF (POSITION = COUNT + 1) f.[‘hen
RPTR (NEWPTR)} < NULL
RPTR{LAST) ~<« NEWPTR
LPTR (NEWPTR) ¢ LAST
LAST ¢« NEWPTR
goto step 8°

}

7. [Search for the desired position and insert] ° .

MOVE « START . .
STEPS « 1
REPEAT WHILE (STEPS <POSITION)

{ .
MOVE « RPTR(MOVE)
STEPS « STEPS + 1

LPTR(NEWPTR). « LPTR(MOVE)
RPTR(NEWPTR) « MOVE
' LPTR(MOVE) « NEWPTR
| " RPTR(LPTR(NEWPTR)) « NEWETR
8. End o

!

4.26.4 Insertion into an ordered doubly linked list (ascending

) order)

This involves adding a new node to the doubly linked list. The node is added in
such a'way that the ordering is preserved (that is, linked list remains sorted
ofter insertion). Figure 66 shows the insertion of a node in a sorted doubly

linked list :

_STAHTl{ /| 13| —L—_bl_ |401 —in— |§5M‘ﬁ5_'f

NEWPTH‘ ,

Fig. 66 (a) Before msertmg the node

ST Fof |4011—_'H44|

Fig. 66 (b) Aﬁer inserting the node
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4. Deletion of a node from a doubly linked list

This involves the deletion of a node from the doubly linked list. A number of
possibilities are there. If the doubly linked list has a single node, then a deletion
results in a empty list with the left-most and right-most peinters being set to
NULL. The node being deleted could be the left-most node of the doubly linked

.| list. In this case the pointer variable START must be changed. Similar situation

can arise in case we want to delete the right-most node of the doubly linked list.
The deletion of a node can take place from the middle of the doubly linked also.
For example, . . -

START p LAST
> 16 . . 43 o5 e

Fig. 67 (a) Doubly linked list before deletion

START - LAST
—Pp 16 25 l4——

Fig. 67 (b) Doubly linked list after deletion of node from position 2
The following steps are followed to delete a node from a given position :
() If the doubly linked list is empty then write underflow and return.
(1) If the doubly linked list has only one node then
Set the left and right pointers of the list to NULL
Else ‘ -
- If the leftmost node in the doubly linked list being deleted then
Delete the node and change the left pointer of _the list”
Else ‘
Search for the position of the node to be deleted
If the rightmost node in the doubly linked list being deleted then
- Delete the node and change the right pointer of the list
Else _ : _ . .
Delete the node from the middle of the doubly linked list

(i1z) Deallacate the memory used by the node and return -

4.27 SUMMARY

-o An alzray is a collection of the homogeneous (same type} elements that are

referred by a common name.

* An array is also called a subscripted variable as the.ele‘mer_lts of an array are
used by the name of an array and an index or subscript.

4

e e , .
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e Arrays are of two types : . ' Arrays, Stacks, Queues

. . . and Linked List
(£} one-dimensional arrays

(if) multi-dimensional arrays (2 or more).
* Stacks and Queues can be implemented using arrays. . NbTES

. Traversmg means visiting each element (from start to end) one after the
other. :

* Insertion is not possible if the array is already full but replacement of an
existing element is possﬂ:)le

e Stack is an ordered collection of items into which new items may be inserted
and from which items mays be deleted at one end, called top of the stack.

¢ Insertion in a stack is called PUSH and deletion as POP. :

o Stack is a container, which follows LIFO principle. ) ,

* Stack can be implemented as an drray and as a linked list. .

¢ A queue is an ordered list in which all insertions take place at one end, the
rear, where as all deletion takes place at other end, the front. Therefore,
Qlleues work on the concept of First In First Qut (FIFO) principle.

* The process of inserting items is called enqueueing, and removing 1tem frem
a queue is called dequeueing.

* A Deque is a linear list in which the elements can be added or removed at
either end but not in middle.

» A Priority. Queue is a collection of elements such that each element has been
" assigned a priority and based on the order in which elements are deleted and
processed.

* Linked list is possible to grow and shrink size at any time.

¢ A linked list is a chain of structures in which each structure consists of data |\
as well as pointers, which store the address (link) of the next logical structure |
. in the list. -

4.28 TEST YOURSELF

Answer the following questions :
1. What is an array ? Discuss its different types. -
2. Write an algorithm for insertion of an element in a sorted array.

3. List the disadvantage(s) of implementing stdcks as arrays. Describe means for
overcoming the problems. )

4, Write a C program to read an array A of integers and push all even numbers
and odd numbers read into two stacks and then display them by poepping the
stacks.
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13.

14.
15,
‘16.
17.

. Declare a stack using array that contains int type numbers, and define pop

and push function using C syntax.

How will you know that a linear queue is.full ?
Write two applications of Liu'eue.

What is the drawback of linear queue ?

What is a dequeue ?

What is a priority queue ?

List some of the disadvantages of impiementing queues as arrays. How will
you overcome the problems ?

Let @ be a non empty queue zlu;d S be an empty stack. Write a C program
to reverse the order of items 1n Q. -

Write an algorithm and a function in C for insertion of a node in a sorted
linked list givext-in ascending order. '

What is a linked list ?

n

Describe different types of linked lists.

Write a short note on aﬁplications of linked lists.

Describe the procedur-'es for inserting and deleting nodes ‘from a double
linked list with an example.

. Differentiate between Circular and Doubly-linked lists.

QaQ



Trees

'SECTION C

NOTES

CHAPTER 5 TREES

% LEARNING OBJECTIVES %"

5.1 ‘Introduction

5.2 General Trees

5.3 Binary Tree ‘

5.4I Pljopertiés of Binary Treés

5.5 Implementation of Binary Trees
5.6 Binal;y Tree Traversal Methods

5.7 Binary Tree Traversal Algorithms Using Stacks (i.e., Iterative
= - Algorithms)

- 5.8 Binary Search ‘Tree
5.9 Summary
5.10 Test Yourself

5.1 INTRODUCTION

So far in the text we have discussed linear data structures such as arrays,
stacks, queues and linked lists. Each element in these data structures is followed

' by one next element. There is another type of data structure which is non-linear
data structure. In a non-linear data structure, each element may have more
than one next element. One such non-linear data structure is a iree.

5.2 GENERAL TREES

A general tree T is a finite set of zero, one or more nodes (or elements) (R, Ry,
...... ~R,) such that
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Data Structures (i) There is one specially designated node called the root of the tree. Let it

Th h ‘C
roue be denoted by R;.
(i) The remaining nodes R,, Ry, ...... , R, are partitioned into m' (m 2 0)
' disjoint subsets, each of which is itself a tree. These trees may be denoted
NOTES 5 _ , y ;

by T,, Ty, ..., T

Ty, Ty, -....., T,, are known as subtrees of tree T.

m’

5.2.1 Empty Tree

A tree with no nodes is called an empty tree.

Representation of Tree

- There are many ways to represent a tree structure. One of the simplest way of
drawing a tree in computer science is upside down so that the root of the tree |
is at the top and the branches are in the downward direction as shown in
figure 1.

- Fig. 1. A general tree.

" Here the root of the tree is A. There are three subtrees of the root A, with roots
B, D and G. The root B has one subtree. The root C has empty subtree. The root
D and G have two and three subtrees respectively. The nodes (except root)
having no subtrees are called leafs or terminal nodes. Any node (except the root
and leafs) is. called non-terminal node:

5.2.2 Level of a Node

The level of a node is equal to the length of the path from the root to the node.
The root of the tree has level = 0. - ‘
For example in-figure 1 the levels are :

Level of A = 0 |

Level of B, D, G =1

Level of C,E, F, H, 1, J = 2
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Degree of a Node

The degree of a node is the number of children it has. The dégree of a leaf
"is 0. For example, in figure 1 the degree of node G is 3.°

Dégree of a Tree

" The degree of a tree is the maximum of its node degrees. The degree of tree in
figure 1 is 3. : .

Heighthepth of a Tree
" If level of the root is denoted by 0, then }
Height/Depth of tree = 1 + maximum {levels of all nodes in the tree}

The height/depth of tree given in figure 1-is 3 (as maximum level is 2).

Parent and Child Relatwnsth

. In figure 1 the node A is parent of B, D and G.

B, D and G are called children of A.

C is the child of B.

" E and F are children of D.

H, I and J are children of G.

. .The children nodes of a given parent node are called siblingé or brothers.

There are many applications of general trees. However, a special class of general
_ trees is binary tree, which is a very useful data structure. ‘

£

- -l — [
53 BINARY TREE 7'~ 1

A tree-is7called a binary tree if it has a finité set of riodes that is either empty
or contains a single element called the root of the tree and all the other nodes
are partitioned into two disjoint subsets, each of which itself is a binary tree.

- The two subsets are called the left subtree and the nght subtree of the
original tree,

_ Let us consider the binary tree shown in figure 2.

Fig. 2 A Binary Tree.

Trees

NOTES
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Here, ‘A is the root of the tree and the following: two subtrees are :

Fig. 3
The left subtree of the original tree is and i1t has no subtrees.

Fig. 4
The right subtree has root as @ and two subtrees are @ and @

Binary trees are dlﬂ'erent from General trees. A bmary tree has left and right
subtrees, whereas, in general trees there is no left or right subtree.

-

Flg'.

(a)

In ﬁg‘ure 5 (a) is having a left subtree and no right subtree F1gure 5 (b) has no
mearing and figure 5 (c) is having a right subtree.

In figure 5 (a) B isycalled the left child of A and in ﬁgure 5 (¢) B is called the-
‘right chlld of A. .

54 PROPERTIES OF BINARY TREES

Property 1. The drawing of every bmary tree with n elements, n.> 0, has exactly
n-1 edges. . .

Proof : Every element in a binary tree (excepi: the root) has exactly one parent.
There is exactly one edge between each child and its parent. So the number of
edges is exactly n-1
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Property 2. A binary tree of height h, h >0, has at leasr h and at most 2}1 1
. elements in it.

Proof : Since there must be at least one element at each level, the number of
- elements is at least A. As each element can have at most two children, the
number of elements at level i is at most 2/~ 1, i > 0. For & = 0, the total number
of elements is 0, which equals 2° — 1. For & > 0, the number of elements cannot
exceed, . - ’

1
(R
+
)
+
N
(V]
-+
+
N
&
|
=

=29k 1,

Property 3. The height of a binary tree that contains n, n 2 0, eiements 19 at
most n at least ﬁog2 n+ 1]

Proof : Since there must be at least one. element at each level, the height
" cannot exceed n. From Property 2, we know that a binary tree of height 4 can
have no more than 2* — 1 elements. So n < 2% - 1. Hence, & 2 log, (n + 1). Since
h is an integer, we have % 2 [log, (n + 1)1 ' ‘

A binary tree of height % that contains exactly 2" — 1 elements is called a full
binary tree. The binary tree of figure 6 (¢) is a full-binary tree of height 3. The
binary trees of figures 6 (b) and (¢) are not full binary trees.

() ~(B)
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Fig. 6. Binary Trees
Figure 7 shows a full binary tree of height 4

. Level 0

Level 1

Level 2

Level 3

Fig. 7. .Full binary tree of height 4.

Suppose we assign numbers to the elements of a full binary tree of height

* using the numbers 1 through 2* — 1. We begin at level 0. Within levels the

elements are numbered left to right. The elements of the full binary tree
of figure 7 have been numbered in this way. Now suppose we delete the %,
k 2 0, elements numbered 2" — {, 1 £i <k for any & The resulting binary tree
is called a complete binary tree. Figure 8 illustrates some examples.

Fig. 8. Complete binary trees.
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Note that a 'full binary tree is a s‘pecial case of a complete binary tree. Also
note that the height of a complete bmary tree that contains n elements is
rlog2 (n + 1)-|

There exlsts a nice relationship among the numbers assigned to an element and

its 'chi]dren in a complete binary tree, as given by Property 4.

- Property 4. Let i, 1 <i <n, be the number assigned to an element of a complete
binary tree. The following are true : '

1. Ifi=1, then this element is the root of the binary tree. If i > 1, then the parent

of this element has been assigned the number [i/2]

2. 'If 2i > n, then this element has no left child. Otherwise, its left child has been
assigned the number 2i.

3. If 2i + 1 > n, then this element has no mght L.,rld Otherwase its r;ght child
has been assigned the number 2i + 1.

Proof : Can be established by induction on i. It is left as an exercise for the
readers.

5.5 IMPLEMENTATION OF BINARY TREES

Binary trees can be irﬂplemented by using an array or by using pointers.

5.5.1 Array Implementation of a Binary Tree

A binary tree can be stored as an array. A two dimensional array with three

columns and number of rows equal to number of nodes in the tree can be used |

“to store a binary tree. The first colurin store contents of data field of each node,
second column contains pointer to the left child of the node and the third column
contains.pointer to the right child of the node. A dash — in second or third
column represents empty subtree.

Con51der the binary tree given in figure 9(a), its array implementation is shown
in figure 9 (b).

For convenience, we assign numbers to nodes as they are inserted in the
tree. '

Selﬁ[n-struct‘ional Maierial
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Through ‘C’ : _ . " " DATA  LPTR  RPTR
11 A 2 3
2| B 4 5
NOTES
3| € 8 7
4| ¢ - —
g 5 D — -
6| F — —
. 7| @ —- -

(a) _ ®
Fig. 9 ' :

5.5.2 Linked Implementation of a Binary Tree

There is a limitation to the array implementation of a tree. The array size is
fixed at compile time. Therefore, the most suitable implementation is obtained
by using pointers which allows the tree to grow or shrink as per requirement
during program execution making it a dynamic data structure. It is also called -
as linked implementation of a tree. In linked representation of the tree, each
node has three fields, i‘.e., .

» DATA field or INFO field. e <
* LPTR field containing a pointer to the left subtree.
.| * RPTR field containing a po‘inter to the right subtree.

For example, consider the binary tree shown in ﬁgure 10 :

Fig. 10

"The binary tree of figure 10 can be shown using linked implementation as
“illustrated in figure 11. o
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ROOT

—
W
]
.
m
|-

NULL] C NULL NULL| D {NULL NULL} F |[NULL NULL| .G |NULL

' Fig. 11

5.6 BINARY TREE TRAVERSAL METHODS

The traversal of a binary tree means visiting each node in the tree exactly once
and performing some operation on it. A full traversal gives a linear order of the
information in a tree. As mentioned earlier a binary tree is defined as either an
empty tree or consists of a nede cailed root and two subtrees, ie., the left
subtree and the right subtree. Further, left subtree {or right subtree) is again
a binary tree which is either empty tree or consists of root and left subtree and
right subtree. Thus we see that the definition of tree is recursive. Therefore,
traversal of a tree can also be done recursively, using recursive procedure.
There are 6 different ways of traversing a binary tree. These are given beiow :
() Visit root, traverse left subtree, traverse right subtree (called preorder}
(zi) Traverse left subtree, visit root, traverse right subtree (called inorder)
(zif) Traverse left subtree, traverse right subtree, visit root (called postorder)
(fv) Visit root, traverse right subtree, traverse left subtree
(v) Traverse ‘right subtree, visit root, traverse left subtree
(vi) Traverse right subtree, traverse left subtree, visit root.
If convention is adopted then we traverse left before right then only first three
traverals remain, i.e., PREORDER, INORDER and POSTORDER. These names

have been assigned due to the fact that there is a natural correspondence between
these traversals and producing the PREFIX, INFIX and POSTFIX forms of an
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Data Structures expression. Here we will consider only first three of these. Suppose we want to
Through ‘C’ ) . ' ) .
.print data in each node of a binary tree. It-can be done as given below :

5.6.1 Preorder Traversal

NOTES To traverse a non-empty binary tree in preordef we perform the following three

- operations :
{£) Visit the root and perform the desired operation
(ii) Traverse the left subtree in preorder B
(zii) Traverse the right subtree in preoi‘der.

For example, consider the biﬁary tree given in ﬁgﬁre 12 (a) :

- Fig. 12 (a)

¢ We first visit the root, i.e., @ and print its contents.

e Then we traverse the left subtree of @ which is shown beloﬁr :

Fig. 12 (&) : _ -

The root of this tree is s0-its contents are prinfed.

¢ Then we visit left subtree, which is only @ Its contents are printed. It has
no further subtrees. . : .

¢ Now we visit the right subtree of , which is @ and print its contents.

: @ has rn further subtrees. Thus, traversal of the left subiree of @ is
" over. ‘

122  Self-Instructional Material



- * Next, we visit the right subtree of @ which is shown below :

Fig. 12 (c)
The root of this tree is @ so its contents are printed.

¢ Then we visit the left subtree of @ which is only @ Its contents are

printed. It has no further suhtrees,

¢ Now we visit the right subtree of @, which is @ and print its contents. -
@ has no further subtrees. Thus, traversal of the right subtree of @ is

over. -

Thus, traversal of this complete binary tree gives the following result :

A B CDEF G

5.6.2 Algorithm for PREORDER Traversal in a Binary Tree

Procedure RPREORDER(T). Given a binary tree whose root node address is -
given by a pointer variable T and whose node structure is the same as previously
described, this algorithm traverses the tree in preorder in a recursive manner.

1. [Process the root node]
If T # NULL Then
Write(DATA(T))
else '
Write(EMPTY TREE")
Return ‘
2. [Process the left subtree]
If LPTR(T) # NULL Then
Call RPREORDER(LPTR(T))
3. [Process the right subtree]
If RPTR(T) # NULL Then
Call RPREORDER(RPTR(T))
4. {Finished]
Return

Trees

NOTES

Self-Instructional Material

128



Data Structures
Through C’

NOTES

=

- 5.6.3 Inorder Traversal .

. To traverse a non-empty binary tree in inorder we perform the following three

operations : .
(¥) ITraverse the left subtree in inorder.
(i) Visit the root and perfor}n the desired operation.
(#ii) Traverse the right subtree in inorder.

For example, consider the binary tree given in figure 12 (a). The output of

inorder traversal of this tree is given below :

C BDATFEG

5.6.4 Algorithm for INORDER Traversal in a Binary Tree

Procedure RINORDER(T). Given a binary tree whose root node address is
given by a poiﬁter variable T and whose node structure is the same as previously
described, this algorithm ‘traverses the tree in inorder, again in a recursive
manner. -

1. [Check for empty tree]

If T = NULL Then
Write{' EMPTY TREE')
Return
2. [Process fhg left subtrée]
If LPTR(T) # NULL Then
Call RINORDER(LPTR(T))
. [Process the roof node]

Write(DATA(T))

[IV]

. [Prqéess the right subtree]
If RPTR(T) # NULL Then
Call RINORDER(RPTR(T))
. [Finished] o

o

Return

5.6.5 Postorder Tra-versal

To traverse a non-empty binary tree in postorder we perform the following three

_operations :

(i) Traverse the left subtree in postorder
(iz) Traverse the right subtree in poastorder

() 77 . the root and perform the desired operation.
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For example, consider the binary tree given in figure 12 (a). The output of - Trees
postorder traversal of this tree is given below : '

C DBFGEA

5.6.6 Algorithm for POSTORDER Traversal in a Binary Tree . NOTES

Procedure RPOSTORDER(T). Given a binary tree whose root node address is
given by a pointer variable T and whose node structure is the same as previously
described, this procedure traverses the tree in postorder, in a recursive manner.

1. [Check for empty tree]
If T = NULL Then
Write(EMPTY TREE")

Return
2. [Process the left subtree}
If LPTR(T) # NULL Then
Call RPOSTORDER(LPTR(T))
. [Process the right subtree] | )

Do

If RPTR(T) # NULL Then
. Call RPOSTORDER(RPTR(T))
4. {Process the root node]
Write(DATA(T))
¢ [Finished]
Return

(2]

Example : Consider the expression tree implemented as a binary tree in figure
13. Give the output of preorder, inorder and postorder tree traversal of this tree.
What do these output represent ? '

Fig. 13

Solution : Using preorder traversal method, we get
* _ 45,15, +, 33, 7

Here, commas are written for sake of readability.

It represents the expression. in prefix notation.
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Data Structures : Using inorder treversal method, we get,

Through ‘C’ .
45 —, 15, %, 33, +, 7
which is an expression in infix notation.
NOTES . - Using postorder traversa: method, we get,

45, 15, —, 33, 7, +, *

which is an expression in postfix notation.

5.7 BINARY TREE TRAVERSAL ALGORITHMS
" -USING STACKS (.e., ITERATIVE
ALGORITHMS)

We can no fill in the details of the general algorithms given in the previous
section for the preorder, inorder, and postorder traversals of a binary tree.
These algorithms are written as procedures with one parameter. The only
parameter required is a pointer variable which contains the address of the root
of the tree. Although recursive algorithms would probably be the simplest to
write for the traversals of binary trees, we will formulate algorithms which are
both iterative and.recursive. '

- Let us consider the traversal of binary trees by iteration. ‘Since in traversing a
tree it is required to descend and subsequently ascend parts of the tree, pointer
information which will permit movement up the tree must be temporarily stored.
Observe that the structural information that is already present in the tree
permits the downward movement from the root of the tree. Because movement .
up the tree must be ' made in ‘a reverse manner from that taken in descending

'a tree, a stack is required to save pointer varia’ples as the tree is traversed.

" 5.7.1 Preorder Traversal

‘A general algorithm for a preorder traversal of a binary, tree using iteration is
now given. : '

1. If the tree is empty
‘ then write tfee empty and return _
else place the pointer to the root of the tree on the stack
2. Repeat step 3 while tﬁe stack is not empty
3. Pop the top pointer off the stack
" Repeat while the pointer value is not.null
Write the data associated with the node

If right subtree is not empty Then
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Stack the pofnter to the righf subtree
Set pointer value to left subtree
We will now provide a procedure for traversing a tree in preorder.

Procedure PREORDER(T). Given a binary tree whose root node address is
given by a pointer variable T and whose structure is the same as-previously
described, this procedure traverses the tree in preorder, in an iterative manner.
S'and TOP denote an .auxiliary stack and its associated top index, respectively.
The pointer variable P denotes the current node in the tree.

1. [Initialize]
If T = NULL Then
Write(EMPTY TREE')
Return
Else
TQP « 0
Call PUSH(S, TOP, T)
2. [Process -eachl stacked branch address]
Repeat step 3 while (TOP > ()
3. [Get stored address and branch left]
P « POP(S, TOP)
Repeat while P .= NULL
' Write(DA'IfA(P))
If RPTR(P) # NULL Then

Call PUSH(S, TOP RPTR(P)) (store address of nonempty
right subtree)

P « LPTR(P) (branch left)
4. [Finished] - N
Retum ' '

Step 1 checke for an empty tree and exits lf T = NULL. Otherwise, it stacks the
address of the root node. Step 2 controls the processing of the tree. The addresses
of yet untraversed subtrees are kept on the stack. In the third step of the
algorithm, we visit and process a node. The address of the right branch of such

a node, if it exists, is stacked and a chain of left branches is followed until this_

chain ends. At this point, we reenter step 3 and delete from the stack the
address of the root node of the most recently encountered right subtree and
process it according to step 3. A trace of the algorithm for the binary tree given
in ﬁgure'lét_appears in Table 1, where the right-most element in the stack is
considered 1o be its top element and the notation “NE", for example, denotes the
address of node E. The visit of a node in this case merely involves the output
ot the label for that node.
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An equivalent procedure for a recursive preorder traversal of a binary tree is
easily formulated.

+— —

Fig. 14 Linked representation of a binary tree.

Table 1. Trace of Procedure PREORDER for figure 14

Stack Contents P N Visit P Output String
NA .
‘ NA | A A
ND NB B ‘ AB
ND NC c ABC
ND NULL
‘ ND D  ABCD
NG . .NE E . ABCDE
NG NF - NULL '
NG o NF : F ABCDEF
NG . NULL
NG G ABCDEFG
NULL

5.7.2 Inorder Traversal

The inorder traversal algorithm also uses a variable pointer PTR, which will
contain the location of the node N clﬁrrently being scanned, and an array STACK,
which will hold the addresses of nodes for future processing. In fact, with this
algorithm, a node is processed only when it is popped from STACK.

\
I
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Algorithm : Initially push NULL onto STACK (for a sentinel) and then set
PTR = ROOT. Then repeat the following steps until NULL is
popped from STACK.

(a) Proceed down the left-most path rooted at PTR, pushmg each
node N onto STACK and stopping when a node N with no left
child is pushed onto STACK.

(b) [Backtracking.] Pop and process the nodes on STACK. If NULL
is popped, then Exit. If a node N with a right child R(N) is
processed, set PTR = R(N) (by assigning PTR = RIGHT[PTR})
and return to Step (). -

We emphasize that a node N is processed only when 1t is popped from STACK.

. Example : Consider the binary tree T in figure }_5. We simulate the above
algorithm with T, showing the contents of STACK.

Fig. 15

1. Imtlally push NULL onto STACK :
STACK : NULL.
‘Then set PTR = A, the root of T.

2. Proceed down the left-most path rooted at PTR = A, pushing the nodes A, B,
D, G and K onte STACK :

STACK : NULL, A, B, D, G, K. _
(No other node is pushed onto STACK, since K has no left child.)
3. [Backtracking.] The nodes K, G and D are popped and processed, leaving :
STACK : NULL, A, B. '

(We stop the processing at D, sinée D has a rlght ch:tld } Then 591; PTR = H,
the right child of D.

4. Proceed down the left-most path rooted at PTR = H, pushmg the nodes H and
L onto STACK :

STACK : NULL, A, B, H, L.
(No other node is pushed onto STACK, since L has no left child.)

Trees

NOTES

Self-Instructionel Material

129



Datu Structures
Through ‘C’

oA
NOTFS
!

5. [Backtracking.] The nodes L and H are popped and processed leaving :
STACK : NULL, A, B. '

(We stop the processing at H, since H has a right chlld ) Then set PTR = M,
the right child of H.

8. Proceed down the left-most path rooted at PTR = M, pushing node M onto
STACK : :

- STACK : NULL, A, B, M.
(No other node is pushed onto STACK, since M has no left child.)
q. [Backtrackmg] The nodes M, B and A are popped and processed, leaving :
STACK : NULL. ' |

(No other’ element of STACK is popped, smce A does have a rlght child.) Set
PTR = C, the right child of A. :

~ 8. Proceed down'the left-most path rooted at PTR = C, pushing the nodes C and

E onto STACK :
STACK : NULL, C, E.

9. [Backti*acking.] Node E is popped and processed. Since E has no right child,
node C is popped and processed. Since C has no right child, the next element,
NULL, is popped from STACK.

The algorithm'is now finished, since NULL is popped from STACK. As seen

from Steps 3, 5, 7 and 9, the nodes are processed in the order K, G, D, L, H, M,
B, A, E, C. This is the required inorder traversal of the binary tree T.

A formal presentation of our inorder traversal algorithm is given below :

‘Algorithm : INORD(INFO, LEFT, RIGHT, ROOT)

A binary tree is in memory. This algorithm does an inorder
traversal of T, applying an operation PROCESS to each of its
nodes. An array STACK is used to temporarily hold the address
of nodes.

1. [Push NULL onto STACK and initialize PTR.]
Set TOP = 1, STACKI1] = NULL and PTR = ROOT. .

‘2. Repeat while PTR # NULL: [Pushes left-most path onto STACK]
(a) Set TOP = TOP + 1 and STACK[TOP] = PTR. [Saves node]
(b) Set PTR = LEFT[PTRI. [Updates PTR]

[End of loop] :
3. Set PTR = STACKITOP] and TOP = TOP - 1. [Pops node from -
STACK.| L .
4. Repeat Steps 5 to 7 while PTR # NULL : [Backtracking.]
5. Apply PROCESS to INFO[PTR] -

6. [nght chiid?]
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If RIGHT[PTR] # NULL, Then
(@) Set PTR = RIGHT[PTRI.
() Go to Step 2. '
[End of If strucfure.] ) .
7. Set PTR = STACK[TOP] and TCP = TOP —.1. [Pops node.}
~ [End of Ste_p 4 loop. '
8. Exit.

5.7.3 Postorder Traversal

A general algorithm for an iterative postorder traversal of a binary tree is now
presented. :

1. If the tree is empty Then
Write emiaty tree and return
Else
Initialize the stack and ipitia]ize_‘ pointér value to root of ‘;ree
2. Start an infinite loop to repeat upto step 5
3. Repeat while pointer value is not null
Stack current pointer value
Set pointer value to left subtree
4. Repeat while top pointer on stack is negative
Pop pointer off stack
Write data associated with positive value of this pointer
If stack is empty Then .
return
5. Set pointer valué to the right subtree of the value on top of the stack
Stack the negative value of the pointer to the right subtree .
The following algorithm iteratively traverses a binary tree in postorder :

Procedure POSTORDER(T). The same node structure described previously is
assumed, and T is a variable which contains the address of the root of the tree.
A stack S is also required again, but this time each node will be stacked twice,
once when its left subtree is traversed and once when its right subtree is

traversed. On completion of these two traversals, the particular node'is processed.

Consequently, we need two types of stack entries, the first indicating that a left
subtree is being traversed, and the second that a right subtree is being traversed.
For convenience we will use negative pointer values to indicate the second type
of entry. This, of course, assumes. that valid pointer data are always nonzero
and positive.
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1. [Initialize]
If T = NULL Then
Write{ EMPTY TREE")
Return
Else
P«T
TOP <« 0
. {Traverse in postorder]
Repeat upto step 5 while true
. {Descend left]
Repeat while P # NULL
Call PUSH(S, TOP, P)
P « LPTR(M _
4, I[Process a node whose left and right subtrees have been traversed]
Repeat while S[TOP] « 0

[9V]

P « POP(S, TOP) ‘ N
Write(DATA(P)) .

If TOP =0 Then (Have all nodes been processed?)
Return ‘

o

. [Brénch right and then mark node from which we branched]

P « RPTR(S{TOP])’ |

 S[TOP] « - S[TOP} _ . _

The first step checks for an empty tree. In step 2 an infinite loop 15 initiated to
ensure that the entire tree is processed. In the third step, a chain of left branches
is followed and the address of each node ehcountered is stacked. Step 4 prints
out the data associated with those nodes whose right and left subtrees have
been traversed, indicated by a negative pointer value. In step 5, the right subtree
of the node on top of the stack is placed in P to be traversed in the next iteration
of the loop. The address of this node is negated, indicating that both left and
right subtrees have been traversed and that its data may be printed.

Examnple 1. For a binary tree T, the preorder and inorder travel sequences are
as given below :

Preorder : A, B, C, D, E, F, G, H, I
Inorder :D, C, B, A, G F, H L E
Construct the binary tree'T. .
Solution : The binary tree T is constructed as given below :

The first node in the preorder traversal is always the root node of the-binary
tree. Thus the root node of the binary tree T is node A. :
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After finding the root node of the binary tree, our goal is to find the nodes that
form the left subtree and the right subtree of node A. ’

We know that, inorder traversal is traverse the left subtfee, visit the root and
finally traverse the right subtree. Thus all the nodes to the left of node A in
inorder traversal form its left subtree and all the nodes to the right of A in
. inorder traversal form its right subtree. ' '

From the above discussion we have :

Preorder ‘ @ B, C,D . E, F, G H,I
Root Left subtree L,, ~  Right subtree Ry,
Inorder D,C B : @ GFHILE
. Left subtree Ly, " Root - Right subtree Ry,

Figure 16 shows the partial binary tree formed so far :

Root

Fig. 16
Similarly, we can form the left subtree Ly, and right subtree Rq,.

Let us first take the left subtree Ly,. The preorder and inorder sequences of the
left subtree Ly, are given below : '

Preorder B,C, D
Inorder D, C, B

From these traversal sequences we see that the root of the subtree is node B
and its left subtree ¢onsists of nodes D and C. So it has no right subtree.

From the above discussion we have :

Preorder \ ' C,D |

Root ~ Left subtree Ly .Right ‘subtree Ry
Inorder - D, C ‘
Left subtree Lyg Root ‘ | Right subtree Rop
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Data Structures Figure 17 shows the partial binary tree formed so far :
Through ‘C’

Root

NOTES

Fig. 17

Now let us take the left subtree Lrg. The preorder and inorder sequences of the
~ left subtree Ly are given below : '

Preorder C,D-

Inorder D, C

From these traversal sequénces we see that the root of the subtree is node C
and its left subtre€ consists of nede D. So it has no right subtree.

From the above discussion we have :

Preorder @ . D

Root Left subtree Ly Right subtree Ry

Inorder D @
Left subtree Ly Root E | Right subtree Rqo

Figure 18 shows the partial binary tree formed so far :

Root

Fig. 18
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Thus we have formed the left subtree Ly, of node A, which is the root of-the T’"eesl
binary tree.

Now let us take the right subtree Rp,. The preorder and inorder traversal
sequences of Ry, are given below :

Preorder E, F, G, H, I
~ Inorder G FHILE

From these traversal sequences we see that the root of the subtree Rp, is node '
'E, its left subtree consists of nodes F, G, H, I and its right subtree is empty.

NOTES

From the ahove discussion we have :

Preorder @ , F, G, H, I
Root Left subtree Loy Right subtree Rip
Inorder GFRHEI | - (B
- Left subtree Ly Root Right subtree Ryp

Figure 19 shows' the partial binary tree formed so far :

Root

Fig. 19

Now let us take the left subtree L. The preorder and morder traversal sequences
of Lyg are given below : '

Preorder F, G, H, I
Inorder G, F, HI

From these traversal sequences we see that the root of the subtree L is node
F, its left subtree consists of node G and right subtree has nodes H, 1. _

From the above discussion we have,

Preorder ® _ G. _ ' H I
' Root Left subtree Ly Right subtree Ryp
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Through ‘C’ Inorder . G @ : H I g

Left subtree Lyp Root _Right subtree Ryp

NOTES Figure 20 S}_m“’s the partial binary tree formed so far :

. Fig. 20

Now let us take the right subtree Ryy. The preorder and inorder travel sequences
of Ryp are given below :

" Preorder H, I
Inorder H, I

From these traversal sequences we see that the root of the subtree Ry is node
H, its left subtree is empty and the right subtree has a single node I

From the above discussion we have .
. . I
Preorder @ ' | 1
Root - Left subtree Ly Righf subtree Ry
Inorder . , S @ . I
' Left subtree Loy - Root Right subtree RTH

 Figure 21 shows the biﬁary tree after the ahove step and this ig the requii'ed
binary tree :
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_ ' - Fig. 21 -

5.8 BINARY SEARCH TREE Ang _

é special kind of binary tree is called a binary search tree. In a binary search

tree, the data value stored in any node is greater than the data value stored in
_ its left child node and less than the data value stored in its right child node,
assummg that there are no duplicate values.

The formal definition of a binary search tree is given below :

A binary search tree is a binary tree that may be empty. A nonempty binary -
-search tree satisfies the following properties :

1. Every element has a key (or value) and no two elements have the same key;
therefore, all keys are distinct. '

2..The keys (if any) in the left subtree of the root are smaller than the key in
the root. :

3. The keys (if any) in the right subtree of the root are larger than the key in
the root.

4. The left and right subtrees of the root are also binary search trees.

~ There is some redundancy in this definition. Properties 2,3 and 4 together imply
that the keys must be distinct. Therefore, property 1 can be replaced by the
following property :

The root has a key.
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For example, the tree shown in figure 22 is a binary search tree :

__Fig. 22. A Binary Search Tree

Binary search tree is a very useful data structure. In system software such as
loaders, assemblers and compilers, we generally need to build symbol tables of
key words or reserved words. These tables are very often searched for a specific
key word. In that case, if symbol table is implemented by a binary search tree
then the number of comparisons for searching a specific data value can be
reduced. The reason for this is that we can tell in which half (left or right) of
the tree, the data value may lie with only one comparison.

For exaﬁble if we are searching for a right data value 45, we cofnpare 45 with
40 and we find that 45 > 40 and therefore 45 must lie in the right subtree. Then,
we compare 45 with 50. Since 45 < 50, therefore 45 must lie in the left subtree.

We go to left side and compare it with the node and find §it is equal to 45. Thus,

we need 3 comparisons to locate the data value 45.

NOTE‘ Binary search tree is an application of a bi tree.

We can remove the fequiremeﬁt that all elements in a binary search tree are
distinct. Now we replace smaller in property 2 by £ and large in property 3 by
2; the resultmg tree is called a binary search tree with duplicates.

An indexed binary search tree is derived from an ordinary binary search tree

by adding the field Left size to each tree node. This field gives the number of

elements in the node’s left subtree plus one. Figure 23 shows two indexed bmary ,
search trees.

:
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(b)

Fig. 23, Indexed Binary Search Trees

The number inside a node is the element key, while that outside is the value of
Left size. Notice that Leftsize also gives the rank of an element with respéct to
the elements in its subtree. For example, in the tree of figure 23 (¢), the elements
(in- sorted order) in the subtree with root 20 are 12, 15, 18, 20, 25 and 30. The
rank of the root is four {i.e.,, the element in the root is the fourth element in
sorted order). In the subtree with root 25, the element (in sorted order) are 25
and 30, so the rank of 25 is one and its Left size value is 1.

5.8.1 Searching and Insertion in a Binary Search Tree

The formal presentation of our search and insertion algorithm will use the
- following procedure, which finds the locations of a given ITEM and its parent.
The procedure traverses down the tree using the pointer PTR and the pointer
SAVE for the parent node. This procedure will also be used in the next section,
on deletion. '

Procedure 1 : FIND(INFO, LEFT, RIGHT, ROOT, ITEM, LOC, PAR)

A binary search tree T is in memory and an ITEM of information
is given. This procedure finds the location LOC of ITEM in T
and also the location PAR of the parent of ITEM. There are
three special cases :

(@) LOC NULL and PAR = NULL will indicate that the tree

is empty.

(/) LOC # NULL and PAR = NULL w1ll 1nd1cate that ITEM is

the root of T.

(iii) LOC = NULL and PAR # NULL will indicate that ITEM is
not in T and can be added to T as a child of the node N with
location PAR.

1. [Tree empty?]

If ROOT = NULL, then Set LOC = NULL and PAR = NULL and
"Return.

‘2. [ITEM at root‘?]
If ITEM = INFO[ROOT],. then: Set LOC ROOT and
PAB = NULL, and Return.
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7.
8. _
Observe .that, in Step 6, we move to the left child or the right child accordjn'g

. IInitialize pointers PTR and SAVE]

If ITEM < INFO[ROOT], then: _ _
_ Set PTR = LEFTIROOT] and SAVE = ROOT.
Else:
Set PTR = RIGHT[ROOT| and SAVE = ROOT.
[End of If structure.} _ -

. Repeat Steps 5 and G-Whi.le PTR = NULL:
‘5. [ITEM found?]

If ITEM = INFQ[PTR], then: Set LOC = PTR and PAR =
SAVE, and Return. : '

. If ITEM < INFO[PTR], then:

Set SAVE = PTR and PTR = LEFT{PTR].
Else: : . '
Set SAVE = PTR and PTR = RIGHT[PTR].
[End of If structuré.] '
[End of Step 4 leop.] )
[Search unsuccessful.] Set LOC = NULL and PAR = SAVE.
Exit. '

K to whether ITEM < INFO[PTR] or ITEM > INFO[PTR].

140 . Self-Instructional Material

. The formal statement of our search and insertion algorithm follows..
Algorithm: INSBST(INFO, LEFT, RIGHT, ROOT, AVAIL, ITEM, LOC)

A binary search tree T is in memory and an ITEM of information is
given. This algorithm finds the location LOC of ITEM in T or adds
ITEM as a new node in T at location LOC.

1.

Call FINIXINFO, LEFT, RIGHT, ROOT, ITEM, LOC, PAR). |

[Procedure 1]

9. If LOC # NULL, ‘then Exit.

[Copy ITEM into new node in AVAIL list.]
(a) If AVAIL = NULL, then: Write: OVERFLOW, and Exit.

© (b) Set NEW = AVAIL, AVAIL = LEFT[AVAIL} and

INFO[NEW] = ITEM. )

(c) Set LOC = NEW, LEFTINEW] = NULL and
TUGHTINEW] = NULL,

[Add ITEM to tree.l

If PAR = NULL, then:



Set ROOT = NEW.
Else if ITEM < INFO[PAR], then:
Set LEFT{PAR] ='NEW. \
Else: - ’ . “ : ,
Set RIGHT[PAR] = NEW. |
[End of If structure.)
5. Exit.

Observe that, in Step 4, there are three possibilities : (1) the tree is empty, (2)
ITEM is added as a left child and (3) ITEM is added as a right child.

5.8.2 Deletlng in a Binary Search Tree

Suppose T is a binary search tree, and suppose an ITEM of mformatmn is given.
This section gives an algorithm which deletes ITEM from the tree T.

The deletion algorithm first uses searching procedure to find the locatinn of the
node N which contains ITEM and also the location of the parent node PN). The
way N is deleted from the tree depends primarily on the number of children of
node N. There are three cases :

Case 1. N has no children. Then N is deleted from T by simply replacing the
location of N in the parent node P(N) by the null pointer.

ICase 2. N has exactly cne child. Then N is deleted from T by simply replacing .

the location of Nin P(N) by the location of the only child of N.

Case 3. N has two children. Let S(N) denote inorder successor of N. (The
reader can verify that S(N) does not have a left child). Then N is

deleted from T by first deleting S(N) from T (by using Case 1 or Case

2) and then replacing node N in T by the node S(N).

Observe that the third case is much more complicated than the first two cases.
In all three cases, the memory space of the deleted node N is returned to the
AVAIL list. '

QOur deletion algorithm will be stated in ten‘ns of Procedures given below. The
first procedure refers to Cases 1 and 2, where the deleted node N does not have
two children; and the second procedure refers to Case 3, where N does have two
children. There are many subcases which reflect the fact that N may be a left
child, a rlght child or the root. Also in Case 2, N may have a left child or a right
child.

Second procedure treats the case that the deleted node N has two children. We
note that the inorder successor of N can be found by moving to the right child
of N and then moving repeatedly to the left until meeting a node with an empty
left subtree.
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o

This procedure deletes the node N at location LOC, where N does
not have two children. The pointer PAR gives the location of the
parent of N, or else PAR = NULL indicates that N is the root
node. The pointer CHILD gives the location of the only child of
N, or else CHILD = NULL indicates N has no children.

1. [Initializes CHILD.] _ :
If LEFT[LOC] = NULL and RIGHT[LOC] = NULL, then:
Set CHILD = NULL. “
Else if LEFT[LOC] # NULL, then:
Set CHILD = LEFT([LOC)
Else ) ' .
Set CHILD = RIGHT{LOC)
[End of If structure.]
2. If PAR # NULL, then:
' If LOC ='LEFTIPAR], then:
Set LEFT[PAR] = CHILD.
Else:
Set RIGHT{PAR] = CHILD.
[End of If structure.)
Else:
Set ROOT = CHILD.
3. i{etufn

Procedure 3: CASEB(INFO LEFT RIGHT, ROOT, LOC, PAR)

This procedure will delete the node N at location LOC where N
has two children. The pointer PAR gives the location of the parent
of N, or else PAR = NULL indicates that N is the root node. The
pointer SUC gives the location of the inorder successor of N, and
PARSUC gives the location of the paijent of the inorder successor.

. [Find SUC and PARSUC.]
(@). Set PTR = RIGHT[LOC]. and SAVE = LOC
(b) Repeat while LEFT[PTR] = NULL.
Set SAVE = PTR and PTR = LEFT[PTR].
[End of loop.] .
(¢} Set SUC = PTR and PARSUC SAVE



2. tDe]ete inorder successor, usilng Procedure 2]
* Call CASEA(INFO, LEFT, RIGHT, ROOT, SUC, PARSUC.)

3. [Replace node N by its inorder successor.] -

(@} If PAR # NULL, then:

If LOC = LEFT[PAR), then:
| Set LEFT[PAR] = SUC.
Else:. -
Set RIGHT{PAR] = SUC.
[End of If structure.]
Else: - '
' Set ROOT = SUC.
[End of If struéture.]'

(b) Set LEFT[SUC] = LEFTILOC] and

RIGHT[SUC] = RIGHT[LOC].

4. Return.

We can now formally state our deletion algorithm using above procedures as

building blocks.

Algorithm : DEL(INFO, LEFT, RIGHT, ROOT, AVAIL, ITEM)

A binary search tree T is in memory, and an ITEM of information
is given. This algorithm deletes ITEM from the tree.

1

[Find the locations of ITEM and its parent usmg searching
Procedure.] -

Call FIND{INFO, LEFT, RIGHT, ROOT, ITEM, LOC, PAR).

[ITEM in tree?] ,

If LOC = NULL, then: Write: ITEM not in-tree, and Exit.

[Delete node contammg ITEM]

If RIGHT[LOC] # NULL and LEFT[LOC] # NULL, then:
Call CASEB(INFO, LEFT, RIGHT, ROOT, LOC, PAR).

" Else:

Call CASEA(INFO LEF’I‘ RIGHT, ROOT, LOC, PAR)
[End of If structure]
[Return deleted node to the AVAIL list.]

- Set LEFT[LOC] = AVAIL and AVAIL = LOC.

Exit,

™,

"y
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Example : Make a bmary search tree of ualues 80 40, 150, 100 and 30.
Solution : The binary search tree is constructed as follows :
1. First set the ROOT of the binary tree as NULL, i.e., make an empty bmary
tree. _ :
lHOOT '

NULL

Fig. 24 (a)

2. The first value to be stored is 80. We now search the tree and find, it is
empty, so a new node is allocated and 80 is stored .in this node. Now it
becomes the first node and alsé the root node as shown below :

lHOOT

NULL{ 80 [NULL{ (Node 1) °

Fig. 24 (b)

3. The secc;nd value to be inserted is 40, the tree is searched and it.is found that
40 must be inserted in left child and the tree becomes as follows :

lHOOT

80 [NuLL| (Node 1)~

L

{Node 2) |INULL| 40 |NULL

Fig. 24 (¢)

4. The next value to be inserted is 150, Again the tree is searched and it is
known that the number 150 must bé 1nserted as a right child of Node 1. After
insertion of 150 the tree becomes :

lnom
{
! 80 {Node 1)
/N
{NodeQ} NULL| 40 (NULL NULL| 150 |NULL|{Node 3)
Fig. 24 (d)
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5._ The next value to be inserted is 100. Which will be inserted as shown below T Trees
_ after searching its appropriate place :

lHOOT _ NOTES
. 80 (Node 1)
/’ \’
(Node 2) [NULL{ 40 {NuLL NULL| 150 |NULL{{Node 3}

" INULL| 100 |NULL|{Node 4)

Fig. 24 (e) -

6. The next value tobe inserted is 30, which will be inserted as shown below
after searching its appropriate place : ‘

lROOT
, ‘ 80 | (Node 1)
Node 2
(Node 2) Y 40 |NULL 1, 150 [NULL| (Node 3}
(Node 5) |NULL| 30 |NULL NULL] 100 {NULL| {(Node 4)
Fig. 24 (P
5.9 SUMMARY ' ’
e A tree is often used to represent a Hierarchy. o "

® Tree is a Non-Linear data structure.

. ® A Tree is a data structure used to represent data containing a hierarchical
relation between its elements.

e Tree can be used to represent the Unix file system in which files and
subdirectories are stored under directories. Another example is to represent
the records in a file in which elementary items are stored under group items.
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There are various types of trees such as Unbalanced Binary Tree and Balanced
Binary Tree. -

A Binary tree is a finite set of nodes that is either empty or consists of a root
and two disjoint binary trees called left and right subtrees.

Traversal of a tree is to visit each node exactly once, for example searching
the particular nodes. Let T be a binary tree, there are different ways to
proceed, and the methods differ primarily in the order in'which they visit the
nodes.

The tree traversal methods are preorder, inorder and postorder.

Many algorithms that use binary trees proceed in two phases. The ﬁrst
phase builds a binary tree and the second traverses the tree.

5.10 TEST YOURSELF

Answer the following questions :

o .
1. For a binary tree T, the m order and post-order traversal sequerices are as

follows :
Inorder -~: D B F E A G C. L J HK
Postordr: D F E B G L J K H_C A
Draw the binary tree T.

2. For a binary tree T, the pre-order and in-order traversal sequences are as
follows :

Preorder : G B Q@ A C KX F P
Inorder : Q@ B K ¢ F A G P
{2) What is the height of the tree ?

(b) What are the internal nodes ?

D H
E R

E R
D H

{c) What is its post-order traversal sequence ?
3. What is the maximum number of nodes at 4th level of a binary tree ?

4. Given the following binary tree. Answer the questions in the content of it;
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() What is the root of this tree ?
{iz) What is the parent of D ?
fiii) What are the children of C ? -
(iv) What are the children of A ? )
(v) What are the siblings of E ?
(vi) What are the descendénts of B?
(vii) What are ancestors of H ?
(viii) What is the level of D ?
(ix)
(x) List all integral nodes.
(xi) .
(xii) Draw left subtrees of A and B respectively.

List the leaf nodes of the tree.
Draw subtrees of A and B.

(xiii) Draw right subtrees of A and C. _
(xiv) Give the output of preorder tree traversal of the above tree.
{(xv) Give the output of in-order tree traversal of the above tree.

(xvi)

5. For a binary tree T, the pre-order and in-order traversal sequences are as

follows : )
Pre-order : A B D E G H C F
In-order D B GE HA C F

Give the output of pos;torder tree traversal of the above tree,

Trees’

NOTES

-
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SECTION D

CHAPTER 6 SEARCHING AND
- SORTING

* LEARNING OBJECTIVES %

6.1 Introduction

6.2 Searching

6.3 Sorting ‘

6.4 Summary of Sorting Methods
6.5 Summar_y _

6.6 Test Yourself

6.1 INTRODUCTION - :

Data’ stored in an organized manner requires to be accessed for processing.
Locating a particular data item in the memory involves searching the data item.
Searching is a technique where the memory is scanned for the required data.
Computer systems are often used to store large amounts of data from which an
individual element or record must be retrieved according to some search
specification. Thus the efficient storage of data to facilitate fast searching is an
1mp0rtant issue. |

Data can be represented in various formats with reference to the data structures
they are held in. Accessing data involves tithe and memory. Unorganized data

- takes longer time to be accessed compared to ordered data. Data can be ordered
in various ways. Sorting is one of the methods of ordermg data which is done.
based on various techniques.

Sorting refers to the operation of arranging data in some given order, such as
increasing or decreasing with numerical data or alphabetically, with character
data.

This chapter deals with different searching techniqueste find the required data
and an investigation regarding the performance of some searching algorithms
and the data structures they use.

This chapter also deals with various sorting techniques .and their algorithms.
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6.2 SEARCHING

_ Searchmg in a one -dimensional array can be done using any ‘onie of the two
methods :

(i) Linear Search (i} Binary Search.

(¥) Linear Search

In this method, each element of the array is compared with the element to be
searched one by one. The searching ends on getting the first occurrence of the
element or when the entire array has been traversed. When the element is not
found in the array we say that the search is unsuccessful. Linear search can be
applied in any one of the two ways :

{g) Linear Search in an unsorted array.

(b} Linear Search in a sorted array (éay array given in ascending order).

(a) Linear Search in an unsorted array ’

Consider the array given in figure 1 :

10 45 28 49 87 40 71 22

1 23 4 5 6 7 8
Array a[8]
Fig. 1

In case we want to search 71, it is found at location number (position) 7. Search
will be unsuccessful for element 50.

6.2.1 Algdrithm' for Linear Search in an Unsorted Array

Let A be an array of size N. We are to search for the element DATA. I denotes
the array index. Assuming lower bound starts with 1.
1. Repeat for I =1, 2, ....., N upto step 2 .
2.. If (All] = DATA) Then
|
Write{"Successful search")

Write(DATA, " found at position ",I)
goto step 4

}
3. Write(“Unsuccessful search”)
4. End.

"~ On an average, linear search requires N/2 comparisons. In the worst case, N
comparisons are required. :

Searching and Sorting -

+

NOTES
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Data Structures ‘The following function in ‘C’ illustrates the above concept :
Through ‘C’ - -~ ..

/* function definition linear_search() */

NOTES

int linear search(float al[],int n,fldﬁt data)

int 1; /* local-variable */

i=0;

while{i<n)

£ :
if{a{i]==data)
return (i} ;

i44;
}

return(-1}); /* when entire array has been exhausted */.

(b) Linear Search in a sorted array (given in ascending o;m',er)

Consider the ari'ay given in figure 2 :-

1 2 5 7 1 10 45 69 94
o1 2 3 4 5 6 7 8
* I Array a[8]
Fig. 2

In case we want to search 10, it is found at location number (position) 5. Search
will be unsuccessful for element 4 and we terminate search on reaching the
element 5 as remaining elements are bigger than the element to be searched,
Le., 4. : :

.6.2.2 Algorithm for Linear Searchl in a Sorted Array (Ascending
Order) '

Let A be a sorted array of size N (having elements in ascending order). We are
'to search for the element DATA. I denotes array index. The non-existence of the
element in the array can be declared without searching the entire array.
Assuming lower bound starts with 1.

1. Repeatfor I =1, 2, ... , N upto step 2

o 2. If (Afl} = DATA) Then

- " . { N

Write ("Successful search")

Write (DATA," found at position *,I)
goto step 4 -

}

Else ‘ .
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If {A[I)>DATA) Then -
goto step 3
}
3. Write(“Unsuccessful search”)
4. End h

The following function in C illustrates the above concept :

/* function definitdon linear search() */

int linedr search(float a[),int n,float data}
( :
int i=0; /* local variable */
/* searching +*/

while(i<n)

{

if(ali)== data) /* when data is found */
' return(i); ) .
if(a(il >data) /* when array element blgger than data is found */
break;
l++ ‘

}

return(-1).; /* when element is not found */

Linear search is quite time consuming, if the element to be searched lies near the
last element, as many comparisons may be required. Binary search saves a lot
of time and lesser number of comparisons may be needed but the most important
condition for applying it is that the array elements must be in sorted order (cither
ascending or descending order).

(ii) Binary Search

Binary search method requires much less: number of comparisons than linear
search It can be used only for sorted arrays.

To search an element say DATA the approximate middle entry of the array is

located, and its value is checked. If its value is greater than DATA, the value
of the middle element of the first half is located and compared with DATA and
the procedure is repeated on the first half until the required value is found or

the search interval becomes empty. If the value in the middle position is smaller-

than DATA, the value of the middle element of the second half is.compared with
DATA and the procedure is repeated on the second half until the required value
is found or the search interval becomes empty.

SBearching and Sortihg
}

NOTES
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Data Structures
- Through ‘C’

NOTES

- 5. Write (“Unsuccessful search”)

~ 3

As the length of the array to be searched is reduced by half at each step and
the array is divided into two equal parts, this method is known as binary
search.

The efficiency of this method can be imagined by the fact that only twenty steps
will be required in searching a value (element} in an array having more than
mllhon keys (values). . g ‘,

6.2.3 Algonthm Binary Search on Array glven in Ascendmg Order

Let A be an array of size N having elements in ascendmg order. Let DATA be
the element to be searched. LOW, HIGH and MID denote the lowest, highest
and middle positions of a search interval. Search becomes unsuccessful when
LOW > HIGH. Assuming the index begins at 1. The algorithm is defined
nonrecursively.

1. LOW=1
HIGH = N

2. ' Repeat while (LOW < HIGH) upto step 4
MID = Integral part of ((LOW + HIGH)/2)

If (A[MID] = DATA) Then

A
Write ("Successful search")
Write (DATA," found at position ",MID)
goto step 6

}.

Else

{ 1]

If (DATA>A[MID]) Then

LOW=MID+1
Else
HIGH=MID-1

}

6. End. _
Let us apply the above algorithm to an example. Suppose array A contams
elements

5, 17, 30, 52, 66, 70, 83, 91 (N =8)

and we wish to search for 66. .

1 2 3 4 5 6 7 B
LOW - ) HIGH S
Fig. 3 (a)
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LOW =1 and HIGH =N =8
Is (LOW < HIGH) ? Yes
MID = Integral part of ((1 + 8)/2) = 4

s | 17 | a0 [ s2 | 66 | 70 | 83 | @

1 2 3 4 5 6 7 8
LbW MID " . HIGH
Fig. 3 (&)

Is (Af4] = 66) ? No

66 > A[4], repeat the steps with LOW = MID + 1=4+1=25and HIGH 8
Is"(LOW < HIGH) ? Yes

MID = Integral part of (5 + 8)/2) = 6 -

5 17 30 .| &2 66 70 83 91

1 2 3. 4 5 6 7 8
P g
LOW  MID HIGH
Fig. 3 (¢)

Is (Al6] = 66) ? No

66 < A[6], repeat the steps with LOW =5 and HIGH=MID -1=6-1=5

Is (LOW < HIGH) Yes
MID = Integral part of (5 + 5)/2) = 5

5 17 30 52 66 70 a3 91
1 2 3 4 5 6 7 8

MID
LOW
HIGH -

" Fig. 8 (d)

" Is (AI5] = 66) ? Yes

- Write(66,* found at position ”, 5)

'The above algorithm when applied on the array A for searching an element not
present in the array works as given below : :

‘Let the array elements be 2, 6 7, 8, 9 and we w1sh to search for 4.

2 6 7 8 9 (N:S)

1 2 3 4 5
LOW - HIGH
Fig. 4 (a)
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Data Structures : LOW = 1 and HIGH = N =5

Through ‘C’ .
*Is (LOW < HIGH) ? Yes
~ MID = Integral part of ((1 + 5)/2) = 3
NOTES R
2 6 7 8 9
‘1T 2 ? 4 5
LOW’ MID HIGH
Fig. 4 (b)

Is (A3] = 4) ? No _

. 4 < Al3], repeat the steps with LOW. =1 and HIGH = MID -1 =3 - 1 = 2
Is (LOW < HIGH) ? Yes '
MID =Integral part of (1 + 2)/2) = 1

> | 6| 7] 8 | 9o
1 2 3 4 5
Low HIGH ' -
) MID
s - .
Fig. 4 (¢)

Is (A1l = 4) ? No

4 > A[1], repeat the steps with LOW =MID + 1 =1+ 1 = 2 and HIGH = 2
Is (LOW < HIGH) ? Yes.

MID = Integral part of ((2 + 2)/2) = 2

MID_
LOW
HIGH .

) Fig. 4 (d)
Is (A2} = 4) ? No .
4 < A[2], repeat the steps with LOW = 2 and HIGH MID-1=2-1= 1
Is (LOW < HIGH) ? No '

- Write(*Uns uccessful search”™)
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The following function in C implements the above concept Searching and Sorting .

i ——— et e —

/* function definition binary_search{) */

NOTES .

int binary search(float a{],int n,float data)
{
int low;high,mid;
/* searching */
low=0;
high=n-1; .
while {low<=high)
{ _
mid=(low+high) /2; .
if (a[mid] ==data) /* when element is found */
"return(mid) ; '
else
{
if (data»a|mid])
low=mid+1l;
else
high=mid-1;

}

return{-1); /* when element is not found in array */

6.3 SORTING

_ Sorting means -arranging the elements in some specific order i.e., either ascending
or descending order. The various sorting techniques available are :

(i) Insertion sort . ' (i1} Selection sort
(fif) Bubble sort or Exchange sort (fv) Quick sort
{v) Merge sort _ ' (vi) Radix sort

(viz) Shell sort: (viit) Heap sort etc. N
The sorting techniques are discussed below : ‘

(i) Insertion Sort

Let A ‘be an array having N elements All], A[2], ...... , A[N]. Initially, the first
element is assumed to be sorted. In first pass, the second element i.e., A[2] is
'ipserted into its proper place in the sorted part of the array. Similarly, in the

next pass, the third element i.e., A[3] is placed. To make space for insertion,_
some of the sorted elements must be moved down in the array. After each pass

Self-Instritctional Material
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Data Structures the subarray becomes sorted from start to the element we are placing (say

Through ¢’ CURRENT). The array becomes sorted after applying N—1 passes. This algorithm
- is frequently used when N is small. For example, consider the array A having
' - 6 elements as shown in figure 5. :
NOTES
: 1] 42 11 29 1| 29 1 11 1 11 1 1
' 2| 29 2} 42 2| 42 2| 29 2! 29 2| 29
' 3| 74 3l 74 | « 3| 74 3| 42 3| 42 3| 42
unsorted { 4| 11 af 11 4] 1 4} 74 4| 65 4| 58
. 5 65° 5| 85 5| 65 5] 651 ls 74 5| 65
8| 58 6| 58 6| 58 {s 58 | {s6] 58 6| 74
Original array A After first  After second  After third  After fourth  After fifth
pass - pass pass pass pass

Fig. 5 Hlustration of Insertion Sort in ascending order.

For any pass we store the element to be placed in temporary variable CURRENT."
Start from first position and move downward till either the element found is
greater than CURRENT or we reach the position of the element to be placed.
In case we have reached the same location (i.e., the position of the element to
_ be placed) then the element lies properly otherwise move the elements downward
from one position less than that of the element to be placed to the position we
have located an element greater than CURRENT. Now insert the element
CURRENT here. |

6.3.1 Algorithm Insertion Sort

Let A be an array having N elements. We want to sort the elements in ascending
order. CURRENT denotes the value of the element to be placed at proper position
during a pass. POS is used for finding the appropriate position of CURRENT
among the elements above it (if possible). I, J denote the array indices. Assuming -
the array index begins at 1. _
1. Repeat forI = 2, 3, ..., N upto step 5
2. CURRENT = A[ll
8. POS=1 _
4. Repeat while (POS < I) and (A[POS] < CURRENT))
POS =POS +1

5. If (POS # I) Then

{

Repeat for J=I-1,1I-2,...,P0OS

{

A(T+1]=A[J]

}

A [POS] =CURRENT
}
6. End.
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The following function in ‘C’ illustrates this concept with array index beginning  Searching and Sorting

at 0 :

/* function definition insertion_sort(} */

void insertion_sort (float al],int n)

int i,j, current,pos; /* local variables */

/* sorting */
for(i=1l;i<n;i++)
current=a{il; /* current denotes the element to be arranged */

Cad
pos=0;
/* pos increased till values in array are <= current */

while( {pos<i) && {(a{posl<=current) )
pPOS++: ' .
if(pos 1= i} /* if position of element is not appropriate */
{ | _ - ol
/* shifting */
for (j=1i-1;9>=pos;j-~)
alj+1)=aljl; .
/* insertion at appropriate position */
a(pos)=turrent;

(if) Selection Sort

In this method we perform a search in the array, starting from the first element,
to find the position of element with the smallest value. The element with the
smallest value (if found) is swapped (or interchanged) with the first element in
the array. As a result of this interchange, the smallest element is placed in the
first position of the array. In thé second pass or iteration we find the position
of second smallest element starting from the second element onwards.

If such an element exists we interchange this element with the second element
in'the array. This process is repeated on the remaining array elements until we
have placed all the elements in the proper order. o

N-1 passes are required in this ¢orting technique as each pass places one
element properly. For example, consider the following array A having 6 elements,

42 29 74- 11 65 58

NOTES
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Through ‘C’

NOTES.
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In first pass, the position of the smallest element 11 is located and it is
interchanged with the first element i.e., 42. Figure 6 shows the array after each
pass or iteration. ' '

11 11 11 1] 1 11| 11

@ 42 1. . 1

2| 29 @) 28 2| 29 2| 29 2| 28 229
\ 78 Cofe

3[r74 3| 74 @) 74 :‘ 3| 42 3| 42 3{ 42

@| 11 4| 42 @] 42 @\ 74 4| 58 4| 58

5] 65 5| 65 5 65 15 65 :l ®)| 65 5| 65

6| 58 8| 58 6| 58 ®)] 58 |« $6| 74 65| 74

Original array A Afterpass 1 Afterpass 2 Afterpass3  Afterpass4  After pass 5
. sorted array A -

Pig. 6 Hlustration of Selection Sort in ascending order.

The encircled indices indicate the assumed position of the smallest element and
actual position .of the smallest element during a pass. The downward arrow
indicates the remaining portion of array which is to be searched for position of
least element. ’

6.3.2 Ajgorithm Selection Sort for Ascending Order

Let A be an array having N elements. We want to sort the array in ascending
order. PASS denotes the pass counter and MIN_INDEX the position of the
-smallest element during a pass. Variable TEMP is used for interchanging
(swapping) two elements. I denotes array index. Assume the array index begins
at 1. ‘

1. Repeat for PASS =1, 2, 3; .., N-1
( | :
MIN INDEX=PASS
' Repeat for I=PASS+1,PASS+2,... /N
L
" If (A[I]<A[MIN_INDEX]) Then
MIN  INDEX=1I

}

If{PASS#MIN INDEX) Then
{
TEMP=A [PASS]
A[PASS) =A [MIN_INDEX]
A [MIN_INDEX] =TEMP
}
" ‘ | \
2. End '
In general for the ith pass, N+i comparisons are made for searching smallest
element. The maximum numb(lér of interchanges required is N-1 as there is at

- most one. interchange during a pass. But, the -actual number of interchanges

-



may be less than N-1 as the array elements fnay be in an order which may not  Searching and Sorting
require interchange for each element (if placed properly). “

The following function in C implements the above concept :

5

NOTES
/* function definition selection_sort(} */
void selection sort(float a[l.,int n)
A T o . o
float temp; /* temp is used here for swapping */
int i,pass,min_index; . .
/* min_index denotes position of the least element during a pass */
/* sorting */
for (pass=0;pass<n-1;pass++) -
{
/* assume pass as the position of the least element */
min_index=pass; -
/*Search for the position of the least elements among the remalnlng
elements of the array | 1f any ) */
for(i=pass+1l;i<n;i++)
{ ,
if(a[i] <almin_index])
) min_index=1i;
}
/* if assumption is not appropriate */
if (pass !'= min index) - . \

{ - [
/* swap the elements */ - ' l

' temp = a[pass];

afpass]
aimin_index]

a[min_index] ;
temp;

(iii) Bubble Sort or Exchange Sort .

In this method we pass through the array sequentlally many times. Each pass
places the largest unsorted element in its proper position by comparmg each
element in the array with its successor element and. swappmg tHe two elements
if these are not in proper order. The number of exchanges prior to each pass is
initialized to 0 and incremented if two elements are swapped. This procedure is

.
i\
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Data. Structures repeated from start to one position less than that of the last unsorted element
Through *C (as the elements are compared pairwise when'we reach second last element in
the unsorted array the last element is also included). "

oo The first pass places the larges! element in the array at the last location. If no
NOTES exchanges take place during any pass the next pass is not applied and the array
becomes sorted resulting into E\lgorithm termination, otherwise, we move one
positien up after placing an element properly, this element is left out in the next
- pass. Again exchanges are initialised to 0 and next pass is applied to place the
largest element left in the unsorted part of the array. An extra pass is applied
after the array becomes sorted for checking that no exchanges takes place in
next pass. In the worst case N-1 passes are applied for sorting N elements.
Only one pass is needed if the given array is already sorted. As lighter (smaller)
elements move up in the array during a.pass and heavier (bigger) elements
move down and finally each element “bubbles” upto its exact location, this is
why the method is known as bubble sort.

For example, consider the array A having 6 elements as shown in figure 7 :

1| 42 ICompa,e 29 | 29 ] e 29
swap
21 29 . 42 I Compare 42 § . 42 42
No change
31 74 74 9 74 ICompare 1R 11
41 11| 1 ) 11 swap . | 74 1C°mpa,e 65
swap : :
51| 65 ) 65 65 65 74 Compere
6§ | 58 58 58 © | 58 58 swap
Original array A -
29 1] 29 ’ 1] 14 11
42 2| 11 2| 29 ’ 29
11 3] 42 3| 42 42
65 4 | 58 4| 58 58
. Largest element o8 5| 88 . Sy 8 . 65
placed at bottom———» 74 6| 74 6| 74 74
After 1st pass ;
Array after 2nd pass Array after 3rd pass Sorted array after
4th pass

Fig. 7 Hlustration of Bubble sort.

We may check that for the above data,

Number of exchanges in first pass =

Number of exchanges in second pass

4 .
2 . _
Number of exchanges in third pass 1

" Number of exchanges in fourth pass = 0, so array becomes sorted after
4th pass. \ .

-~
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6.3.3 Algorithm Bubble Sort for Ascending} Order. - -

Let A be an array having N elements. We want to sort the array in ascending
order. PASS denotes the pass counter and LAST the position of the last unsorted
element during a pass. EXCHS denote the number of exchanges during a pass.
Variable TEMP is used for swapping of elements. 1 denotes array index. Assume
the array index begins at 1.

1. LAST =N
2. Repeat for PASS = 1, 2, ..., N-1 upto step 5
©3. EXCHS =0 N
4, Repeat forI =1, 2, ..., LAST-1
{
If {(A[I]>A[I+1]) Then
(. . :
TEMP=A[I) :
A[I]l=A[I+1]
A[I+1)=TEMP
EXCHS=EXCHS+1

} :
5. If (EXCHS = 0) Then

goto step 6 .
Else '
LAST=LAST-1
6. End
m It is better to use bubble sort when array elements are partielly or fully

sorted. Only one pass is required when the given array is already sorted.

The following function in C implements the above concept with array index

beginning at 0 : |

/* function definition bubble_sort() */

void bubble_sort(float al],int n)
{ .
float temp; /* temp is used here for swapping */
int 1,last,pass,exchs;

/*last denotes the position of last unsorted element
pass denotes pass counter
exchs denotes the number of exchanges during a pass '*'/
/* sorting */ :
pass=0;
last=n-1;

Searching and Sorting

NOTES
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NOTES

do

pass++;
exchs=0
for(i=0;i<1ast;,i++) _
{ : : . 2
if{alil>ali+1]
[
- eXchs++;
temp=af{i];
a[i]:a[i+1]i /* swapping */

ali+l]=temp;

}

last--;

}
while( (exchs!'~0) && (pass!=n-1) };
printf ("\n\nNumber of pass(es)used for sorting = %d\n",pass);

}
47

@v) g‘:fi\ck Sort

Given an array A of N elements. The quick sort method uses the divide-and-
conquer approach for sorting the elements. In this method the N elements to be
sorted are artitioned into three segments (or groups)—a left segment /eft,a middle

'spgment middle, and a right segment right. The middle segment contains only

one element; no element in left has a value larger than the value of the element

“in middle; and no element in right has a value that is smaller than that of the

middle element. As a result, the elements in left and right can be sorted

-independently, and no merge is required after the sorting of left and right. The

element in middie is called the pivot or partitjoning element. The sort method
is explained more precisely as given below :

Suppose variables LB and UB represent the ifidices of the first and last elements’
of the array respectively. '

IF(LB < UB) Then

{ ‘select an element from'A[LB : UB] for middle. This element is the pivot.
Partition the remaining elements into the segments left and right so that
no element in left has a value larger than that of the pivot and
no element in right has a value smaller than that of the pivot.
Sort left using quick sort recursively.
Sort right using quick sort recursively.

)

' The answer is left followed by middle followed By J".z';.g.:,vh.t.r -
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We can improve the performance by appropriate selection of pivot. Let us consider » Searching and Sorting

_ the case when the pivot is always the element at position LB. To begin with,
assign the index or position of the first element of the array to-I variable, and
index or position of the last element of the array to J variable. Now perform the
following : '

‘1. [Swap element > pivot on left side with elements <= pivot on right side]

{a) staring with the element with position I+1, the array is scanned from
left to right, comparing each element in it with the element pivot, tiil
‘element greater than or equal to the element pivot is found, taking into
cosideration that I < UB. '

(b) Starting with the element with position J, the array is scanned from
ﬁght to left, comparing each element in it with the element pivot, till
element smaller than or equal to the element pivot is founq, taking into
consideration that J > LB. :

2. [Check if swap pair found]
~ If(12J) Then
_goto step 4
3. [Swap the elements]
Swap the elements A[I] and A[J]
goto step 1 '
4. ([Place’pivot at proper position]
| Assign the value of A[J] to A[LB], and store pivot in A[J]

As this procedure ends, the first element, pivot, of the original @rray will be
- lying at its final position that is middle. The elements in left will be less than
this element and the elements in right will be greater than this element.

‘The same procedure can be now seperately applied on left and right sub-arrays.

For example, consider the array A having 6 elements as shown below :

42 .29 74 R | 65 58
Al1] Al2] Af3] Ald] A{5} A[B]
1 2 3 T4 5 6
LB _ - " UB
Fig. 8 (a)

Here UB > LB, the pivot element is A[LB], that is 42. To begin with set I = 1,
J=28 ' '

NOTES

Self-Instructional Material
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42 29 74 11 65 ' 58
A1) Al2) Al3] Al4] A[5] Als]
1 2 3 4 5 6
LB uB
I J
‘Fig. 8 (b)
Start scanning elements from left with position I + 1
42 29 74 11 65 58
All] A[Qj Al3] A4) A[él Al6]
i 2 3 4 5 6
. LB I uB
. . J ,
Fig. 8 (¢) _
Since A[2] < 42, we increase the value of I by 1 to get
| 42 29 74 11 I 65 58
Af1) Al2} A3] Af4] A[5] Al8]
1 2 - 3 4 -5 6.
LB, 1 - uUB-
_ J
Fig. 8 (d)

Now, Al3] is not < 42, so start scanning the elements from right with position
J = 6. Since A[6] > 42, we decrease the value of variable J by 1 to get, -

42 29 74 1 65 58
Af1] A2 A[3) Al4] Al5) Al6]
1 2 3 4 5 .6
LB [ J uB
Fig. 8 (e)
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Since again. A{5] > 42, we decrease the value of J to get

Since A[4] is not < 42, so start scanning from right w1th p081t10n J, i.e., 4. Since

Al4] > 42, we decrease the value of J to get

42 29 74 1" 65 58
AL Al2] Af3) - Al4] A[5) AlB]
1 -2 .3 4 5 . 6
LB I J U
: -Fig. 8 @ '
Now, A[4] is not > 42 and at this stage [ < J so swap the elements A[l] and A[J]
to get -
42 29 11 74 65 58
Al1] Af2) A3 Al4] ‘A5 Al6] .
1 2 3 4 5 6
LB I J uB
Flg 8 (g)
Now, agam start from left with posmon I+1, ie, 4
42 29 11 74 65 58
Al Al2] Al3] Al4] AlS] Ale]
1 2 3 ':f‘ 5 ;
LB I UB
) :
Fig. 8 (h)

42 29 11 74 65 58

Al1] Al2] Al3] Al4) A[5] Al6]

1 -2 3 4 5 [

LB - J 1 uB’
" Fig. 8 ()

Since Al3] is not > 42 and at this tage I > J thus 1nd1cat1ng that element 42
is to be placed in its final position. Store the element A[J] in A[LB] and then
place 42 in A[J] to get the following and terminate the above procedure.

NOTES
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Data Structures

Through ‘C’ 11 29 42 74 65 58
Al1) Al2) Al3] Al4] Al5] AlB]
1 2 3 . 4 5 6
NOTES Fig. 8 (j)
So the original array A has been divided into three segments as shown
. 11 29 a2 74 65 58
Af1] Al2] A(3] A[4] A{5] Af6]
1 2 3 4 5 6
~— ‘ - S - J—
" "
left middle right
plvot
s ' ‘ Fig. 8 (k)

As we can see, the elements in left segment are smaller than 42, and the
elements in right segment are greater than 42,

6.3.4 Algorithm Quicksort (A, LB, UB)

Given A an array having N elements. This algorithin sorts this array in ascending
order using quick sort method. LB and UB denote position of the first and last
elements respectively. I and J are array indices. PIVOT contains the element to
be placed in its final position within the sorted subtable. TEMP is used for
swapping of elements. FLAG is a logical variable which indicates the end of the
process that places the PIVOT in its final position. When FLAG becomes false,
the given array has been partitioned into three segments. h

1. [Initialize) _
FLAG « TRUE

2. - [Perform sorting]
If (LB 2 UB) Then

goto step 8

3. 1« LB
J « UB-
PIVOT « A[LB]

4. Repeat while (FLAG)
{

T« I +1 .
Repeat while (A[I] < PIVOT and I < UB)
T« I+1
Repeat while (A[J] > PIVOT and J > LB)
Je« J-1
. If(I =2 J) Then
Flag ¢« false
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Else
B
[Swap the elements]
TEMP < A[I)
AlIl « A[J]
A[J] < TEMP

} _
5. [Place PIVOT at its proper position]

A[LB] « Ald]
Ald] « PIVOT
6. [Sort left seginent]
CALL Quicksort (A, LB, J-1)
7. [Sort right segment} s
CALL Quicksort (A, J+1, UB)

. 8. End.

The above algorithm is uised initially by the statement CALL Qulcksort
(A, 1, N). The followmg program implements the above concept :

_/* quick sort for agcending order */

#include<stdio.h>

#define SIZE 20

void main()

{
void enter(float (],int); /* function prototype */
void display(float []),int);
void quick_sort (float [],int,int);-
float a[SIZE]
int n;
clrscx () ;
printf ("Enter number of elements <= %d\n", SIZE)
scanf ("%d", &n) ;
printf ("\nEnter %d elements\n\n" nj;
enter{a,n); /* function call */
/* echo the data */
printf {("\nGiven array is\n\n");
display(a.n); /* function call */
/* sorting */
quick_sort(a,0,n-1); /* function call */
printf ("\n\nSorted array is\n\n");
display(a,n); /* function call */
getch(); /* freeze the monitor */

-~
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*/* function definition enter() */

void enter(float all,int n)

{
int i; /* local variable */ .
. for(i=0;i<n;i++)
scanf {("$f",&a (1]} ; -
| .

/* function definition display(} */
void display(float alfl,int n)
- .

int 1; /* local variable */

for(i=0;i<n;i++) .

_ printf{"%8.2f",alil);

} ’
/* recursive function definition quick sort () */

void quick_sort (float arrl(],int lb}int ub) .

{ | | ‘:
int i,3j; /* local variables L B
float pivot_value, temp;

if (1b>=ub) /* base case for recursive function */
return;

i=1b; /* i is used as left to right cursor */
j=ub; /* j 1s used as right to left cursor */

pivot_value=arr[1lb];

/*swap elements »= pivot_value on left side
with elements <= pivot value on right side */

“while (1}

{
do

{

/* find »>= element on left side */
i++;
 } while({arr[{]<pivot_value && i<=ub};

while(arr[i]>pivot_vaiue && j>1b)

{
/* find <= el@me?t on right side */
j--: o
: } _ ' .
if (i»=j) /* when swap pair not found */
break; )
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/* swapping of elements using variable temp */

temp = arr [i];
arr(jl;
"arr([j] = temp;

arr [i]

N

}
/* place pivot_value at middle position that is j */

arr([lb) = arrfj];
arr[j] = pivot_value;

/* sort left segment */
quick_sort (arr,1lb,j-1); /* recursive call to functio
/* sort right segment */

quick sort{arr,j+1l,ub); /* recursive call to functio

Searching and Sorting

NOTES" -

n */

n */

PROGRAM 1

' The.output of program 1 will be :
' Enter number of elements <= 20
.6

i 1 Enter 6 elements

4 422974 11 65 58

{. - Given array is

e 42.00 29.00 74.00 11.00
I 58.00 : ,

g - Sorted array is )
b 11.00 " 29.00 42.00 58.00
5 74.00

In the above program first of all the number of elements are entered and then
the elements using the function enter() having arguments—the array and the

number of elements. The entered array is echoed using the functio
having arguments the array and the number of elements. Function g

is called with arguments—the array, lower-bound upper bound of the array
indices. Function quick_sort() sorts the elements in ascending order by calling

itself repeatedly, that is, using recursion. The control is returned to
the sorted array is shown using function display().

65.00

65.00

n display()
uick_sort()

main() and

" Self-Instructional Material
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(v} Merge Sort

Merge sort algorithm uses the .divide-and-conquer method for sorting purpose.
Given. an array A having N elements, with LB and UB denoting the lower and
upper bound of array indices. We want to arrange the elements in ascendmg

~ order. This algorlthrn has the following general structure:

If N is one, terminate; otherwise partition the collection of elements into two
halves or collections, sort each; combine (merge) the sorted halves or collections
into a single sorted collection. It is a recursive method with the base case—the
number of elements in the array are not. more than one.

We can define the merge sort algorithm recursively as given below :

If (LB < UB) Then

{
Divide the array A into two halves
Mergesort the left half
Mergesort the rlght half .
Merge the two-sorted halves into one sorted array
) v
For example,

Consider the array A having 6 elements, that is N = 6

42 29 74 "o 65 58
1 2 3 4 .5 T o6
LB ' uB

Fig. 9 (@) Original array A.

‘As LB < UB so we first dwlde the array A into-two sub arrays at pOSlthIl

MIDDLE, where .
MIDDLE = Integral part of ((LB + UB)2) = Integral part of ((1+6)/2) = 3

42 29 74 . 11 65 . 58
N 2 L > .
Left Sub Array . Right Sub Array

Fig. 9 (b) Original array A divided into two halves.

and first také the left subarray. It is agam divided into two sub arrays at
MIDDLE = Integral part of ((1+3/2) = 2 as shown below .

42 29 74

1 2 3

Left Sub Array Right Sub Array

Fig. 9 (e) Leﬁ sub-array of original array A divided into two halves.
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Now for left sub array, we again use the same method, dividing it again into sub
arrays of one element each at MIDDLE = Integral part of ((1+2)/2)=1

42 29

' 1 2
- ~ AN _ V’__)

Left Subarray Right'Subarray
Fig. 9 (d) Left subarray shown in f'g 9 (¢) further divided.

Subarrays of size one as mentioned earlier, require no sorting. So the nght
subarray of the left subarray of original array A does not require further division.

_The subarrays shown in Fig. 9 (d) merge to result into the sorted array and

29 42

1 2
Flg 9 (e) Mergings of subarrays in fig. 9 (d).

the right sub array in Fig. Q'(c) on merging with the just sorted arréy gives the
following sorted array.

29 42 74

1 2 3
Fig. 9 (f) Merging of subarrays shown in fig. 9 (e) and fig. 9 (c).

Now the left half of the given array is sorted, we apply the same method on the
right sub arrays of the original array. First we divide it into two sub arrays at
MIDDLE. = Integral part of (4+6)/2) = 5 as shown below

11 85 I 58 -
R ‘ S oo &
—~ ~

Fig. 9 (@) Right subarray of original array A divided into two halves.

Now for left sub array, we again use the same method, dividing it again into
subarrays of one element each at MIDDLE = Integral part of ((4+5)/2) =

~ = AN _ 4

- -
o i

Left Sub Array Right Sub Array

Fig. 9 (h) Left subarray shown in fig 9 (g) further divided.
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The algorithm for merging is given below :

As the right subarray in fig is of size one, so it requires no sorting. The subarrays
in Fig. 9 (A) on merging result into the sorted array and the right subarray

"o 65

4 - .5 .
Fig. 9 (i) Merging of subarrays shown in fig. 9 (h).

inlﬁg 9 (g) on }nerg'ing with the just sorted array gives the following sorted
array

. 1 58 65

Fig. 9 () Merging of subarrays shown in fig. 9 (i) and fig. 9 (g).

Finally, the two sorted sub arrays of size three each shown in fig. 9 (/) and .
fig. 9 () are merged to give the sorted array

LA 29 42 58 65 74

1 2 3 4 5 6

Fig. 9 (k) Resultant array A having elements in ascending order.

N

"6.3.5 Algorlthm Merge (A, Low, Mid, High)

Given two ordered (ascending order) subarrays stored in an array A with LOW
MID and HIGH as array indices; where the LOW through the MID “elements
and the MID+1 through the HIGH elements represent the left and right sorted
subarrays respectively. TEMPARR is a temporary array used in the merging
process which is of the same size as that. of array A. The variables I and J
denote the index (cursor) ass_ociated with the first and sécond subarrays,
respectively. K is an index variable associated with the array TEMPARR.
1. [Initialize] | '

I « LOW

J <« MID + 1

K « LOW
2. [Compare the corresponding elements and- store the "smallest]

Repeat while (I < MID and J < HIGH)

{

If (A 1) £ A[Jj) Then
{
TEMPARR[K] « A[I]
I &« I+1
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Else
{ ,
" TEMPARR [K) «AlJ) '
J & J+1-

K « K+1
) .

3. [Copy the remaining elementt_s]
If (I < MID) Then .
-
Repeat while(I < MID)

{

TEMPARR {K] ¢-A [T}
I &« I +1
K« K+ 1

}

Else -

{
Repeat-while(J < HIGﬁ)
{ .
TEMPARR [K] <« A[J]
J & Jrl
K & K+l

}

~ 4. [Copy elements from TEMPARR to original array Al

Repeat for [ = LOW, LOW +1, --—---, HIGH.
All] « TEMPARRI[I]
5. End

* Note that the timing performance of this algorithm is O(n) where n denotes the

¢

{

sum of the sizes of the two subtables to be merged.

Given an array having N elements. Let us consider this array to be a set of N
arrays, each of which contains a single element. Obviously, an array which
contains a single element is_sorted. The following algorithm perform a merge
sort -

- 6.3.6 Algorithm mergesort (A, 1B, UB)

1}

S

g '
-

. Given an array A, it is required to sort recursively its elements between positions

LB and UB.(both inclusive). MIDDLE denotes the position of the middle element t
of the current subarray. ' :

Searching and Sorting

NOTES
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Data Structures 1. [Test base condition for subarray of size one]

Through C’ ] .
*  If (LB < UB) Then : : .

{ .
' ) [Calculate mid-point position of current subarrayl
NOTES MIDDLE « Integral part of ((LB + UR)/2) .
[Recursively sort first subarray]
CALL MERGESORT (A, LB, MIDDLE)
[Recursively sort second subarrayl]
CALL MERGESORT (A, MIDDLE+l, UR)
[Merge two ordered subarrays] .
CALL MERGE(A, LB, MIDDLE, UB)

}
2. End , '
The algorithm MERGESORT is initially called (invoked) as given below :
‘CALL MERGESORT (A, 1, N)
where N denotes the number of elements (that is, SIZE) of the original array to
* be sorted. ’ - . '
The following function in ‘C’ implement the above concept :

/* recursive function definition merge_sort() */

- void merge sort{float afl,int 1b,int ub)
{ .
void merge (float [],int,int,int}; /* function prototype */
int middle; /* local variable */
if (1b<ub)

{

G . . middle=(lb+ub)/2; /* divide the array into two halves */

' . merge_sort(a,lb,middle); /* function call for left half */
merge sort{a,middle+l,ub); /* function call for right half */
merge{a,lb,middle,ub}; /* function.call merge(} */

/* function definition wmerge(} */

; void merge (float afll,int low,int mid,int high)
{ .

float temparr{SIZE}; /* local variable deaclared */

int i,3,k; ’

i=low; /* i is cursor for first segment */
, j=mid+1l; /* 3 is cursor .for second segment ¥/
v k=low; /¥ k is cursor for resulﬁaﬁ; segment. */

while( i<=mid && j<=high) - ' .

1
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}
{

}

else

{

}

for(

if(afil<=a(j]}
{
‘temparr [k]=al[il ;
14+4;
}

else
g
temparr[kl=al[j]:
s ‘
}.

K++;

if (i<=mid) /* if elewments in first segment are left */

for(;ic=mid;i++)
{
temparr [kl=alil;
kK++;

}

/* Lf elements is second segment are left */

for{;j<=high;j++)
{
temparr (kl=aljl;
kK++; -

.

/* copy the elements from array temparr[] to array al[] */

i=low;i<=high;i++)

al[il =temparrl[i];

(vi) Radix Sort

Given an array A having N positive integers. We want to sort the integers in
ascending order. As the base or radix of decimal number system is 10, we
requirk ten pockets (buckets). In general, integers consisting of more than one
digit are sorted. In such a case, an ascending-order sort can be done by performing
several individual digit sorts in order. That is, each column is sorted in turn
‘starting with the lowest-order (right-most) column and proceeding through the
other columns from right to left, that is, first on unit place digit, then on tens
place digit, then on hundredth place digit, and so on. For example, consider the
following array A having 7 elements :

Searching and Sorting

.NOTES
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Through ‘C’ .
342 129 . 740 211 965 658 472
A1) A2) Al3) Al4] A5l . Afg] A[7)
NOTES ' _
- ' Fig. 10 (a) Arrcy a having 7 elements.
After ‘the first pass on the unit digit position of each number we have the
pockets : II" :
472 '
740 211 342 965 658 129
0 1 2 3 4 5 8 7 8 g
-Fig. 10 (b) Status of pockets after pass 1. -
Now by collecting the integers from pockets into array A we have : '
740 211 342 472 965 658 129
A1) A2} AL3) Af4) AlS) A6l - Al7
Fig. 10 (¢) Array A ﬁﬂer pass 1 sorted on unit digit.
After th_é second pass on the tens digit position of each number we have the
pockets :
: 342
211 129 ' 740 658 965 472
0 1 2 3 4 5 6 7 8 9
Fig. 10 (d) Status of pockets after pasé 2.
Now by collecting the integers from pockets into array A we have : '
. 211 129 740 .| 342 | 658 965 472
Al Al2) Al3] Aj4]. Als] - Al A7}
/- ’ Fig. 10 (e) Array A after pass 2 sorted on tens digit.
. ' ‘% s

4,
FE
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After the third pass ou the hundredth digit position of each number we have the
poekets :

-
v

120 | ! 211 342 472 ' 658 740 965
0 1 2 3 4 5 & 7 8 9

Fig. 10 (f ) Status of pockets after pass 3.

Now by collecting the integers from pockets into array A we have :

128 211 342 472 658 740 966

Al1] A2 A3] Al4] AlsT - Al6] A7)
Fig. 10 (g) Array A after pass 3 sorted on hundredth digit.

As the maximum number of digits in the given integers is 3 so no further pass
is required. Therefore, the sorted array is

129 211 342 472 658 740 - 865

A1} . Al2] . A[3] - A4} A[5] Al6] IA[?]
Fig. 10 (k) Sorted array A.

The algorithm for Radix sort is given below :

Given an array A having N positive integers with index beginning at 1. We are
to arrange the integers in ascending order. BIGGEST denotes the largest integer
in the given array. The variable MAXDIGITS is used to store the number of
digits in the largest number in order to perform the maximum number of passes.
DIVISOR is used for dividing given integers and R for storing remainder. PASS
denotes the pass counter. I, J and K denote array indices. POCKET is a two
_dimensional array of size 10 by N used for storing integers during passes.
COUNT is a one dimensional array of size 10 used for storing the numbers of
mtegers that is, count in different pockets. Indices of POCKET and COUNT
array start at 0,0 and 0 respectlvely

1. [Inltlahse] _
BIGGEST « Afl]
2. [Find the largest integer, among array elements]

Repeat for I = 2, 3, .............. N
{

¢ -

If {A[I) > BIGGEST) Then
BIGGEST ¢« A[I]

Self-Instructional Material
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Data Structures 3. MAXDIGITS « 0 C .

Through ‘C’ : ‘
4. {Find number of digits.in largest number} '
Repeat while(BIGGEST > 0)
(- ,

NOTES .
: MAXDIGITS ¢ MAXDIGITS + 1

BIGGEST < Integral part of (BIGGEST/10) .
5. [Initialise divisior for least significant digit of integers] '
DIVISOR « 1
6. [Perform passes) _ ' .
Repeat for PASS =1, 2, wcccccnnnnns , MAXDIGITS
{ e
{Initialise count .for all pockets].
Repeat for I=0, 1,2:..,9
count {I] &« 0
[Put integers in pocke&s according to current Eignificant digit]
Repeat for I =1, 2, ...,N ] t
- _ . | |
[Find remainder , here MOD used for finding remainder on
g . integer division]
R « (Integral value of ( A[I]/DIVISOR)) MOD 10
POCKET [R, COUNT[R}] « A[I]
COUNT [R] « COUNTI[R] + 1
} .

[Collect integers from buckets into array Al

K ¢« 1
. Repeat for I =0, 1, 2, ...,9
’ . Repeat for J =0, 1, 2, ...,COUNT[I] - 1
{ : o '
i A[K] « POCKETI[I,J] .«
K« K+ 1 '
} .
} .
DIVISOR ¢« DIVISOR x 10 L
. } -
7. End

The following function in C implements the above concept :

/* function definition radix_sort(} */

void radix_sort (int af},int n)

{

int pocket[10) [SIZE],count [10]; /* local variables */
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int 1i,j,k,r,pass,biggest,divisor, maxdigits=0; - Searching and Sorting

/* find the biggest number among integers */
biggest:a[ﬁ]}
for(i=1;i<n;i++}
{ o
if{ali] >biggest)
biggest=alil;

NOTES

}

/* find the number of digits in the biggest number */
while (biggest>0) ’
{ .
. maxdigits++;
biggest /= 10; .
}
/* sorting %/ )
divisior=1; /* divisor for least significant digit of integers */
for{pass=1;pass<=maxdigits;pass++) ‘
{
/* initialise count for all pockets */
for{i=0;1i<10;i++)"
count [i] =0 ' .
/* put integers in pockets according to current significant

digit */
for{i=0;i<n;i++) ’
{ .

r = {(al[i]l / divisox) % 10;

pocket [r] [count (r]l++] = alil; ’
j
/* collect integers from pockets into array 'at! */
k=0; ' ’
FOr (3=0;1<10;i++)

{ :
for(j=0;j<count [1] ;3 ++) ’ - -
alk++) =pocket [i] [1];
} .
printf ("\n\nArray after pass %4 is\n\n",/pass);
display(a,n); /* function call */

divisor *= 10; /* for next signifiéant digit of integers */.

(vii) Shell Sort

Shell sort or diminishing increment sort is named after its developer Donald
Shell. It is more significant improvement on simple insertion sort. This method

4
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- .

sorts seperate subfiles of the original (given) file. Thése’subﬁles have every
Kth, element of the original file. The value of K is called an inerement. For

.example, if K is 5, the subfile having elements A[1], A[6], A[11], ... is just-stored.

Five subfiles each having one fifth of the elements of the original file are sorted
in this manner: These subfiles are given below (reading across) :

Subfile 1 '——  All] A8} AL ,
Subfile 2 —— " A[2] AlT) Al121 .
Subfile 3 ——  A[3] Al8] Al13]
Subfile 4 ——5  Al4) Al9) - Al4
Subfile 5 ——  A[5] A[10] All5] .

The K subfiles are divided in such a way, so that the ith element of the jth
subfile is given by Al(-1) x k 4+ j — 1] ‘

These K subfiles are sorted usually by simple insertion sort. Now the value of
K is decremented and the file is again partitioned into a.new set of subfiles.
These larger subfiles are sorted and this process is applied again with an even
smaller value of K. Finally, the value of K is set of 1 so that the subfile having
the entire file is sorted. A decreasing sequence of increments is fixed in the
beginning of the entire process. The last value in the sequence must be 1. For
example, consider the file having 6 elements and we want.to sort the elements
in ascending order (Note that the output .of one pass becomes the inbut of the

next pass.
.
1 42
I Y
2 29
3 74
4 11
5 65
_ 6 58

Fig. 11 (a) Original file having 6 elements.



Pass 1 : Starting with increment = 4

Searching and Sorting

”

— 1| 42 1 42 1 42 NOTES
2 29 — 2 29 2 29
3 74 3 74 3 74
4 1 4 1 4 11 exchs =0’
Ly5 | 65 5 65 5 65
6 58 L* 6 58 5 58
Fig. 11 (b) File after action of Pass 1.
Pass 2 : Starting with increment = 1
1| 42 29 11 29 1} 29 | 1| 29 29
2( 29 42 2] 42 2{ az 2| 42 42 -
3l 74 74 3| 74 3l 11 3l 11 19 | chs=4
4| 11 1 441 4| 74 4| 65 65
5| 65 65 5| 65 s 65 | »5| 74 58
6| 58 58 6. 58 6| 58 6| 58 74
- swap . . swap swap- swap
Fig. 11 (¢)
) /
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Data Structures As the number of exchs = 4. so repeat this process

Through ‘C’
NOTES > 1| 29 1] 29 |- 1] 29 1| 28
2} a2 l—b 2| 42 2| 11 2| 11 2
sl 1 Ll s al 42 3] 42 3
4! 85 4} 65 41 65 4| 65 4
5| 58 5| 58 5| 58 5| s8 5
8 7:1 6‘ ’ 74 6| 74 6t 74 6
SWEIID . | swap
Fig. 11 (d)
As the number of exchs = 2 so repeat this process
1| 29 1] 11 1 1 - 1 1 1
. 2] 11 2| 29 2| 29 2| 29 2
3| 42 al a2 3| 42 3| 42 3
| 4| 58 4! 58 4| 58 >4 8 4
. 5| 65 5| 65 5| ‘65 5| 65 5
6 74 6| 74 6| 74 6§ 74 6
- - ) swap
Fig.-:ll {e)
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11 11
42 42
58 58
65 65
74 74
11 11
29 29
42 42
58 58
65 65
74 74

exchs = 2

exchs =1



.As the number of exchs = 1 5o repeat this proéess

I } . .
1] 11 1] 1 1] 11 1 1 1 1 11
2| 29 2| 29 21 29 2| 29 21 29 2| 29
3] 42 3| 42 3| 42 “3| 42 a| 42 - 3 42
4| 58 4| 58 4| 58 4 s8 4| 58 ‘ 4] 58 | exchs=0
5{ 65 5| 65 5| 65 I:s 65 5| 65 5| 68 .
6 '71 6 74 | 6} 74 8| 74 . 6| 74 _ 6| 74
Sorted File
Fig.11 (N

As the'number of exchs = 0 so file is sorted now.

We must note that if a file is partially sorted using an increment K and is
subsequently partially sorted using an increment j, the file remains partially
sorted on the increment K. That is, subsequent partial sorts so do not disturb
earlier ones.

Several studies have been made of Shell sort, but no one has been able to prove
that any choice of increments is greatly superior to all others. However, we
must avoid choosing increments as powers of 2, such as 8, 4, 2 and 1 etc., as the
same keys compared in one pass would be compared in next one. If we select the
increments which one relativelv prime (that is, have no common divisors other
than 1) then this guarantees that successive iterations intermingle (rmx) subfiles
so that the entire file is indeed almost sorted when increment equals 1 on the
last iteration. In general the shell sort is recommended for moderately sized
files of several hundred elements.

-The algorithm for shell sort is given below :

Given an array A having N elements. We want to arrange the elements in
ascending order. I, J denote array indices. INCREMENT denotes the number of
increment {(gap) between the elements sorted which finally reduces to 1, to
ensure that the array is completely sorted. Variables EXCHS and TEMP are
used for storing the number of exchange during a pass and swapping the
elements. PASS denotes che pass counter {Note INCREMENT depends on the
user’s choice)

1. PASS < 0
INCREMENT « 1

Search ing and Sorting

NOTES
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Data Structures 2. Repeat while INCREMENT < N)

Through ‘C’
¢ INCREMENT <« INCREMENT x 3 + 1
3. PASS « PASS +1 -
" NOTES INCREMENT ¢« Integral part of (INCREMENTB)
. EXCHS « 0 )
5. RepeatforI =1, 2, 3, ...ccocvvveeene » N-INCREMENT

{ L , -
If (A[I] > A [I+INCREMENT]) Then

{

EXCHS ¢ EXCHS + 1 _

TEMP « A[I] ' - .
A{I] « A[I+INCREMENT]

A[I+INCREMENT] ¢ .TEMP -

}
6. If (EXCHS # 0) Then

goto step 4
7. If INCREMENT = 1) Then
. goto step 3 '
8. End

*

The following function in C implements the above concept :

/* function definition shell_sort({) */

void shell sort({int arr(],int n)
{
int i, 3, increment, exchs, temp,pass 0; /* local variables */
increment=1;

/* choose sequence of increments */
while (increment<=n)
increment = increment*3 + 1;
do ' . “ . .
{
—  pass++;
increment /= 3;
printf{"Iteration %d :\n",pasgs);
do o
{
exchs=0;
for{i=0;i<n-increment;i++)
{ -

if {arr[i] »arr{i+increment]}

{

exchs++; /* increment number of exchanges */

184 Self-Instructional Material



,/*- swapping */ . Searching and Sorting

temp = arrf{il; .
arr[i] = arr[i+increment];.
arr[i+increment] = temp;
b o '
| _ o NOTES

)
for (§=0;j<n;j++)

printf("sd ",arr[ijl);
printf ("exchs = %d\n", exchs); -

}while (exchs) ;
}while (increment != 1};

(viii) Heap Sort M.’ % '
Let us discuss same basic concepts which are essential for understanding heap
sort. . . i

6.3.7 Definitions

- A max tree (min treé) is a tree in which the value in each node is greater (less)
than or equal to those in its childern (if any). Some max trees are shown in
figure 12, and some min trees are shown in figure 13.

(a)

Fig. 13. Min trees. ..

JO
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. 'than two childern.

Note that max trees and min trees are binary trees, it is not necessary for a
maxtree or mintree to be binary. Nodes of a max or min tree may contain more

-’

A max heap (minheap) of size N is a max (min) tree that is an almost complete
binary tree of N nodes. A maXx heap is also called a descending heap or a
descending partially ordered tree.

Generally a max heap represented by an array A of size N satisfies the property
AlJ] € A[T] for 2 £J < N and I = Integral part of (J/2)-assuming that array starts
with index 1. - : S

1t is clear from this definition of a max heap that the root of the tree (or the first

element of the array) contains the largest element in the heap. Also note that
any path from the root to a leaf (or'indeed, any path in the tree that includes

no more than one node at any level) is an ordered list in descending order.

Similarly we can define-an ascending heap (or a min heap) as an almost,
complete binary tree such that the content of each node is greater than or equal

to the content of its father. ‘

The ‘max tree of figure 12 (b) is not a max heap. The other two max trees are
max heaps. The min tree of figure 13 () is not a min heap. The other two are.

Since a heap is an almost complete binary tree, it can be eﬂicientljr represented
in memory using one dimensional array. Here, we will be discussing max heaps.’

) 1' 30'
21 20
3 28
4 16 i
51 . 18,
6 T 12
7 4
8 2
9 10
10- 6
11 | 8

(a) .

Fig. 14 {(a) Max heap of 11 elemenis (b)- Sequential repre_sentatiori of max heap
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6.3.8 Insertion into a Max Heap

Figure 15 (¢) shows a max heap with five elements. When an element is -

added to this heap, the resulting six-element heap must have the structure
shown _in figure 15 (). :

()

Fig. 15. Insertion into a max heap.

Because a heap is an almost comblete binary tree. If we want to insert 10, it.
may be inserted as the left child of 12. If instead, the value of the new
element is 28, the element cannot be inserted as the left child of 12 {as in this
case, we will violate the max tree property). Therefore, the element 12 is
moved down to its left child (see Figure 15(c)) and we check whether placing
28 at the old i)osition of 12 results in a max heap. Since the parent element
(30) is at least as large as the element 28 being inserted, we can insert the
new element at the position shown .in figure.

Next suppose that the new element has value 33 rather than 28. In this case
the element 12 moves down to its left child as shown in figure 15 (¢). The
element 35 eannot be inserted into the old position of element 30 is moved.
down to its‘right ¢hild and the element 33 inserted in the root of the heap
(figure 15 (d)). .

This method of insertion just e;{plained above makes a single pass from a leaf
towards the root. At each level we do O(1) work, so we should be able to
implement this method to have complexity Otheight) = O(log n).
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6.3.9 Deletion from a Max Heap

When an element is to be deleted from a max heap, it is taken from the root of
the heap. For example, a deletion from the max heap of figure 16 (a) results;

() {c)

Fig. 16 Deletion from a max heap

in the removal of element 12. Since the resulting max heap has only five elements,
the binary tree of figure 16 (a) needs to be readjusted to give a complete binary
tree with five elements. For this redjusting, we remove the element in position
six, that is, the element 4. Now we have the structrue shown in figure 16 (&),
but the root is vacant and the element 4 is not in the heap. If the element 4 is
inserted into the root the resulting binary tree is not a max tree. The element
at the root should be the largest from among the element 4 and the elements
in the left and right children of the root. This element is 10. It is moved into
the root there by creating a vacancy in position two. The element at position two
should be the largest from among the element 4 and the _eleinents in the left and
right children at position four and five. This element is 6 (see figure 16 (¢)). It
is moved into pos1t1on two, and the element 4 is inserted into position ﬁve The
resulting heap 1§ shown in figure 16 (d).

The deletion method explained above makes a single pass from the' heap root
down towards a leaf. At each level O(1) work is done, so the time complexity of
these operations is Otheight) = O(log n).



6.3.10 Sorting using a Heap—an Example

Let A be an array having N elements. Assume that N = 11 and the values of
~ the elements in A[l:11] are {12, 2, 16, 30, 8, 28, 4, 10, 20, 6, 18}. We want to
arrange the elements in ascending order using heap sort method. Figure 17
illustrates the creation of a heap of size 11 from the original array A. Here
index variable K denotes the number of insertions which is to be performed.

The dotted lines in that ﬁg‘ure indicate an element being shifted down the -

tree. ) : -

K=8

Self-Instructional Material
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Fig. 17. Creating ¢ heap of size 11.

. Figure 18 illustrates the adjustment of the heap as A[1] is repeatedly selected
and placed 'into'its proper position in the array and the heap is readjusted, until

K=11

©  Original tree

K=10

. 190 S@lf-Instruction_tlll Material
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K=8

k=4 k

RO RO

. ) k=2
. Al1] @
Al2) ' {3] A[2] )

Fig. 18. Adjusting a heap.

1l
Q3

all the heap elements are processed. K denotes the pass index. Note that after
an element has been “deleted” from the heap, it remains in the array, it is
merely ignored in the subsequent processing.

' 6.3.11 Algorithm-Careat.e heap (A, N)

This algorithm produces as output a max heap. Initially the heap has one
element. Now elements are inserted into the existing heap such that a new max
heap is formed after insertion. This procedure is repeated until all elements in
the given array form a max heap. - ' '

The general approach.of create heap is as follows :

1. Repeat while there still is another element to be placed in the max heap
upto step 5
Take element to be placed at leaf level

AN

3. Find position of parent for this element

‘ Self-Instructional Material
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4. Repeat while the element has a parent and the element is greater than its
parent ' //
- Move parent down to 'posi};ion_of element
Find position of new parent for the element
5. Insert element Iinto its proper place (position)
The algorithm CREATE HEAP is given helow :

Given an unsorted array A having N elements. This algorithm creates a max
heap. The index variable K denotes:the number of insertions which is to be
performed. The integer variable J denotes the index of the parent of element

- A[T]. Variable VALUE stores the element being inserted into an existing heap.
1. [Build max heap] -

Repe’étt for K=2 3, ......... N up to step
2. [Initialize]
| JALUE « AK]
3. */[Find position of parent of new element]

o <« Integral value of (1/2)

f.-"4. [Place the new element m existing max heap]

Repeat while (I > 1 and VALUE > A[J])
{ .
[Interchange elements] '
A[I) « AlJ]
[Find position of next parent]
I3 ‘
J « Integral value of (I/2)
If (J « 1) Theh
J & 1
)
5. [Place the new element into its proper position]

' Alll « VALUE
6. End

' 6.3.12 Algorithm Heap Sort (A, N)

This algorithm takes as input a maxheap stored in array A having N elements.
The element with the largest key is currently in A[1] and it can be written out
directly. This is done by interchanging A[1] and A[N], and then it restructures
a new max heap having only N-1 elements, This is done in the same way as in

.algorithm CREATE HEAP. Again the restructural max heap stores the second

largest element in A[1]. This element can now be exchanged (swapped) with

Self Instructional Material



element A[N-1]. A new max heap is then restructured for N-2 elements. By  Searching and Sorting
repeated application of these steps, the given array can be sorted. The general ' '
approach for heap sort is as follows :

1. Create the initial max heap.

2. Repeat for N-1 times up to step 5 NOTES
3. Swap (exchange) first element with. last unsorted element

4, TFind position (index) of the largest child of the new element .
5

Repeat for the unsorted element in the maxheap and while the current
element is greater than the first element

{

Interchange elements and find the next left child
Find position of the next largest.child
Place the element into its proper position

.
The algorithm HEAP SORT is given below :

Gwen an array A having N elements and the algorlthm CREATE HEAP which
has been previously described, this algorithm sorts the array into ascending
order. The variable K denotes the pass number. Variables 1 and J denote the
array indices, where J is the index of the left child of I. Variable TEMP is used
for swapping and VALUE is used for storing the element being swapped at each
pass.

1. [Create the initial max heap]
_ CALL CREATE HEAP(A N)
2. [Sorting] ]
Repeat for K=N, N -1, ........ 2 upto step 6
3. [Exchange elements]
TEMP « A[K]
AK] « All]
All] « TEMP
4. [Initialize the.pass]
L1
‘ VALUE « Alll
J « 2
5. [Find position of the largest child of new element]

If (J+1 < K) Then
{

If { AlJ + 1} > A{J]) Then
J « J + 1

Self-Instructional Material
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Data Structures 6. [Now reconstruct the new max heap] .

Through C’
Repeat while ( J < K-1-and A[J] > VALUE)
{
A[TI] « AI[J]
NOTES ' (Obtain the next left child]
' I« J '
J ¢« I x 2

[Obtain the position of next largest childl
If (J+1 < K) Then
A
If (A[J + 1] > A(J)) Then
J &« J+ 1 ’ ) —
Else ‘
{ N
If (J = N} Then .
J &« N
: }
) :
[Copy the element in its proper position]
A[I] ¢« VALUE
}
7. End.

6.4 SUMMARY OF SORTING METHODS

Some of the sorting methods discussed here are summarized in Table 1 Note
that the entries in thé table are approximate. The parameter m denotes the
number of digits in a key. It is used in the radix sort.

Table 1. Comparison of Sortirig Methods
. (entries are approximate)

- Algorithm Average Worsi.,‘ Case Space Usage
SELECTION . n%4 n%/4. In place
BUBBLE SORT n%/4 ’ n?/2 In place
MERGE SORT Otlogn) | Omlogyn) | Extra n entries
QUICK SORT O(nlog,n) n%2 Extra log,n entries _
HEAP SORT Ofnlog,n) -O(nlog,n) © . In place
RADIX .SORT O(m+n) I O(m+n) Extra space for ‘iinks

It is difficult to assert that a particular sorting technique is always superior to
other methods for every key set. Certain properties of a given key set play an
important role in the determination of which sorting technique should be
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preferred. Properties such as the number, size, distribution, and orderness of
keys often dictate which method should be used. The amount of memory available
in performing the sort may also be an important factor.

In summary, the selection or bubble sorts can be used if the number of records
in the table is small. If n is large and the keys are short, the radix sort can
- perform well. With a large n and long keys, quick, sort, heap sort, or a merge
‘sort can be used. If the table is, initially, almost sorted, then quick sort should
be avoided. '

6.5 SUMMARY

" The searching techniques are Binary Search and Sequential Search.

¢ A method which traverses data sequentially to locate item is called Linear
or Sequential Search. : .

* Binary search technique.can be appl.ed only on the sorted data.
* Searching an ordered array is called Interpolation Search.

¢ Bubble sort is a sort that exchanges the neighbor elements { and i+1 of a
sequence starting from left going to right.
¢ Quick sort is the best sorﬁng algorithm when one does not have infinite
memory space Quick sort originally proposed by C.A.R. Hoare, Computer
_dJournal, April 1962.
* A selection sort is one in which successive elements are selected in order and
placed into their proper sorted positions.

¢ The most common algorithm used in an external sorting, that is for the

problem in which data is stored i in d1sks or magnetic tapes, merge sort is an

excellent sortmg method.

6.6 TEST YOURSELF

Answer the following questions :
1. Explain the algorithm for selection sort and give a su1table example,
* 2, Explain the algorithm for exchange sort with a suitable example.

3. Write an algorithm to sort the N elements of an array in ascending order using
Bubble Sort technique.

4. Write C procedure to implement :
(@) Shell sort
(&) Radix ‘sort )
Each phase of the above algorithms for the input data set in the sequence :
F =42, 23, 74, 11, 66, 57, 94, 36, 99, 87, 70, 81, 61}

‘5. Which of the sorting a]gorithm'has best performance in terms of storage and
time complexity ? Justify your answer, .

[
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