
CONTENTS
Chapters Pages

SECTION-A

1. Programming Methodologies

2. Concepts of Data Types and Data Structures

1-11

12-23

SECTION-B

3: Concepts of Pointers

4. Arrays, Stacks, Queues and Linked List

SECTION-C

24-31
/

32-112

^5: Trees 113-147

SECTION-D\
6. Searching anu Sorting 148-195

SYLLABUS

DATA STRUCTURE THROUGH ‘C’

SECTION A

Problem solving concepts, top down and bottom up . design,structured
programming.
Concept of data type and data structure, differences between data type and data
structures, view of data structures at logical level, implementation level and
application level, Built-in-data structures and user defined data structures.

1.

2.

SECTION B

3. Concept of dynamic variables, difference between static and dynamic variables,
concepts of pointer variables.

4. Study of the following user defined data structures using static and variables.
— Built-in data structures like arrays, records.
— User defined data structures like' stacks, queues, linked lists, circular

linked lists, doubly linked list.

SECTION C

Non-linear data structures: trees, terminology of trees, concepts and applications
of binary trees, tree traversal techniques and algorithms.

5.

SECTION D

Sorting and searching algorithms and their efficiency considerations.6.

Considerations for choice of proper data structure.7.

Programming
MethodologiesSECTION A

NOTES
CHAPTER 1 PROGRAMMING

METHODOLOGIES
\

★ LEARNING OBJECTIVES ★

1.1 Introduction

1.2 Characteristics of a Good Program

1.3 Techniques of Problem Solving

lr4 Structured Prograrhming
Modular Programming

1.6 Top-down Programming

1.7 Bottom-up Programming

1.8' Summary

1.9 Test Yourself

1.1 INTRODUCTION
A program is a sequence of instructions written in a programming language.
There are various programming languages, each having its own advantages for
program development. Generally every program takes an input, manipulates it
and provides an output as shown below :

*
»;__^ Program code ^ OutputInput -I

♦

Fig. 1. A conceptual_ view of a program.

John Von Neumann proposed that if a program was stored in memory, program
instructions could be easily changed just by loading a new program. Also as the
program executed, it could easily change the instructions in memory. This is
called the stored program concept.

Self-Instructional Material '
1

Data Structures
Through ‘C’

For better designing of a program, a systematic planning must be done. Planning
makes a»program more efficient and.more effective. A programmer should use
planning tools before coding a program. By doing so, all the instructions are
properly interrelated in the program code and the logical errors are minimized.

There are various planning tools for mapping the program logic, such as
flowcharts, pseudocode, decision tables and hierarchy charts etc. A
program that does the desired work and achieves the goal is called an effective
program whereas the program that does the work at a faster rate is called an
efficient program.

The software designing includes mainly two things—program structure and
program representation. The program structure means how a program should
be. The program structure is finalised, using top-down approach or any other
popular approach. The program structure is obtained by joining the subprograms.
Each subprogram represents a logical- subtask.

The program representation means its presentation style so that it is easily
readable and presentable. A user friendly program (which is easy to understand)
can be easily debugged and modified, if need arises. So the programming style
should be easily understood by everyone to minimize the wastage of time, efforts

• and cost.

Change is a way of life, so is the case with software. The modification should
be easily possible with minimum efforts to suit the current needs of the
organization. This modification process is known as program maintenance.
Flowcharting technique is quite useful in describing program structure and
explaining it. The other useful techniques for actually designing the programs
are :

NOTES

(i) Modular programming

(ii) Top-down design (Stepwise refinement)

{Hi) Structured programming.

1.2 CHARACTERISTICS OF A GOOD PROGRAM

The different aspects of evaluating a program are t efficiency, flexibility,
reliability, portability and robustness etc. These characteristics are given
below : '

(i) Efficiency. It is of three types : programmer effort, execution time and
memory space utilization. The high level languages are -used for
programmer efficiency. But, a program written in machine language or
assembly language is quite compact and takes less machine time, and
memory space. So depending on the requirement, a compromise between
programmer’s effort and execution time can be made.

Self-Instructional Material2

Programming
Methodologies

(ii) Flexibility. A program that- can serve many purposes is called a flexible
program. For example, CAD (Computer Aided Design) software are used
•for different purposes such as : Engineering drafting, printed circuit board
layout and design, architectural design. CAD can also be used in graphs
and reports presentation.

{Hi) Reliability. It is the ability of a program to work its intended function
accurately even if there are temporaiy or permanent changes in the
computer system. Programs having such ability are known as reliable.

(iu) Portability. It is desirable that a program written on a certain type of
computer should run on different type of computer system. A program is
called portable if it can be transferred from one system to another with
ease. This feature helps a lot in research work for easy movement of
programs. High level language programs are more portable than the
programs in assembly language.

(o) Robustness. A program is called robust if it provides meaningful results
for all inputs (correct or incorrect). If correct data is supplied at run time,
it will provide the correct result. In case the entered data is incorrect, the
robust program ..gives an appropriate message with no run time eixors.

(vi) User friendly. A prograih that can be easily understood even by a novice
is called user friendly. This characteristic makes the program easy- to
modify if the need arises. Appropriate messages for input data and with
the display of result make the program easily understandable.

ivii) Self-documenting code. The source code which uses suitable names for
the identifiers is called self-documenting code. A cryptic (difficult to
understand) name for an identifier makes the program complex and
difficult to debug later on (even the programmer may forget the purpose
of the identifier). So a good program must have self-documenting code.

NOTES

1.3 TECHNIQUES OF PROBLEM SOLVING
Computer problem-solving can be summed up in one word—it is demanding !
It is a combination of many small parts put together in a complex way, and
therefore difficult to understand. It requires much thought, careful planning,
logical accuracy, continuous efforts, and attention to detail. Simultaneously it

be a challenging, exciting, and satisfying experience with a lot of room for
personal creativity and -expression. If computer problem-sohing is approached
in this spirit then the chances of success are very bright.

For solving a problem on a computer a set of explicit and unambiguous
instructions is written in a programming language. This set of instructions is
called a program. An algorithm (step by step procedure to solve'a problem in
unambiguous finite number of steps) written in a programming language is a

Self-Instructional Material
3

Data Structures
Through ‘C

program. So, an algorithm corresponds to a solution to a problem which is
independent of any programming language.

Problem solving is a creative process which largely defies systematization and
mechanization. Everyone acquires some problem-solving skills during his/her
student life which he/she may or may not be aware of.

Some steps for problem solving improve the performance of the problem solver.
No universal methods are available for.it. Different people use different strategfies.
In simple wprds we can say logically that computer -problem solving is about
understanding.

NOTES

1.3.1 Understanding of the Problem
When lot of efforts are made in understanding the problem we are dealing with,
chances of success are also bright. We cannot hope to make useful progress in
solving a* problem until it is clear, what it is we are trying to solve. The
preliminary investigation may be thought of as the'problem definition phase.
The problem definition defines what the problem is without any reference to the
possible solutions. It is a simple statement, may be one to two pages and should
sound like a problem. The problem definition should be in user language and it
should be described from the user’s point of view. It usually should not be
defined in technical computer terms. As the analyst assigns .the programs to ;
dilferent programmers module-wise, the programmers understand the problem
given to them. The programmers define the problem of each program on a
document and proceed for the next step. In simple words, a lot of care should
be taken in working out precisely what must be done.

The problem solver should obtain information on the following three aspects of
the problem after the analyses :

1. Input specification

2. Output specification

3. Special processing, if any.

1. Input Specifications

The input specifications should give the following information :

(i) Specific data values to be used as input in the program.

Hi) Input data format i.e., order, spacing, accuracy and units.

iiU) The valid range of input data.

(iu) Restrictions, if any, on use of these data values and what to do if an input
data is not accepted by the computer, should it be ignored or modified.

(u) ITie. indication of end of input data (if specified by a special symbol).

//

Self-Instructional Material4

‘2. Output Specifications

The output is obtained on executing a program. The output specifications must
clearly define the values required and their formats etc. The output specifications
must include the following information : ,

(i) The output data values required.

(ii) Output data format i.e., precision (number of significant digits), accuracy,
units, the position on the output sheet and suitable headings for making
the output readable.

{Hi) Amount of output required because the program has to be coded according
to the number of output data values required.

3. Special Processing, if any

It means processing of input data under some conditions. If conditions are
violated, certainly results are going to be incorrect. The processing under special
condition{s) and the recovery action should be handled carefully. If the special
processing conditions are ignored and left in tht problem definition phase, it
may be a costly affair later on.

So, in the problem definition phase, detailed information about input, output
and special processing is gathered. These conditions are taken into consideration
while solving the problem. The method of solution is not specified in this phase.

Programming
Methodologies

NOTES

1.3.2 Step by Step Solution for the Problem

There are many ways to solve most of the problems and also many solutions to
most of the problems. This situation makes the job of problem-solving a difficult
task. When we have many ways to solve a problem it is usually difficult to
recognize quickly which paths are likely to be fruitless and which paths may be
productive.

A block often occurs after the problem definition phase, because people become
concerned with details of the implementation before they have completely
understood or worked out an implementation-independent solution. The problem
solver should not be too concerned about detail. That can be taken into account
when the complexity of the problem as a whole has been brought under control.
The old computer proverb states, “the sooner you start coding your program
the longer it is going to take”.

An approach that often allows us to make a start on a problem is to take a
■ • specific example of the general problem we wish to solve and try to work out the

mechanism that will allow us to solve this particular problem {e.g., if you want
to find the top scorer in an examination, choose a particular set of marks and
work out the mechanism for finding the highest marks in this set).

This approach of focusing on a particular problem can often give us a platform
we need for making a start on the solution to the general problem. It is not
always possible that the solution to a specific problem or a specific class.of

Self-Instructional Material
5

Data Structures
Through ‘C

problems is also a solution to the general problem'. We should specify our
problem very carefully and try to establish whether or not the proposed
algorithm (step by step procedure in a finite number of steps to solve a problem)
can meet those requirements. If there are any similarities between the current
problem and other problems that we have solved or v/e have seen solved, we
should be aware of it. In trying to get a better solution to a problem, sometimes
too much study of the existing solution or a similar problem forces us down the
same reasoning path (which may not be the best) and to the same dead end.
Therefore, a better and wiser way to get a better solution to a problem is, try
to solve the problem independently.

Any problem we want to solve should be viewed from, a variety of angles. When
all aspects of the problem have been seen, one should start solving it. Sometimes,
in some cases it is assumed that we have already solved the problem and then
try to work backwards to the starting conditions. The most crucial thing of all
in developing problem-solving skills is practice.

Probably the most widely known and most often used principle for problem­
solving is the divide-and-conguer strategy. The given problem is divided into
two or more subproblems which can hopefully be solved more efficiently by the
same technique. If it is possible to continue in this way we will finally reach the
stage where the subproblems are small enough to be solved without further
splitting.'

, This way of breaking down the solution to a problem has been widely used with
searching, selection and sorting algorithms.

NOTES

1.4 STRUCTURED PROGRAMMING
The main objectives of structured programming are :

s

• Readability '
• Clarity of programs
• Easy modification
• Reduced testing problems.
The goto statement should be avoided so far as possible. The three basic building
blocks for writing structured programs are given below :
1. Sequence Structure
2. Loop or Iteration
3. Binary Decision Structure

Self-Instructional Material6

1.. Sequence Structure : Programming
Methodologiesi

NOTESr

i

T
Fig. 2. Sequence structure.

It consists of a single statement or a sequence of statements with a single entry
and single exit as show above.

2. Loop or Iteration :

\
Fig. 3. Loop or iteration.

It consists of a condition (simple'or compound) and a sequence structure which
is executed condition based as shown above.
3. Binary Decision Stnicture :

Fig 4. Binary decision structure.

Self-Instructional Material
7

It consists of a condition (simple or compound) and two branches out of wjiich
one is to be followed depending on the condition being true or false as shown
above.

Data Structures
Through ‘C’

NOTES
1.5 MODULAR PROGRAMMING

Breaking down of a problem into smaller independent pieces (modules) helps
us to focus on a particular module of the problem more easily without worrying
about the entire problem. No processing outside the module should affect the
processing inside the module. It should have only one entry point and one exit
point. We can easily modify a module without affecting the other modules.
Using this approach the writing, debugging and testing of programs becomes
easier than a monolithic program. A modular program is readable and easily
modifiable. Once we have checked that all the modules are working properly,
these are linked together by writing the main module. The main module
activates the various modules in a predetermined order. For example, Figure
5 illustrates this concept :

Main Module
Main Module

Perform A ♦
/

Perform B
Perform C 1
Perform D

Module D

Independent modules
are activated by the

main module.
Each module returns
the control bade to
the main module

Module B

♦Module A

Module C

Fig. 5.

It must be noted that each module can be further broken into other submodules.

Self-Instructional Material8

1.5.1 Characteristics of Modular Approach
(i) The problem to be solved is broken down into major components, each of

which is again broken down if required. So the process involves working
from the most general, down to the most specific.

(ii) There is one entry and one exit point for each module.

(Hi) In general each module should not be more than half a page long. If not
so, it should be split into two or more submodules.

(iu) Two-way decision statement are based on IF..THEN, IF..THEN..ELSE,
and nested IF structures.

(u) The loops are based on the consistent use of WHILE..DO and
REPEAT,.UNTIL loop structures.

Programming
Methodologies

NOTES

1.5.2 Advantages of Modular. Approach
(i) Some modules can be used in many different problems.

Modules being small units can be easily tested and debugged.

Program maintenance is easy as the malfunctioning module can be quickly
identified and corrected.

The large project can be easily finished by dividing the modules to different
programmers.

The complex modules can be handled by experienced programmers and
the simple modules by junior ones. ,

Each module can be tested independently,

The unfinished work of a programmer (due to some unavoidable
circumstances) can be easily taken over by someone else.

A large problem can be easily monitored and controlled.

This approach is more reliable.

Modules are quite helpful in clarification of the interfaces between major
parts of the problem.

Hi)
(Hi)

(iv)

(v)

(vi)

(vii)

(viii)

(ix)

(x)

1.6 TOP-DOWN PROGRAMMING
Program development includes designing, coding, testing and verification of
a program in any computer language. For writing a good, program, the top
down design approach can be used. It is also called systematic programming
or hierarchical program design or stepwise refinement. A complex problem
is broken into smaller subproblems, further each subproblem is broken into

, a number of smaller subproblems and so on till the subproblems at the lowest
level are easy to solve. Similarly a large program is. broken 'into a number of

Self-Instructional Material
9

subprograms and in turn each subprogram is further decomposed into subprograms
arid so on. Suppose we want to solve, a problem S, which can be decomposed
into subproblems SI; S2 and S3 and so on. Let the program for S, SI, S2, S3
be denoted by P, PI, P2, P3 respectively. Further suppose that S2 is solved
by decomposing it into subproblems S2l and S22 and program P21 and P22
are written for these. This operation of coding a subprogram in terms of
lower level subprograms is known as the process of stepwise refinement.
Figure 6 shows the hierarchical decomposition of P into its subprograms and
suli-subprograms.

Data Structures
Through ‘C‘

NOTES

P\

P2 P3PI

P22P21

Fig. 6.

The advantages of the top-down design approach are :

1. A large problem is divided into a number of smaller problems using this
approach. The decomposition is continued till the subproblems at the
lowest level become easy to solve. So the overall problem solving becomes
easy.

2. If we use the top-down approach for a problem then top-down programming
method can be used for coding modules at various stages. So, the top level
modules can be coded without coding the lower level modules earlier. This
approach, is better than the bottom-up approach where programming starts
first at the lowest level modules.

3. It helps in top-down testing and debugging of programs.

4. The programs become user friendly (that is easy to read and understand) and
easy to maintain and modify.

5. Different programmers can write _the modules for different levels.

1

I

10 Self-Instructional Material

Programming
Methodologies'1,7 BOTTOM-UP PROGRAMMING

The bottom-up programming approach .is the reverse of the top-down program­
ming, The process starts with identification of a set of modules which are either
available or to be constructed. An attempt is made to combine the lower level
modules to form modules of a .high level. This process of combining modules is ■
ontinued until the program is realised. The main drawback of the bottom-up

programming apprpach is the 'assumption that the lowest level modules can be
completely specified beforehand, which in reality is seldom possible. Thus, in;
the bottom-up approach, quite often it is found that the final program obtained,
by combining the predetermined lowest level modules does not meet all the
requirements of the desired program.

Here no attempt is made to compare the advantages and disadvantages of
the top-down and bottom-up programming. However, program development
through top-down approach is widely accepted to be better than the bottom-
up approach.

NOTES

r

1.8 SUMMARY
• A program is a sequence of instructions written in a programming language.
• John vohn Neumann proposed that the programs be stored in memory.

This is called the stored program concept.
• Modular programming is breaking down of a problem into smaller independent

pieces (modules). , •
• The main objectives of structured programming are readability, clarity of

programs, easy modification and reduced testing problems.
• Top-down programming is also known as the process of stepwise refinement.
• Bottom-up programming approach is the reverse of the top-down programming.

1.9 TEST YOURSELF

Answer the following questions :
1. What are'the characteristics of a good program?
2. Discusa *^he techniques of problem solving,
3. Write a short note on the following :

(а) Structured .programming concepts
(б) Modular programming

4. Explain the concept of top-down and bottom-up programming.

□□□
Self-Instructional Material

11

Data Structures
Through V CHAPTER 2 CONCEPTS OF DATA

TYPES AND DATA

STRUCTURESNOTES

★ LEARNING OBJECTIVES ★

2.1 Introduction

2.2 Concept of Data

2.3 Concept of Data Type

2.4 Concept of a Data Structure

2.5 Concept of Primitive Data T3T)e

2.6 Logical versus Physical Representation

2.7 Primitive'and Simple Data Structures

2.8 Types of Data Structures

Operations on the Data Structures

Summary

2.11 Test Yourself

*2.10

2.1 INTRODUCTION
The fundamental nature of programming and data processing reqmres efficient
algorithms for access of the data in main memory and storage devices. The
effectiveness is directly linked to the structure of the data being processed. The
data structure describes the way the data is organized and stored in memory for
the convenience of processing. This Chapter gives an introduction to Data Types
and Data Structures.
Generally learners are asked to write programs which solve simple problems
and'use small amount of data. Therefore, they need not concern'themselves
about how the data are stored in computer’s main memory and how slowly or
quickly the operations of retrieval and updations are performed. However, when
a complex and .i,u0-consuming problem is to be solved or when a large amount
of data is to be used then it is very important that the data be organized in main
memory so as to give faster access to data and the program be written accordingly.
Otherwise, main memory space as well as computer time required for various
operations may be wasted.

12 Self-Instructional Material

Concepts of Data Types
and Data Structures2.2 CONCEPT OF DATA

A collection of facts, of observations, of occurences etc., is called data. Elements
of this collection are called data items. It is something, raw that is processed
by the computer program to give useful information. Data can be represented
numerically, alphabetically, using special s5Tnbols such as “+’, *%’, ‘>’, etc.

NOTES

2.3 CONCEPT OF DATA TYPE

Data is a collection of facts, observations etc. This collection of data items can
be divided into groups such that the members of each group share a common set
of properties. Such groups are called data types.

For example, integers. These can be added, subtracted, multiplied and compared.
Consider another example of the set of sets—elements of this set are sets which
can undergo the operations of union, intersection and difference.

Consider a collection of 3 x 3 matrices—These can be added, multiplied and
inverted (non-singular ones).

Consider' a collection of strings—Strings can be compared, concatenated and
broken into parts.

The first example shows that integers have a number of properties in common
viz. all integers can be added, all integers can be subtracted, all integers can be
compared etc. Integers are commonly written as -3, -2, -1, 0, 1, 2, 3,
case, values of data tjTie integer can be from the set of integers.

Similarly, all 3 x 3 matrices can be added, multiplied etc., and these can be
commonly written in the following form :

In this

\
011 012 ^^13

021 ®22 ®23

031 ^32 ^33.
V

In this case, the data type 3x3 matrix can assume values from the set of all
3x3 matrices. ■
Thus, different data items belonging to different groups have different
representations and have different sets of operatibns that can be performed on
them. This gives rise to the concept of a data type. Commonly known data types
are integers, real numbers and characters.

2.3.1 Definition of Data Type
A data typ® is a name given to the set of all data items possessing a given
ensemble of properties. When we say that the number 7 is an integer, 7 shares
a number of properties with other integers. In case of integers, we need not

Self-Instructional Material
13

specify what properties are shared and how the various operations can be
performed on integers because it is automatically understood. However,' in the
case of other data types, the properties and the operations must be specified by
means of a set of axioms. Thus, we can define many data types by means of an
appropriate set of axioms.

Data Structures
Through 'C'

NOTES

2.4 CONCEPT OF A DATA STRUCTURE

3:' New data types can be defined in terms of previously defined one or more data
types. Suppose data-types A, B and C have already been defined and a new data

‘type D is defined in terms of A, B and C. Then values of data type D, c^ be
decomposed into values of previously defined data types A, B and C. We call
A, B and C as component data types. For example, consider an employee with
attributes : Name, Age and Salary. Name is of String type, Age is of integer type
and salaiy is of real number type. By combining three different types, we build
a new data t5T)e and call it EMPLOYEE which has its component types as
string, integer and real. The string data type itself is defined in terms of another
data type character.

Such data types that are composed of previously defined data types are called
Data Structure. ‘EMPLOYEE’ is an example of a value or instance of a data
structure called record. The Name itself is an instance of data structure called
string. The organization of data items in a data structure is characterized by
accessing mechanisms that are used to store and retrieve individual data items.

X

2.5 CONCEPT OF PRIMITIVE DATA TYPE

In the above example ‘EMPLOYEE’ is an instance of a data structure. As in
this example, it is possible that components of a structured data type may
themselves be structured. Components of the components of structured data­
type may again be themselves structured and so on. Therefore, values of data
structure may be decomposed into values, of component data types, values of
component data types may further be decomposed into values of component
data types and so on. Finally,-we reach a stage, where we can not further
decompose a value of component data,t5T)es, i.e., it is indivisible or atomic. The
data types that are atomic are commonly called primitive, unstructured data

, types. (Truly speaking what one person may regard as indivisible, the other
person may regard it as divisible. However, here we regard those data types as
indivisible, whose further decomposition is not meaningful).

Examples of primitive data types are integers, real numbers, characters and
boolean. On most computers, these data types are available as' their built-in
features. These primitive data types are discussed below :

14 Self-Instructional Material

Concepts of Data Types
and Data Structures

2.5.1 Integer
Integer is the,simplest data type. Mathematically, it is an,element of the set of
integers {
integer data type can assume values only from a subset of the set of integers
■which is determined by the -word length of the computer. For example, if the
word length is of 16 bits and two’s complement method is used for storing
negative integer, the data tj^e integer can-assume values in the range of
-32768 to 32767.
Operations that can be performed on pairs of integers are standard arithmetic
operations such as addition, subtraction, multiplication and integer division.
Integer.division gives the ^otient after ignoring the remainder. Negation can
be performed on single integers.

- n, - (n - 1), -2,-1, 0, 1, 2,). In case of computers.

NOTES

2.5.2 Real

Real is another simple data type which is also used very commonly. A variable
of data t3T>e real can assume values from a subset of real numbers. This subset
of real numbers is again determined by representation and number of bits used
to store the number.
Operations that can be performed on them are addition, multiplication, division
and subtraction. ■

The result of arithmetic operations performed on real numbers may not be
accurate. Accuracy again depends on real number representation in computer
memory,

2.5.3 Boolean

Third simple data type is Boolean or logical data type. A variable of this t3Tje
can have only one of the two values denoted by “True” or “False”.
The operations that can be performed on these are ‘AND’, ‘OR’ and ‘NOT’. These'
operations.are defined as given in Table .1 :

Table 1. Operations on Boolean Data Type

X Y X AND Y X OR Y NOTX

True True ' True True False
True False False FalseTrue
False True False True True
False False False False True

The ‘True’ or ‘False’ values may also arise as a result of comparisons such as
12 > 16 gives ‘False’ value and 12 < 19 gives ‘True’ value.

2.5.4 Character
Fourth primitive data type is character, Values that can be assumed by a
variable of the type character, are from the set' of characters defined for the
computer system. Different computers may have different cha'facter sets.

Self-lnstrurttonal Material
15

For example, a character set might be {0, 1, 9, A, B, Z, a, b, z, +,
*, /) which includes digits, upper and lower case alphabets and special characters.
The character set defined by American National Standard Institute is the ASCII
character set which is the most commonly available on computers. The set of
characters is ordered and therefore operation of comparison of characters can be
performed.

Data Structures
Through ‘C

NOTES

2.5.5 Data .Type : Pointer
The data type pointer is an unstructured data type. The pointer type variable
contains the address of the location of another variable. .
Operations that can be performed on pointers are comparison of pointer variable
for equality/inequality assigning value of onfe pointer variable to another pointer
variable and assigning NULL pointer i.e., no valid address. In C language,
pointer variables are declared using the s5Tnbol *.

2.6 LOGICAL VERSUS PHYSICAL

REPRESENTATION
The primitive data types discussed in this chapter and the structured data types
mentioned earlier are at logical level. A programmer can use these data types
in his/her programs and can perform operations defined on them without requiring
any knowledge of how these data types are represented in memory and how the
operations are implemented. For any giveri data sti'ucture, there may be several
different physical representations in memory. Following are the examples ofi.
different physical representations of integers and characters.

2.6.1 Integers : Physical Representation
.One method of storing an integer in main memory is sign and magnitude
foon. In this method, one bit is used to represent sign and rest of th'e bits of
the computer word are used to represent magnitude of the integer.
Second method of representing an integer in memory is using one’s complement
method.
Third method is two’s complement method. Each method has its advantages as
well as disadvantages. The range of values assumed by integers and the -
algorithms for addition, subtraction, division and multiplication all depend on
the physical representation of integers. The user need not concern himself/
herself about the physical representation. His/Her concern is at logical level
only.

2.6.2 Characters : Physical Representation
Characters are represented in main memory using some encoding scheme. Most
commonly used encoding schemes are ASCII, and EBCDIC. There are other

Self-Instructional Material16

encoding schemes also such as BCD code. EBCDIC (Extended Binary Coded Concepts of Data Types
and Data Structures

Decimal Interchange Code) was developed by IBM for IBM computers where as
ASCII (American Standard Code for Information Interchange) was developed by
the American National Standard Institute. Both codes have different physical
representation. EBCDIC always uses 8 bits per character and ASCII uses either
7 bits or 8 bits-per_ character. When it uses 8 bits per character then 8th bit is
•either for parity check or for extending the character set, because with 7 bits
only 128 character can be encoded. Order of ASCII characters is 0-9 digits
followed by letters A-Z and a-z respectively whereas in EBCDIC code the order
is a-z, A-Z followed by 0-9. The order of characters is called a collating sequence.
The operation of comparison of character strings depends on the coding scheme
used.

NOTES

2.6.3 Conclusion
The physical representation of a data type determines :

(j) The values, a data type can assume and

(ii) algorithms for various operations that can be performed on the data type.

Therefore, while choosing the most appropriate representation for a data type
one must consider the following ;

(i) The range of values the data type must have.

(ii) The operations that have to be performed on the data type.

(Hi) The word length of main memory.

(iv) The other relevant characteristics of computer.

Various physical representations and algorithms for operations on logical data
type will be discussed in this book.

2.7 PRIMITIVE AND SIMPLE DATA STRUCTURES

The important aspect to be considered is the structuring of data at their most
primitive level within a computer i.e., the data structures that typically are
directly operated upon by the machine level instructions. Primitive data constitute
the numbers and characters, which are built into a programming language. The
examples of Primitive Data Structures are Integer, Boolean and Characters.
The other data structures can be constructed from one or more primitives. The
simple data structures built from primitives are Strings, Arrays, and Records,
supported by many programming languages.

Self-Instructional Material
17

Data Structures,
Through 'C'

Table 2. Types of Data Structures

Data Structures Types

Primitive data structures Integer
Boolean
Character
String
Array
Record

NOTES

Simple data structures

Compound Data structures
Linear • Stack

Queue
Linked List

Non-linear
Blnarj- Binary Trees

Binary Search Tree
Graph.
General Tree
M-way Search Tree
B-Tree
Sequential
Relative
Indexed-Sequential

N-ary I!
1

File Organizations

2.8 TYPES OF DATA STRUCTURES

A data structure is a logical method of representing data in memory using the
simple and complex data types provided by the language.

The data structures can be classified into following two types :

2.8.1 Simple Data Structures

These data structures are generally built from fundamental data types i.e.,
int, float, char etc. Following data structures can be termed’ as simple data
structures ;

ii) Array (ii) Structure.

2.8.2 Compound Data Structures
These data structures are formed by using simple data structures and are more
complex. Its two tjToes are ;

(i) Linear data structures {ii) Non-Linear data structures.

18 Self-lnstructi(iiial Material

(i) Linear data structures. These are single level data structures, having Concepts of Data Types
and Data Structurestheir elements in a sequence. Examples of linear data structures are :

(a) Stack (6) Queue (c) Linked list.
(ii) Non-linear data structures. These are multilevel data structures. ‘

Examples of non-linear data structures are :
(a) Tree

NOTES

(6) Graph.

. Figure 1 shows all the data structures :

✓
Data Structures

I 1
Simple Data
Structures

Compound Data
Structures

IL i I
Array Structure Linear Non Linear

1
i L__ 1 1

Stack Queue GraphLinked List Tree

Fig. 1. Different types of data structures

2.8.3 Array
It is a collection of homogeneous (similar type) data elements. An array is also
called linear data structure. It’s elements are stored in computer memory in a
linear fashion. Figure 2 shows this ;

0
Memory Address

1

beginning of array2000 40
2001 15
2002
2003
2004

93
70
24 end of array

Fig. 2. A Sequential representation of an arra^y having 5 elements

2.8.4 Structure
It is a collection of logically related fields in which the fields may be of same or
different types. The fields that construct the structure are called members of the

Self-Instructional Material
19

Data Structures
Through 'C

structure. For example, a student record or structure may contain the following
fields :

Roll Number, Student Name, Class, Address, Marks.

2.8.5 StackNOTES

It is defined as a list (a linear data structure) in which all the insertions and
deletions are performed at one end called the TOP of stack. The insertion operation
is known as PUSH and the deletion operation as POP. The information is
processed in LIFO (Last In First Out) way. For example. Pile of books.

Top—► Mastering C++ Programs

Bottom------» Computer Science Xii

Fig. 3. Books kept in the form of a stack

2.8.6 Queue
It is defined as a list (a linear data structure) in which deletion and addition
(insertion) operatioris are performed at FRONT and REAR respectively. The
information is processed in FIFO (First In First Out) or FCFS (First Come First
Served) way. For example, Persons entering airway reservation counter.

a e
\ /

. /\^ --

Fig. 4. Queue of persons at a reservation counter

2.8.7 Linked List
It is defined as a linear collection of data elements called nodes, where each node
consists of two parts i.e., information and pointer to -next node. The last node

20 Self-Instructional Material

contains NULL pointer. A list pointer variable FIRST or START contains the Concepts of Data Types
address of the first node in the list. A linked list having no node is balled NULL Structures

list or empty list. Figure 5 illustrates a linked list having 4 nodes ;

NOTES'
Start NULL

Fig. 5. A linked list

It is a dynamic data structure which can grow or shrink as per our requirement.

2.8.8 Tree

It is defined as a non linear collection of nodes (having no loops) having a '
specially designated node called the root and the remaining nodes can be
partitioned into m (m >0) disjoint subsets. In computer science the conventional
way of representing a tree is upside down i.e., the root on the top and the
remaining nodes downward.
A special class of tree in which each node except root can’t have more than two
nodes known as left and right subtrees of the original tree is called binary
tree.
Figure 6 illustrates a binary tree :

Fig. 6. Binary Tree

2.8.9 Graph
It is defined as a set of nodes (or vertices) and a set of arcs (or edges) where
each arc in it is specified-by a pair of nodes. Figure 7 shows a graph :

Fig. 7. Graph representation

Self-Instructional Material
21

Data Structures
Through ‘C

In case the arcs are ordered pairs, the graph is said to be a directed graph •
(or diagraph). Figure 8 illustrates a diagraph :

NOTES

Fig. 8. Diagraph representation

2.9 OPERATIONS ON THE DATA STRUCTURES
ITie operations performed on the data structures include the following :
Traversal is a technique in which each element is processed individually and ,
separately.

Search is an activity in which a particular record or item is to be found.

Insertion is a process in which a new element is added into the structure.
Deletion is a process in which a given item is removed from the structure.

Sorting is a process in which all elements are arranged in a specific order so
that each item can be retrieved easily..

Merging is a process in which two structures are combined into a single
structure.

2.10 SUMMARY

A data structure is a logical method of representing' data in memory using
the simple and complex data types provided by the language.

Data structures can be classified into two tjqies—simple data structures and
compound, data structures.

Simple data structures are ‘generally built from fundamental data t3rpes. /
Compound data structures are formed using simple data structures and are
more complex.

The two types of compound data structure are linear and non-linear.

Linear data structures are single level data structures, having their elements
in a sequence. For example, stack, queue, linked list.

22 Self-Instructional Material

• Non-linear data structures are . multilevel data structures. For example, tree,
graph.

• The operations performed on the data structures are—traversal, searching,
insertion, deletion, sorting and merging etc."

• A linear data structure may be implemented using either a sequential storage
allocation or linked storage allocation.

Concepts of Data Types
and Data Structures

NOTES

2.11 TEST YOURSELF

Answer the following questions ;

1. Describe, in brief, the various data structures.

2. Define the following:

(a) Data

(b) Data Type '

3. Discuss the concept of primitive data type.

4. Describe the various operations that, in general, can be performed on-different
data structures.

□□□

Self-Instructional Material
23

Data Structures
Through ‘C’ SECTION B

NOTES
CHAPTER 3 CONCEPTS OF

POINTERS

★ LEARNING OBJECTIVES ★

3.1 Introduction

3.2 Declaring and Initializing a Pointer

3.3 Accessing a Variable Using Pointer

3.4 Static Variable

3.5 Summary

3.6 Test Yourself

3.1 INTRODUCTION

Pointers are very useful and important feature of C language. A beginner
may find it a little confusing to start with. But once the concept of pointers
is clear the user can write complex code with great ease, using this powerful
tool, making C an excellent language.

A pointer is a variable which holds a memory address which is the location
of some other variable in memory. As a pointer is a variable, its value is also
stored in another memory location. Any variable declared in a C program has
two components :

(i) Address of the variable

(ii) Value stored in the variable.

For example,

int X = 587;
The above declaration tells the C compiler for : *
(a) Reservation of space in memory for storing the value,
(fe) Associating the name x with this memory location.
(c) Storing the value 587 at this location.

24 Self-Instructional Material

Concepts of PointersIt can be represented with the following figure :

location name

value at location

location number

Fig. 1. Representation of a variable.

Here, the address 4000 is assumed one, it may be some other address also.
Remember that the address of a variable is the address of the first byte occupied
by that variable in memory. Also the values are stored in binary form inside
the memory.

Let the address.of x be assigned to a variable ptr having address 4036. Since
the value of ptr is the address of the variable x, the value .of x can be
accessed using the value of ptr or in other words we can say that the variable

■ ptr ‘points to’ the variable x so it is called a ‘pointer’. The above concept can
be represented as given below :

Variable
name

■ X

587

4000 NOTES

Contents Location

4000587X

40364000ptr

Fig. 2. Illustration of a pointer as a variable.

Pointers are frequently used in C language, as they offer a number of benefits
to the users. They include :
1. Pointers are more efficient in handling arrays and data tables.

.2. Pointers can be used to return multiple values from a function via function
parameters.

3. Pointers permit references to functions and thereby allowing passing of
functions as parameters to other functions.

4. For saving the storage space by using the pointer arrays for character
strings.

5. Pointers allow C to support dynamic memory management (i.e., allocation/
dei.:'location of memory at run time).

6. Dynamic data structures such as structures, linked lists, stacks, queues
and trees can be easily manipulated using pointers.

7. For reducing the size and complexity of programs.
8. For fast execution of programs.

Seif-Instructional Material
2S

Data Structures
Through ‘C 3.2 DECLARING AND INITIALIZING A POINTER

For storing the address of a variable, we must declare the appropriate pointer
variable for it. The syntax for a pointer declaration is given below :

type *ptr_name;

Here, type specifies the type of the variable that is to be pointed to by the
pointer ptr_name.
* represents the variable ptr_name as a pointer variable and it needs a
memory location too.

For example,

NOTES

int *ptr; /* declaration of an integer pointer */
inf X = 547;
ptr = &x; /* ptr stores the address of x */

The actual address of a variable in memory is not known to us. So the &
(address operator) is needed for returning the address of the variable following
it i.e., a variable, name is followed after &. Similarly, the following statements

float *fptr, fvalue;
char *cptr, ch;
fvalue
ch = '
fptr = &fvalue; '■
cptr = &ch;

4 0 .-5';
A' ;

show the pointer initialization, by first declaring the pointer variables and
then making the pointer variables to point to their respective data t5T}e variables.
A pointer variable contains garbage until it is initialized. We should not use
a pointer before initializing it.
Rernerriber that the definition for a pointer variable allocates memory only for the
pointer variable, not for the variable to which it is pointing.

The data type of the pointer must be same as the data type of the variable
to which it points.NOTE

In C, the assignment of an absolute address is not allowed to a pointer
variable. For example,

int *iptU;
iptir = 258; /* invalid assignment.*/

26' Self-Instructional Material

We can initialize a pointer variable while declaring it, as given below :

int num = 85;

int *iptr = &nuiii;

Note that variable num is first declared and then its address stored in
pointer variable iptr.
The following program prints the different types of variables and their addresses.
As the memory addresses are unsigned integers so we can use %u or %lu
format for printing the address values in integer form or %x format for printing
the address values in hexadecimal form.

Concepts of Pointers

/* initialization while declaration */

NOTES

/* illustration of address of (&) operator for getting address */

#include<stdio.h>
main ()'
{

char ch;
int X;
float y;
X=376; •
y=12.5;
ch='J';
clrscrt);
printfC'The addresses are' shown in decimal form\n\n");
printfC'You may get some other addresses on your system\n\n");
print'f ("\nValue of ch = %c",ch);
prirltf (" \nAddress of ch is %u", &ch} ;
printf("\n\nvalue 'of x =_%d",x);
printf("\nAddress of x.is %u",&x);
printf ("\n\nValue of y = %.2f'',y);
printf("\nAddress of y is %u",&y);
getchO /* freeze the monitor */ , , ■

/* ASCII value of J' gets stored in ch */

]

PROGRAM 1r
i
j The output of Program 1 will be :
. The addresses are shown in decimal form

You may get some other addresses on your system
' 5 Value of ch = J ,

! Address of ch is 65489
Value of X = 376

i Address of x is 65490

i

> •
! i

; Value of y = 12.50

Address of y is 65492!
I J

Self-Instructional Material
27

Data Structures
, Through ‘C’ 3.3 ACCESSING A VARIABLE USING POINTER

In C, the value of a variable (once its address has been assigned to a pointer
variable) can be accessed using the unary operator * (asterisk) known as the

•indirection operator.
The operator * is followed by an address and it can be kept in mind as ‘value
at address’. For example,

NOTES

int value, num, ‘iptr;
value = 2007;
'iptr = Stvalue;
num = *iptr;

after the execution of the above statements num and value both have 2007.

In C, the pointers and addresses are utilized by means of symbolic names. A
statement like *376 will not work at all. The following program prints the
value of variables using the.indirection operator ‘ * ’ alongwith the addresses.

/* illustration of indirection operator (*) for printing values */

#include<stdio.h> •
main()
{ .

char ch, *cptr;
int X, *iptr;
float y, *fptr;
x=376;
y=12.5;
ch='J';
cptr=&ch;
iptr=&x;
fptr=&y;
clrscr 0
printfC'The addresses are shown in Hexadecimal form\n\n'') ;
printfC'You may get some other addresses on your system\n\n");
printf("\nValue of ch = %c",*cptr);
printf (''\nAddress of ch is %x",cptr);
printf (''\n\nValue of x = id’',*iptr);
printf (''\nAddress of x is %x",iptr);
printf("\n\nValue of y = %.2f",*fptr);
printf("\nAddress of y is %x",fptr)/
getchO ; /* freeze the monitor */

J' gets stored in ch *//* ASCII value of

/}

2S' Self-Instructional _ Material

f ■■ PROGRAM 2 Concepts of Pointers
i

; The output of Program 2 will be :
; The addresses are shown in Hexadecimal form
■ You may get some other addresses on your system
: Value of ch = J

Address of ch is ffcb
; Value of x = 376
! Address of ch is ffcc

Value of y = 12.50
!, : Address ofy is ffce

The operation of writing the value or manipulating it by using * as a prefix
with a pointer variable or pointer expression is called dereferencing pointers.
In C, a pointer stores the address of another variable which in turn can store
address of another variable and so on. Therefore we can have a pointer that
stores another pointer’s address. For example,

NOTES!

(1

;

int val=336, *ptr, •''•*ptr_to_ptr;
ptr=&val;
ptr_to_ptr=Stptr;

Here *ptr denotes an integer pointer
**ptr_to_ptr denotes a pointer to an integer pointer.

The following program illustrates different ways to print the value of addresses
and data pointed to by simple variable, pointer and pointer to pointer :

• /* illustrate concept of pointers*/
#include<stdio.h>
main()
{

int val=336, *ptr, **ptr_to_jptr;
/* store address of val in ptr »/ptr=Sival ;

ptr_to_pcr=&ptr; /* store address of ptr in ptr_to_ptr */
clrscr;
printfC'The addresses are shown in decimal form\n");
printf("\nYou may get some other addresses on your system\n");
printf("\nAddress of val is %u",&val);
printf("\nAddress of val is %u",ptr);
printf("\nAddress of val is %u",*ptr_to_ptr);
printf("\nAddress of ptr is %u",&ptr);
printf("\nAddress of ptr is %u",ptr_to_ptr);
printf ("XnAddress of ptr_to__ptr is %u" , &ptr_to_ptr) ;
printf ("\nValue of ptr is %u'’,ptr);
printf ["XnValue of ptr__to_pcr is %u" ,ptr_to_ptr) ; ' ’
printf("\nvalue of val = %d",vai);

Self-Instructional Material'r
/ ■

2d

printf("\nValue of val = %d",*(&val>);
%d",*ptr);

Data Structures
Through 'C printf("\nValue of val

printf("\nValue of val = %d",**ptr_to_ptr);
getchO; /* freeze the monitor */

}NOTES

PROGRAM 3
; The output of Program 3 will be :

The addresses are shown in decimal form
You may get some other addresses on your system
Address of val is 65490
Address of val is 65490
Address of val is 65490
Address of ptr is 65492

■ Address of ptr is 65492
Address of ptr_to_ptr is 65494
Value o.f ptr is 65490
Value of ptr_to_ptr is 65492
Value of val = 336
Value of val = 336
Value of va! = 336
Value of val = 336

/

Figure 3 makes the output of the above program more clear :

LocationVariable name Contents

336 65490val

6549265490ptr

65492 65494ptr_tO_Rtr

Fig. 3. Illustration of pointer to a pointer.

3.4 STATIC VARIABLE
In computer programming, a static variable is a variable that has been
allocated statically—whose lifetime extends across the entire run of the program.
This is in contrast to the more ephemeral automatic variables, whose storage
is allocated and deallocated on the call stack; and in contrast to object whose
storage is dynamically allocated.

In many programming languages, such as Pascal, all local variables are
automatic and aW. global variables are allocated statically. In these languages,
the term “static variable” is generally not used since “local” and “global”
suffice to cover all the possibilities.

\

Self-Instructional Material30

"Concepts of Pointers
3.5 SUMMARY

.Apointer is a variable that represents the location (rather than the value)
of a data item, such as a variable or an array element.

Do not store the address of a variable of one type into a pointer variable •
of another type.
The vlaue of a, variable cannot be assigned to a pointer variable.

's'

Before initialization a pointer variable contains garbage. Therefore, we
must not use a pointer variable before it is assigned, the address , of a
variable.
The definition of a pointer variable allocates memory only for the pointer
variable, not for the variable to which it points.

The indirection operator * is • a unary operator as it operates only on a
pointer variable.

Pointers can be used to make a function return more than one value
simultaneously. , .

NOTES

3.6 TEST YOURSELF

Answer: the following questions :
1. In what way can the assi^ment of an initial value be included in the declaration

• of a pointer variable ?
2. Differentiate between & and * operators.
3. What do you understand by a pointer to a pointer ? Can this be extended to any

level ? Verify.
4. What is a static variable ?

□□□

I

I ■

Self-Instructional Material
■ 31

Data Structures
Through 'C' CHAPTER 4 ARRAYS, STACKS,

QUEUES AND

LINKED LISTNOTES

★ LEARNING OBJECTIVES ★

4.1 Introduction
4.2 Arrays
4.3 One-Dimensional Array
4.4 Two-Dimensional Arrays,
4.5 Records
4.6 Defining a Structure
4.7 Stack
4.8 Stack as an Array (Array Implementation of Stack)
4.9 Operations on Stack

4.10 Stack as a Linked List (Linked Implementation of Stack)
4.11 Recursion
4.12 Queue
4.13 Operations on-Queue
4.14 Queue as an Array
4.15 Linked Implementation of a Queue
4.16 Implementation of a Queue as a Circular Linked List
4.17 Dequeue (Double Ended Queue)
4.18 Priority Queue
4.19 Linked List
4.20 Advantages of Linked List Over Arrays
4.21 Types of Linked Lists
4.22 Operations on Singly Linked Lists
4.23 Circular Linked Linear List
4.24 Applications of Linear Linked Lists
4.25 Doubly Linked List or Two Chains
4.26 Operations on a Doubly Linked List
4.27 Summary ^ . ■ ,
4.28 Test Yourself

\

: ' . >■' -
52 - Selt-Jnstructionnl Material'

Arrays, Stacks, Queues
and Linked List4.1 INTRODUCTION

An array is the most commonly used data structure. Almost all pro^amming
languages have arrays as their built-in data types. We may have one dimensional
arrays or multi-dimehsional arrays.

An array is a finite, Ordered set of homogeneous elements. By ordered set, we
mean that each element of the set has a unique position and can be accessed
by referring to its position within the set. By homogeneous, we mean that all
the elements of the set are of same t5T3e. All the elements are either real or
integer or character or any other type.

Stack is an important subclass of list in which insertion or deletion of an element
are allowed only at one end insertion and deletion operations are known as
PUSH and POP respectively. A queue is a subclass of lists in which insertion
and deletion take place at specific ends i.e., REAR and FRONT respectively. The
term ‘list’ means a linear collection of elements. In a linked representation of a
simple list, the address of the next element must also be stored explicity with
each element. . •

NOTES

4.2 ARRAYS

An array is a collection of the homogeneous (same type) elements that are referred
by a common name. It is also called a subscripted variable as the elements of an
array are used by the name of an array and an index or subscript. Arrays are
of two types :
{ifone-dimensional arrays Hi) multi-dimensional arrays (2 or more).

4.2.1 One-dimensional Arrays
The s5Titax of declaring a single-dimensional array in C is as follows :

type variable_name [SIZE] ;

An array must be explicitly defined so that the compiler can allocate memory
for it. In the above declaration, type defines the base type of the array i.e. type
of each element. SIZE defines the number of elements the array can store. For
example,

int arr[10] ;
Here arr is the name of the array, SIZE is 10 and it is of int type. The array
subscript always starts from zero. So, arr [4] would refer to the fifth element in
the array arr where 4 is the array index or subscript.

Self-Instructional Material
33

The entire array can be shown as in figure 1.Data Structures
Through ‘C

Contents •
Element number i_b
or index

4-------arrfO]

4-------arr(1]

4-------arr[2]

4~— arr[3]

4-------arr[4]

4-------arr[5]
4-------arr[6]

4-------arr[7]

4----- arr[8]
ir------arr[9)

820
571

NOTES
2 66

983
254
125

6 90

7 47

368

UB g 77

Fig. 1. Schematic representation of an array arr [10]

Here LB denotes lower bound of the index or subscript and UB the upper
bound. The elements of one dimensional array are stored in the memory locations
by sequential allocation technique.

In the memory arr actually 'refers to the starting position or the address of
the area which gets allocated for storage of elements of the array. So, arr
stores the address of arrfO], the starting element of the array.

NOTE

A vector is a mathematical term used for the collection of numbers which are
analogous i.e. one-dimensional (linear) array. So in C, a vector can represent
only integers and fioating point numbers. - -

4.2.2 Address Calculation
The array elements are stored in contiguous memory locations by sequential
allocation technique. The address of ith element of the array can be obtained if •
we know :

1. The starting address i.e. the address of the first element called Base address
denoted by B.

2. The size of the element in the array denoted by S.
Consider the array arr in which LB<=UB, i.e. arr [LB : UB]
Where LB denotes the lower bound of the index and UB the upper bound of
index. The address of ith element is given by :

address of arr[ij = B4:(i-LB)*S

where LB <=i<=UB

In C array index always start from 0 for one-dimensional arrays. ■NOTE

34 Self-Instructional Material

Arrays, Stacks, Queues
and Linked List

4.2.3 Two-dimensional Arrays (Multi-dimensional Array)
A two-dimensional array is a grid having rows and columns in which each
element is specified by two subscripts. It is the simplest of multi-dimensional ■ ’
arrays. The first subscript identifier is the row number and the second subscript
identifier is the column number. For example,
An array a [m] [n] is an m by n table having mrows and n columns containing
m X n elements. The size of the array (total number of elements) is obtained by
calculating m x n.

NOTES

n
Columns4 ♦

1 2 3 n
1

2

1 <= i <= m
1 <= j' <= nm]m Rows i

m-1

m

. Fig. 2

Here a[i][j] denotes the element in the ith row and jth column. Size of the array
is m X n.

The s3Titax of declaring a two-dimensional array in C is as follows :
type variable_name [number of rows][number of columns];

For example, int a [5] [5]

Here ‘a’ is the name of the array of type int of size 5 by 5.

' The array elements are a[0][0], a[0][l],

So, the two dimensional array is defined using two subscripts in the form of a
matrix.

a[4][4].

4.2.4 Sequential Allocation for Two-dimensional Array

Suppose we have a two dimensional array a[l : 3, 1 : 41 of type int. An integer
requires two bytes of storage.

Since the main memory of a computer is linear, two-dimensional array cannot
be stored in its natural grid form' The array elements are stored linearly using
one of the following methods :

(i) Row Major Storage

Hi) Column Major Storage.

Self-InstructtOnal Material
85 -

Data Structures
Through ‘C

The Row Major Storage is shown in figure 3. Using this method a two dimensional
array is stored with all the elements of first-row in sequence followed by the
elements of second row and so on.

NOTES Main Memory
Address o

1

a(11[l|

alip] .
a[1]

a[1][3)
col- col col col
12 3 4 a[ll[41

a[2)[llrow 1 1

row 2 a[21[2]
a[21 <

row 3 a[2][3]

a[2][4]Array a(3][41

at31511
a[31[2|

a[3] ■{
a[3][3]

a|3](4]

Fig. 3. Row major storage of array a[l : 3]fl : 4]

4.2.5 Address Calculation of Elements of Array a[LBl : UBl, LB2 :
UB2]

Let i, j denote the row and column index where LBl<=i<=UBl and LB2<=j<=UB2

Address of an element = B-i-(number of elements before it) ^ S

Where B is base address and S denotes size of each element.
Also the number of rows = M = (UBl - LBl + 1)
and the number of columns = N = {UB2 - LB2 + 1)
Using Bow M^jor order the address of a [ij [j] is given by,
Address of a[i][j] = B + (Number of elements before a [i] [j]) * S

= B -I- (Number of elements in (i - LBl) rows
+ number of elements in ith row before column j) * S

= B + [(i - LBl) * N (j - LB2)] * S
The Column Major Storage of the array a[l : 3, 1 ; 4] is shown in figure 4.

36 Self-Instructional Material

Arrays, Stacks, Queues
and Linked ListMain Memory

Address 0
1

NOTES
a(l]|i]

a[2][1]

a[3)[l!

al1l[2|12 3 4
a[2](2]1
a[3][2]2

3 a[1l[3]
1Array a[3]I4) a[21[3I

a(3]|3I

a(ll!4]

a[2][4j

a[3J[41

Fig. 4. Column Major Storage of array a[l : 3][1 : 4]

The Column Major Storage stores all the elements of first-column in sequence
followed by the eleriients of second column and so on.

Using Column Msgor order the address of a[i]{j] is given by,

Address of a[i][j] = B + (Number of elements before a[i]|j]) * S

= B + (Number of elements in jth column before row i

'+ number of elements in (j - LB2) columns) * S

= B + [(i - LBl) + 0 - LB2) * M] * S

y

The array index for row and column for two dimensional arrays always '
start from 0 in C.

NOTE

Example 1. An array X[7][20] is stored in the memory with each element requiring
2 bytes of storage. If the base address of array is 2000, calculate the location of
X[3J[5] when the array X is stored in column major order.

Xf7][20] means valid row indices are 0 to 6 and valid column indices are
0 to 19. 'NOTE

Solution. Here, Base address

Size of an element

B = 2000

S = 2 bytes

Self-Instructional Material
37

Data Structures
• Through ‘C

Number of rows M=6-0+l=7

M = UBl - LBl + 1 (LBl = 0)
Number of columns N = 19- 0+1 = 20

N = UB2 - LB2 + 1 (LB2 = 0)NOTES
‘ The array is stored in column major order.

Address of X[i]|j] = B + [(i - LBl) + (j - LB2) * M] * S

Address of X[3][5] = 2000 + 1(3 - 0) +-(5 - 0) * 7] * 2

= 2000 + [3 + 35] * 2 = 2000 + 76 = 2076.

4.3 ONE-DIMENSIONAL ARRAY

Traversal
It means visiting each element,(from start to end) one after the other. For example,
traversal in the array shown in figure 5 :

12 3480 49 25 75 50 47.92 63

index 1 2 3 4 5 7 106 8 9
Array a[10)

Fig. 6
would be processing of a[l], a[2], a[3],

4.3.1 Algorithm for Traversal

Let A be an array of size N. We have to traverse through the array (i.e., visit
each element) and perform some desired operation on each element. Let the
desired operation be denoted by OPERATE. I denotes the array index.'Assuming
lower bound starts with 1.

1. Repeat for I = 1, 2,

OPERATE on A[I]

, a[10].

,N

2. End

In C the array index starts from 0.NOTE

The following function in ‘C’ illustrates the concept of traversal in a one
dimensional array :

/* function definition add() */

float add(float a[],int n)

38 Self-Instructional Material

/
Arrays, Stacks. Queues

and Linked List
{

int 'i; /* local variable ’/
. float total=0.0;
for(i=0;i<n;i++)

total += a [i];
return(total);

NOTES
f.

}

4.3.2 Insertion of an Element in an Array
Let A be an array of size N, having M elements (M < N). DATA is the element
to be inserted at position POS (POS < M + 1). For insertion elements from

, POS are shifted downward by one positionpositions M, M - 1, M - 2,
arid the element DATA is inserted at position POS. After insertion there are
M + 1 elements in the array. Figure 6 illustrates this concept

10index 1index 1 10
99 4-----New element4----- Position of

insertion
(POS)

22 28
2859 33

4 59404
5 405 51
6 51476
7 4732M 7

M 8 328
Elements are

• shifted
downwards

• N-1N-1
N N

Array after Insertion
of 99 at position 2

Array before Insertion
t

Fig. 6. Insertion in an array at a specific position

Insertion is not possible if the array is already full but replacement of an
existing element is possible.NOTE

4.3.3 Algorithm Insertion of an Element in an Array at a Specific
Position

Let A be an array as explained above. I denotes the array index. Assuming
array index starts at 1.

1, Repeat for I = M, M

A[I + 1] = A[I]

\

1, M - 2, , POS

Self-Instructional Material
39

Data Structures
Through 'C

2. A[POS] = DATA

3. M = M + 1 ,

4. End

NOTES - The following function in ‘C’ illustrates the above concept :

/* function definition insertO »/

void insert(int a[], int n,int data, int position)

{
int i; 7* local variable ’/
/‘•back shifting of elements »/
for (i=n-l;i>=position-1;i--)

a[i+l]=a-ti] ;
/* insertion.of element */
a [position-1]=data;

}

4.3.4 Insertion of an Element in a Sorted Array given in Ascending Order
Let A be an array of size N, having M elements in ascending order (M < N).
DATA is the element to be inserted. It is required that the array remains sorted
after insertion. As the element is to be placed at its proper position, insert the

•index 1 10 index 1 10
2 27 2 27
3 39 3 33 4----- New element

V4 47 4 39
5 50 5 47
6 73 6 50

M 7 SO 7 73
8 M 8 80

N-1 N-1
N N

Sorted array after
Insertion of 33

Sorted array before Insertion

Fig. 7. Insertion in a sorted array

DATA in the end if it is greater than or equal to last element otherwise the
position of insertion is found first by using linear search method and we stop at
the location where an element greater than DATA is present. Start from beginning

40 Self-Instructional Material

Arrays, Stacks, Queues
and Linked List

and after getting the position of insertion (say POS), the elements are shifted
downwards from last position ii.e., M) to POS and then DATA is inserted. After
insertion there are M + 1 elements in the array. Figure 7 illustrates this concept. -

4.3.5 Algorithm Insertion of an Element in a Sorted Array

Let A be an array having M elements in ascending order of size N (M < N).
DATA is the element to be inserted. Array remains sorted after insertion. I and
POS denote array indices. Assuming array index begins with 1,

1. If (DATA > A[M]) Then

NOTES

{
A(M+1] =DATA
goto Step 6

}

2. POS = 1

3. Repeat while (A[POS] < DATA)

POS = POS + 1

4. Repeat for I = M, M - 1,,M - 2, .

A[I + 1] = A[I]

5. A[POS] = DATA

6. M = M + 1

, POS

7. End

The following function in ‘C’ illustrates the above concept with array index
beginning at 0 : • ■

/* function definition insert() */

void insert(int a[],int n,int data)

{
int .i,position; /* local variables */ .

if(data>=a[n-1]) /* when data is >= last element */

a[n]=data;

else

{
position=0; /• initialise position */

while(a[position] <= data)

position++;

Self-Instructional Material
41

Data Structures
. Through ‘C

/* back shifting of elements */

for(i=n-l;i>=position-1;i--)

a [i+1]=a [i];

/* insertion of element */

a[position]=data;
NOTES

}

. }

4.3.6 Deletion of an Element from an Array
Let A be an array having N elements. Deletion of an element means its removal
from the array. Deletion may not be possible if the element does not exist.
Deletion can be done in any one of following ways :

(i) Deletion of an element from an array from a specific position
(ii) Deletion of an element from ah. unsorted array

{Hi) Deletion of an element from a sorted array (say ascending order).

(r) Deletion of an Element from an Array from a Specific Position
In this case the elements are shifted from the next position to the last position,
one position upwards taking into consideration the position of deletion. For
example, figure 8 shows the deletion of element from position 5 in array A
having 8 elements.

1010 1index 1
3422 34
2929 33
5656 44

Position
of deletion 895 27 5

6 77896
N 7 45777 Alter shifting 0 stored

^ at last position8 0N 8 45
Array A after deletion

of element from position 5

Fig. 8. Deletion of an element from an array from a specific position

4.3.7 Algorithm Deletion of an Element from an Array from a Specific
Position

Let A be an array having N elements. POS is the position of deletion (POS < N).
Let I denote the array index. Assume that the array index begins at 1 and the
value 0 is stored in the last position after deletion of element. N - 1. elements •
are left after deletion.
1. Repeat for I = POS + 1, POS + 2, ..., N

A[I-1] = A[I]

Original array A

2. A[lf' - 3

42 Self-Instructional Material

Arrays, Stacks, Queues
and Linked List3. N = N - 1

4. End.

The following function in ‘C’ illustrates the above concept with array index
beginning at 0 : NOTES

/* function definition delO */

void del(int a[],int n,int pos)
{

int i; /* local variable */
/* deletion of element */
for(i=pos;i<n;i++)

a[i-1]=a [i] ;
a[n-l]=0; /* enter 0 for last element */

I

}

(ii) Deletion of an Element from an Unsorted Array
In this case the element to be deleted is searched first using linear search and
then deleted (if present). Only first occurrence of the element will be deleted.
For example, figure 9 shows the deletion of element 66 from an array A having
8 elements.

1010 1index 1
362362
2933 29
4044 40

5 385 38
Element to
be deleted • 886. $ 66

N 7 457 88 After shifting 0 stored
^ at last position08N 8 45

Array A after deletion
of element 66 i

Original array A

Fig. 9. Deletion of an element from an unsorted array

4.3.8 Algorithm Deletion of an Element from an Unsorted Array
Let A be an array having N elements. DATA is the element to be deleted. I, POS
denote the array indices. If DATA is available then its first occurrence is deleted.
Assuming array index begins at 1. N-1 elements are left after. deletion (if
possible).
1. Repeat for I = 1, 2, ..., N

If (A[I]=DATA) Then
{

Self-Instructional Material
43

)■

Data Structures
Through ‘C’

Repeat for P0S=I+1,1+2,..., N
{

A[POS-l] = A[POS]

}
A[N] =0
N = N-1
goto step 3

NOTES

}
}

•2. Write (DATA, “ Can’t be deleted”)

3. End. t

The following function in ‘C’ illustrates the above concept with array index
beginning at 0 :

/* function definition delO */

int del(int a[],int data.int n)

{
int i,pos; /* local variables */

/* deletion 'of data only first occurence */
for(i=0;i<n;1++)

{
if(a [i]== data)

■{ /
■ for(pos=i+l;pos<n;pos++)

a [pos-1]=a[pos] ;
aln-l]=0; /* enter 0 for last element */
return(i);

}

return(-l);

}

{Hi) Deletion of an Element from a Sorted Array (say ascending
order)

First of all it is checked whether the element to be deleted is smaller than first
element or larger than the last element, if so the deletion is not possible.

The element in a sorted array can be searched by any one of the two searching
techniques i.e., linear search or binary search. If the element is found, it is
removed and the remaining elements after it are shifted upwards by one position.

/ / '■For exc> •_ le, figure 10 shows the deletion of element 50 from array A.
• /

44 Self'ln$tructional Material

Arrays, Stacks, Queues
and Linked List

1,3 131index 1
2020 22

3 34343
Element to
be deleted50 4 68*4 NOTES

5 68 5 71
671 876

7 87 N 7 99
After shiftina 0 stored

^ at last position8 0N 8 99
Array A after deletion

of element 50
Original array A

Pig. 10. Deletion of an element from a sorted array

4.3.9 Algorithm Deletion of an Element from a Sorted Array (given in
ascending order)

Let A be an array having N elements in ascending order. DATA is the element
to be deleted. I, POS denote, array index. If DATA is available then its first
occurrence is deleted (using linear'search method). Assuming array index begins
at 1. N-1 elements are left after deletion.

>

1. If ((DATA < A[l]) OR (DATA > A[N]) Then

{
write(DATA," Car't be deleted")
goto step 3

.• I. ■

2. Repeat for I = 1, 2, 3, ..., N
{ ,

If (A[I] > DATA) Then

{
write(DATA," Can't be deleted")
goto step 3

}
else

{
If (A[I] =.DATA) Then

{
Repeat for POS=I+l,1+2,...,N ■

{
. A[P0S-1]=A(POS]

}
-A[N],= 0
NaN-1

goto step 3
}

}
}

3. End.
Self-Instructional Material

45

The following function in ‘C’ illustrates the above concept with array mdex
beginning at 0 :

Data Structures
Through ‘C

/’'function dafinition del() */
NOTES

int del'dnt a[],int-n, int data)
{

int i, position; /* local variables */
/’ .deletion of only first occurence of data (if possible) */
if(data<a[0]

■ return(-1)
position=0;
while(a[position]<daCa}

position++;
if(a [position] == data)

data>a[n-l]) /* when data out of range */

{
/* shifting of elements */ .
for (i=position+l;i<n:i++)

a[i-l]=a[i];
a[n-l]=0; /* enter.0 for last element */
return(position);

reCurn(-l); /* when data not found */
}

4.4 TWO-DIMENSIONAL ARRAYS

Traversal
It means visiting each element one after the other.

4.4.1 Algorithm for Traversal
Let A be an array of size M x N. We have to traverse through the array and
perform some desired operation on each element. Let the desired operation be
denoted by OPERATE. I, J denote the array indices. Assuming lower bound
start at 1 for both row and column.

1. Repeat for I = 1, 2, ..., M
(

Repeat for
OPERATE' on A[I, J] ' ,

}
2. End

Self-Instructional Material4fi

In C the array indices start from 0. Arrays. Stacks, Queues
and Linked ListNOTE

The following program illustrates the concept of traversal in a two dimensional
array a of order 5 x 5 by displaying the elements we will enter and then the
elements divisible by 10. When a two dimensional array is read or displayed,
actually we are traversing through it.

NOTES

-/* Traversal of a two dimensional array
display elements of a two dimensional array divisible by 10 ■»/

#include<stdio.h>

void main()
{

void displaylO(int a [5] [5]); /* function prototype '*/
int.a[5] [5],i,j ;
clrscr(); ‘ • •
printf{"Enter the array of order 5 * 5\n");
/* row wise reading */
for(i=0;i<5;i++)

{
for (j = 0;j<5;j+ +)

scanf ("%d", aa [i] [j)) ■;
}

/* echo the data */
printf("\nGiven array is:\n\n");

' for(i=0;i<5;i++)
{

for(j = 0;j <5;j+ +)
printf ("l:d", a [i] [j]) ; .

printf("\n");
}

displaylO(a); /* function call */
getch(); /* freeze the screen until some key is pressed */

}

/* function definition displaylO() */

void displaylO{int a[5](5])
{

0; /* local variables */
printf("\nElements divisible by 10 are :\n\n");
for(i=0;i<5;i++)

int i,j,count

.)

{
for(j=0;j<5;j++)

{

Self-Instructional Material
■ V- .'I'-r 47

\

if(atillj] % 10 —0)•
{ • ■

printf(" %d ",aii][jj);
counc++!

Data Struetureg
Through ‘C

}NOTES
}

}
if(counc=sOj

printf("Not present in the array\n\n");
• }

PROGRAM 1f

\ , The output of program 3 wil] be :
! Enter the array of order 5*6

35 10 30 50 26
, 67 19 28 40 32
I 80 IS 56 90 20 .
^ 12 34 68 75 70

‘29 16 10 88 22
j Given array is :
[35 10 30 50 26
^67 19 28 40 32

(80 18 56 -90 20
I 12 34 68 75 70
I 29 16 10 88 22

Elements divisible by 10 are :
, 10 30 50 40 80 90 20 70 10
j Enter the array of order 5*5
, 11 76 28 49 37
'93 41' 32 54 39
: 78 13 51 98 26
I 16 29 45 81 61

87 84 91 47 71

I

I

\

[
\

\
\

I

Given array is :
11 76 28 49 37

I 93 41 32 54 39
78 13 51 98 26
16 29 ,45 81 61
87 84 .91 47 71

I Elements divisible by 10 are :

I Not present in the array
I I

I.

Self'Ingtmclional Material48

Arrays, Stacks, Queues
and Linked List

In the above program first of all an array a of size 5 x 5 is read and then echoed
or displayed. So in writing each element of the array we are traversing through
it. The function displaylOO is called, having argument-the array. The function
displays all the elements which are divisible by 10 and keeps their count also,
so ,that if no element in the array is divisible by 10 an appropriate message is
displayed.
Let us consider some additional examples to perform the specified operations on
the two dimensional arrays :

NOTES

4.4.2 Algorithm Finding Sum of Elements on Either Diagonals
of a N X N Array

Let A be an array of size N x N. I, J denote array indices for row and column
respectively. SUM stores the sum of elements on both diagonals. Assuming
array indices I, J begin with 1. '

1. SUM = 0 •
2. Repeat for I = 1, 2, ..., N

{
Repeat for J=1,2,...,N

{
If ((I=J) OR ((I+J) =N+1)) Then

SUM = SUM +-

}
/

3..Write SUM

4. End • •
The following examples show the two dimensional arrays of order 2x2 and
3x3 alongwith the' sum on either diagonals :

8 9
7-4

Here sum of elements on either diagonals is 28, and the array
321

5 64
987

has sum of elements on either diagonals as 25 (element 5 is added only once).

The following function in ‘C’ implements the above concept with array indices
beginning at 0 :

/* function.definition sura_diagonal() */ I

int :sutn_diagonal {int a [SIZE] (SIZE] , int order)

Self-Instructional Material
■ 49

{Data Structures
Through ‘C int i,j,sum=0;

/* sum of elements on both diagonals */
for(i=0;i<order;i++)

{NOTES
for[j = 0;j <order;j ++)

{
if((i==j)

sum+ = a [i] [j] ;
I (i+j order-1))I

}
• }
return (sum)

}

4.4.3 Algorithm Printing of the Upper Half and Lower Half of
a N x‘N Array • -

Let A be an array of size N x N. We want to print the upper half of the array.
I, J denote the array indices for row and column respectively. Assuming that
indices begin with 1.
1. Write (‘Upper Half is’)
2. Repeat for I = 1, 2, . N

Repeat for J=I,I+l,N
Write(A[I,J]) properly

}
3. Write (‘Lower Half is’)
4, Repeat for I = 1, 2...... N •

Repeat for j=l,2,.... ,I

Write(A[I,J]) properly

}
5. End

The following function in ‘C’ implements this concpet with array indices beginning
■ atO : •

/* function definition print_triangles{) */

void print_triangles(int a [SIZE] [SIZE],int order)
{

int i,j,k; /* local'variables */
60 Self-Instructional Material

Arrays, Stocks, Queues
and Linked List

/* upper triangle */
printf (" \nUpper triangle of matrix is\n'');
for(i=0;i<order;i++)

{
NOTESfor(k=0;k<i;k++)

printf {"\t");
for(j-i;j<order;j++)

printf("led",a [i] [j));
printf("\n");

/* lower triangle ■*/
printf("\nLower triangle of matrix is\n");
for(i=0;i<order;i++)

{
for[j = 0;j <=i;j + +)

printf("led",a[i) [j]) ;
printf("\n") ;

}.
}

4.4.4 Matrix Multiplication
Let A and B be matrices of orders m x n and q x p respectively. The product
AB of matrices A and B is defined only when the number of columns in A equals
the number of rows in B, i.e., n = q. When n = q, the product is a m x p matrix
C with the property

tA(i,k)*B(k,j),C(i, j) = l<i£m, l<j<p
k=l

In the product AB, A is called the pre-factor of Ab and B, the post-factor of
AB.
The procedure of writing elements of AB is shown below diagrainmatically :

zz
—- A|, b,j'+.........+ a.n bnja,,

7=^
bni

q X p ITl X Pm X n

jth column of B (i, j)th element of ABith row.of A

Fig. 11
Self-Instructional Material

61

Data Structures
Through ‘C faj] bi2 ^3

621 &22 ^3.

Here the product AB is defined, because the number of columns (=2) of A equals
• the number of rows (=2) of B. In this case,

“11 «12
021 022

For example, let A = and B =

NOTES

a,2
t),2 b,3

^21^ ^22 bj3

an
AB ♦

321 822

^11^11 ^^12^21 ^11^12 ^^12^22 ^11^13 "^^12^23
^21^11 ■*‘^22^21 <^21^12 ■*■‘^22^22 0 21^13 *^22^23 .

r
2 6 0
7 9 8

6 9To take another example, let A = and B =
2 3

The produft AB is defined, because number of columns (=2) of A is equal to
number of rows (= 2) of B. The order of product AB is 2x3.
The product AB is calculated by following the procedure given below :

For first row of AB

|6 9 6(2)+ 9(7)] \ 6(6}+9(9)1 16(0)* 9(8) |2 6 0
X

32 9 87

• Fig. 12

For second row of AB

75 117 726 9 6 02
X

2(2) + 3(7) 2(6) + 3(9) 2(0) + 3(B)2 3 7 9 8

Fig. 13

52 Self-Instructional Material

Arrays, Stacks, Queues
and Linked List-

In short, the product AB is written as

6 9
6(2)+ 9(7) 6(6)+ 9(9) 6(0)+9(8)2 6 0

9 8 _2(2) + 3(7) 2(6)+ 3(9) 2(0) + 3(8)_2 3 NOTES

12 + 63 36 + 81 0 + 72
4 + 21 12 + 27 0 + 24

75 117 72
25 39 24

Fr the above matrices, the product BA is not defined, because number of columns •
(= 3) of B is not equal to number of rows (=2) of A.

4.4.5 Algorithm ; Matrix Multiplication
Given two matrices A and B of orders mxn and qxp respectively. This algorithm
multiplies the two matrices (if possible) and stores the result in matrix C (of
order mxp). I,J and K denote array indices.

1. If n = q Then
Begin

Repeat for 1 = 1, 2,
Begin

; m

Repeat for J = 1, 2,
Begin

; P

.C[I,J] ^ 0

Repeat for K = 1, 2

C[I,J] C[I,J] + (A{I,K])*B[K,J])

n

End

End
End

Else
Write (‘Matrix multiplication not possible’)

2. End.

The following function in ‘C’ illustrates the above concept with array indices
beginning at 0 :

/* function definition matmulO */

void mattnul (i’nt x[][SJ,int y(][S),int z[][S),int rowl,int colml,int
colm2)

{
int i,-j,k; /* local variables */
if(colml==row2)

Self-Instructional Material
53

Data Structures
Through ‘C-

.• for (i=0; icrowl ;i++)
{

for (j=0 ; j<colm2 ;-)++)
NOTES

Z[i] [j]=0;
for(k=0;k<colml;k++)

z [i] [j] +=x(i] [k] *y [k] [j] ;
}

}
}

else
printf("\n\nMat.rix multiplication not possible\n");

)

\

4.5 RECORDS

In commercial data processing, we need to store all information about one
object at one place and that it as a single unit. For example, .in a payroll
application, we need the following information about an employee ;

Employee number, Employee name, Department, Basic Pay, Date of increment
and Pay scale.

In examination processing, .we need to store data about students. This data
may be :

Student roll number, Student Name, Class, Section, Marks and Student
Address.

In both the above cases, we have a collection of elements which are of
different .types but still they are to be treated as a single unit. A finite,
ordered set of elements of same or different types is called a record structure.
It is a compound structure made up from constituent type elements. Thus
the complete information about an employee or a. student may be called a
record. The constituent types in these cases are of types integers, real
number and string. The string itself is a data structure made from data type
character.

In general, we have a record structure R = (Rl, R2, ..., Rn), in which there
are elements Rl, R2, ..., Rn of different types. These Rl, R2, ..., Rn are called
fields of a record. A field which may further be divided into other fields is

64 Self-Instructional Material

Arrays, Stacks, Queues
and Linked List

called a group field. For example, ‘Date’ field may be divided into Tear’,
‘Month’, ‘Day’. So ‘Date’ is a group field. A field which cannot be divided into
subfields is called an elementary field.

In C, we can create and use the data types other than the fundamental data
types. These are known as user-defined data tjqjes. Data types using the
keyword struct are known as structures. As seen earlier arrays have'similar
data type elements. In C, a structure is a collection of mixed data tjT)es
referenced by a single name. It is a group of related data items (structure
elements) of arbitrary types.

NOTES

4.6 DEFINING A STRUCTURE
The general syntax of declaring a structure is :

struct <name>
{

<type> <membe5:l>;
<type> <member2>;

<type> <memberN>;
} <struct variables>; /* this semicolon is a must */

where <name> - is the name of the structure i.e., name of the new data type.
The ke5Tvord struct and <name> are used to declare structure variable(s).

<struct variables> - name(s) of structure variables.

The individual members of a structure can be ordinary variables, array, or
other structures. The member names within a particular structure must be
distinct from one another, though a member name can be the same as the
name of a variable defined outside of the structure. A storage class however,
can’t be assigned to an individual member, and individual members can’t be
initialized- within a structure type declaration.

We can omit either the <name> or. the <struct variables> but not both.NOTE

For example.

struct employee

{
. int empl_no;

Self-Instructional Material
55

Data Structures
Through ‘C’

char name[30];

char designation[20] ;

char deptt[20];

} einp;
NOTES

The structure variable can also be declared as :

struct employee

{
int einpl_no;
char name [30]
char designation[2 0] ;
char deptt[20];

};
struct employee emp;

Thus, emp is a variable of type employee. In other words, emp is structure
type variable whose composition is identified by the tag employee.
When we declare a structure, a data type is defined, that is no memory space
is reserved.

The C compiler automatically allocates sufficient memory to store all the
elements that constitute the structure, when we declare structure variable.
All the members of the structure are stored in contiguous memory locations
in the order of their declaration.
More, than one variables can also be declared at the same time.

4.7 STACK

It is an important subclass of lists in which insertion or deletion of an element
are allowed only at one end. The insertion and deletion operations are known as
PUSH and POP respectively. The most accessible element denotes the top and
least accessible element the bottom of the stack. It is known as a LIFO (Last
In First Out) list as the elements are removed in the opposite order from that
in which they were added to the stack. For example, pile of trays in a cafeteria
figure 14, railway shunting system for cars as shown in figure 15 :

66 - Self-Instructional Material

Arrays, Stacks, Queues
and Linked List

Top tray of pile

Stacked trays
NOTES

Fig. 14. A cafeteria-tray holder.

From a pile of trays in a cafeteria, only one tray is made available to any person
from the top by the action of a spring at the tray counter. When a top tray is
removed, the load on the spring becomes lighter and next available fray appears
at the surface of the counter. When a tray is placed on the top of the pile the
entire pile is pushed down and this tray appears above the tray counter.

Output (deletion)Input (insertion)

*

X

stack

Fig. 15. A railway shunting system shown in the form of a stack. .

In the railway shimting system, the last car to be placed on the stack will be
removed as the first one.

From above discussion we conclude that a stack is an ordered collection of
elements into which new elements may be inserted and from which existing
elements may be deleted at one end, called the top of the stack.

4.8 STACK AS AN ARRAY (ARRAY

EWPLEMENTATION OF STACK)

We know that array is a static data structure. So the space is allocated according
to maximum number of elements present at that point of time. Therefore, creation
of a stack as an array requires the number of elements in advance. Figure 16
shows the representation of a stack as an array :

Self-Instructional Material
57

Data Structures
Through ‘C’

Top45Deletion
NOTES 20

Insertion
97

50

38

12 ‘

85

Bottom42 «■

Fig. 16. Array implementation of a stack having size 10.

4.9 OPERATIONS ON STACK

When we add an element to a stack, we say that we PUSH it on the stack and
if we delete an element from a stack, we say that we POP it from the stack. Let
us see how stack of figure 16 grows or shrinks when we PUSH or POP an
element.

PUSH (66) on the stack PUSH (40) on the stack

Top40 ■

Top66 66♦ 1 ■

45 45

20 20

97 97 \
w\ 50 50

38 . 38

12 12

65 85

Bottom Bottom42 42

Fig. 17

Now, we cannot PUSH any other , element as the stack is already full. If we do
so, an overflow takes place.

When POP operation is performed the stack looks like,
POP an element from the stack

Fig. 18

/

58 Self-Instructional Material

Arrays, Stacks,'Queues ■
and Linked List

Top66 «■

45 Popped element = 40 NOTES
20t

97

50

38

12

85

42 Bottom

Fig. 19

When a stack is empty, it contains no element, and it is not possible to POP the
stack. Therefore, before popping an element, we must check that the stack is not
empty. If we do so, an underflow takes place.

4.9.1 Algorithm Insertion (PUSH) in a Stack as an Array
Lit S be a stack having size N and DATA an element to be inserted. TOP
denotes the position of the top element in the stack. Assuming the index in
stack begins with 1 and go upto N. '

1. 'If (TOP = N) Then
{

Write('Stack Overflow')
goto step 4

- }
2. TOP = TOP + 1

3. S[TOP] = DATA
4. End.

In C the array index always begins with 0 and if the array size is N it varies
from 0 to N-1.'NOTE

4.9.2 Algorithm Deletion (POP) in a Stack as an Array
Let S be a stack having TOP as the position of the top element. DATA stores
the value of the deleted element (if possible). Assuming the-index in the stack
begins with 1.

1. If (TOP = 0) Then
{
writei'stack underflow on POP')

Self-Instructional Material
59

Data Structures
Through ‘C’

goto step 4
}

2. DATA = S[TOP]

3. TOP = TOP - 1
4. , End.NOTES

The following functions in C implements the PUSH and POP operations discussed
above with array index beginning with 0 :

/* function definition PUSH() */

void PUSH(int SlJ/int data) /* function to insert element .*/
{

if(top==SIZE-l)
{

printf("\nStack Overflow\n”); •
exit(l);

}
else

{
S(++top]=data;
if (top==SlZE-l)

printf("\nNo element will be inserted next time\n");
}

}

/* function definition POP() to delete element */

void POP (int. S [])

if (top<0)

printf("\nStack Underflow\n") ;
exit (1);

}
■ else

{
printf("VnPopped element : %d",S [top--]);
if(top<0)

printf{"\n\nNd element left in the stack now\n");
}

}

Self-Instructional Material60

Arrays. Stacks, Queues
and Linked List4.10 STACK AS A LINKED LIST (LINKED

IMPLEMENTATION OF STACK)

When the number of elements are not specified in a stack, the array
implementation may not be useful. As mentioned earlier a linked list is a dynamic
data structure and it can store any number of elements (The limitations of the
memory are always there).

Let us assume that an available area of storage (memory) for the node structure
consists of available nodes as shown in figure 20, where AVAIL is a pointer
variable storing the address of the top node in the stack.
Here, NEWPTR stores the address of next available node which was originally
pointed to by AVAIL. LINK(AVAIL) shown in figure 20 (i) becomes AVAIL after
taking topmost node from the availability stack as shown in figure 20 Hi). A
node caruiot be taken if AVAIL is NULL. Availability stack is also known as
free storage pool.

NOTES

To successor node
* in list which will have • •

this node

NEWPTRAVAIL *

LINK (AVAIL)
AVAIL*

(I) Before

Fig. 20. Availability stack before and after taking a node from it.

(ii) After

4.10.1 Algorithm for Getting a Node from Availability Stack
1. If (AVAIL = NULL) Then

{
Write('Availability Stack Underflow')
goto step 4.

2. NEWPTR = AVAIL

AVAIL = LINK(AVAIL) •3.

End.4.

Self-Instructional Material
61■.,1. /

\

After getting a node it can be used as per our requirement. The dynamic allocation
of memory in C is done by using the function mallocO as shown :

The node structure can be declared first as

typedef scruct nodetype /* declare node type */

Data Structures
. Through 'C

NOTES
{

int info;
struct nodetype *next;

jnode;

Now the following statement creates a node dynamically ;

node *newptr = (node *) malloc(sizeof(node));
if(newpcr==NULL)

- printf("\nAvailability Stack Underflow\n");

When a .node is deleted (when.it is no longer required) it is returned to the
availability stack for further use. If the address of the deleted node is given by
the variable FREEPTR, then the link field of this node is set to the current
value of AVAIL,and then FREEPTR becomes the new value of pointer AVAIL.
Figure 21 illustrates this :

FREEPTR

i
Previous

* Address
AVAILFREEPTR

♦

AVAIL

t

\'
(ii) After(I) Before

Fig. 2*1. Availability stack before and after returning a node to it.

4.10.2 Algorithm for Returning a Node to Availability Stack
1. LINK(FREEPTR) =. AVAIL ' ' ,

2. AVAIL = FREEI^R

3. End.

62 . Self-Instructional Material

The deallocation of memory (when we donot require it) in C is done by using
the function freeO as shown :

If freeptr is the address of a node which we want to delete where the appropriate
changes have been performed in a linked list, the following statement deletes
the node and then the memory again becomes available for use.

free[freeptr); /* make the memory free for use */

As the basic concepts of taking a node from availability stack and returning it
back when it is no longer required have been .explained. So, let us concentrate
on actual implementation of stack as a linked list.

We know that stack is a linear data structure in which insertions and deletions
are done only from one end called TOP of the stack. Linked implementation of
stack is preferred over array implementation when length of the'stack is
unpredictable. Figure.22 shows the linked implementation-of a stack having 5
elements 20, 25, 15, 17 and 42 with the element 20 at the top of
stack : '. - '

Arrays, Stacks, Queues
and Linked List

NOTES

TOP
♦ 20

25

■ 15

17

42 NULL Bottom

, • Fig. 22. Linked representation of a stack.

. Here, TOP is a pointer variable that contains a pointer to the top node of the
stack.

After PUSH operation of DATA having value 55 the linked list looks
• as shown in figure 23 :

/

i

Self-Iristructiona/ Materia/ ' \
63

Data Structures .
Through ‘C

TOP
13 * 55

NOTES 20

25

15

17

42 NULL Bottom

Fig. 23. Linked representation of a stack after PUSH.

When POP operation is performed the stack looks like,

POP an element from the stack ■

TOP
3 20>

Popped element = 55

25

15

/
17

Bottom42 NULL

Fig. 24. Linked representation of a stack after POP.
N

64 Self-Instructional Material

POP an element from the stack Arrays. Stacks, Queues
and Linked List

TOP
25*

NOTESPopped element = 20

15

17-

42 BottomNULL

Fig. 25. Linked representation of a stack after POP.

When a stack is empty, TOP points to NULL and it is not possible to POP the
stack. If we try to pop an element now, an underflow takes place.

4.10.3 Algorithm Insertion (PUSH) in a Stack as a Linked List
Let DATA be the element to be inserted in a stack having TOP as the pointer
containing the address of the top element. AVAIL is a pointer to the top element
of the availability stack. NEWPTR denotes address of new node.

1. If (AVAIL = NULL) Then

{
Write('Availability Stack Underflow')

goto step 6

}
2. NEWPTR = AVAIL

3; AVAIL = LINK(AVAIL)

4. INFO (NEWPTR) = DATA

LINK (NEWPTR) = TOP

5. TOP = NEWPTR

6. End.'

Using this representation we are using the pool of available nodes and we will
never have to test whether a particular stack is full.

4.10.4 Algorithm Deletion (POP) in a Stack as a Linked List
Let TOP be the pointer having the address of the top element of the stack. After
deletion the node is returned back to the availability stack having its top pointer
as AVAIL.

Self-Instructional Material
85

(

Data Structures
Through ‘C

1. , If (TOP = NULL) Then
{

Write('Empty Stack, Underflow')
goto step 7

NOTES
}

2. FREEPTR = TOP
5. WriteCInfo of deleted node is INFO(FREEPTR))

4. - TOP = LINKCTOP) •

5. LINK(FREEPTR) = AVAIL
6. AVAIL = FREEPTR
7. End.

The C implementation for getting a node when required and deleting a node
have been given earlier.

Following functions in C implements the PUSH and POP operations on a stack
using linked implementation :

/* function 'definition PUSHO */

void PUSH(int data) /* function to push a node */
{

/* get memory for a node */
node *newptr= (node *) malloc(sizeof(node));
if(newptr) ' -

{
newptr->info= data ;
newptr->next= top;
top=newptr;

}
else

{
printf ("\nCannot create new node\n\n'');
getchO
exit(1);

}
}

/* function definition POP() */ '

void POP() /♦ function to pop a node from a linked stack */
{

liode * f reept r=NULL;

66 Self-Instructional Material

Arrays. Stacks, Queues
and Linked List

if (!top)

{
printf("\nEmpty Stack, Underflow\n\n");
exit(l);

, NOTES}
else

{
freeptr=top;

■ printf("\nPopped element ; %d\n",freeptr->info);

top=top->next;

free (freeptr) ; /* make the memory free for use */
if(!top) • ' .

printf ("\nNo element left in the stack now\n\n")-;

}•
}

4.11 RECURSION

One of the important applications of stacks is recursion. It is an important
facility in many programming languages such as PASCAL, C and C++. Many
problems can be described in recursive manner. Recursion- is the name given to
the technique of defining a process in terms of itself For example.

The factorial function can be recursively defined as

1, if N = 0-
N FACTORIAL {N - 1), otherwiseFACTORIAL (N) =

Here FACTORIAL (N) is defined in terms of FACTORIAL (N - 1), which in turn
is defined in terms, of FACTORIAL {N - 2), etc., until finally FACTORIAL (0)
is reached, having value as 1.
A stack is used for calculating the factorial of a number.

One more example of recursion is the algorithm for finding the greatest common
divisor of two' integers, i.e., Euclid’s algorithm defined as :

GCD (n, m), if n > rh
• m, if n = 0
■ GCD (n, MOD (m, n)), otherwise

GCD(m, n) =

Here MOD (m, n) is m modulo n—^the remainder on, dividing ra by n. A stack
is' used for finding the GCD or HCF (highest common factor) of two integers.

Self-Instructional Material
67

Data Structures
4.12 QUEUEThrough ‘C’

A queue is a subclass of lists in which insertion and deletion take place at
specific ends i.e., Rear and Front respectively. It is a FIFO (First In First Out)
or FCFS (First Come First Served) data structure which is often used to simulate
real world situations. Figure 26 represents a queue and, illustrates how an
insertion is made to the right of the right most element in the queue i.e.. Rear,
and how a deletion is made by deleting the leftmost element of the queue i.e.,
Front.

NOTES

80 5570 25 20 40«■ ♦
InsertionDeletion

RearFront

Fig. 26. Representation of a queue.

Some examples of a queue are

(i) Persons entering a cinema hall.

Hi) A time sharing computer system where many users share the
system simultaneously. Here the user programs that are waiting to
be processed form a waiting queue. The queue may not be operated in
FIFO basis, but on some complex priority scheme known as a priority
'queue.

HU) The line of vehicles waiting, to proceed in some fixed direction at an
intersection of roads.

Hv) Selection of next file to be printed from a list of files on a printer.

4.13 OPERATIONS ON QUEUE

The basic operations that can be performed on a queue are ;

H) Creation of queue

HU) Check for full queue

(v) Delete an element from queue

A queue can be either implement as an array or a linked list depending on the
requirement.

Hi) Check for empty queue
^ *

Hv) Insert an element in queue

(ui) Display queue.

68 Self-Instructional Material

Arrays, Stacks, Queues
and Linked List4.14 QUEUE AS AN ARRAY

Empty

tt NOTES
FR

70 Insert 70 .

tt
FH

Insert 2570 25

t t
F R

lnsert'2070 .25 20

t
RF

Delete 7025 20

t t
F R

Delete 2520

tt
• FR

20 40 Insert 40

t t
F R

20 40 Insert 80

R (Overflow)

Fig.'27. Insert and delete operations on a simple queue.
Consider an example where the size of the queue is four elements. Initially, the
queue is empty. It is required to’ insert elements 70, 25 and 20, delete 70 and •
25 and insert 40 and 80. The queue status is shown in figure 27. Note that an
overflow occurs on trying to insert element 80, e^'en though the first two locations
have no elements. Here F and R denote Front and Rear position respectively.

F

4.14.1 Algorithm Insertion in a Queue as an Array

Let Q be queue having size N. DATA is the element to be inserted. F and R
denote the front and rear positions in the queue. Assuming the index begins
at 1. Initially F and R are 0.

1. If(R=N)Then

{
Write{'Insertion.not possible')
goto step 5

}
Self-Instructional Material

69

Data Structures '
Through V

2. R=R+1
3'. Q[R]=DATA
4 . If (F=0) Then

F=1
5. End.NOTES

4.14.2 Algorithm Deletion from a Queue as an Array
Let Q be a queue. F and R denote the front and rear positions in the queue.
DATA is a temporary variable which stores the deleted element (if possible).
Assuming the index begins at 1.

1. If{F=0)Then
I

{
Write(’Deletion not possible')
goto step 4

1
2. DATA=Q(F]

■ 3 . If (P=R) Then
1/

F=0
R = 0

Else
F=F+1

4. End.

The above algorithms can waste a lot of memory if the front index F never
reaches upto rear index R. Actually, an arbitrary large amount of memory
would be needed to store the elements. This method should be used only when
the queue is emptied at certain intervals..

In C the array index always begins with 0.NOTE

Following’functions in C implement the queue as an array with array index
beginning at 0 and performs the insert and delete operations ;

/* function definition Insert {) */

void insert(int Qt],int data)

{
if(rear == SIZE-1)

printf ('Aninsertion not possible\n'') ;
exit(1);

}
else •

70 Self-Instructional Material

Q [++rear]=data; Arrays, Stacks, Queues
•and Linked List

/* if first elemer^ '^^'^nserted */if (rear == 0)
front=rear;

if{rear == SIZE-1) NOTES
printf("\nNo element will be inserted .next. time\n\n");

}

/* function definition del () *'/

' void del (int Q (])'

{.
if(front<0)

{
printf (''\nDeletion not possible\n") ;
exit(1);

else

{
printf("\nDeleted element : %d\n",Q[front]);
if{front==rear)

front=rear=-1;
else

fronC++;

}
}

Using the above method, it is possible to come across a situation when the queue
is empty but it is not possible to insert any new element in the queue. So this
implementation is not acceptable.

To overcome this drawback, we can implement the queue like a stack where one
end of the stack is fixed i.e., in the queue also, we fix the front of the queue so
that it always represents the first element of the array. On deletion of an
element (if possible) the entire queue is shifted towards the bepnning of the
array. In this case only the rear index is required, since the front element of the
queue is always at the starting position of the array.

This technique can be easily implemented but it is too inefficient as each deletion
requires shifting of elements and the logic is not correct. If a large number of
elements are present in the queue, the shifting takes a lot of time and in turn
makes it a costly affair.

A better solution to this problem is to use the array holding the queue as a
circular array.

Self-Instructional Material
71

Data Structures
Through 'C 4.15 LINKED IMPLEMENTATION OF A QUEUE

Another way to implement queues is as linked lists. It overcomes the drawback
of a queue used as an array because many.times the locations in an array
remain unused or the array size may not be enough to store the desired,number
of elements if we wish more than the array size at run time. In linked
implementation two pointers, front and rear point to the first and last element
of the list as shown in figure 28 :

NOTES

rear

35♦ 10♦ 50 ♦
front

Fig. 28. Linked representation of a queue having three nodes.

We can check whether a queue is empty or not by checking its front pointer,
whether it is NULL or not.
A new element can be inserted at the end of the-list after the last node which
is pointed to by the pointer rear. A care must be taken when an element is
inserted into an empty queue as in this case we need to adjust the front pointer
to the new node.
When an element is to be deleted from a queue, we must check that the queue
is not empty. If only one node is present in the queue and we are deleting it,
we must set rear to NULL, indicating that the queue is now empty.

4.15.1 Algorithm Insertion in a Linked Queue
Let DATA be the element to be inserted in a queue having FRONT and REAR
as the pointers containing the addresses of the front and rear elements. The
new element is always inserted only at the rear end, i.e., REAR gets modified .
when insertion takes place. AVAIL is a pointer to the top element of the
availability stack. NEWPTR denotes address of new node. Initially FRONT and
REAR are NULL. '

i;. If(AVAIL=NULL) Then
{

Write ('Availability stack underflow')
goto step 6

}
2. NEWPTRaAVAIL
3. AVAIL=LINK(AVAIL)
4. INFO(NEWPTR)=DATA

LINK(NEWPTR)=NULL
5. If(REAR=NULL) Then

{
FRONT=NEWPTR

72 Self-Instructional Material

Arrays, Stacks, Queues
and Linked List

REAR=NEWPTR

}
Else

NOTESLINK(REAR> =NEWPTR
REAR=NEWPTR

}
6. End.

Using this representation we are using the pool of available nodes and we will
never have to test whether a particular queue is full.

The insertion in a linked queue is shown in figure 29 :
REAR

♦ 35♦ 50 ♦ 10
FRONT

Fig. 29 (a) Linked queue having three nodes..

REAR

♦ 50 ♦ 10 * 2435
FRONT

Fig. 29 (6) Linked queue after insertion of a node having data 24.

4.15.2 Algorithm Deletion from a Linked Queue
Let FRONT be the pointer having the address of the first element of the queue.
As the deletion always takes place from the front of the queue, so FRONT gets
modified when deletion takes place. The deleted node is returned back to
availability stack having its top pointer as AVAIL. TEMP is a temporary pointer.

1. IfiFRONT=NULL) Then

{ r
Write(’Empty Queue')
goto step 8

}
2 . TEMP=FRONT
3. Write('Deleted element is INF0(TEMP)>

4..FRONT=LINK{FRONT)
5-. If (FRONT=NlILL) Then

REAR=NULL

6. DINK(TEMP)=AVAIL

Self-Instructional Material
73

Data Structures
Through ‘C

7. AVAIL=TEMP

8. End.

Here steps 6 and 7 are used for making the memory free for further use i.e., the
node is returned to availability stack after deletion.

The deletion in a linked queue is shown in figure 30 :
NOTES

REAR

♦ 35 '50 ♦ 10«
FRONT

Fig. 30 (o) Linked queue having three nodes.

REAR

10 35>
FRONT

Fig. 30 (6) Linked queue after deletion of a node

Following functions in C implements the insert and delete operations on a
queue .using linked implementation :

/* function definition insertO */

void insert(int data)
{

/* allocate memory for a node */
node *newptr= (node *) malloc(sizeof(node));
newptr->info=data;
newptr- >link=NULjL;
if(front

front=rear=newptr;
NULL'&& rear == NULL) /* function call */

else
{

rear->link=newptr;
rear=newptr;

}
}

/* function definition del() */

int del()
{

node *temp; /* local variable declared */
if(!front)

Self-Instructionnl Material74

I !l

{ Arrays. Stacks^ Queues
and Linked Listprintf ("\nQueue -UncJerf low\n,")

return(l); •/♦.return error signal */
}

else
NOTES. {

temp=front ;
f rent = f ront->1ink ;
if(!front) /* if queue becomes empty on deletion */
. rear=NULL; ■ '
printf("\nDeleted element ; %d\n",temp->info);
return (0) ;

4.16 IMPLEMENTATION OF A QUEUE AS A

CIRCULAR LINKED LIST

A queue can be implemented as a circular linked list also. In a circular linked
list we need only a REAR pointer and the following node is its front. For inserting
an element into the rear of a circular queue, the element is inserted into the
front of the queue and the circular list pointer is then advanced one element,
so that the new element becomes the rear. Figure 31 illustrates a circular
list :

Rear
Last Node,,First Node

♦ ♦

Fig. 31. First and last nodes of a circular list.

4.17 DEQUEUE (DOUBLE ENDED QUEUE)
It is a linear list in which insertions and deletions are made to or from either end
of the structure. Figure 32 illustrates this : .

Deletion
Insertion-

Insertion
Deletion

40 15 90 24 36 77♦

Front Rear

Fig. 32. A deque.

Self-Instructional Material
75

Data Structures
Through ‘C’

It is more general than a stack or a queue. It is of two types :

ii) Input-restricted deque : Insertion allowed at only one end but deletions,
allowed at both ends.
Figure 33 illustrates this :

NOTES
Insertion

Deletion *
♦ Deletion '

Fig. 33. Input restricted deque (insertion allowed at only one end).

(ii) Output-restricted deque: Deletion allowed at only one end but insertions .
allowed at both ends. Figure 34 illustrates this :

I

I

Insertion♦
Insertion / > Oeleton

Fig. 34. Output restricted deque (deletion allowed at only one end).

4.18 PRIORITY QUEUE
A queue in which we can insert or delete (remove) items from any position
depending on some priority is known as a priority queue. For example, in a
multiuser system, the CPU is needed by many programs and it is utilised by the
programs one at a time depending on some priority. The CPU is firet used by
the program having the highest priority. A priority queue can be splitted into

• several queues if needed. Figures 35 and 36 illustrate a priority queue :
Task identilication

B.A, C, Cs C,-,A^ A B r-t1-1 1

1 31 1 2. 2 3 32

Priority

C,A, B,
Fig. 35. A priority queue as a single queue with insertions allowed at any position.

Priority 1

AA, Aj A;_)

Priority 2
... BB - • ♦'1-1 ■I

Priority 3

C,C, • • • ♦

Fig. 36. A priority queue viewed as a set of queues.

76 Self-lnstruc'ional Material

4,18,1 Priority Queue Using Array Arrays, Stacks, Queues
and Linked List'

To maintain a priority queue in memory, we use multidimensional array, i.e.,
use a separate queue for each level of priority (priority number). Each queue
will appear as a separate circular array and have its own set of pair of pointers
called Front and Rear. Assume that each queue is of same size. So, we need only
a two-dimensional array in which number'of rows is equal to number of priorities
and the elements are added to the respective queue depending upon its priority
number. Figure-37 illustrates a priority queue of size 5.

NOTES

flF 0 1 2 4.3

0 1 1 A

1 0 2 B C X

2 -1 -1

3 3 4 G H

Fig. 37. Priority queue using arrays.

In the above priority queue, F[j] and Rfi] contain the front and rear elements
of row i of queue, i.e., the row maintains the queue of elements with a priority
number i. Whenever we are performing the insertion operation, we Have to read
the data item along with priority hum-ber. Then it will search for that row for
empty cell, if it is found then place the item in that cell and rear and front
pointers are modified as in a circular queue. If it is full, then it indicates
overflow condition for that row or priority number.-To delete an item, from the
priority queue, first it will cheek for the element in first row, if it is not empty,
simply it deletes the element like normal queue. If it is empty, then it check for
next row, if it not empty, delete the element from that row otherwise it checks
for next row.If all front and rear items are -1, then it indicates underflow
condition if we try to delete the element. So, the deletions are taken first from
first row to last row.

-1.

4.18.2 Priority Queue Using Singly Linked List
In a singly linked list, the data items are maintained according'to the priority.
Each node in this queue contains three fields. One is actual data item, the
second field is the priority number of the data item and the third field is link
to next item in the list. At any point of time the highest priority element is in
•the front of the list, so that directly we can delete the item from the front of the
list. If the two data items have the same priority, then we can consider their
entry sequence in FIFO order. Figure 38 illustrates the implementation of priority
queue using linked list.

A 1 B 2 ♦ C 2 ♦ D 5 > E 6

t)
Front Rear

Fig. 38. Priority queue.

Self-Instructional Material ■/■

77. Ai-

Data Structures
Through ‘C 4.19 LINKED LIST

The term ‘list’ means a linear collection of elements. Array is an example of
linear lists which we studied earlier. However, the problems of sequential .
representation of lists {e.g., of arrays) are fixed size, wastage of time in shifting
of elements for insertions and deletions and requirement of homogeneity of
elements. Thus, if size of memory required is not known in advance, or if many
insertions and deletions are expected or the elements are of different types,
linked representation can be used. Here, we will study linked representation of
only simple lists in which all the elements are of same, type.

In a linked representation of a simple list, the address of the next element
must also be stored explicitly with each element. For example, if we have
list of names say (Apoorva, Aanchal, Aman, Ankit, Anjali) then assuming that
one name is stored in one memory location, figure 39 shows the linked
representation :

NOTES

START
1000 > Apoorva1000

10041001

1002

1003

Aanchal1004

10061005

Aman1006

10101007

1008

1009

Ankit1010

10121011

Anjali1012

Null1013

Fig. 39. Linked implementation of a list of names

Here, Null means that no next element exists in, the list. This linked list can
be shown as follows ; ,

START 10101004 1006 1012Apoorva ^ Aanchal Aman Ankit*
1000

Fig. 40. Linked list of S nodes

78 Self-Instructional Material

Here, START contains the address of first element. The elements of linked list Arrays, Stacks, Queues ,
are called nodes. In general, a node must have some iaformation and a'Unk
or pointer for storing the address of next node (if any) as shown in figure 41.

and Linked List '

Pointer or
ADDRESSDATA NOTES
NEXT orINFO LINK

Fig. 41. A node in a linked list

We follow the addresses to access the elements in the logical order. It must be
noted that the list in memory may not be physically contigeous or sequential.
Also the binary search method cannot be applied on linked lists due to the
fact that the location numbers of the elements may not be continuous.

The memory allocation for arrays is always static, as the number of elements
is generally known in advance.

The memory allocation during program run time is known as dynamic memory
allocation. Memory can be allocated or used (when required) and released or
deallocated (when not required any more) using this technique. Data structures
like linked lists, trees and graphs use this technique for their memory
allocation,

4.20 ADVANTAGES OF LINKED LIST OVER

ARRAYS

The main advantages of linked lists over arrays are :

1. It is not necessary to know the number of elements and allocate memory for
them beforehand. Memory can be allocated as and when necessary.

\
2. Insertions and deletions can be handled efficiently without having to

, restructure the list.

3. The individual elements i.e., nodes can be scattered anywhere in memory
and no contiguous space is required like array elements.

4.21 TYPES OF LINKED LISTS

There are different tj^Jes of linked lists. These are given below :

ii) Singly linked lists

Hi) Circular linked lists

Self-Instructional Material
79

V.

Data Structures
■ Through ‘C

(Hi) Doubly or two-way linked lists

(iv) Circular doubly linked lists.
(i) Singly linked lists. Tn a singly linked list each node contains data or

info and a single link which attaches it to the next node in the list. It is
shown in figure 40.

■(«) Circular linked lists. A circular linked list contains a pointer from the
last node to the first node as shown in figure 42. In fact, there is no first
or last node, as all the nodes are linked in a circular way. One can always
start traversing the list from any, node and visit all the nodes, provided,
pointer to any node in the list is known.

NOTES

* *

Fig. 42. Illustration of a circular linked list

{Hi) Doubly linked lists. In a doubly linked list each node contains data and
two links, one to the previous node and one to the next node. Figure 43
illustrates a doubly linked list.

FIRST ♦or ♦START

Fig. 43. Illustration of a doubly linked list

(iv) Circular doubly linked lists. For reaching any node from any other
node, a circular list is very useful. In a similar way, it is useful to make
a doubly linked list also a circular list.- Figure 44 illustrates a circular
doubly linked list.

>START

Fig. 44. Illustration of a circular doubly linked list

4.22 OPERATIONS ON SINGLY LINKED LISTS

Like other languages having pointer facility, we can treat a linked lists as a
abstract data type and perform the following basic operations :

Self-Instructional Material80

Arrays, Stacks, Queues
and Linked List(i) Creation of a list

Traversal

Count the numberoof elements (nodes)

Searching

Insertion of a node

Deletion'of a node

Modifying the contents of node

Reversal of a list

Hi)
iiii)

NOTES(iv)

iv)
(vi)

{vii\

iviii)

(ix) Concatenation of two lists

(x) Merging of two lists

(xi) Splitting of a list

(xii) Dividing a list into odd positioned and even positioned nodes

ixiii) Sorting etc.

Before we discuss the algorithms and implement the basic operations, we give
below the vairables that are used in the algorithms with their meanings :

This variable is of- data type pointer which
contains the address of the first node in the
linked list. If FIRST or START contains NULL
it means an empty linked list.

This is a variable of type pointer and contains
the address of a node.

This variable contains the value stored in the
data portion of the node pointed to by the pointer
vairable PTR.
This variable contains the value stored in the
link field or next field of the node pointed to by
the pointer variable PTR, which is the address
of the next node-in the linked list.

Successive nodes of the linked list can be accessed through the pointer variable
PTR (say). The sjmibol f- in algorithms denotes the assignment operation.

FIRST or START

PTR

INFO(PTR) or DATA(PTR)

LINK(PTR) or NEXT(PTR)

4.22.1 Algorithm for Traversal in a Linked List
Traversing in a linked list means accessing each node in it successively starting
from the beginning and making the desired changes in one or more data fields
of the node. Let the desired operation be denoted by CHANGE without actually
specifying what changes are to be made. For example CHANGE may specify
printing data of all the nodes, count the number of nodes currently available-etc.
Initially, the PTR must have the value of START or FIRST and then successively,
it must have the address of the next node so as to access the next node in the

Self-Instructional Material
81

Dato Structures
Through 'C

linked list. The algorithm will terminate when the entire linked list has been
traversed, i.e., when PTR is NULL. The nodes contain INFO and LINK fields as
information and address to next node.

1. PTR <-START '
2. Repeat upto step 4 while PTR ^ NULL and goto step 5
3. Apply CHANGE to INFOCPTR)
4. PTR (- LINKCPTR)
5. End

Figure 45 illustrates the concept discussed above showing the different addresses
stored at different times in vairable PTR (initially having START and finally
NULL pointer) ;

NOTES

LINK(PTR)L(NK(PTR)LINK(PTR) LINK(PTR)
START I---- ---

PTH I * 40 15 ♦ S2 MULL
PTR PTR PTR

PTR

Fig. 45. Traversing a Linked List

4.22.2 Algorithm for Counting Number of Elements (Nodes)
Given FIRST, a pointer to the first element of linear list whose node contains
INFO and LINK fields as information and address to next node. Suppose we
want to count the number of nodes in linked list then the following algorithm
will accomplish it : •

1. COUNT 4-0
2. PTR ^ START
3. Repeat upto step 5 while PTR * NULL and goto step 6
4. COUNT 4- COUNT+1
5. PTR LINK(PTR) . •
6. Write COUNT

1. End.

4.22.3 Searching an Element
As mentioned earlier, the binary search method cannot be applied on linked
lists due to the fact that the location numbers of the elements (nodes) may not

. be continuous. It is one of the limitaions of linked lists as there is no way to find
the location of the middle element of the list. Further, we may have the linked
list as sorted or unsorted.

4.22.4 Linked List is Unsorted

Suppose we have a list of elements stored in a linked list. \Ve want to find out
whether the element VALUE is in the list or not. The pointer variable PTR is
assigned the adress START, i.e., the address of the first node in the linked list.

i

82 Self-Instructional Material

The searching process continuous until VALUE is found or the entire linked list -Arroys, Stacks, Queues
and Linked Listis traversed. LOG gives the address of the desired element (VALUE). LOG

is NULL if VALUE. is not found in the linked list. The algorithm is given
below :

NOTES1. PTR START
2. Repeat steps 3 and 4 while PTR it NULL and goto step 5
3. If INFO(PTR) = VALU^Then

goto step 5
- 4. PTR LINK(PTR)

5. LOG PTR
6. End.
Figure 46 shows the searching of a node having VALUE 8 in an unsorted linked
list:

START
72 8 33 NULL40 IS* *

PTR

Fig. 46 (o) Linked list having 5 nodes

START
33 NULL40 15 72 8 ** *

PTR

Fig. 46 (6) Appropriate location searched for VALUE 8 in the linked list

Seardiing is unsuccessful in case the desired element (VALUE) is not present
in the linked list.
The following fimction in G implements the above, concept :

/* function definition.search()*/

void search(int value)
{

node *ptr=3tart; /* local variable */
while(ptr) /’ while ptr != NULL */
{

if{ptr->info == value)

printf("\n\n%d found at location number %lu\n".value,ptr);
return;

ptr=ptr- >lin)t;

}
Iprintf ("\n%d not found in the lin)c list", value))'

■

}

Self-Instructional Material
I 83'/■

Data Structures
. Through ‘C

4.22.5 Linked List is Sorted
Suppose we have a list of elements given in ascending ordr in a linked list, we
want to find whether the element VALUE is in the list or not. The pointer
variable PTR is assigned the address START, i.e., the address of the first node

. in the linked list. The searching process may terminate when we get the desired
VALUE or if any element of the linked list is found greater than VALUE or the
entire linked list is traversed. LOC gives the address of the desired element
(VALUE). LOC is NULL if VALUE is not found in the linked list. The algorithm
is given below ;

1. PTR ^ START.

2. Repeat while (LINK(PTR) NU^ and INFO(PTR)<VALUE)
PTR e- LINK(PTR)

-3. If INFO (PTR) = VALUE Then

LOC e- PTR

NOTES

Else

LOC e- NULL
4. End

Figure 47 shows the searching of a node having value 58 in a sorted linked
list : .

i.

START, 10 . 15 27 ♦ 58 * 84 NULLPTR

Fig. 47 (a) Linked list having 5 nodes in ascending order .of info

SIARTX-^ 15 *■ 27 58♦ 84 NULLPTR PTR.I---------------- 1-------1 I---------------- 1--------- 1

Fig. 47 (6) Appropriate location searched for VALUE 58 in the ordered linked list

Search is unsuccessful in case the desired element (VALUE) is not present in
the linked list.

Following function in C implements the above concept :

/* function definition search() */ .

void search[int value)
{

node *pcr=start; /*.local .variable */
while (ptr->link != NULL && pt'r->info < value)

ptr=pcr->lin)<;;
i£{ptr-?info == value)
{

printf(''.\n\n%d found at location number l:lu\n" value,ptr);
}

84 Self-Instructional Material

Arrays, Stacks, Queues
and Linked List

else
(

printf{"\n\%d not found in the link list", value);
}

} NOTES

4.22.6 Insertion into a Linked List

For inserting an element in a linked list, , we first of all get a free node, assign
the element to be inserted to the INFO field of the node,- and finally place the
new node at the appropriate position by proper pointer adjustment. The insertion
can take place at any of the following positions :
• Insertion in the beginning of the linked list.

• Insertion in the end of the linked list.

• Insertion at the desired* position in the linked list.

• Insertion into an ordered linked list (say in asc'^nding order).

4.22.7 Insertion in the Beginning
Given VALUE a new element to be inserted, START a pointer which points to
the first elements of the linear list whose node contains INFO and LINK fields
as information and address of the next node. This algorithm inserts VALUE
before the node being pointed to by START. AVAIL is a pointer that points to
the top element of the availability stack. NEWPTR is a temporaly pointer
variable.

Figure 48 shows the insertion of a node in the beginning of linked list :

START I rn I-------- rn -1------- rn i------- 1------ 180 15 72 34 NULL♦ ♦ *
\

36
NEWPTR

Fig. 48 (a) Before inserting the node

START 36 72 3480 15 NULL♦ ♦ ♦

Fig. 48 (6) After inserting the node in the beginning

The algorithm for insertion in the beginning is given below :
1. [Check for memory availability?]

If AVAIL = NULL Then
{

Write {'Availability stack underflow')
goto step 6

}
Self-Instructional Material

85

[Obtain address of next free node]
NEWPTR <- AVAIL

[Remove free node from availability stack]
AVAIL LINK(AVAIL)

[Initialise fields of the new node obtained]

INFO(NEWPTR) VALUE

LINK(NEWPTR) <- START

[Make newnode as the first node of the list]
START e- NEWPTR

2.Data Structures
Through ‘C

3.

NOTES
4.

5.

6. End.
The above concept has been implement in Program 1.

4.22.8 Insertion in the End
Given VALUE a new element to be inserted, START a pointer which points to
the first element of the linear list whose node contains INFO and LINK fields
as information and address of the next node. This algorithm inserts VALUE
in the end of the linked list. AVAIL is a pointer that points to the top element
of the availabiUty stack. NEWPTR and PTR temporary pointer variables. Figure
49 shows the insertion of a node in the end of linked list :

STARr
• PTR

80 15 72 * 34 NULL

♦ 58 NULL ■NEWPTR

Fig. 49 (a) Before inserting the node

START. 80 > 15 ♦ 72 ♦ 34 NULL> 58
PTR LINK(PTR)

Fig. 49 (6) After inserting the node in the end

The algorithm for insertion in the. end is given below ;
1. [Check for memory availability ?]

If AVAIL = NULL Then
{

Write('Availability stack underflow')
goto step 9.

• }
2. [Obtain address of next free node]

NEWPTR <- AVAIL
3. [Remove free node from availability stack]

AVAIL LINK(AVAIL)

86 Self-Instructional Material

[Initialize fields of the new node obtained]
INFO(NEWFTR) <- VALUE

LINK(NEWPTR) ^ NULL

[Check whether the link list is empty ?]
If START = NULL Then

4. Arrays, Stacks, Queues
and Linked List

5. f NOTES

{ ■
START <- NEWPTR
goto Step 9

}
6. [Initialise search for the last node of list]

PTR ^ START
7. [Search for end of the list]

Repeat while (LINKCPTR) NULL)
PTR e- LINK(PTR)

8. [Add the node in the end)
LINK(PTR) NEWPTR

9. -End.
The above concept has heen implemented in Program 2

4.22.9 Insertion at the Desired Position
This involves adding a new node to the linked list. The node can he .added
anywhere. Figure 50 shows the insertion of a node at the 4th position in the
list :

START^ 80 29 ♦ 35 17 ♦ 40 NULL♦
PTR

NEWPTR^
99 NULL

Fig. 60 (a) Before inserting the node

START
* 60 ♦ 29 * 35 -------- » 99

LINK(PTR) •

Fig. 50 (6) After inserting the node at 4th position

For insertion we perform the following steps :
(i) Allocate memory for the new node.

(ii) Enter data for the info part of the node.

. iiii) Search for the appropriate position of insertion,

iiv) Modify the pointers) so that the new node is inserted at the desired
position.

* 17 —► 40 NULL
PTR

Self-Instructional Material
87

Data Structures
Through ‘C’

The algorithm for insertion of VALUE at the desired positon (POSITION) is •
. given below :

[Check for memory availability ?]
If AVAIL = NULL Then

1.

NOTES {
Write('Availability stack underflow')
goto step 8

}
[Obtain address of next free node]

NEWPTR <- AVAIL

[Remove freenode from availability stack]

AVAIL LINK(AVAIL)

[Initialise fields of the new node obtained]

INFO(NEWPTR) <- VALUE

LINK(NEWPTR) NULL

[Initialise search for the desired position]
PTR START

STEPS 1
[Search for the desired position]

Repeat wHileCSTEPS < POSITION - 1)

2.

3. ,

4.

5.

6;

{
PTR LINK(PTR)
STEPS <r- STEPS + 1

7. [Add the node in the list]
If(POSITION = 1) Then

{
LINK(NEWPTR) 4- START

START «- NEWPTR
}

Else
{

LINK(NEWP.TR) 4- LINK(PTR)
LINK(PTR) 4- NEWPTR

. }.
End8.

The following function in ‘C’ inserts a node at the desired position in'a linked
list ; .

Self-Instructional Material88

Arrays SfQcfes, Queues
and Linked List/* function definition ‘nsertO */

I

void, insert(int position,int data)

{ NOTES
node *newptr=NULL; /* local variable */
node ’ptr=start;
int steps=l;

/* create a new node */

newptr= (node*) malloc(sizeof(node));
newptr->info=data

/* search for the desired position */

while(Steps<position-l)

ptr=ptr->linlc;
steps++;

}
if (position==l) /* if node is to be inserted at the first place */^

I

newptr - >linlc=start ;
start=newptr;

}
else

newptr - >link=ptr - >lin)c;
pcr->linlc=newptr

}
}

4.22.10 Insertion in an ordered (ascending order) linked list
This involves adding a new node to the linked list. The node is added in such
a way tha,t the ordering is preserved ii.e., linked list remains sorted after
insertion). Figure 51 shows the insertion of a node in a sorted linked list :

START
♦ 42*■ 9 ♦ • 26 ♦ 77 NULL♦ 60PTR

PTR LINK(PTR) INFO(LINK(PTR))

NEWPTR
♦ • 65 NULL

Fig. 51 (a) Before inserting the node

Self-Instructional Material
89

Data Structures
Through ‘C’

START ♦ 77 NHL♦ 30 * 42 * 65♦ 26» 9

Fig. 51 (6) After inserting the node

4.22.11 Algorithm for Insertion in an Ordered Linked List
Given START the pointer variable having the address of the first node in the
linked list having its elements in ascending order. VALUE is the new element
to be inserted. AVAIL is address of the topmost node of the availability stack.
NEWPTR and PTR are temporary pointer variables. It is required that after
insertion of new element the ordering of into fields is preserved.

[Check for memory availability ?J

If AVAIL = NULL Then

NOTES

1.

1
Write('Availability stack underflow')
goto step 6

}
[Obtain address of next free node]2.

NEWPTR AVAIL
[Remove tree node from availability stack]-

AVAIL LINK(AVAIL) '

[Initialize info field of the new node obtained]
INFO(NEWPTR) ^ VALUE

[Check if list is empty or new node proceeds all other nodes ?]

If ((START = NULL) OR (INFO(NEWPTR) < INFO(START)) Then

3.

4.

5.

/
LINK(NEWPTR) START

START NEWPTR

Else

[Search for the proper place of insertion, i.e., intialize search]

PTR <- START
[Search for predecessor of new node]

Repeat while((LINK(PTR') NULL) AND (INFO(LINK(PTR))<
INFO(NEWPTR)))

/

PTR <- LINKCPTR)

[Insertion] .

LINK(NEWPTR) ^ LINK(PTR)

Self-Instructional Material90

LINKCPTR) NEWPTR Arrays, Stocks, Queues
and Linked List

]

6. End

NOTESThe following function in C implements the above concept :

7* function definition insertO */

void insert (int data)
{

node *newptr=NlJLL; /* local variable */
node *ptr;

• /* create a new node and initialise it ’/

newptr= (node *) malloc(size of(node));
newptr->info=data;

/* check if list is empty or new node preceedes all other nodes'*/

j

if ((start==NULL) | | (newptr->info < start->info))
{

newptr->link=start;
start=newptr;

}
else
{

/♦ search for the proper place of insertion */

ptr=sCart; /* initialse ptr With start */

while((ptr->link!=NULL)&&((ptr->link)->info<(newptr->info)))
ptr^ptr->link;•

/* insertion */
newptr->link=ptr->link;
ptr->1ink=newptr; - '

}
}

4.22.12 Deletion of a Node ■I

This involves the deletion of a node from the linked list. The deletion can be from
any where in the list. For example,

START 22 72 ♦ 20 NULL♦ 8 16 54PTR

Fig. 62 (a) Linked list before deletion.
Self-Instructional Material

91

Data Structuree
Through ‘C

START. 20 NULL72 16» 22 8

Fig. 52 (6) Linked list after deletion of node from position 5. ■

Tfie following steps are followed to delete a node' from a given position ;

(i) Store the address of START in a temporary pointer (say PTR).

' Hi) Search for the desired position by traversing the list.

HU) If the first node is to be deleted then make the pointer LINK'(START)
as the new START and free i.e., deallocate the memory occupied by the
temporary pointer which was having the address of initial START poitner
and stop.

(iy) Store the pointer of the LINK field of the node to be deleted in the LINK
of the previous of the node to be deleted and free the memory occupied
by the temporary pointer having the address of the node to be deleted.

The algorithm for deletion from any position in a linked list is given below :
Given POS the position of deletion, START a pointer which points to the first
element of the linear list whose node contains INFO and LINK fields as
information and address of the next node. This algorithm deletes the node from,
the specified position (if possible). AVAIL is a pointer that points to the top
element, of the availability stack. PTR and TEMP are temporary pointer variables.
After deletion the deleted node is returned to the availabltiy stack. START will
be changed only when POS is 1. Also POS lies between 1 and TOTAL (total
number of nodes in the linked list).

If (START = NULL) Then

NOTES

1.

Write('Linked list has no nodes so deletion not possible')
goto step 8

}

If (POS < 0 OR POS > TOTAL) Then2.

{
Write('Wrong position number given')

goto step 8

1 .
If POS = 1 Then3.
{'

TEMP ■«- START

START ■(- LINK (START)
goto Stey 7

}

92 Self-Instructional Material

Arrays, Stacks, Queues
and Linked List

4. STEPS <- 1

PTR ^ START
5. Repeat while (STEPS < POS - 1)

NOTES
•PTR *- LINK(PTR)

STEPS = STEPS +. 1

6. TEMP <- LINK(PTR)
LINK(PTR) LINK(LINR(PTR))

7. [Return node to availability stack]
LINK(TEMP) <- AVAIL

AVAIL TEMP
8. End.

The following function in C implements the above concept :

/* function' definition del_node()*/

void del_node(int position)
{

node *temp, ■‘•ptr=NULL; /* local variable */
int steps=l;

/» search for desired position */

if (position==l) /* if 'element is to be' deleted from start */■
[

■ temp
start=start->link;
free(temp) ;■ /* deallocate memory */

start;

}
else

I
ptr=start;
while(steps<position-l)

(
ptr=ptr->link;

■ steps++;

}
ptr->link;temp

ptr->link=ptr->link->link;
free{temp); /* deallocate memory */

}
• }

-^'Self-Instructional Material
93

4.22.13 Modifying the Contents of a Node
This involves the replacement of the info of an existing node by a new

value. It is shown in the following example :

Data Structures
Through ‘C’

NOTES START
13 40 NULL25 8971 ♦ ♦95+

PTR
PTR INFO(PTR)

Fig. 53 (a) Linked list before modification

START
6 40 NULL25 8971* 95

Fig, 53 (6) Linked list after modification of contents of node number 5

The following steps, are followed' to delete a node from a given position :
(i) Store the address of START in a temporary pointer (say PTR).

(ii) Search for the.desired position by traversing the list. ,

(Hi) Replace the old contents by new contents (value), if node found.
The algorithm for modifying the contents of a node is given below :

Given START a pointer variable storing the address of the first element in the
' linked list. Each node in the linked list (if any) has INFO and LINK as its
information and pointer field (having the address of new node) respectively.
PTR is a temporary pointer. OLDVALUE is the info to be replaced.and •
NEWVALUE is the info to replace it.

1.. If (START = NULL) Then

Write('LinJfed list has no nodes so modification not possible')
.goto step 5

}
2. PTR«-START
3. Repeat while (INFO(PTR) ^ OLDVALUE) AND (LINK(PTR)?^NULL))

PTR^LINK(PTR)
4. If (INFO(PTR) = OLDVALUE)

INFO(PTR) ^ NEWVALUE

Else
Write(‘The node to be modified not found in the linked list’)

5. End
The following function in C implements the above concept :

94 Self-Instructional Material

Arrays, Stacks. Queues
and Linked List/* function. definition modifyO */

void ■modify(int oldvalue, int newvalue)
{

NOTESnode ’'ptr=start; /* initialise ptr with start */

7* search for the desired info (first occurence only) »/

while(ptr->info■ !
ptr=ptr->link;

oldvalue &&. ptr->link != NULL),

/* if info found then replace oldvalue,by newvalue */

if(ptr->info == oldvalue)
ptr->info=newvalue;

else
{ .

• printf (''\n\n%d not
del_list(); /♦
getch();
exit () ;

found in , the linked list\n",oldvalue);
deallocate the memory */

]

4.22.14 Reversal of a Linked List
Given a linked list pointed to by START whose nodes have INFO and LINK
fields respectively. PREVIOUS, CURRENT and NEXTPTR are temporary pointer
variables used for swapping of pointers and traversal in the linked list. Let us
take a linked list of 4 nodes as shown below :

START. 30 ♦ 25 ♦ 70 ♦ 12 NULL

Fig. 54 (a) Linked list having 4 nodes.

The foiiowing steps are followed for reversing it :

1. We begin traversing the linked list by initially taking the address of first
node as CURRENT and address of its predecessor node as PREVIOUS which
is presently NULL. While traversing the linked''list we perform the following
changes in the address of nodes (i.e., pointers) until we reach in the end of
the linked list.

ii) Store the LINK(CURRENT) in NEXTPTR

Hi) Replace the LINK{CURRENT) by PREVIOUS

(Hi) Make the CURENT pointer as PREVIOUS

(it)) Make the NEXTPTR as CURRENT I

' 1 Self'Instructional Material
95. i

2. At last when CURRENT is NULL, set START to store the address of the last
node in the given linked-list, i.e., PREVIOUS.
These pointer changes are shown in figure 54(6) :

Data Structures.
Through ‘C’

PREVIOUSNOTES 12 NULL30 • 25 70♦
CURREMTNULL L(NK(CURR£NT)

70 12 NULL♦ ' 30 NULL 25

PREVIOUS NEXTPTR
CURRENT

12 NULL7030 NULL 25

PREVIOUS NEXTPTR
CURRENT

♦ 12 NULL30 NULL 25 70

NEXTPTR
CURRENT.

PREVIOUS

/ -

70 12 NEXTPTR
NULL

CURRENT

30 NULL 25

PREVIOUS

,,
30' NULL 70 1225

START

Fig. 54 (fe) Illustration of reversal of a linked list.

The algorithm for reversing a linked list is given below :

Given START the address of the first node in the linked list. ,PREVIOUS,
CURRENT and NEXTPTR and temporary pointer variables for swapping of
pointers. The node of the linked list has INFO and LINK as information and
address of next node respectively.

1. If (START = NULL OR LINK(START) = NULL) Then

goto step 5.
2. PREVIOUS 4- NULL .

CURRENT 4-. START

■

96 ■ Selfinstruclional Material

Arrays, Stacks, Queues
and Linked List

3. Repeat while (CURRENT NULL)

{
NEXTPTR ■ LINK(CURRENT)

LINK(CURRENT) «- PREVIOUS
PREVIOUS tr- CURRENT

CURRENT NEXTPTR

NOTES

4. START PREVIOUS

5. End

4.22.15 Concatenation of Two Singly Linked Lists
Suppose we are given two linked lists having FIRST and SECOND as the
addresses of their first nodes as shown below :

LlBSI^ri5 26 ♦ 57 MULL

SECOND,! ^ 84 ♦ 9 MULL

. Fig. 55 (a) Linked lists before concatenation

We want to produce a new singly linked list which is to be pointed to by a
pointer variable THIRD. This new list is to be obtained by concatenating the

• two linked lists pointed to by FIRST and SECOND, as shown below :

THIRD,!-^ > 84 ♦ 9 NULL28 57 12

Fig. 65 (6) Concatenated linked list

The following steps are peformed for concatenation :

1. Copy the pointer FIRST to THIRD.
2. Traverse the first list until the end of the linked list is reached, using a

temporary pointer variable PTR.
3. Change the NULL pointer, in the last node of the first linked list so as to

point to the first node of the second linked list pointed to by pointer variable
SECOND.

The algorithm for concatenation of two linked lists is given below ;
r

Given two linked lists being pointed to by pointer variables FIRST and SECOND
respectively. We are to concatenate these two linked lists such that the second
linked list is joined after the-first linked list. PTR is a temporary pointer variable.

1. THIRD 4- FIRST

2. If {FIRST = NULL) Then
{

THIRD ■«- SECOND

Self-Instructional Material
97

■ Data Structures
Through V

goto step 7
}

3. If (SECOND = NULL) Then

goto step 7
4. PTR.<- FIRST

5'. Repeat while (LINK(PTR) NULL)

PTR ^ LINK(PTR)
6. LINK(PTR) SECOND

7. End

NOTES

4,23 CIRCULAR LINKED LINEAR LIST

‘So far we have discussed linked linear lists in which the last node contains the
NULL pointer. A slight change in the linked linear list results in a further
improvement in processing of list. This is done by replacing the NULL pointer
in the last node of a linked list with the address -of its first node. Such a
linked list is called a circular linked linear list or simply a circular list.
Figure 56 illustrates the structure of a non-empty circular list having no
NULL pointer.

START
♦ ♦

J

Fig. 56. Circular linked list having 5 nodes

In a circular linked list travessal is only in the forward direction.

4.23.1 Advantages of Circular List Over Singly Linked Lists
Main advantages are given below :

1. In a circular list every node of the list is accessible from a given node. That
is, from this given node, all nodes can be visited by simply chaining through
the list.

2. The deletion of a node does not require the address of the first node of the
linked list (as in case of singly linked list, where searching takes place from
the first node of the list). The searching of an element can take place from
the address of node itself, , when its address is given.

. 3. Operations like concatenation and splitting become more efficient in case of.
circular ‘lists.

The memory declarations and allocation for representing circular linked lists
are the same as for linear linked list.

98 Self-Instructional Material

.4rroys, Stacks, Queues
arid Linked List

All the operations that are allowed on singly linked linear lists can be easily
implemented for circular linked lists, except the following :

1. The LINK field of the newly inserted last node in the linked list points to the
first node.

2. While checking for the end of the circular linked list, we compare the LINK
field with the address of the first node.

NOTES

4.23.2 Disadvantage of Circular Lists
When we are traversing a circular list, we must be careful as there is a possiblity
to get into an infinite loop! In processing a circular list, it is important that we
are able to detect the end of the list. We can help guarantee the detection of the
end by placing a special node which can be easily identified in- the' circular
linked list. This special node is often called the header node of the circular
linked list. The main advantage of this technique is that the linked list can
never be empty. As most of the.algorithms require the testing of a linked list
as to whether it is empty, we observe that this'advantage is really important.
Figure 57 shows a circular linked list with a header node, where the variable
•HEAD denotes the address of the heder node.

HEADERHEAD m . •* ♦

Fig. 57. A circular linked list with a heder node

Note that the INFO field .in the header node is not used, which is shown
by shaded field. Header node may contain length of the list or any other
information in its INFO field. An empty circular linked'list is represented by
having LINK (HEAD) = HEAD, as shown in figure 58 :

HEADERHEAD^P

7

Fig. 58. An empty circular linked list with a header node '

The algorithm for insertion of a node at the head of a circular linked list with
a header node is given below :

Given a circular linked list having starting address denoted by HEAD. Avail
denotes the address of the top most node of the availability stack. NEWPTR is
a temporary pointer. 'VALUE denotes the INFO of the node to be inserted.

i; [Check the availability stack ?]

IF (AVAIL = NULL) Then
{

Self-Instructional Material
99

Data Structures
Through ‘C

Write ('No free memory')
goto step 5

}
2. [Obtain address of next free node]

NEWTPR AVAIL

3. [Remove free node from availability stack]
AVAIL LINK(AVAIL) • “ '

4. [Initialize fields of new node and its link to the list]

INFO(NEWPTR) <- VALUE

LINK(NEWPTR) LINK(HEAD)
LINK(HEAD) e- NEWPTR

NOTES

5. End

Figure 59 illustrates the insertion of a node at the head of a circular linked
list :

HEAD. HEADER
* 85 ♦ 20 ♦ 34

V
V__ :

Fig. 59 (a) A circular linked list having 3 nodes

NEWPTR 22

HEAD
■» 20 ♦ 34

Fig. 59 (6) Circular linked list after insertion of node at the head with info 22

4.24. APPLICATIONS OF LINEAR LINKED LISTS

Like arrays, linked list is a very useful data structure. It can be used for
implementing the following : • *

ii) To model many different abstract data types such as stacks, queues, trees
and graphs.

(ii) Polynomial representation and manipulation.
• \

(iii) To maintain a dictionary of ndmes.

iiv) To perform arithmetic operations to some arbitrary precision.

(y) To represent sparse matrices.

100 Self-Instructional Material

Arrays, Stacks, Queues
and Linked List ■

Let us describe polynomial representation and manipulation.

4.24.1^ Polynomial representation and manipulaton using

linked lists
We can represent a polynomial such as : •

X* + 5x‘̂ - lx + 4
using a linked list shown in figure 60 : ,

NOTES

Coefficient Power

START, ♦ 5 ♦ 41 4 2 ♦ ~7 1

Fig. 60. Representation of a polynomial using a linked list

Here, each term of the polynomial is represented by a node. A node is of fixed
size having three fields, first representing the coefficient, second representing
the power or exponent and the third is a pointer to the next node of the list.
So the node structure is represented as shown in figure 61 :

Link. Coefficient of term Power or exponent

• Fig. 61. Node structure to represented a polynomial term

Thus the declaration of above shown node type in C language, having integer
coefficients are given below :

typedef struct nodetype /* create node type */

{
int coeff;
int power;
struct nodetype *linlc; /* pointer to the next node */

}node; . '
node *start;

In order to achieve greater efficiency in processing, the poljmomial can be stored
in decreasing order of powers by term.

4.25 DOUBLY LINKED LIST OR TWO WAY CHAINS

So far, we have been restricted to traversing linked linear lists in one direction.
There are situations when it is required and many times indispensable that a
list be traversed in both directions, that is, either forward or backward. In such
a situation each node must have two link or pointer fields’ instead of usual one
link field. The links are used to denote the predecessor and successor of a node
in the doubly linked list. The link or pointer storing the address of the predecessor
of a node is called the left link, and the link or pointer that storing the address

Self-Instructional Material
101

Data Structure!!
Through ‘C’

of its successor its right link. A linked list having this type of node is called a
doubly linked list or a two way chain. Figure 62 represents a doubly linked list,
where START and LAST are pointer variables storing the address of the left­
most and right-most nodes in the linked list, repectively.

NOTES
RPTR LASTSTART. ^ ‘*5 ♦ 17* *

LPTR

Fig. 62. A doubly linked linear list having 3 nodes

The left link of the left-most node and the right link of the right-most node are
both NULL, representing the end of the list for each direction, that is, the first
node in a doubly linked list has no predecessor and the last node has no successor.
The variables LPTR and RPTR are used to denote the left and right links of a
node, respectively.

4.25.1 Representation of Doubly Linked Lists
Suppose we wish to have a doubly linked list storing integers, then the following
declaration in C language can be used for a node structure :

typedef 'struct doubly_list
{

struct doubly_list *lptr;
int info;
struct doubiy_list *rptr;

} node;
- node *start,*last;

Now the following statement creates a node dynamically :
start = (node *) malloc (sizeof (node)); '
if (start == NULL)
printf("\nAvailability stack underflow\n");

4.26 OPERATIONS ON A DOUBLY LINKED LIST

The following operations can be performed on a doubly linked list ;

1. Make an empty doubly linked list-
2. Traverse the given doubly linked list

3. Insert new nodes in the doubly linked list

4. Delete existing nodes from the doubly linked list

1. Make an empty doubled linked list

After declaring the node structure an empty doubly linked list is created just
by the following statement :

start = last = NULL;

Self-Instructional Material102

Arrays, Stacks, Queues
and Linked List

2. Traverse the given doubly linked list

Traversing a doubly linked list is similar to traversing a singly linked list. But
in a doubly linked list traversing can be done in both directions. For traversing
the doubly linked list, in forward direction, we make use of forward links
whereas for traversing the doubly linked list in reverse direction.'there are
two ways

(i) ‘First we traverse the list in forward direction and then in the backward
direction. This type of traversal is generally used when the LAST pointer
is not mentioned. — ’ .

(«) Traverse the doubly linked list from end to beginning, that is, in the,
backward direction using the pointer LAST to begin the traversal ,and
using backward links.

The algorithm for traversal in a doubly linked list is given below:

Given START and LAST, the pointers to the first and last nodes of the doubly
linked list whose node contains LPTR, INFO ard RPTR fields as left link,
information and right link respectively. MOVE denotes a temporary pointer
variable. Let the desired operation while traversing be denoted by CHANGE.

1. MOVE START

2. [Traversing in the forward direction]

Repeat while MOVE ^ NULL

NOTES

{
Apply CHANGE to INFO(MOVE)

MOVE «- RPTR(MOVE) ,

3. MOVE ^ LAST

4. [Traversing in the backward direction]

Repeat while MOVE ^ NULL
{ ■

Apply CHANGE to INFO(MOVE)
MOVE LPTR(MOVE)

5. End

3. Insert new nodes in the doubly linked list

For inserting an element in a doubly linked list, we first of all get a free node,
assign the element to be inserted to the INFO field of the node, and finally place
the new node at the appropriate position by proper pointer adjustment. The
insertion can take place at any of the following positions :

• Insertion in the beginning of the doubly linked list

• Insertion in the end of the doubly linked list
Self-Instructional Material

103

• Insertion at the desired position in the doubly linked list

• Insertion into an ordered doubly linked list (say in ascending order)

Data Structures
Through ‘C

4.26.1 Insertion in the 'beginning of the doubly linked list
Given VALUE a new element to be inserted, START and LAST the pointers
which point to the first and last element of the doubly linked list whose node
contains LPTR, INFO and RPTR fields as left link, information and right link
respectively, This algorithm inserts VALUE before the node being pointed to by
START. AVAIL is a pointer that points to the top element of the availability
stack. NEWPTR is a temporary pointer variable. Initially START and LAST are
NULL. Figure 63 shows the insertion of a node in the beginning of the-doubly
linked list : .

NOTES

LASTSIAfllJ^r^ 17 «M-

91

NEWPTR

Pig. 63 (a) Before inserting the node

LAST33 7 ♦45 *

Fig. 63 (6) After inserting the node in the beginning

• The algorithm for insertion in the beginning of the' doubly linked list is given
below :

,1. [Check for memory availability?]

IF AVAIL = NULL Then

{
Write ('Availability stack underflow)
goto step 6

]

2. [Obtain address of next free node]

NEWPTR 4- AVAIL

3. [Remove free, node from availability stack]

AVAIL LINK(AVAIL)

4. [Initialize fields of the new node obtained]

INrO(NEWPTR) <- VALUE.

LPTR(NEWPTR) <- NULL

RPTR(NEWPTR) <- START

Self-Instructional Material104

Arrays, Stacks, Queues
and Linked List

5. [Make new node as the first node of the doubly linked list]

If(LAST = NULL) Then

{-
START <r- NEWPTR
LAST NEWPTR NOTES

Else.
{

LPTR(START) NEWPTR
START <- NEWPTR

1
6. End

4.26.2 Insertion in the end of the doubly linked list
Given VALUE a new element to be inserted, START and LAST the pointers
which point to the first and last element of the doubly linked list whose node
contain LPTR, INFO and RPTR fields as left link, information and right link
respectively. This algorithm inserts VALUE in the end of the doubly linked list
AVAIL is a pointer that points to the top element of the availability stack.
NEWPTR is a temporary pointer variable. Initially START and LAST are NULL.
Figure 64 shows the insertion of a node in the end of the doubly linked list :

LAST12 X704-

34

NEWPTR

Fig. 64 (a) Before inserting the node

LASTSTART^jX^i^ * 1270 4

Fig. 64 (6) After inserting the node in the end of the doubly linked list

The algorithm of insertion in the end of the doubly linked list is given below :

1. [Check for memory availability ?] • ,

NULL ThenIF AVAIL

{
Write (‘Availability stacl< underflow')
goto step 6

}
2. [Obtain address of next free node] .

NEWPTR <- AVAIL

Self-Instructional Material
105

Data Structures
Through 'C

3. [Remove free node from availability stack]

AVAIL LINK(AVAIL)

4. [Initialize fields of the new node obtained]

INFO(NEWPTR) <- VALUE

RPTR(NEWPTR) NULL

5. [Make new node as the last node of the doubly linked list]

if (LAST' = NULL) Then

NOTES

{
LPTR(NEWPTR) <- NULL
START ^ NEWPTR
LAST <r-- NEWPTR

}
Else
{

RPTR(LAST) <- NEWPTR
LPTR(NEWPTR) «- LAST

. LAST 4- NEWPTR
}

• 6.' End

The following functions in ‘C implement the insertion in the beginning and at
end of a doubly linked list :

/* function definition insert_begtnning() */

void insert_beginning(int data)
{

node.*newptr=NULL; /* local variable */

/* create a new node and initialise it */

nev^tr = (node *) malloc(size of'{node));

newptr->info=data;
newptr->lptr=NULL;
newptr->rptr=start;

/* make new node as the first node of the doubly linked list */

if[last==NULL) /* if the linked list is empty */
start=last=newptr;

e] se

106 Self-Instructional Material

{ Arrays, Stacks, Queues
and Linked Liststart ->lptr=newptr;

start=newptr;
}

} NOTES

/* function definition insert end() */

void insert end(inc data)
{

node *newptr=NULL; /* local , variable */

/* create a new node and initialise it */

(node *) malloc(size of(node));
data;
NULL;

newptr
newptr info
newptr -> rptr

/* make new node as the last node of 'the doubly linked list */

if (last==NULL) /* if the linked list is empty */

newptr->lptr=NULL;
• start=last=newpcr;
}.

else
)
/’ insert^ the node in the end of linked list /
last->rptr=newptr;
newptr->lptr=last;
last=newptr;

}

4.26.3 Insertion at the desired position in a doubly linked list
This involves adding a new node to the doubly linked list. The node can be
added anywhere. Figure 65 shows the insertion of a node at the 3rd position in
the doubly linked list :,

LftSTSTART. 32*27 59 44

77

NEWPTR

Fig. 65 (a) Before inserting the node

Self-Instructional Material
107

Data Structures'
Through ‘C

LASTSTART,r~T^ 32 //775927 4-44

Fig. 65 (6) After inserting the node at 3rd position

For insertion we perform the following steps :

(i) Allocate memory for the new node.

(ii) Enter data for the info part of the node. .

(Hi) Search for the appropriate position of insertion.

(iv) Modify the pointers so that the new node is inserted at the desired position.

The algorithm for insertion of VALUE in a doubly linked list {having COUNT
number of nodes) at the desired position is given below :

1. [Check for memory availability.?]
IF AVAIL = NULL Then

NOTES

(
Write('Availability stack underflow')
goto step 8

}
2. [Obtain address of next free node]

NEWPTR <- AVAIL

3. [Remove free node from availability stack]

AVAIL LINK(AVAIL)

4. [Initialize info field of the new node obtained]

INFO(NEWPTR) e- VALUE

5. [Check if insertion" is in the beginning]

IF (POSITION = 1) Then

LPTR(NEWPTR) «- NULL
RPTR(NEWPTR) ^ START
If LAST = NULL Then

{
START <- NEWPTR
LAST «- NEWPTR

}
Else

{
LPTR(START) <- NEWPTR
START NEWPTR

}
goto step 8

Self-Instructional Material108

I

Arrays. Stacks, Queues
and Linked List

6. [Check if insertion is in the end]

IF (POSITION = COUNT + 1) Then

RPTR(NEWPTR} NULL
RPTR(LAST) ■<- NEWPTR
LPTR(NEWPTR) <r- LAST
LAST <- NEWPTR
goto step 8 ■

NOTES

}
7. [Search for the desired position and insert]

MOVE e- START . .
STEPS ^ 1
REPEAT WHILE (STEPS <POSITION) ,

MOVE RPTR{MOVE)
STEPS STEPS + 1

LPTRCNEWPTR), ^ LPTR(MOVE)
RPTR(NEWPTR) MOVE

LPTR(MOVE) NEWPTR

RPTR(LPTR(NEWPTR)) <- NEWPTR

8. End

4.26.4 Insertion into an ordered doubly linked list (ascending

order)

This involves adding a new node to the doubly linked list. The node is added in
such a way that the ordering is preserved (that is, linked list remains sorted
ofter insertion). Figure 66 shows the insertion of a node in a sorted doubly
linked list :

——71. LAST
55 ---------. START 40* ♦

44

NEWPTR •

Fig. 66 (a) Before inserting the node

LASTSTART, ♦4413 40 55♦

Fig. -66 (6) After inseiiing the node

Self-Instructional Material
I 109

Data Structures
Through ‘C

4. Deletion of a node from a doubly linked list
This involves the deletion of a node from the doubly linked list. A number of
possibilities are there. If the doubly linked list has a single node, then a deletion
results in a empty list with the left-most and right-most pointers being set to
NULL. The node being deleted could be the left-most node of the doubly linked
list. In this case the pointer variable START'must be changed. Similar situation
can arise in case we want to delete the right-most node of the doubly linked list.
The deletion of a node can take place from the' middle of the doubly linked also.
For example,

NOTES

LASTSTART *
254316

Fig. 67 (o) Doubly linked list before deletion

LASTSTART
16 25»

♦

Fig. 67 (6) Doubly linked list after deletion of node from position 2

The following steps are followed to delete a node from a given position :

(i) If the doubly linked list is empty then write underflow and return.
Hi) If the doubly linked list has only one node then

Set the left and right pointers of the list to NULL

Else

• If the leftmost node in the doubly linked list being deleted then

Delete the node and change the left pointer of the list'

Else
Search for the position of the node , to be deleted

If the rightmost node in the doubly linked list being deleted then

Delete the node and change the right pointer of the list

Else
Delete the node from the middle of the doubly linked list

(Hi) Deallocate the memory used by the node and return

4.27 SUMMARY

• An array is a collection of the homogeneous (same type) elements that are
referred by a common name.

• An array is also called a. subscripted variable as the elements of an array are
used by the name of an array and an index or subscript.

110^ Self-Instructional Material

• Arrays are of two types :
(i) one-dimensional arrays

(ii) multi-dimensibnal arrays (2 or more).
• Stacks and Queues can be implemented using arrays.
• Traversing means visiting each element (from start to end) one after the

other.
• Insertion is not possible if the array is already full but replacement of an

existing element is possible.

• Stack is an ordered collection of items into which new items may be inserted
and from which items mays be deleted at one end; called top of the stack.

• Insertion in a stack is called PUSH and deletion as POP.

• Stack is- a container, which follows LIFO principle.

• Stack can be implemented as an drray and as a linked list.

• A queue is an ordered list in which all insertions take place at one end, the
rear, where as all deletion takes place at other end, the front. Therefore,
‘Queues’ work on the concept of First In First Out (FIFO) principle.

• The process of inserting items is called enqueueing, and removing item from
a queue is called dequeueing.

• A Deque is a linear list in which the elements can be added or removed at
either end but not in middle.

• A Priority Queue is a collection of elements such that each element has been
assigned a priority and based on the order in which elements are deleted and
processed.

• Linked list is possible to grow and shrink size at any time.
• A linked list is a chain of structures in which each structure consists of data

as well as pointers, which store the address (link) of the next logical structure
in the list. • •

Arrays, Stacks, Queues
and Linked List

NOTES

4.28 TEST YOURSELF

Answer the following questions :
1. What is an array ? Discuss its different types.
2. Write an algorithm for insertion of an element in a sorted array.
3. List the di5advantage(s) of implementing stacks as arrays. Describe means for

overcorning the problems.
4. Write a C program to read an array A of integers and push all even numbers

and odd numbers read into two stacks and then display them by popping the
stacks.

Self-Instructional Material
I ■ 111

5. Declare a stack usii^ array that contains int type numbers, and define pop
and push function using C syntax.

6. How will you know that a linear queue is. full ?

Write two applications of queue.
8. What is the drawback of linear queue ?

9. What is a dequeue ?
10. What is a priority queue ?
11. List some of the disadvantages of implementing queues as arrays. How will

you overcome the problems ?
• 12. Let Q be a non empty queue and S be an empty stack. Write a C program

to reverse the order of items in Q. ■

13. Write an algorithm and a function in C for insertion of a node in a sorted
linked list given'in ascending order.

14. What is a linked list ? ,

Data Structures
Through 'C’

NOTES

15. Describe different types of linked lists.

16. Write a short note on applications of linked lists.

17. Describe the procedures for inserting and deleting nodes from a double
linked list with an example.

I ,

18. Differentiate between Circular and Doubly-linked lists.

□ □□

li2 , Self-Instructional Material

Trees

SECTION C

NOTES
CHAPTER 5 TREES

★ LEARNING OBJECTIVES ★ -

5.1 Introduction

5.2 General Trees

5.3 Binary Tree

5.4 Properties of Binary Trees

5.5 Implementation of Binary Trees

5.6 Binary Tree Traversal Methods

5.7 Binary Tree Traversal Algorithms Using Stacks (i.e., Iterative
Algorithms)

5.8 Binary Search‘Tree

5.9 Summary

5.10 Test Yourself

5.1 INTRODUCTION

So far in the text we have discussed linear data structures such as arrays,
stacks, queues and linked lists. Each element in these data structures is followed
by one next element. There is another type of data structure which is non-linear
data structure. In a non-linear data structure, each element may have more
than one next element. Oiie such non-linear data structure is a tree.

5.2 GENERAL TREES

A general tree T is a finite set of zero, one or more nodes (or elements) (Rj, Rj,
..... . R^) such that

Self-Instructional Material
IIS

Data Structures
Through ‘C

ii) There is one specially designated node called the root of the tree. Let it
be denoted by Rj.

{ii) The remaining nodes Rg, R3,
disjoint subsets, each of which is itself a tree. These trees may be denoted
by Tj, T2, , T^.

T]^, T2........ . T„, are known as subtrees of tree T.

R„ are partitioned into rri {m > 0)

NOTES

5.2.1 Empty Tree
A tree with no nodes is called an empty tree.

Representation of Tree

' There are many ways to represent a tree structure. One of the simplest way of
drawing a tree in computer science is upside down so that the root of the tree
is at the top and the branches are in the downward direction as shown in
figure 1. ,

Fig. 1. A general tree.

Here the root of the tree is A, There are three subtrees of the root A, with roots
B, D and G. The root B has one subtree. The root C has empty subtree. The root
D and G have two and three subtrees respectively. The nodes (except root)
having no subtrees are called leafs or terminal nodes. Any node (except the root
and leafs) is called non-terminal node.-

5.2.2 Level of a Node

The level of a node is equal to the length of the path from the root to the node.

The root of the tree has level = 0.

For example in fi^re 1 the levels are :

Level of A = 0

Level of B, D, G = 1

Lever of C, E, F, H, I, J = 2

114 Self-Instructional Material

TreesDegree of a Node
The degree of a node is the number of children it has. The degree of a leaf
is 0. For example, in figure 1 the degree of node G is 3.

Degree of a Tree
The degree of a tree is the maximum of its node degrees. The degree of tree in
figure 1 is 3.

HeightIDepth of a Tree
If level of the root is denoted by 0, then
Height/Depth of tree = 1 + maximum {levels of all nodes in the tree)
The height/depth of tree given in figure 1 'is 3 (as maximum level is 2).

Parent and Child Relationship

In figure 1, the node A is parent of B, D and G.
B, D and G are called children of A.
C is the child of B. '
E and F are children of D.
H, I and J are children of G.

. The children nodes of a given parent node are called siblings or brothers.
There are many applications of general trees. However, a special class of general
trees is binary tree, which is a very useful data structure.

NOTES

f5.3 BINARY TREE
A tr^-is'called a binary tree if it has a finite set of nodes that is either empty
or contains a single element called the root of the tree and all the other nodes
are partitioned into two disjoint subsets, each of which itself is a binary tree.

• The two subsets are called the left subtree and the right subtree of the
original tree. •
Let us consider the binary tree shown in figure 2.

Fig. 2 A Binary Tree.
Self-Instructional Material

115

Here, A is the root of the tree and the following two subtrees are :Data Structures
Through ‘C

©
NOTES

The left subtree of the original tree is and it has no subtrees.

Fig. 4 •

The right subtree has root as and two subtrees are

Binary trees are different froin General trees. A binary tree has left and right
subtrees, whereas, in general trees there is no left or right subtree.

and (^-

©

0
(b)

Fig]. 5

In figure 5 (a) is having a left subtree and no right subtree. Figure 5 (b) has no
meaning and figure 5 (c) is having a right subtree.

In figure 5 (a) B is\ called the left child of A and in figure 5 (c) B is called the '
right child of A V

5.4 PROPERTIES OF BINARY TREES

Property 1. The drawing of every binary tree with n elements, n.> 0, has exactly
n-1 edges.

Proof: Every element in a binary tree (except the root) has exactly one parent.
There is exactly one edge between each child and its parent. So the number of
edges is exactly n-1.

116 Self-Instructional Material

Property 2. A binary tree of height K, h > 0, has at least h and at most 2^-1
. elements in it.

Proof : Since there must be at least one element at each level, the number of
• elements is at least h. As each element can have at most two children, the

number of elements at level i is at most 2'" i > 0. For h = 0, the total number
of elements is 0, which equals 2° - 1. For h > 0, the number of elements cannot
exceed, _ .

Trees

NOTES

h
S2 !-l

= 2^ 2223-1 + 2^' -1+
i=l

= 1 + 2 + 22 + 2h - 1+

lx(2^ -1)
••• s. - r-12-1

= 2^" - 1.

Property 3. The height of a binary tree that contains n, n > 0, elements 'is at
most n at least flbg2 (n + 1)1.

Proof : Since there must be at least one. element at each level, the height
cannot exceed h. From Property 2, we know that a binary tree of height h can
have no more than 2^-1 elements. So n < 2* - 1. Hence, h > logg (n + 1). Since
h is an integer, we have h > riog2 (n + 1)1.

A binary tree of height h that contains exactly 2^-1 elements is called a full
binary tree. The binary tree of figure 6 (a) is a full binary tree of height 3. The
binary trees of figures 6 (b) and (c) are not full binary trees.

(a) (b)

. Self-Instructional Material
117

Data Structures
Through ‘C’

NOTES

Fig. 6. Binary Trees.

Figure 7 shows a full binary tree of height 4.

. Level 0

Level 1

Level 2

Level 3

Fig. 7. Full binary tree of height 4.

Suppose we assign numbers to the elements of a full binary tree of height h
using the numbers 1 through 2* - 1. We begin at le^'el 0. Within levels the
elements are numbered left to right. The elements of the full binary tree
of figure 7 have been numbered in this way. Now suppose we delete the k,
k> 0, elements numbered 2^ - i, 1 < i < k for any k. The resulting binary tree
is called a complete binary tree. Figure 8 illustrates some examples.

1

Fig. 8. Complete binary trees.

118 Self-Instructional Material

TreesNote that a full binary tree is a special case of a complete binary tree. Also
note that the height of a complete binary tree that contains n elements is
riog2(n + l)1.

There exists a nice relationship among the numbers assigned to an element and
its children in a complete binary tree, as given by Property 4.

Property 4. Let i, 1 <i <n, be the number assigned to an element of a complete
binary tree. The following are true :

1. If i = 1, then this element is the root of the binary tree. If i > 1, then- the parent
of this element has been assigned the number [i/2j

2. If2i > n, then this element has no left, child. Otherwise, its left child has been
assigned the number 2i.

3. If 2i + 1 > n, then this element has no right child. Otherwise, its right child
has been assigned the number 2i + 1.

Proof : Can be established by induction on i. It is left as an exercise for the
readers.

NOTES

5.5 IMPLEMENTATION OF BINARY TREES

Binary trees can be implemented by using an array or by using pointers.

5.5.1 Array Implementation of a Binary Tree
A binary tree can be stored as an array. A two dimensional array with three
columns and number of rows equal to number of nodes in the tree can be used .
to store a binary tree. The first column store contents of data field of each node,
second column contains pointer to the left child of the node and the third column
contains .pointer to the right child of the node. A dash in second or third
column represents empty subtree.

Consider the binary tree given in figure 9(a), its array implementation is shown
in figure 9 (b).

For convenience, we ^assign numbers to nodes as they are inserted in the
tree.

Self-Instructional Material
119

Data Structures
Through ‘C’ RPTRDATA LPTR

A 2 31

52 B 4•1

NOTES
7'3 E 6

4 c
/• 5 D

6 F

G7

(6)(a)
Fig. 9

5.5.2 Linked Implementation of a Binary Tree
There is a limitation to the array implementation of a tree. The array size is
fixed at compile time. Therefore, the most suitable implementation is obtained
by using pointers which allows the tree to grow or shrink as per requirement
during program execution making it a d5mamic data structure. It is also called
as linked implementation of a tree. In linked representation of the tree, each
node has three fields, i.e.,

• DATA field or INFO field.

• LPTR field containing a pointer to the left subtree.

• RPTR field containing a pointer to the right subtree.

For example, consider the binary tree shown in figure 10 ;

<

The binary tree of figure 10 can be shown using linked implementation as
illustrated in figure 11.

t

120 Self-Instructional Material

Trees
ROOT

A \ NOTES

E/ /

NULLNULL NULL NULL GNULL NULL NULL FNULL C D

Fig. 11

5.6 BINARY TREE TRAVERSAL METHODS

The traversal of a binary tree means visiting each node in the tree exactly once
and performing some operation on it. A full traversal gives a linear order of the
information in a tree. As mentioned earlier a binary tree is defined as either an
empty tree or consists of a node called root and two subtrees, i.e., the left
subtree and the right subtree. Further, left subtree (or right subtree) is again
a binary tree which is either empty tree or consists of root and left subtree and
right subtree. Thus we see that the definition of tree is recursive; Therefore,
traversal of a tree can also be done recursively, using recursive procedure. ,

There are 6 different ways of traversing a binary tree.,Tliese are given below :

ii) Visit root, traverse left subtree, traverse right subtree (called preorder)

Hi) Traverse left subtree, visit root, traverse right subtree (called inorder)

iiii) Traverse left subtree, traverse right subtree, visit root (called postorder)

iiv) Visit root, traverse right subtree, traverse left subtree

(u) Traverse right subtree, visit root, traverse left subtree

(vi) Traverse right subtree, traverse left subtree, wisit root.

If convention is adopted then we traverse left before right then only first three
traverals remain, i.e., PREORDER, INORDER and POSTORDER. These names
have been assigned due to the fact that there is a natural correspondence between
these traversals and producing the PREFIX, INFIX and POSTFIX forms of an

Self-Instructional Material
121

»

Data Structures
Through 'C

expression. Here we will consider only first three of these. Suppose we want to
. print data in each node of a binary tree. It-can be done as given below :

5.6.1 Preorder Traversal
To traverse a non-empty binary tree in preorder we perform the following three
operations :

ii) Visit the root and perform the desired operation

(it) Traverse the left subtree in preorder

(Hi) Traverse the right subtree in preorder.

For example, consider the binary tree given in figure 12 (a) :

NOTES

A) Root

Right
subtree

r E \

Left / • S/
subtree /' (s)\ // \ \\/. / \\ // \\ // \ \/ / \V // \N/ /\ \
I / \Vc D F Q/ / \\/ / \/ / sNI

Fig. 12 (o)'

• We first visit the root, i.e., and print its contents.

• Then we traverse the left subtree of which is shown below :

s

Fig. 12 (6)

The root of this tree is so its contents are printed.

which is only Its contents are printed. It has

visit the right subtree of which is and print its contents,

has further subtrees. Thus, traversal of the left subtree of is
over.

\

• Then we visit left subtree,
no further subtrees.

•, Now we

122 Self-Instructional Material

• Next, we visit the right subtree of which is shown below ;
Trees

NOTES

Fig. 12 (c)

The root of this tree is so its contents are printed.

only

• Now we visit the right subtree of (J). which is and print its contents,

has no further subtrees. Thus, traversal of the right subtree of is
over.
Thus, traversal of this complete binary tree gives the following result :

A B C D E F G.

©• Then we visit the left subtree of
printed. It has no further subtrees.

which is . Its contents are

5.6.2 Algorithm for PREORDER Traversal in a Binary Tree

Procedure RPREORDER(T). Given a binary tree whose root node address is •
given by a pointer variable T and whose node structure is the same as previously
described, this algorithm traverses the tree in preorder in a recursive manner.

1. [Process the root node]

If T NUli Then

Write(DATA(T))

else

WriteCEMPTY TREE')

Return

2. [Process the left subtree]

If LPTR{T) NULL Then
Call RPRE6rDER{LPTR(T))

3. [Process the right subtree]

If RPTR(T) NULL Then

Call RPREORDER(RPTR(T)) ,

4. [Finished]

Return

Self-Instructional Material
123

Data Structures 5.6.3 Inorder Traversal
. To traverse a non-empty binary tree in inorder we perform the following three

operations ;

(i) Traverse the left subtree in inorder.

(«) Visit the root and perform the desired operation.

(Hi) Traverse the right subtree in inorder.

For example, consider the binary tree given in figure -12 (a). The output of
inorder traversal of this tree is given below :

• Through ‘C

NOTES

C B D A F E G

5.6.4 Algorithm for INORDER Traversal in a Binary Tree
Procedure RINORDER(T). Given a binary tree whose root node address is
given by a poifiter variable T and whose node structure is the same as previously
described, this algorithm traverses the tree in iriorder, again in a recursive
manner.

1. [Check for empty tree]

If T = NULL Then

WriteCEMPTY TREE’)

Return

2. [Process the left subtree]

If LPTR(T) 7^ NULL Then .

■ Call RINORDER(LPTR{T))

3. [Process the root node]

Write(DATA(T))

4. [Process the right subtree]

If RPTR(T) NULL Then

Call RINORDER(RPTR(T))

5. [Finished]

Return

5.6.5 Postorder Traversal
To traverse a non-empty binary tree in postorder we perform the following three
operations : .

(i) Traverse the left subtree in postorder

(ii) Traverse the right subtree in postorder

(Hi) ’ " the root and perform the desired operation.

Self-Instructional Material124

For example, consider the binary tree given in figure 12 (a). The output of
postorder traversal of this tree is given below :

Trees

C D B F G E A

5.6.6 Algorithm for POSTORDER Traversal in a Binary Tree NOTES

Procedure RPOSTORDER(T). Given a binary tree whose root node address is
given by a pointer variable T and whose node structure is the same as previously
described, this procedure traverses the tree in postorder, in a recursive manner.
1. [Check for empty tree]

If T = NULL Then

WriteCEMPTY TREE')

Return

2, [Process the left subtree]

If LPTR{T) NULL Then
Call RP0ST9'RDER(LPTR(T))

3. [Process the right .subtree]

If RPTR(T) NULL Then

. Call RP0ST0RDER(RPTR(T))
4. [Process the root node]

Write(DATA(T))

5.- [Finished]

Return

Example ; Consider the expression, tree implemented as a binary tree in figure
13. Give the output of preorder, inorder and postorder tree traversal of this tree.
What do these output represent 1

Solution : Using preorder traversal method, we get
^ - 45, 15,' +, 33, 7

Here, commas are written for sake of readability,
It represents the expression- in prefix notation.

Sclf-Jiirtruclional Material
125,

Using inorder traversal method, we get,

45, -, 15, ^ 33, +, 7

which is an expression in infix notation.

Using postorder traversal method, we get,

45, 15, -, 33, 7, +, *

which is an expression in postfix notation.

Data Structures
Through 'C

NOTES

5.7 BINARY TREE TRAVERSAL ALGORITHMS

USING STACKS He., ITERATIVE

ALGORITHMS)

We can no fill in the details of the general algorithms given in the previous
section for the preorder, inorder, and postorder traversals of a binary tree.
These algorithms are written as procedures with one parameter. The only
parameter required is a pointer variable which contains the address of the root
of the tree. Although recursive algorithms would probably be the simplest to
write for the traversals of binary trees, we will formulate algorithms which are
both iterative and. recursive.

• Let us consider the traversal of binary trees by iteration. Since in traversing a
tree it is required to descend and subsequently ascend parts of the tree, pointer
information which will permit movement up the tree must be temporarily stored.
Observe that the structural information that is already present in the tree
permits the. downward movement from the root of the tree. Because movement .
up the tree must be made in a reverse manner from that taken in descending
a tree, a stack is required to save pointer variables as the tree is traversed.

5.7.1 Preorder Traversal
A general algorithm for a preorder traversal of a binary; tree using iteration is
now given.

1. If the tree is empty

then write tree empty and return

else place the pointer to the root of the tree on the stack

2. Repeat step 3 while .the stack is not empty

3. Pop the top pointer off the stack

Repeat while the pointer value is not null ^

Write the data associated with the node

If right subtree is not empty Then/

Self-Instructional Material126

Stack the pointer to the right subtree

Set pointer value to left subtree

We will now provide a procedure for traversing a tree in preorder.

Procedxire PREORDER(T). Given a binary tree whose root node address is
given by a pointer variable T and whose structure is the same as-previously
described, this procedure traverses the tree in preorder, in an iterative manner.
S and TOP denote an auxiliary stack and its associated top,index, respectively.
The pointer variable P denotes the current node in the tree.
1. [Initialize]

Trees

NOTES

If T = NULL Then
WriteCEMPTY TREE’)

Return

Else

TOP ^0

Call PUSH(S, TOP, T) .
2. [Process each stacked branch address]

Repeat step 3 while (TOP > 0)

3. [Get stored address and branch left]
P ^ POP(S, TOP)

Repeat while P NULL

Write(pATA(P))
If RPTR(P) ^ NULL Then .

Call PUSH(S, TOP, RPTR(P)) (store address of nonempty
right subtree)

P f- LPTR(P) (branch left)
4. [Finished] ' ■

Return

Step 1 checks for an empty tree and exits if T = NULL. Otherwise, it stacks the
address of the root node. Step 2 controls the processing of the tree. The addresses
of yet untraversed subtrees are kept on the stack. In the third step of the
algorithm, we visit and process a node. The address of the right branch of such
a node, if it exists, is stacked and a chain of left branches is followed until this.
chain ends. At this point, we reenter step 3 and delete from the stack the
address of the root node of the most recently encountered right subtree and
process it according to step 3. A trace of the algorithm for the binary tree given
in figure 14 appears in Table 1, where the right-most element in the slack is
considered to be its top element and the notation “NE”, for example, denotes the,
address of node E. The visit of a node in this case merely involves the output
or' the label for that node.

Scif-Jnstructionof Material
127

An equivalent procedure for a recursive preorder traversal of a binary tree is
easily formulated.

Data Structures
Through 'C

T

NOTES
A

DB

GEC

F

Fig. 14 Linked representation of a binary tree.

Table 1. Trace of Procedure PREORDER for figure 14

Visit P Output StringStack Contents P

NA
ANA ' A

ABNB BND
C ABCNCND

NULLND
ABCDDND

ABODENG NE E
NULLNG NF

ABCDEFFNG NF
NG NULL

NG ABCDEFGG
NULL

5.7.2 Inorder Traversal
The inorder traversal algorithm also uses a variable pointer PTR, which will
contain the location of the node N currently being scanned, and an array STACK,
which will hold the addresses of nodes, for future processing. In fact, with this
algorithm, a node is processed only when it is popped from STACK.

S '
1

128 Sdf-Instructional Material

TreesAlgcrithm : Initially push NULL onto STACK (for a sentinel) and then set
PTR = ROOT. Then repeat the following steps until NULL is
popped from STACK.

(а) Proceed down the left-most path rooted at PTR, pushing each
node N onto STACK and stopping when a node N with no left
child is pushed onto STACK.

(б) [Backtracking.] Pop and process the nodes on STACK. If NULL
is popped, then Exit. If a node N with a right child R(N) is
processed, set PTR = R(N) (by assigning PTR = RIGHT[PTR1)
and return to Step (c).

We emphasize that a node N is processed only when it is popped from STACK.

Example : Consider the binary tree T in figure 15. VJe simulate the above
algorithm with T, showing the contents of STACK.

NOTES

1. Initially push NULL onto STACK :

STACK ; NULL.

Then set PTR = A, the root of T. •
2. Proceed down the left-most path rooted at PTR = A, pushing the nodes A, B,

D, G and K onto STACK :

STACK : NULL, A, B, D, G, K.
(No other node is pushed onto STACK, since K has no left child.)

3. [Backtracking.] The nodes K, G and D are popped and processed, leaving :
STACK : NULL, A, B.

(We stop the processing at D, since D has a right child.) Then set PTR = H,
the right child of D.

4. Proceed down the left-most path rooted at PTR = H, pushing.the nodes H and
L onto STACK ; .

STACK : NULL, A, B, H, L.
(No other node is pushed onto STACK, since L has no left child.)

Self-Instructional Material
129

Data Structures
Through ‘O'

5. [Backtracking.] The .nodes L and H are popped and processed, leaving :

STACK : NULL, A, B.

(We stop the processing at H, since H has a right child.) Then set PTR = M,
. the right child of H.

6. Proceed down the left-most path rooted at PTR = M, pushing node M onto
STACK :

NOTES

STACK ; NULL, A, B, M.

(No other node is pushed onto STACK, since M has no left child.)

7. [Backtracking.] The nodes M, B and A are popped and processed, leaving :

STACK : NULL.

(No other element of STACK is popped, since A does have a right child.) Set
PTR = C, the right child of A. ■

8. Proceed down'the left-most path rooted at PTR = C, pushing the nodes C and
E onto STACK ; .

STACK : NULL, C, E.
9. [Backtracking.] Node E is popped and processed. Since E has no right child,

node C is popped and processed. Since C has no right child, the next element,
NULL, is popped from STACK.

The algorithm is now finished, since NULL is popped from STACK. As seen
from Steps 3, 5, 7 and 9, the nodes are processed in the order K, G, D, L, H, M,
B, A, E, C. This is the required inorder traversal of the binary tree T.

A formal presentation of our inorder traversal algorithm is given below :

Algorithm : INORDdNFO, LEFT, RIGHT, ROOT)

A binary tree is in memory. This algorithm does an inorder
traversal of T, applying an operation PROCESS to each of its
nodes. An array STACK is used to temporarily hold the address
of nodes.

1. [Push NULL onto STACK and initialize PTR.]
Set TOP = 1, STACK[1] = NULL and PTR = ROOT. .

'2. Repeat while PTR ^ NULL: [Pushes left-most path onto STACK]

(a) Set TOP = TOP + 1 and STACK[TOP) = PTR. [Saves node.]
(b) Set PTR = LEFTfPTR). [Updates PTR.]
[End of loop.]

3. Set PTR = STACK[TOP] and TOP = TOP - 1. [Pops node from
STACK.[

4. Repeat Steps 5 to 7 while PTR ^ NULL : [Backtracking.]
5. Apply PROCESS to INFOlPTR].
6. • [Right child?]

130 Self-Instructional Material

If RIGHT[PTR] NULL, Then

(а) Set PTR = RIGHT[PTR].

(б) Go to Step 2.

[End of If structure.]

7, Set PTR = STACK[TOP] and TOP = TOP -1. [Pops node.]

[End of Step 4 loop.]
Exit.

Trees

NOTES

8.

5.7.3 Postorder Traversal
A general algorithm for an iterative postorder traversal of a binary tree is now
presented.

1. If-the tree is empty Then
Write empty tree and return

Else
Initialize the stack and initialize pointer value to root of tree

2. Start an infinite loop to repeat uptq step 5

3. Repeat while pointer value is not null

Stack current pointer value

Set .pointer value to left subtree

4. .Repeat while top pointer on stack is negative

Pop pointer off stack
Write data associated with positive value of this pointer

If stack is empty Then
return

5. Set pointer value 'to the right subtree of the value on top of the stack

Stack the negative value of the pointer to the right subtree .

The following algorithm iteratively traverses a binary tree in postorder :

Procedure POSTORDER(T). The same node structure described previously is
assumed, and T is a variable which contains the address of the root of the tree.
A stack S is also required again, but this time each node will be stacked twice,
once when its left subtree is traversed and once when its right subtree is
traversed. On completion of these two traversals, the particular node is processed.
Consequently, we need two t5T)es of stack entries, the first indicating that a left
subtree is being traversed, and the second that a right subtree is being traversed.
For convenience we will use negative pointer values to indicate the second type
of entry. This, of course, assumes, that valid pointer data are always nonzero
and positive.

Self-Instructional Material
131

Data Structures
Through ‘C

1. [Initialize]

If T = NULL Then
WriteCEMPTY TREE')

Return ■NOTES
Else

P e- T

TOP 0
2. [Traverse in postorde'r]

Repeat upto step 5 while true
3. [Descend left]

Repeat while P * NULL

Call PUSH(S, TOP. P)
P ^ LPTR(P)

4. [Process a node whose left and right subtrees have been traversed]
Repeat while S[TOP] < 0

P POP(S, TOP)
Write(DATA(P)) .
If TOP = 0 Then (Have all nodes been processed?)
Return

5. [Branch right and then mark node from which we branched]
P f- RPTR(S[TOP])'
S[TOP] - S[TOP]

The first step checks for ah empty tree. In step 2 an infinite loop is initiated to
ensure that the entire tree is processed. In the third step, a chain of left branches
is followed and the address of each node encountered is stacked. Step 4 prints
out the data associated with those nodes whose right and left subtrees have
been traversed, indicated by a negative pointer value. In step 5, the right subtree
of the node on top of the stack is placed in P to be traversed in the next iteration
of the loop. The address of this node is negated, indicating that both left and
right subtrees have been traversed and that its data may be printed.

Example 1. For a binary tree T, the preorder and inord-er travel sequences are
as given below :

Preorder : A, S, C, D, E, F, G, H, I • ‘
Jnorder :D, C, B, A, G, F, H, I, E

Construct the binaiy tree'T. ■

Solution : The binary tree T is constructed as given below :

The first node in the preorder traversal is always the root node of the binary
tree. Thus the root node of the binary tree T is node A.

132 Self-Inslr,uclional Material

TreesAfter finding the root node of the binary tree, our goal is to find the nodes that
form the left subtree and the right subtree of node A.

We know that, inorder traversal is traverse the left subtree, visit the root and
finally traverse the right subtree. Thus all the nodes to the left of node A in
inorder traversal form its left subtree and all the nodes to the right of A in
inorder traversal form its right subtree.

From the above discussion we have :

NOTES

@ E, F, G, H, IB, C, DPreorder

Left subtree Right subtreeRoot

© G, F, H, I, ED, C, BInorder

Root Right subtree Rp,^Left subtree Lp^

Figure 16 shows the partial binary tree formed so far :

Root
A

RtaLta
G FD

.H I EC B

Fig. 16

Similarly, we can form the left subtree Lp^ and right subtree Rp^.
Let us first take the left subtree Lp^. The preorder and inorder sequences of the
left subtree Lp^ are given below :

Preorder B, C, D

D, C, BInorder
From these traversal sequences we see that the root of the subtree is node B
and its left subtree consists of nodes D and C. So it has no right subtree.

From the above discussion we have :

@ C, DPreorder

. Right subtree RpgLeft subtree LpgRoot

. ©D, CInorder

Right subtree RpgLeft subtree Lpg Root

Self-Instructional Material
133

Data Structures
Through ‘C’

Figure 17 shows the partial binary tree formed so far :

NOTES

Now let us take the left subtree Lpg. The preorder and inorder sequences of the
left subtree Lpg are given below :

C, D

D, C

Preorder

Inorder

From these traversal sequences we see that the root of the subtree is node' C
and its left subtree consists of node D. So it has no right subtree.

From the above discussion we have :

©Preorder D

Lfeft subtreeRoot Right subtree R^c

©Inorder D

Left subtree

Figure 18 shows the partial binary tree formed so far :

Root Right subtree RpQ

Root
A

B
Rta

G F

H I E

C

D

Fig. 18

134 Self-Instructional Material

Thus we have formed the left subtree of node A, which is the root of. the
binary tree.

Now let us take the right subtree Rj.^. The preorder and inorder traversal
sequences of Rp^.are given below :

E, F, G, H, I

G, F, H, I, E

From these traversal sequences we see that the root of the subtree Rp^ is node
E, its left subtree consists of nodes F, G, H, I and its right subtree is empty.
From the above discussion we have :

Trees

NOTESPreorder

Inorder

@ F, G, H, IPreorder

Root Left subtree Lpg Right subtree Rp£

©Inorder G, F, H, I

Left subtree Lj.^

Figure 19 shows the partial binary tree formed so far :

Root Right subtree Rp^

C

D

Fig. 19

Now let us take the left subtree L^g. The preorder and inorder traversal sequences
of L.p£ are given below :

Preorder

Inorder

From these traversal sequences we see that' the root of the subtree Lpg is node
F, its left subtree consists of node G and right subtree has nodes H, 1.

From the aboye discussion we have,

Preorder

F. G. H, I
G, F, H, I

© G H, I

Left subtree L.?Root Right subtree Rpp'TF

Self-Instructional Material
135

Data Structures
Through V ©■ /Inorder G H, I

Left subtree L Root Right subtree RqipTF

Figure 20 shows the partial binary tree formed so far :NOTES

N Fig. 20

Now let us take the right subtree Rpji. The preorder and ihorder travel sequences
of Rj,p are- given below :

Preorder H, I

Inorder

From these traversal sequences we see that the root of the subtree R^-p is node
H, its left subtree is empty and the right subtree has a single node I.

From the above discussion we have '■

H, I

>-1

Preorder I

Root Left subtree L Right subtreeTH

Inorder I

Left subtree Lp^j

, Figure 21 shows the binary tree after the above step and this is the required
binary tree :

Root Right subtree Rpjp

136 Spf/'-MstrucfionaJ Material

Trees

NOTES

5.8 BINARY SEARCH TREE
A special kind of binary tree is called a binary search tree. In a binary search
tree, the data value stored in any node is greater than the data value stored in
its left child node and less than the data value stored in its right child node,
assuming that there are no duplicate values.

The formal definition of a binary search tree is given below ;

A binary search tree is a binary tree that may be empty. A nonempty binary
search tree satisfies the following properties :
1. Every element has a key (or value) and no two elements have the same key;

therefore, all keys are distinct.

2.. The keys (if any) in the left subtree of the root are smaller than the key in
the root.

3. The keys (if any) in the right subtree of the root are larger than the key in
the root.

4. The left and right subtrees of the root are also binary search trees.
There is some redundancy in this definition. Properties 2,3 and 4 together imply
that the keys must be distinct. Therefore, property 1 can be replaced by the
following property :
The root has a key.

S^^lf-Instracliohal Material
137

Data Structure!)
Through ‘C

For example,, the tree shown in figure 22 is a binary search tree :

NOTES

• ^ Fig. 22. A Binary Search Tree

Binary search tree is a very useful data structure. In system software such as
loaders, assemblers and compilers, we generally need to build symbol tables of
key words or reserved words. These tables are very often searched'for a specific
key word. In that case, if symbol table is implemented by a binary search tree
then the number of comparisons for searching a specific data value can be
reduced. The reason for this is that we can tell in which half (left or right) of
the tree, the data value may lie with only one cpniparison.

For example, if we are searching for a right data value 45, we compare 45 with
40 and we find that 45 > 40 and therefore 45 must lie in the right subtree. Then,
we compare 45 with 50. Since 45 < 50, therefore 45 must lie in the left subtree.
We go to left side and compare it with the node and findtt is equal to 45. Thus,
we need 3 comparisons to locate the data value 45. ^

Binary search tree is an application of a bi tree.NOTE

We can remove the requirement that all elements in a binary search tree are
distinct. Now we replace smaller in property 2 by < and large in property 3 by
>; the resulting tiee is called a binary search tree with duplicates.

An indexed binary search tree is derived from an ordinary binary search tree
by adding the field Left size to each tree node. This field gives the number of
elements in the node’s left subtree plus one. Figure 23 shows two indexed binary
search trees.

138 Self-Instructional Material

Trees

NOTES

1

(i»(a)

Fig. 23. Indexed Binary Search Trees

The number inside a node is the element key, while that outside is the value of
Left size. Notice that Leftsize also gives the rank of ah element with respect to
the elements in its subtree. For example, in the tree of figure 23 (a), the elements
(in- sorted order) in the subtree with root 20 are 12, 15, 18, 20, 25 and 30. The
rank of the root is four {i.e., the element in the root is the fourth element in
sorted order). Tn the subtree with root 25, the element (in sorted order) are 25
and 30, so the rank of 25 is one and its Left size value is 1.

5.8.1 Searching and Insertion in a Binary Search Tree
The formal presentation of our search and insertion algorithm will use the

• following procedure, which finds the locations of a given ITEM and its parent.
The procedure traverses down the tree using the pointer PTR and the pointer
SAVE for the parent node. This procedure will also be used in the next'section,
on deletion.

Procedure 1 : FINDdNFO, LEFT, RIGHT, ROOT, ITEM, LOG, PAR)

A binary search tree T is in memory and an ITEM of information
is given. This procedure finds the location LOG of ITEM in T
and also the location PAR of the parent of ITEM. There are
three special cases :

(i) LOG = NULL and PAR = NULL will indicate that the tree
is empty.

(ii) LOG * NULL an4 PAR = NULL will indicate that ITEM is
the root of T. - . ‘

(Hi) LOG = NULL and PAR ^ NULL will indicate that ITEM is
not in T and can be added to T as a child of the node N with
location PAR.

1. [Tree empty?]

If ROOT = NULL, then: Set LOG = NULL and PAR = NULL, and
■ Return.

•2. [ITEM at root?]

If ITEM = INFOfROOT], then; Set LOG = ROOT and

PAB = 'NULL, and Return.

Self-Instructional Material
139

Data Structures
Through ‘C’

-3. [Initialize pointers PTR and SAVE.]
If ITEM < INFOfROOT], then:

Set PTR = LEFTIROOT] and SAVE = ROOT.
Else:NOTES

Set PTR = RIGHT[ROOTJ and SAVE = ROOT.
[End of If structure.]

4. Repeat Steps 5 and 6 whiie PTR ^ NULL:

5. [ITEM found?]
If ITEM = INFO [PTR], then: Set LOG = PTR and PAR =

SAVE, and Return.
6. If ITEM < INFO[PTR], then:

Set SAVE = PTR and PTR = LEFT[PTR].
Else:

Set SAVE = PTR and PTR = RIGHT[PTR].
[End of If structure.]
[End of Step 4 loop.]

7. [Search unsuccessful.] Set LOG = NULL and PAR = SAVE.
8. Exit.

Observe that, in Step 6, we move to the left child or the right child according
to whether ITEM < INFO[PTR] or ITEM > INFO[PTR].
The formal statement of our search and 'insertion algorithm follows.
Algorithm: INSBSTdNFO, LEFT, RIGHT, ROOT, AVAIL, ITEM, LOG)

A binary search tree T is in memory and an ITEM of information is
given. This algorithm finds the location LOG of ITEM in T or adds
ITEM as a nev/ node in T at location LOG.
1-. Gall FINDCINFO, LEFT, RIGHT, ROOT, ITEM, LOG, PAR).

[Procedure 3]

• 2. If LOG NULL,‘then Exit.

3. [Gopy ITEM into new node in AVAIL list.]

(a) If AVAIL = NULL, then: Write: OVERFLOW, and Exit.

(b) Set NEW = AVAIL, AVAIL = LEFT[AVAIL] and.

INFO [NEW] = ITEM.

(c) Set LOG = NEW, LEFT[NEW] = NULL and

raGlIT[NEW] = NULL.

- 4. [Add ITEM to tree.]

If PAR = NULL, then:

140 . Self-Instructional Material

Set ROOT = NEW.

Else if ITEM < INFO[PAR], then:

Set LEFT[PAR] = NEW.

Trees

Else: NOTES
Set RIGHT[PAR] = NEW.

[End of If structure.]

5. Exit.

Observe that, in Step 4, there are three possibilities : (!) the tree is empty, (2)
ITEM is added as a left child and (3) ITEM is added as a right child.

5.8.2 Deleting in a Binary Search Tree
Suppose T is a binary search tree, and suppose an ITEM of information is given.
This section gives an algorithm which deletes ITEM from the tree T.

The deletion algorithm first uses searching procedure to find the location of the
node N which contains ITEM and also the location of the parent node P(N). The
way N is deleted from the tree depends primarily on the number of children of
node N. There are three cases :

Case 1. N has no children. Then N is deleted fix)m T by simply replacing the
location of N in the parent node P(N) by the null pointer.

Case 2. N has exactly tne child. Then N is deleted from T by simply replacing.
the location of Nin P(N) by the location of the only child of N.

Case 3. N has two children. Let S(N) denote inorder successor of N. (The
reader can verify that S(N) does not have a left child). Then N is
deleted from T by first deleting S(N) from T (by using Case 1 or Case ,
2) and then replacing node N in T by the node S(N).

Observe that the third case is much more complicated than the first two cases.
In all three cases, the memory space of the deleted node N is returned to the
AVAIL list.

Our deletion algorithm wifi be stated in terms of Procedures given below. The
first procedure refers to Cases 1 and 2, where the deleted node N does not have
two children; and the second procedure refers to Case 3, where N does have two
children. There are many subcases which reflect the fact that N may be a left
child, a right child or the root. Also, in Case 2, N may have a left child or a right
child.

Second procedure treats the case that the deleted node N has two children. We
note that the inorder successor of N can be found by moving to the right child
of N and then moving repeatedly to the left until meeting a node with an empty
left subtree.

■ k

\
Self-Instructional Material

141

Data Structures
Through- ‘C’

Procedxire 2 : CASEAdNFO, LEFT, RIGHT, ROOT, LOG, PAR)

This procedure deletes the node N at location LOG, where N does
not have two children. The pointer PAR gives the location of the
parent of N, or else PAR = NULL indicates' tha.t N is the root
node. The pointer GHILD gives the location of the only child of
N, or else GHILD = NULL indicates N has no children.

1. [Initializes GHILD.]

If LEFT[LOG] = NULL and RIGHT[LOG] = NULL, then:

Set CHILD = NULL.

Else'ifLEFT[LOC] NULL, then;

Set CHILD = LEFT[LOC]

NOTES

Else

Set CHILD = RIGHT[LOC]

[End of If structure.]

2. If PAR ^ NULL, then:

If LOG = LEFT[PAR], then:

Set LEFTIPAR] = CHILD.
I

Else:

Set RIGHT[PAR] = CHILD.

[End of If structure.]

Else:

Set ROOT = CHILD.

3. Return.

Procedure 3 : CASEBdNFO, LEFT, RIGHT, ROOT, LOG, PAR)

This procedure will delete the node N at location LOG, where N
has two children. The pointer PAR gives the location of the parent
of N, or else PAR = NULL indicates that N is the root node. The
pointer SUC gives the location of the inorder successor of N, and
PARSUC gives the location of the parent of the inorder successor.

1. [Find sue and PARSUC.] . •
(a) Set Pl’R = RIGHT[LOC] and SAVE = LOG

(b) Repeat while LEFTfPTR] ^ NULL:

Set SAVE = PTR and PTR = LEFT[PTR].

[End of loop.]

(c) Set sue = PTR and PARSUC = SAVE.

142 Self-Instructional Material

2. [Delete inorder successor, using Procedure 2.]

• Call CASEAdNFO, LEFT, RIGHT, ROOT, SUC, PARSUC.)

3. [Replace node N by its inorder successor.] •

(a) If PAR NULL, then:

If LOG = LEFT[PAR], then: .

Set LEFT[PAR) = SUC.

Trees

NOTES

Else:.

Set RIGHTfPAR] = SUC.

[End of If structure.]
Else:

’ Set ROOT = SUC.

[End of If structure.]

(b) Set LEFT[SUCJ = LEFT[LOC] and

RIGHT[SUC] = RIGHT[LOC].

4. Return.

We can now formally state our deletion algorithm using above procedures as
building blocks.

Algorithm : DELdNFO, LEFT, RIGHT, ROOT, AVAIL, ITEM)

A binary search tree T is in memory, and an ITEM of information
is given. This algorithm deletes ITEM from the tree.

1. [Find the locations of ITEM and its parent, using searching
Procedure.]

Call FINDdNFO, LEFT, RIGHT, ROOT, ITEM, LOC, PAR).
•*2. [ITEM in tree?]

If LOC = NULL, then: Write: ITEM not in tree, and Exit.
3. [Delete node containing ITEM.]

If RIGHT[LOC] NULL and LEFT[LOC] NULL, then:

• Call CASEBdNFO, LEFT; RIGHT, ROOT, LOC, PAR).
Else:

Call CASEAdNFO, LEFT, RIGHT, ROOT, LOC, PAR).
[End of If structure.]

4. [Return deleted node to the AVAIL list.]

Set LEFr[LOC] = AVAIL and AVAIL = LOC.
5. Exit.

//
Self-Instructional Material

143
■’ f ■

Example : Make a binary search tree of values 80, 40, 150, 100 and 30.

Solution : The binary search tree is constructed as follows :
1. First set the ROOT of the binary tree as NULL, i.e., make an empty binary

tree.

Data Structures
Through 'C

NOTES
ROOT

NULL

Fig. 24 (a)

2. The first value to be stored is 80. We now search the tree and find, it is
empty, so a new node is allocated and 80 is stored in this node. Now it
becomes the first node and also the root node as shown below :

ROOT

80 NULL (Node 1)NULL

Fig. 24 (6)

3. The second value to be inserted is 40, the tree is searched and it.is found that
40 must be inserted in left child and the tree becomes as follows :

ROOT

NULL (Node1)'80/
/

(Nodes) NULL 40 NULL

Fig. 24 (c)

4. The next value to be inserted is 150. Again the tree is sear^ed and it is
known that the number 150 must be inserted as a right child of Node 1. After
insertion of 150 the tree becomes :

ROOT

{
(Node 1)80/ \

/ \

NULL 150 NULL (Node 3)(Nodes) NULL 40 NULL

j- Fig. 24 (d)

144. Self-Instructional Material

Trees5. The next value to be inserted is 100. Which will be inserted as shown below
after searching its appropriate place :

ROOT NOTES

(Node 1)80/ \
/ \

(Node 2) NULL 40 NULL 150 NULL (Node 3)NULL z
' NULL 100 NULL (Node 4)

Fig. 24 (e)

6. The next value to be inserted is 30, which will be inserted as shown below
after searching its appropriate place :

ROOT

(Node 1)80

(Node 2) 150 NULL (Nodes)40 NULL/

'\
NULL 100 NULL (Node 4)(Nodes) NULL 30 NULL

Fig. 24 (/)

5.9 SUMMARY

• A tree is often used to represent a Hierarchy.
• Tree is a Non-Linear data structure.

. • A Tree is a data structure used to represent data containing a hierarchical
relation between its elements.

• Tree can be used to represent the Unix file system in which files and
subdirectories are stored under directories. Another example is to represent
the records in a file in which elementary items are stored under group items.

Self-Instructional Material
145

Data Structures
Through V

There are various types of trees such as Unbalanced Binary Tree and Balanced
Binary Tree.

A Binary tree is a finite set of nodes that is either empty or consists of a root
and two disjoint binary trees called left and right subtrees.

Traversal of a tree is to visit each node exactly once, for example searching
the particular nodes. Let T be a binary tree, there are different ways to
proceed, and the methods differ primarily in the order in'which they visit the
nodes.

The tree traversal methods are preorder, inorder and postorder.

Many algorithms that use binary trees proceed in two phases. The, first
phase builds a binary tree and the second traverses the tree.

NOTES %

5.10 TEST YOURSELF

Answer the following questions :
' * '

1. For. a binary tree T, the in-order and post-order traversal sequences are as
follows :
In-order 'rDBFEAGC LJHK

Post-order :DFEBGLJ KH.CA

Draw the binary tree T.
I

2. For a binary tree T, the pre-order and in-order traversal sequences are as
follows : _ ■ .
Pre-order iGBQACKFP DERH
In-order : QBKCFAGPED HR
(а) What is the height of the tree ?
(б) What are the internal nodes ? .
(c) What is its post-order'traversal sequence ?

- 3. What is the maximum number of nodes at ith level of a binary tree ?
4. Given the following binary tree. Answer the questions in the content of iti

\

'4

146 Self-Instructional Material

Trees'(i) What is the root of this tree ?

(ii) What is the parent of D ?

(tii) What are the children of C ? ^

(it;) What are the children of A ? .

’ (o) What are the siblings of E ?

(oi) What are the descendants of B ?

{vii) What are ancestors of H ?

(viii) What is the level of D ?

iix) List the leaf nodes of the tree.

{x) List all integral nodes.

(xi) Draw subtrees of A and B.

(xii) Draw left subtrees of A and B respectively.

(xiii) Draw right subtrees of A and C.

(xiv) Give the output of preorder tree traversal of the above tree.

(xo) Give the output of in-order tree traversal of the above tree.

(xvi) Give the output of postorder tree traversal of the above tree.

5. For a binary tree T, the pre-order and in-order traversal sequences are as
follows :

NOTES

ABD E GHCFPre-order ;

DBGEHACFIn-order

□□□

\

Self-Instructional Material
147

Data Structures
Through ‘C SECTION D

NOTES
CHAPTER 6 SEARCHING AND

SORTING

★ LEARNING OBJECTIVES ★

6.1 Introduction
6.2 Searching
6.3 Sorting
6.4 Summary of Sorting Methods
6.5 Summary
6.6 Test Yourself

6.1 INTRODUCTION

Data stored in an organized manner requires to be accessed for processing.
Locating a particular data item in the memory involves searching the data item.
Searching is a technique where the memory is scanned for the required data.
Computer systems are often used to store large amounts of data from which an
individual element or record must be retrieved according to some search
specification. Thus the efficient storage of data to facilitate fast searching is an
important issue.

Data can be represented in various formats with reference to the data structures
they are held in. Accessing data involves time and memory. Unorganized data
takes longer time to be accessed compared to ordered data. Data can be ordered
in various ways. Sorting is one of the methods of Ordering data which is done,
based on various techniques.

Sorting refers to the operation of arranging data in some given order, such as
increasing or decreasing with numerical data or alphabetically, with character
data.

This chapter deals with different searching techniques to find the required data
and an investigation regarding the performance of some searching algorithms
and the data structures they use.

This chapter also deals with various sorting techniques and their algorithms.

148 Self-Instructional Material

Searching and Sorting’
6.2 SEARCHING

Searching in a one dimensional array can be done using any one of the two
methods :
(i) Linear Search

NOTES
(ii) Binary Search.

(i) Linear Search
In this method, each element of the array is compared with the element to be
searched one by one. The-searching ends on getting the first occurrence of the
element or when the entire array has been traversed. When the element is not
found in the array we say that the search is unsuccessful. Linear search can be
applied in any one of the two ways :
(а) Linear Search in an unsorted array.

(б) Linear Search in a sorted array (say array given in ascending order).

(a) Linear Search in an unsorted array

Consider the array given in figure 1 :

10 45 28 49 87 40 71 22

1 2 3 • 4 5 6 7 8

Array a[8]

Fig. 1

•In case we want to search 71, it is found at location number (position) 7. Search
will be unsuccessful for element' 50.

6.2.1 Algorithm for Linear Search In an Unsorted Array .
Let A be an array of size N. We are to search for the element DATA. I denotes
the array index. Assuming lower bound starts with 1.

, N upto step 2 .1. Repeat for I = 1, 2......
2.. If (A[I] = DATA) Then

■ {
Write'("Successful search")
Write(DATA, " found at position ",!)
goto , step 4

}
3. Write(“Unsuccessful search”)
4. End.

On an average, linear search requires N/2 comparisons. In the worst case, N
comparisons are required.

Self-Instructional Material
149

Data Structures
Through ‘C’

The following function in ‘C’ illustrates the above concept :

/* function definition linear_search() */

NOTES int linear_search(float a[],int n,float data)
•{

int i; /* local-variable */
■ i=0;

while(i<n)
{•

if{a[i]==data)
return(i);

i++;
}

return(-l); /• when entire array has been exhausted */,
• }

(h) Linear Search in a sorted array (given in ascending order)

Consider the array given in figure 2 :

1 2 5 7 10 45 69 94

1 2 3 4 5 6 7 8
\

Array a{8]

Fig. 2
In case we want to search 10, it is found at location number (position) 5. Search
y^ill be imsuccessful for element 4 and we terminate search on reaching the
element 5 as remaining elements are bigger than the element to be searched,
i.e., 4. ' •

6.2.2 Algorithm for Linear Search in a Sorted Array (Ascending
Order)

Let A be a sorted array of size N (haying elements in ascending order). We are
to search for the element DATA. I denotes array index. The non-existence of the
element in the array can be declared without searching the entire array.
Assuming lower bound starts with 1.

N upto step 21. Repeat for I = 1, 2......
2. If (A[I] = DATA) Then

Write("Successful search")
Write(DATA," found at position ",!)
goto step 4

Else

150 Self-Instructional Material

• { Searching and Sorting
]If (A[I]>DATA) Then •

goto Step 3
}

NOTES3. Write(‘TJ’nsuccessful search”)
4. End

The following function in C illustrates the above concept :

/* function definit-ion linear_search() */

int linear search(float a[),int n,float data)
{

int i=0; /* local variable */
/*■ searching */
while(i<n)

{
if(a[i)== data) /* when data is found */

return(i);
if (a [i] >data) /* when array element bigger than data is found */

break;
1 + + ;

}
return(-l).; /* when element is not found */

.}

Linear search is quite time consuming, if the element to 6e searched lies near the
last element, as many comparisons may be required. Binary search saves a lot
of time and lesser number of comparisons may be needed but the most important
condition for applying it is that the array elements must be in soHed order (either
ascending or descending order).

y

(ii) Binary Search
Binary search method requires much less number of comparisons than linear
search. It can be used only for sorted arrays.

To search an element say DATA the approximate middle entry of the array is
located, and its value is checked. If its value is greater than DATA, the value
of the middle element of the first half is located and compared with DATA and
the procedure is repeated on the first half until the required value is found or

• the search interval becomes empty. If the value in the middle' position is smaller-
than DATA, the value of the middle element of the second half is compared with
DATA and the procedure is repeated on the second half until the required value
is found or the search interval becomes empty.

Self-Instructional Material
151

Data Structures
- Through ‘C’

As the length of the array to be searched is reduced by half at each step and
the array is divided into two equal parts, this method is known as binary
search.
The efficiency of this method can be imagined by the fact that only twenty steps
will be required in searching a value (element) in an array having more than
million keys (values). ' .

NOTES

6.2.3 Algorithm Binary Search on Array given in Ascending Order
Let A be an array of size N having elements in ascending order. Let DATA be
the element to be searched. LOW, HIGH and MID denote the lowest, highest
and middle positions of a search interval. Search becomes unsuccessful when
LOW > HIGH. Assuming the index begins at 1. The algorithm is defined
nonrecursively.
1. LOW = 1

HIGH = N
2. Repeat while (LOW < HIGH) upto step 4
3. MID = Integral part of ((LOW + HIGH)/2)
4. If (A[MID] = DATA) Then

■ {
Write{"Successful search")
Write(DATA," found at position ",MID)
goto step 6

}.
Else
{

If(DATA>A[MID]} Then
LOM=MID+l

Else
HIGH=MID-1

}
X'Write {''Unsuccessful search”)5.

6. End.
Let us apply the above algorithm to an example. Suppose array A contains
elements

5, 17, 30, 52, 66, 70, 83, 91 (N = 8)
and we wish to search for 66.

52 70 83 915 30 6617

84 5 6 71 2 3
. A

HIGHLOW

Fig. 3 (a)
152 Self-Instructional Material

LOW = 1 and HIGH = N = 8

Is (LOW < HIGH) ? Yes

MID = Integral part of ((1 + 8)/2) = 4

Searching and Sorting

NOTES
5 30 52 66 83 9117 70

2 3 4 5 6 7 8

HIGHLOW MID

Fig. 3 (&)
Is (A14] = 66) ? No . .

66 > A[4], repeat the steps with LOW = MID + 1 = 4 + 1 = 5 and HIGH = 8

Is'(LOW < HIGH) ? Yes
MID = Integral part of {(5 + 8)/2) = 6

5 17 30 . 52 66 70 83 91

5 81 2 3 4 6 7

HIGHLOW MID

Fig. 3 (c)

Is (A[6] = 66) ? No
66 < A[6], repeat the steps with LOW = 5 and HIGH = MID -1 = 6-1 = 5

Is (LOW < HIGH) Yes . .

MID = Integral part of ((5 + 5)/2) = 5'

5 17 30 52 66 70 83 91

1 2 3 4 6 7 8

MID
LOW
HIGH

Fig. 3 (d)

Is (A[5] = 66) ? Yes

Write(66,“ found at position ”, 5) '

The above algorithm when applied on the array A for searching an element not
present ii. the array works as given below :

Let the array elements be 2, 6, 7, 8, 9 and we wish to search for 4.

(N = 5)2 6 7 8 9

1 2 3 4

t
HIGHLOW

Fig. 4 (a)

Self-Instructional Material
163

Data Structures
Through ‘C

LOW .= 1 and HIGH = N = 5

•Is (LOW < HIGH) ? Yes

MID = Integral part of ((1 + 5)/2) = 3

NOTES
2 6 7 6 9

1 2 3 4

LOW MID HIGH

Fig. 4 (6)

Is (A[3]- = 4) ? No

4 < A[3], repeat the steps with LOW = 1 and HIGH = MID -1 = 3-1 = 2

Is (LOW < HIGH) ? Yes

MID = IntegTal part of ((1 + 2)/2) = 1

2 6 97 8

1 2 3- . 4 5

t
LOW HIGH
MID

Fig. 4 (c)

Is (A[1I = 4) ? No . . • .
4 > A[l], repeat the steps with LOW = MID +1=1 + 1 = 2 and HIGH = 2

Is (LOW < HIGH) ? Yes.

MID = Integral part of ((2 + 2)/2) = 2

2 6 7 8 9

5'1 2 . 3 4

MID
LOW
HIGH .

Fig. 4 id)

Is (A[2] = 4) ? No.

4 < A[2], repeat the steps with LOW = 2 and HIGH = MID -1 = 2-1 = 1

Is (LOW < HIGH) ? No
\ Write(“Unsaccessful search”)

(
154 Self-Instructional Material

Searching and Sorting .The following function in C implements the above concept :

/* function definition binary_search{) */

NOTESint binary_search(float at],int n,float data)
{

int low,high,mid,-
/* searching */
low=0;
high=n-l;
while(low<=high)

{ •
inid= (low+high) /2 ;
if(a[mid]==data) /* when element is found */

return(mid);
else

{
if(data>a[mid])

low=mid+l;
else

high=mid-l;
}

}

return(-l); /• when element is not found in array */
}

6.3 SORTING
Sorting means arranging the elements in some specific order i.e., either ascending
or descending order. The various sorting techniques available are :

ii) Insertion sort

(Hi) Bubble sort or Exchange sort
(u) Merge sort

(vii) Shell sort-
The sorting techniques are discussed below :

(ii) Selection sort

(jy) Quick sort
(vi) Radix sort

(viii) Heap sort etc.

ii) Insertion Sort
Let A be an array having N elements A{1], A[2j,
element is assumed to be sorted. In first pass, the second element i.e., A[2] is
inserted into its proper place in the sorted part of the array. Similarly, in the
next pass, the third element i.e., A[3] is placed. To make space for insertion,
some of the sorted elements must be moved down in the array. After each pass

A[N]. Initially, the first

Self-Instructional Material
155

the subarray becomes sorted from start to the element we are placing (say
CURRENT). The array becomes sorted after applying N-1 passes. This algorithm
is frequently used when N is small. For example, consider the array A having
6 elements as shown in figure 5.

Data Structures
Through ‘C

NOTES 11 1 111 29 1 11 11 42 1 29
*2 2929 29 242 2 22 29 42 2

3 3 423 42 423 3 74 ^ 3 7474

58unsorted { 4 4 65 44 11 ♦ 4 7411 4 11

74 5 6565 ■ 65 5 65. ♦ 55 5 65 5

7458 6 58 66 58 6 58 66 58

After fourth After fifth
pass

Original array A After first After second After third
pass

Fig. 5 Illustration of Insertion Sort in ascending order.

For any pass we store the element to be placed in temporary variable CURRENT.'
Start from first position and move downward till either the element found is
greater than CURRENT or we reach the position of the element to be placed.
In case we have reached the same location (i.e., the position of the element to
be placed) then the element lies properly otherwise move the elements downward
from one position less than that of the element to be placed to the position we
have located an element greater than CURRENT. Now insert the element
CURRENT here.

passpasspass •

6.3.1 Algorithm Insertion Sort
Let A be an array having N elements. We want to sort the elements in ascending
order. CURRENT denotes the value of the element to be placed at proper position
during a pass. POS is used for finding the appropriate position of CURRENT
among the elements above it {if possible). I, J denote the array indices. Assuming •
the array index begins at 1.

1. Repeat for I = 2, 3, N upto step 5
2. CURRENT = A[I]

3. POS = 1
4. Repeat while ((POS < I) and (A[POS] < CURRENT))

POS = POS + 1

5. If (POS I) Then
{

Repeat for POS

A(J+1]=A[J]

}
A [POS]=CURRENT

}
6. End.

166 Self-Instructional Material

The following function in ‘C’ illustrates this concept with array index beginning
at 0 : •

Searching and Sorting

/* function definition insertion_sort() */ NOTES
void insertion sort(float a[],int n)

{
int i,j, current,pos; /* local variables */

/*' sorting »/
for(i=l;i<n;i++)

{ .
current=a(i]; /* current denotes the element to be arranged */
pos=0;

/* pos increased till values in array are < current */

while{ {pos<i) && (a(pos]<=current))
pos++;

if(pos != i) /* if position of element is not appropriate */
{

/* shifting */
for(j = i-l;j >=pos;j--)

a [j+1] =a [j] ; ■ . •
/* insertion at appropriate position */

a [pos]=Current;
}

}
}

(ii) Selection Sort
In this method we perform a search in the array, starting from the first element,
to find the position of element with the smallest value. The element with the
smallest value (if found) is swapped (or interchanged) with the first element in
the array. As a result of this interchange, the smallest element is placed in the
first position of the array. In the second pass or iteration we find the position
of second smallest element starting from the second element onwards.

If such an element exists we interchange this element with the second element
in'the array. This process is repeated on the remaining array elements until we
have placed all the elements in the proper order.

N-1 passes are required in this orting technique as each pass places one
element properly. For example, consider the following array A having 6 elements,

42 29 74 11 65 68 ■

Self-Instructional Material
167

In first pass, the position of the smallest element 11 is located and it is
interchanged with the first element i.e., 42. Figure 6 shows the array after each
pass or iteration.

Data Structures
Through ‘C

1111 1 111 1 11 t 1142 1 ,NOTES
(D 292 2929 29 2 29 2 29 22

' 74 42 3 42 3 4274 74 33 3

® 4 5642 42 74 58 411 4

655 5 65 65 565 65 655 5
" 6 58 ie 58 1(6) 58 j 6 74

Original array A After pass 1 After pass 2 After pass 3 After pass 4 After pass 5-
sorted array A

6 74* 6 58

Fig. 6 Illustration of Selection Sort in ascending order.

The encircled indices indicate the assumed position of the smallest element and
actual position,of the smallest element during a pass. The downward arrow
indicates the remaining portion of array which is to be searched for position of
least element.

6.3.2 Algorithm Selection Sort for Ascending Order
Let A be an array having N elements. We want to sort the array in ascending
order. PASS denotes the pass counter and MIN_INDEX the position of the
smallest element during a pass. Variable TEMP is used for interchanging
(swapping) two elements. I denotes array index. Assume the array index begins
at 1.

1. Repeat for PASS = 1, 2, 3; ..., N-1
{

MIN_INDEX-=PASS
Repeat for I=PASS+1,PASS+2,...,NI

{
If (A[l]<A[MIN_INDEX]> Then

MIN'INDEX=I

}
•If (PASS»=MIN INDEX) Then

{
TEMP=A[PASS]

A [PASS] =A [m'iN_INDEX]
A[MIN INDEX]=TEMP

\]

2. End

In general for the ith pass, Nti comparisons are made for searching smallest
element. The maximum number of interchanges required is N-1 as there is at

• most one. interchange during a'pass. But, the-actual number of interchanges✓

15S Self-Instructional Material

Searching and Sortingmay be less than N-1 as the array elements may be in an order which may not
require interchange for each element (if placed properly).

The following function in C implements the above concept :

NOTES
/* function definition selection_sort() */

void selection sort(float a[),int n)

float temp; /* temp is used here for swapping .*/
int i,pass,min_index; x

/* min_index denotes position of the least element during a pass '/

/* sorting */
for(pas3=0;pass<n-l;pass++)

/* assume pass as the position of the least element */

min_index=pass;

/'search for the position of the least elements among the remaining
elements of the array (if any) */

for(i=pass+l;i<n;i++)
{

if (a [i]<a[min_index])
min index=i;

}
/* if assumption is not appropriate */
if (pass != min_index)
{

/* swap the elements */
temp = a[pass] ;

a [pass] = a[min_index];
a[min_index] = temp;

}
}

}

(Hi) Bubble Sort or Exchange Sort.
In this method we pass through the array sequentially many times. Each pass
places the largest unsorted element in its proper position by comparing each
element in the array with its successor element and. swapping the two elements
if these are not in proper order. The number of exchanges prior to each pass is
initialized to 0 and incremented if two elements are swapped. This procedure is

Self-Instructional Material
Me

repeated from start to one position less than that of the last unsorted element
(as the elements are compared pairwise when'we reach second last element in
the unsorted array the last element is also included).
The first pass places the largest element in the array at the last location. If no
exchanges take place during any pass the next pass is not applied and the array
becomes sorted resulting into algorithm termination, otherwise, we move one
position up after placing an element properly, this element is left out in the next
pass, .^ain exchanges are initialised to 0 and next pass is applied to place the
largest element left in the unsorted part of the array. An extra pass is applied
after the array becomes sorted for checking that no exchanges takes place in
next pass. In the worst case N-1 passes are applied for sorting N elements.
Only one pass is needed if the given array is already sorted. As lighter (smaller)
elements move up in the array during a, pass and heavier (bigger) elements
move down and finally each element “bubbles” upto its exact location, this is
why the method is known as bubble sort.
For example, consider the array A having 6 elements as shown in figure 7 :

Data. Structures
Through ‘C

NOTES

1 29 29 29 2942 Compare
swap2 42 42 42 4229 I Compare

No change3 1174 74 1174 I Compare
swap 6511 11 11 744 ‘ Compare

,, swap 745 65 65 6565 '' Compare
,. swap586 58 58 5858

Original array A •

29 29 1 11 111
42 11 29 292 2 /
11 ■3 42 • 3 42 42
65 t 4 58 4 58 58
58 5 65 5 65 65Largest element

placed at bottom
After 1st pass

74 74 74* 6 74 6

Array after 3r0 pass Sorted array alter
4th pass

Array alter 2nd pass

Fig. 7 Illustration of Bubble sort.

We may check that for the above data.

Number of exchanges in first pass

Number of exchanges in second pass = 2

Number of exchanges in third pass = 1

Number of exchanges in fourth pass = 0, so array becomes sorted after
4th pass.

= 4

1
'.W ^

160 Self-Instructional Material

6.3.3 Algorithm Bubble Sort for Ascending Order - -
, I

Let A be an array having N elements. We want to sort the array in ascending
order. PASS denotes the pass counter and LAST the position of the last unsorted
element during a pass. EXCHS denote the number of exchanges during a pass.
Variable TEMP is used for swapping of elements. 1 denotes array index. Assume
the array index begins at 1. '
1. LAST = N

2. Repeat for PASS = 1, 2, N-1 upto step 5

3. EXCHS = 0
4. Repeat for I = 1, 2, ..., LAST-1

Searching and Sorting

NOTES

{
If (A[I]>A[I+1]) Then

{
TEMP=A[I]
A[I] =A[I + 1]
A[I+1)=TEMP
EXCHS=EXCHS+1

]
}

5. If (EXCHS = 0) Then
goto step 6

Else
liAST=LAST-l

6. End

It is better to use bubble sort when array elements are partially or fully
sorted. Only one pass is required when the given array is already sorted.NOTE

The following function in C implements the above concept with array index '
beginning at 0 :

/* function definition bubble_sorf(> •/

void bubble_sort(float a(],int n)
{

float temp;' /* temp is used here for swapping */
int i,last,pass,exchs;

/•last denotes the position of last unsorted element
pass denotes pass counter
exchs denotes the number of exchanges during a pass */

/* sorting */
pass=0;
last=n-l;

Self-Instructional Material
161

Data Structures
Through ‘C

do
{

paas++;
exchs=0
for {i=0; i<last ;.i++)NOTES {

if (a [i] >a[i+1]
{

exchs++;
temp=ati]-;
a [i]=a [i + l]; /* swapping */
a[i+1]=temp;

}
last--;

}
while ((exchsli^O) && (pass!=n-l));
printf{"\n\nNumber of pass(es)used'for sorting = %d\n",pass);

}

s

iiv)
V^iven an array A of N elements. The quick sort method uses the divide-and-

conquer approach for sorting the elements. In this method the N elements to be
sorted are artitioned into three segments (or groups)—a left segment left, a middle
segment middle, and a right segment right. The middle segment contains only
one element; no element in left has a value larger than the value of the element

' in middle; arid no element in right has a value that is smaller than that of the
middle element. As a result, the elements in left and right can be sorted
•independently, and no merge is required after the sorting of left and right. The
element in middle is called the pivot or partitioning element. The sort method
is explained more precisely as given below : J

Suppose variables LB and UB represent the indices of the first and last elements
of the array respectively. ' ,
IF(LB < UB) Then
{ Select an element from'A[LB : UB] for middle. This element is the pivot. •

Partition the remaining elements into the segments left and right so that
no element in left has a value larger than that of the pivot and
no element in right has a value smaller than that of the pivot.
Sort left using quick sort recursively.
Sort right using quick sort recursively.

}
?

' The answer is left, followed by middle followed by right. -

162 Self-Instructional Material

We can improve the performance by appropriate selection of pivot. Let us consider • Searching and Sorting
the case when the pivot is always the element at position LB. To begin with,
assign the index or position of the first element of the array to I variable, and
index or position of the last element of the array to J variable. Now perform the
following :

f 1. [Swap element > pivot on left side with elements <= pivot on right side]

V (c) staring with the element with position I+l, the array is scanned from
left to right, comparing each element in it with the element pivot, till
element greater than or equal to the element pivot is found, taking into
cosideration that I <-UB.

(fe) Starting with the element with position J, the array is scanned from
right to left, comparing each element in it with the element pivot, till
element smaller than or equal to the element pivot is found, taking into
consideration that J > LB.

2. [Check if swap pair foimd]

If(I>J)Then

goto step 4

3. [Swap the elements]

Swap the elements A[I] and A[J]

goto step 1

4. [Place’pivot at proper position] i

Assign the value of A[J] to A[LB], and store pivot in A[J] J

As this procedure ends, the first element, pivot, of the original ^ray will be
• l5dng at its final position that is middle. The elements in left will be less than

this element and the elements in right will be greater than this element.

The same procedure can be now separately applied on left and right sub-arrays.

For example, consider the array A having 6 elements as shown below :

NOTES

V

42 29 74 11 65 58

A[1] A(2] A[3] A[4] A{5] A[61
■ 41 2 3 5 6

IT
UBLB

Fig. 8 (a)

Here UB > LB, the pivot element is A[LB], that is 42. To begin with set 1 = 1,
J = 6

Self-Instructional Material
163

Data Structures
Through ‘C 42 29 74 11 65 58

A[2JAft) A[3l A[4] A[5] A[6J
31 2 4 5 6

■ t TNOTES
LB UB

1 ■J

Fig. 8 (6)

Start scanning elements from left with position I + 1

42 7429 11 65 58

A[4]A[1] A[2I A[3] A[5] A[6I
1 32 4 5 6

t t t
- LB I UB

J /

Fig. 8 (c)

Since A[2I < 42, we increase the value of I by 1 to get

42 29 74 11 65 58 •

A[1) A[2) A131 A[4] A[5] A[6]
1 3

t
42 • 5 6 ,

t
LB 1 UB-

J

Fig. 8 (d)

Now, AI3] is not < 42, so start scanning the elements from right with position
J = 6. Since A[6] > 42, we decrease the value of variable J by 1' to get, •

42 7429 11 65 58

A[1] A[3) A[41A[2] A!5] A[61
1 2 3 4 5 . 6

t t t
LB I J UB

Fig. 8 (c)

164 Self-Instructional Material

Searching and SortingSince again A[5] > 42, we decrease the value of J to get

65 5629 74 1142

NOTESA[5] • A|6|A[1] A(2l A(3]- A[4]
1 2 3 4 5 ■ 6

t t r ■ t
LB I J UB

Fig. 8 (/)

Now, A[4I is not > 42 and at this stage I < J so swap the elements All] and A[J]
to get ■ '

f

42 29 11 74 65 58

A[1] A(2] A[3] A[4] A[5j A[6].
1 •2 3 4 5 6

t t T t
LB I J UB

Fig. 8 ig)

Now, again start from left with position I+l, i.e., 4

2942 11 74 •65 58

A[11 A[2] A|31 A[4] A[51 A[61
1 2 3 4 5 6

t t t
LB I UB

J

Fig. 8 ih)

Since A[4] is not < 42, so start scanning from right with position J, i.e., 4. Since
At4] > 42, we decrease the value of J to get

42 29 11 74 65 58

Ain A[2] A[3] A[4] A[5J A[61
1 2 3 4 5 6

tt t ■ t
LB J 1 UB

.w

Fig. 8 (i)

Since A[3] is not > 42 and at this tage I > J, thus indicating that element 42
is to be placed in its final position. Store the element A[J] in A[LB] and then
place 42 in A[J] to get the following and terminate the above procedure.

Self-Instructional Material
166

Data Structures
Through ‘C 11 29 •42 74 65 58

A[1| A[2] A[31 A[4! A|51 A[61
1 2 3 . 4 5 6

NOTES Fig. 8 {j)

So the original array A has been divided into three segments as shown

11 29 42 74 65 58

All] A[41 A(5] A[6]A[2] A{3]
1 2 3 4 5 6

left middle
pivot

right

Fig. 8 (fe)

As we can see, the elements in left segment are smaller than 42, and the
elements in right segment are greater than 42.

6.3.4 Algorithm Quicksort (A, LB, UB)

Given A an array having N elements. This algorithm sorts this array in ascending
order using quick sort method. LB and UB denote position of the first and last
elements respectively. I and J are array indices. PIVOT contains the element to
be placed in its final position within the sorted subtable. TEMP is used for
swapping of elements. FLAG is a logical variable which indicates the end of the
process that places the PIVOT in its final position. When FLAG becomes false,
the given array has been partitioned into three segments.

1. [Initialize]
FLAG TRUE

2. [Perform sorting] • , '
If (LB > UB) Then

goto step 8
3. I LB

J <- UB •
PIVOT A[LB]

4. Repeat while (FLAG)
{

I I + 1
Repeat while (A[I) < PIVOT and I < UB)

I I + 1
Repeat while (A[J] > PIVOT and J > LB)

J ^ J
. If(I > J) Then

Flag «r- false

1

166 Self-Instructional Material

Searching and SortingElse

[Swap the elements]
TEMP <- A[I]
A[I] <- A[J]
A[J] ^ TEMP

NOTES

}
5. [Place PIVOT at its proper position]

A[LB] A[J]

A[J] PIVOT

6. [Sort left segment]
CALL Quicksort (A, LB, J-1)

7. [Sort right segment]

CALL Quicksort (A, J+1, UB)
8. End.

The above algorithm is used initially by the statement CALL Quicksort
(A, 1, N). The following program implements the above concept :

/* quick sort for ascending order */

#include<stdio.h>
#define SIZE 20
void mainO
(

void enter(float [],int); /* function prototype */
void display{float. [],int);
void quick_Bort (float [] ,-int, int) ' ' -
float a [SIZE] ‘
int n;

s
clrscr 0 ;
printf("Enter number of elements <= %d\n",SIZE):
scanf("%d",&n);
printf ("\nEnter %d elements\n\n’',n) ;
enter(a,n); /* function call */
/* echo the data */
printf("\nGiven array is\n\n“);
display(a,n); /* function call */
/* sorting */
quick_sort(a,0,n-l); /* function call */
printf("\n\nSorted array is\n\n");
display (a, n) ; /*■ function call */
getchO; /* freeze the monitor */

\
}

Self-Instructional Material
167

Data Structures
Through 'C

•/* function definition enterO ’/

void enter{float a[],int n)
{

Vint i; /*■local variable »/
■ for (i = 0;i<n;i++)

scanf {''%f " , &a [i]) ;
NOTES

}

/■* function definition displayO */

void display(float a[],int n)
{

int i; /* local variable */
for(i=0;i<n;i++)

printf {''%8.2f",a[i]) ;
}
/* recursive function definition guick_sort() */

void quick_sort(float arr[],int lb,int ub)
{

int i,j; /* local variables */
float pivot_value,temp;

if(lb>=ub) /* base .case for recursive function */
return;

i=lb; /* i is used as left to right cursor */
j=ub; /* j is used as right to left cursor */

pivot_value=arr[lb] ;

/‘swap elements >= pivot_value on left side
with elements <= pivot_value on right side */

while(1)
{

do
{

/* find >= element on left side */
i + + ;

• } while(arr [i]<pivot_value && i<=ub);

while(arr[j1>pivot_value && j>lb)
{

/* find <= element on right side */
j —<•

}
/* when swap pair not found */if (.i>=j)

break;

Self-Instructional Material168

Searching and Sorting
/* swapping of elements using variable teir^) »/

temp = arr [i] ;
arr [i] = arr [j] ;
arr [j] = temp; NOTES

}
/* place plvot_value at middle position that is j */

arr [lb] = arr [j];
arr[j] = pivot_value;

/* sort left segment */

quick_sort (arr, lb,,j-l) ; /* recursive call to function */

/* sort right segment */

guick_sort(arr,j+1,ub); /* recursive call to function */
}

PROGRAM 1
i . The. output of program 1 will be ;

Enter number of elements <= 20
s-!

. 6
[.

■) Enter 6 elements
:• 42 29 74 11 65 58;■'

I. \ Given array is
42.00
58.00

29.00 74.00 11.00 65,00

; j Sorted array is
I

11.00
74.00

29.00 42.00 58.00 65.00

In the above program first of all the number of elements are entered and then
. the elements using the function enter!) having arguments—the array and the

number of elements. The entered array is echoed using the function display!)
having arguments the array and the number of elements. Function quick_sort!)
is called with arguments—the array, lower-bound upper bound of the array
indices. Fimction quick_sort!) .sorts the elements in ascending order by calling
itself repeatedly, that is, using recursion. The control is returned to main!) and
the sorted array is shown using function display!).

Self-Instructional Material
169

Data Structures
Through ‘C

(u) Merge Sort
Merge sort algorithm uses the-divide-and-conquer method for sorting purpose.
Given-an array A having N elements, with LB and UB denoting the lower and
upper bound of array indices. We want to arrange the elements in ascending
order. This algorithm has the following general structure:
If N is one, terminate; otherwise partition the collection of elements into two
halves or collections, sort each; combine (merge) the sorted halves or collections
into a single sorted collection. It is a recursive method with the base case—the
number of elements in the array are not more than one.
We can define the merge sort algorithm recursively as given below :
If (LB < UB) Then

NOTES

{
Divide the array A into two halves
Mergesort the left half
Merge'sort the right half
Merge the two-sorted halves Into one sorted array

}
For example,
Consider the array A having 6 elements, that is N = 6

5829 11 6542 74

62 4 51 3

UBLB
Fig. 9 (a) Original array A.

As LB < UB, so we first divide the array A into'two sub arrays at position
MIDDLE, where .

MIDDLE = Integral part of ((LB + UB)/2).= Integral part of ((l+6)/2) = 3 '

•5842 29 74 11 65

61 2 3 4 5

Right Sub Array

Fig. 9 (6) Original array A divided into two halves.

arid first take' the left subarray. It is again divided into two sub arrays, at
MIDDLE = Integral part of ((1+3/2) = 2 as shown below

Left Sub Array

742942

2 31 y

Left Sub Array Right Sub Array

Fig. 9 (c) Left sub-array of original array A divided into two halves.

170 Self-Instructional Material

\

Searching and SortingNow for left sub array, we again use the same method, dividing it again into sub
arrays of one element each at MIDDLE = Integral part of ((l+2)/2)=l

2942
NOTES

1 2

Lett Subarray Right'Subarray

Fig. 9 (d) Left subarray shown in fig 9 fcj further divided.

Subarrays of size one as mentioned earlier, require no sorting. So the right
subarray of the left subarrhy of original array A does not require further division.

. The subarrays shown in Fig. 9 id) merge to result into the sorted array and

29 42

21

Fig. 9 (e) Mergings of subarrays in fig. 9 (d).

the right sub array in Fig. 9 (c) on merging with .the just sorted array gives the
following sorted array.

42 7429

321

Fig. 9 (/) Merging of subarrays shown in fig. 9 (e) and fig. 9 fcJ.

Now the left half of the given array is sorted, we apply the same method on the
right sub arrays of the original array. First we divide it into two sub arrays at
MIDDLE. = Integral part of ((4+6)/2) = 5 as shown below

58 •11 65

64 5

Fig. 9 (g) Right subarray of original array A divided into two halves.

Now for left sub array, we again use the same method, dividing it again into
subarrays of one element each at MIDDLE = Integral part of ({4+5)/2) = 4

t

I
11 65

4 5

Left Sub Array Right Sub Array

Fig. 9 (A) Left subarray shown in fig 9 (g) further divided.

Self-Instructional Material
171

Data Structures
Through ‘C’

As the right subarray in fig is of size one, so it requires no sorting. The subarrays
in Fig. 9 ih) on merging result into the sorted array and the right subarray

11 65
NOTES

4 5

Fig. 9 (i) Merging of subarrays shown in fig. 9 (k).

in fig 9 (g) on merging with the just, sorted array gives the following sorted
array

11 58 65

Fig. 9 (j) Merging of subarrays shown in fig. 9 (i) and jig. 9 (g).

Finally, the two sorted sub arrays of size three each shown in fig. 9 (/) and .
fig. 9 0) are merged to give the sorted array

11 29 42 58 65 74

1 2 3 4 5 6

Fig. 9 (i) Resultant array A having elements in ascending order.

The algorithm for merging is given below :

'6.3.5 Algorithm Merge (A, Low, Mid, High)
Given two ordered (ascending order) subarrays stored in an array A with LOW,
MID and HIGH as array indices; where the LOW through the MID elements
and the MID+1 through the HIGH elements represent the left and right sorted
subarrays respectively. TEMPARR is a temporary array used in the merging
process which is of the .same size as that, of array A. The variables I and J
denote the index (cursor) associated with the first and second subarrays,
respectively. K is an index variable associated with the array TEMPARR.
1. [Initialize] . •

I <- LOW ■
J ^ MID + 1
K ^ LOW

2. [Compare the corresponding elements and store the’smallest]
Repeat while (I < MID and J < HIGH)

{
If (A ri] < A(J]) Then

{
TEMPARR [K] A[I]

I <r- I + l
}

172 Self-Instructional Material

I \

Searching and Sorting• Else

{
TEMPARR [KJ [J] '

J <— J+1 ■

• } NOTES
K K+1

}
3. [Copy the remaining elements]

If (I < MID) Then
{ I

Repeat whiled < MID)

{
TEMPARR[K]4-A[I}
I I + 1
K «- K + 1

}
}
Else

{
Repeat while{j < HIGH)

{
TEMPARR[K] <- A[Jl
J ^ J >•!

K 4^ K+1

}
}

4. [Copy elements from TEMPARR to original array A]
Repeat for I = LOW, LOW +1,----- , HIGH,

A[I] TEMPARRII]

5. End
■ Note that the timing performance of this algorithm is 0(n) where n denotes the

sum of the sizes of the two subtables to be merged.
Given an array having N elements. Let us consider this array to be a set of N
arrays, each of which contains a single element. Obviously, an array which
contains a single element is. sorted. The following algorithm perform a merge
sort ;

6.3.6 Algorithm mergesort (A, IB, UB)
• Given an array A, it is required to sort recursively its elements between positions

LB and UB.Cboth inclusive). MIDDLE denotes the position of the middle element
of the current subarray.

- 1

I
Self-Instructional Material

173

1. [Test base condition for subarray of size one]

- If (LB < UB) Then

Data Structures
Through 'C‘

. {
[Calculate mid-point position of current subarray]
MIDDLE ir- Integral part of ((LB + UB)/2>
[Recursively sort first subarray]
CALL MERGESORT(A, LB, MIDDLE)

[Recursively sort second subarray]
CALL MERGESORT (A, MIDDLE+l] UB)
[Merge two ordered subarrays]

CALL MERGE(A, LB, MIDDLE, UB)

NOTES

2. End

The algorithm MERGESORT is initially called (invoked) as given below :

■CALL MERGESORT (A, 1, N)

where N denotes the number of elements (that is, SIZE) of the original array to
be sorted.

The following function in ‘C’ implement the above concept :

/* recursive function definition raerge_sort() */

void merge_sort(float a[],int lb,int ub)
{

void merge(float [],int,int,int); /* .function prototype */
int middle; /* local variable •/
if(lb<ub)

{
middles(Ib+ub)/2; /* divide the array into two halves »/
merge_sort(a,lb,middle); /’ function call for left half */
merge_sort{a,middle+l,ub); /* function call for right half */
merge.(a, lb,middle,ub) ; /* function, call mergeO */

}
}

/* function definition mergeO */

void merge (float a [],int low,int mid,int high)

float temparrISiZE}/* local variable deaclared */
int i,j,}c;
i=low; /» i is cursor for first segment */
j=mid+l; /* j is cursor for second segment */
k=low; /* k is cursor for resultant segment */
while(i<=mid && j<=high) \

174 Self-Instructional Material ’

{ Searching and Sorting
if(a[i]<=a[j])

{
temparr[k]=a[i] ;
i++;

NOTES
else

temparr[k)=a[j] ;
• j++;

}
k++ ;

}
if(i<=mid) /* if elements in first segment are left */

{
for(;i<=mid;i++)

{
temparr[k]=a[i] ;
k++;

}.
}

/* if elements is second segment are left */else
{

for (; j'<=high; j++)
{

temparr[k]=a[j];
k++;

, }

/* copy the elements from array temparr [] to array a[] */
for(i=low;i<=high;i++)

a [i]=temparr[i] ;
•}

(vi) Radix Sort
Given an array A having N positive integers. We want to sort the integers in
ascending order. As the 6ose or radix of decimal number S5^tem is 10, we
requirfe ten pockets (buckets). In general, integers consisting of more than one
digit are sorted. In siich a case, an ascending-order sort can be done by performing
several individual digit sorts in order. That is; each column is sorted in turn
starting with the lowest-order (right-most) column and proceeding through the
other columns from right to left, that is, first on unit place digit, then on tens
place digit, then on hundredth place digit, and so on. For example, consider the
following array A having 7 elements :

/ .

. Self-Instructional Material
175

Dafo Structures
Through 'C'

658 472211 965740342 129

A[61 A[7)A[41 A[5!A[21 ^[3!- A[11
NOTES

Fig. 10 (a) Array a having 7 elements.

After the first pass on the unit digit position of each number we have the'
pockets :

s

472
658 129965342740 211

7 95 6 83 41 20

Fig. 10 (6) S.tatus of pockets after pass 1.

Now by collecting the integers from pockets into array A we have :

658 129472 965211 342740

•A[7]A[5] A[6]A[21 A(3] A[4]A[1]

Fig. 10 (c) Array A after pass 1 sorted on unit digit.

After the second pass on the tens digit position of each number we have the
pockets :

f

342
740 658 965 472211 129

7 8 94 5 60 1 2 3

Fig. 10 id) Status of pockets after pass 2.

Now by, collecting the integers from pockets into array A we have :

965 472740 • 342 658• 211 129

A[7)A[51 A[6]AMI A[2! A[3] A[4].

Fig. 10 (e) Array A after pass 2 sorted on tens digit.
■ i-

),'
1

176 ^ Self-Instructional Material

After the third pass on the hundredth digit position of each number we have the
pockets :

Searching and Sorting

NOTES

472 740 965129 658211 342

7 80 ,1 2 4 5 6 93

Fig. 10 (f) Status of pockets after pass 3.

Now by collecting the integers from pockets into array A we have :

740 965129 342 472 658211

AtSf A[6] A17]A[11 A[2] A[31 A[41

Fig. 10 (g) Array A after pass 3 sorted on hundredth digit.'

As the maximum number of digits in the given integers is 3 so no further pass
is required. Therefore, the sorted array is

658 740 965129 211 342 472

A[11 , A|2] , A[31 ,A[4] A|5] A[61 A[7]

Fig. 10 ih) Sorted array A.

The algorithm for Radix sort is given below :
Given an array A having N positive integers with index beginning at 1. We are
to arrange the integers in ascending order. BIGGEST denotes the largest integer
in the given array. The variable MAXDIGITS is used to store the number of
digits in the largest number in order to perform the maximum number of passes.
DIVISOR is used for dividing given integers and R! for storing remainder. PASS
denotes the pass coimter. I, J and K denote array indices. POCKET is a two
dimensional array of size 10 by N used for storing integers during passes.
COUNT is a one dimensional array of size 10 used for storing the numbers of
integers, that is, count in different pockets. Indices of POCKET and COUNT
array start at 0,0 and 0 respectively.
1. [Initialise]

BIGGEST A[l]

2. [Find the largest integer, among array elements]

Repeat for I = 2, 3, ,N
{

If (AflJ > BIGGEST) Then
BIGGEST A[I]

}
Self-Instructional Material

177

Data Structures
Through ‘C’

.3. MAXDIGITS <- 0

4. [Find number of digits in largest number]

Repeat while{BIGGEST > 0)
{NOTES

MAXDIGITS f- MAXDIGITS + 1
BIGGEST Integral part of (BIGGEST/IO)

}
[Initialise divisior for least significant digit of integers]

DIVISOR 1

[Perform passes]

Repeat for PASS = 1, 2,

5.

6.
MAXDIGITS

{
(Initialise count .for all pockets].
Repeat for 1=0, 1,2...,9 •

count [I] 4-0
[Put integers in pockets according to current significant digit]
Repeat for 1=1,2,...,N >

■{
[Find remainder , here MOD used for finding remainder on

integer division]
R «— (Integral value of (A[I]/DIVISOR)) MOD 10
POCKET[R, COUNTER]] ♦-AEI] •

COUNTER] <- COUNTER]' + 1
}

[Collect integers from buckets into array A] ,
. K <- 1

Repeat for 1=0, 1, 2, ..,,9
{

Repeat for J = 0, 1, 2, ...,COUNT[I] 1
{

A[K] ^ POCKET[I,J]
K k + 1

}
}

DIVISOR <- DIVISOR x 10
}

7. End

The following function in C implements the above concept :

/* function definition radix_sort{) */

void radix_sort(int a [],int n)
{

int pocket[10] [SIZE],count [10]; /* local variables */

178 Self-Instructional Material

Searching and Sortingint i,j,k,r,pass,biggest,divisor,maxdigit3=0;

/* find the biggest number among integers */
biggest=a[0];
for(i=l;i<n;i++) NOTES

{
if{a[i]>biggest>

biggest=a[i];
}

/* find the number of digits in the biggest number */
while(biggest>0)

maxdigits++,-
biggeat /= 10;

}
/* sorting */ '
divisior=l; /* divisor for least significant digit of integers */
for'(pas3=l;pass<=maxdigits;pass++)

{
/* initialise count for all pockets */
for(i=0;i<10;i++>

count [i]=0
/* put integers in pockets according fo current significant

digit */
for(i=0;i<n;i++)
{

(a[i] / divisor) % 10;
pocket [r] [count [r]++] = ati];
r

}
// collect integers from pockets into array 'a

k=0;
for(i=0;i<l0;i++)

{
for(j=0;j<count[i];j++)

a'[k++) =pocket [i] [j] ;
}

printf ("\n\nArray after pass %d is\n\n" ,'pass) ;
display{a,n); /* function call */

divisor *= 10; /* for next significant digit of integers */
}

}

(vii) Shell Sort
Shell sort or diminishing increment sort is named after its developer Donald
Shell. It is more significant improvement on simple insertion sort. This method

Self-Instructional Material
179

Data Structures
Through ‘C

sorts seperate subfiles of the original (given) file. These subfiles have every
Kth, element of the original file. The value of K is called an increment. For
.example, if K is 5, the subfile having elements A[l], A[6], A[ll],... is just stored.
Five subfiles each having one fifth of the elements of the original file are sorted
in this manner; These subfiles are given below (reading across) :

Subfile 1

NOTES

A[ll]

A[12]

A[13]

AI141

A[15] .

All] A[6]

Subfile 2 • A[2] A[7]

Subfile 3 A[3] A[8]

Subfile 4 A14] A19]

Subfile 5 A[5] A[10]

The K subfiles are divided in such a way, so that the ith element of the jth
subfile is given by A[(i-1) x k + j - 1]

These K subfiles are sorted usually by simple insertion sort. Now the value of
K is decremented and the file is again partitioned into a new set of subfiles.
These larger subfiles are sorted and this process is applied again with an even
smaller value of K. Finally, the value of'K is set of 1 so that the subfile having
the entire file is sorted. A decreasing sequence of increments is fixed in the
beginning of the entire process. The last value in the sequence must be 1. For
example, consider the file having 6 elements and we want-to sort the elements
in ascending order (Note that the output of one pass becomes the input of the
next pass.

1 42

2 29

3 74

4 11

5 65

6 58

Fig. 11 (o) Original file having 6 elements.

180 Self-Instructional Material

Searching and SortingPass 1 : Starting with increment = 4

NOTES1 42 1 42!-► 1 42

29 2929 !-► 2 22

3 74 3 743 74

exchs = 0 '1111 44 11 4

655 65 55 65

58 6 586 58

Fig. 11 (6) File after action of Pass I.

Pass 2 : Starting with increment = 1

11 29 1 29 1 29 2942 1 29r> 1

229 2 42 2 2 42 42‘-*•2 r»2 42 42

exchs = 43 3 11 33 r* 3 74 11 1174 >-♦•3 74

^►4■11 65 4 6511 !-► 4 74 44 4 11

'-►5 565 -♦5 74 5865 65 5 655 5

58 66- 58 6 58 746 58 6 58

swapswap swap'• swap

Fig. 11 (c)

/

Self-Instructional Material
181

As the number of exchs = 4 so repeat this processData Structures
Through ‘C

NOTES 1 291 291 291 29 1 29r* 1 29

112 11 22 1142 2 11>-►2 42 ^►2

3 4242 3 42r*-3 42 33 11 ^ 3 11

exchs = 2(-►4 584 58 465 654 65 • >-►44 65

65■-►5 56 [-►S 65 55858 5 58 55

6 74>-►6 746 74 6 746 74 6 74

swapswap

Fig. 11 (d)
V

As the number of exchs = 2 so repeat this process

111 • 11 11 11. 1 11 1 nr* 1 29

29 2929 2 229 2[-►2 29 2‘-►2 11

4242 33 • 42 • 342 423 42 !-*• 31

58 exchs = 1r*-4 4 58 4584 58 '-►4 58. 4 58

65'-►5 [-►5 65 56565 5 655 65 •5

74 6 746 ‘-►6 746 74■ . 6 74 6 74

swap

Fig. 11 (e)

182 . Self-Instructional Material

Searching and Sorting■As the number of exchs = 1 so repeat this process

11 1 11 1 1111 1 11 1 n 1r* 1

NOTES
29 2929- 29 29 2 229 r>2 2 2‘->2

42 42 42 ■ 3 4242 >-►3 42 r* 3 3 33

58 58 exchs = 058 58 r*-4 58 4 456 4 !-► 44

6566 '-►5 65 [-►S 65 565 • - 5 65 55

74 74 6 7474 6 74 6 74 1^66 6

Sorted.File

Fig. 11 (/)

As the* number of exchs = 0 so file is sorted now.

We must note that if a file is partially sorted using an increment K and is
subsequently partially sorted using an increment j, the file remains partially
sorted on the increment K That is, subsequent partial sorts so do not disturb
earlier ones.

Several studies have been made of Shell sort, but no one has been able to prove
that any choice of increments is greatly superior to all others. However, we
must avoid choosing increments as powers of 2, such as 8, 4, 2 and 1 etc., as the
same keys compared in one pass would be compared in next one. If we select the
increments which one relatively prime (that is, have no common divisors other
than 1) then this guarantees that successive iterations intermingle (mix) subfiles
so that the entire file is indeed almost sorted when increment equals 1 on the
last iteration. In general the shell sort is recommended for moderately sized
files of several hundred elements.
The algorithm for shell sort is given below :

Given an array A having N elements. We want to arrange the elements in
ascending order. I, J denote array indices. INCREMENT denotes the number of
increment (gap) between the elements sorted which finally reduces to 1, to
ensure that the array is completely sorted. Variables EXCHS and TEMP are
used for storing the number of exchange during a pass and swapping the
elements. PASS denotes the pass.counter (Note INCREMENT depends on the
user’s choice)
1. PASS 0

INCREMENT

Self-Instructional Material
183

2. Repeat while (INCREMENT < N)
INCREMENT ^ INCREMENT x 3 + 1

3. PASS <- PASS + 1 •
INCREMENT Integral part of (INCREMENT/3)

4. EXCHS ^ 0
5. Repeat for I = 1, 2, 3,

Data Structures
Through 'C

NOTES

, N-INCREMENT
{

If (A[I] >A [I+INCREMENT]) Then

{
EXCHS 4- EXCHS + 1
TEMP A(I]
A[I] *- A[I + INCREMENT]
A[I+INCREMENT] <--TEMP '

}
}

6. If (EXCHS 0) Then , .
goto step 4

• 7. If (INCREMENT 1) Then

goto step 3
8. End

The following function in C implements the above concept :

/* function definition shell sortO */

void shell sortdnt arr[],int n)
{

int i,j,increment,exchs,temp,pass=0; /* local variables */ ,
increment=l;

/* choose sequence of increments */
while(increment<=n)

increment = increment*! + 1;
do V

{
pass++;
increment /= 3;
printf{"iteration %d :\n",pass);
do
{

exchs=0;
for(i=0;i<n-increment;i++)

{
if(arr [i]>arr[i+increment]}

{
exchs++; /* increment number of exchanges */

Self-Instructional Material184

Searching and Sorting./* swapping */
= arr [i];temp

arr [i] = arr [i+increment]
arr[i+increment] = temp;

} . NOTES
. }
for(j=0;jcn;j++)

printf (’'%d " ,arr [j])
printf("exchs = %d\n",exchs); '

}while(exchs);
}while(increment != 1);

}

^6iviii) Heap Sort
I Let us discuss same basic concepts which are essential for understanding heap

sort.

6.3.7 Definitions
- A max tree (min tree) is a tree in which the value in each node is greater (less)

than or equal to those in its childern (if any). Some max trees are shown in
figure 12, and some min trees are shown in figure 13.

Fig. 12. moj:-frees.

Self-Instructional Material
185

Note that max trees and min trees are binary trees, it is not necessary for a
maxtree or mintree to be binary. Nodes of a max or min tree may contain more
than two childern.
A max heap (minheap) of size N is a max (min) tree that is an almost complete
binary tree of N nodes. A max heap is also called a descending heap or a
descending partially ordered tree.
Generally a max heap represented by an array A of size N satisfies the property
A[J] < A[I] for 2 < J < N and I = Integral part of (J/2) assuming that array starts
with index 1.
It is clear from this definition of a max heap that the root of the tree (or the first
element of the array) contains the largest element in the heap. Also note that-
any path from the root to a leaf (or'indeed, any path in the tree that includes
no more than one node at any level) is an ordered list in descending order.
Similarly we can define an ascending heap (or a min heap) as an almost,
complete binary tree such that the content of each node is greater than or equal
to the-content of its father.
The max tree of figure 12 (6) is not a max heap. The other two max trees are
max heaps. The min tree of figure 13 (b) is not a min heap. The other two are.
Since a heap is an almost complete binary tree, it can be efficiently represented
in memory using one dimensional array. Here, we will be discussing max heaps.

Data Structures
Through 'C

NOTES

f
I

301

2 20

3 28

4 16

5 18

6 12

7 A

8 2

9 10

10 6

11 8

Fig. 14 (a) Max heap of 11 elements (b) Sequential representation of max heaa

186 Self-Instructional Material

Searching and Sorting6.3.8 Insertion into a Max Heap
Figure 15 (a) shows a maX heap with five elements. When an element is
added to this heap, the resulting six-element heap must have the structure
shown in figure 15 (b).

NOTES

(a) (b)

(c) (d)

Fig. 15. Insertion into a max heap.

Because a heap is an almost complete binary tree. If we want to insert 10, it
may be inserted as the left child of 12. If instead, the value of the new
element is 28, the element cannot be inserted as the left child of 12 {as in this
case, we will violate the max tree property). Therefore, the element 12 is
moved down to its left child (see Figure 15(c))' and we check whether placing
28 at the old position of 12 results in a max heap. Since the parent element
(30) is at least as large as the element 28 being inserted, we can insert the
new element at the position shown .in figure.

Next suppose that the new element has value 33 rather than 28. In this case
the element 12 moves down to its left child as shown in figure 15 (c). The
element 3S cannot be inserted into the old position of element 30 is moved'
down to its right child and the element 33 inserted in the root of the heap
(figure 15 (d)). , • .

This method of insertion just explained above makes a single pass from a leaf
towards the root. At each level we do 0(1) work, so we should be able to
implement this method to have complexity O(height) = 0(log n).

Self-Instructional Material
187

Data Structures
Through ‘C

6.3.9 Deletion from a Max Heap

When an element is to be deleted from a max heap, it is taken from the root of
the heap. For example, a deletion from the max heap of figure 16 (a) results,

NOTES

(a) (t)}

Fig. 16 Deletion from a max heap

in the remo^'al of element 12. Since the resulting max heap has only five elements,
the binary tree of figure 16 (a) needs to be readjusted to give a complete binary
tree with five elements. For this redjusting, we remove the element in position
six, that is, the element 4. Now we have the structrue shown in figure 16 (6),
but the root is vacant and the elernent 4 is not in the heap. If the element 4 is
inserted into the root the resulting binary tree is not a max tree. The element
at the root should be the largest from among the element 4 and the elements
in the left and right children of the root. This element is 10. It is moved into
the root there by creating a vacancy in position two. The element at position two .
should be the largest from among the element 4 and the elements in the left and
right children at position four and five. This element is 6 (see figure 16 (c)). It
is moved into position two, and the element 4 is inserted into position five. The
resulting heap is' shown in figure 16 id).

The deletion method explained above makes a single pass from the heap root
down towards a leaf At each level 0(1) work is done, so the time complexity of
these operations is O(height) = Odog n).

188 Self-Instructional Material

6.3.10 Sorting using a Heai>—an Example
Let A be an array having N elements. Assume that N = 11 and the values of
the elements in A[l:ll] are {12, 2, 16, 30, 8, 28, 4, 10, 20, 6, 181. We want to
arrange the elements in ascending order using heap sort method. Figure 17
illustrates the creation of a heap of size 11 from the original array A. Here
index variable K denotes the number of insertions which is to be performed.
The dotted lines in that figure indicate, an element being shifted down the
tree.

Searching and Sorting

NOTES

Self-instructional Material
189

Data Structures
Through ‘C

NOTES

r

1

Fig. 17. Creating a heap of size 11.

Figure 18 illustrates the adjustment of the heap as A[l] is repeatedly selected
and placed into its proper position in the array and the heap is readjusted, until

Original tree

.'1 ■

'v
f

S^lf'In&tructional Material190

Searching and Sorting

NOTES

Fig. 18. Adjusting a heap.

all the heap elements are processed. K denotes the pass index. Note that after
an element has been “deleted” from the heap, it remains in the array, it is
merely ignored in the subsequent processing.

6.3.11 Algorithm Create heap (A, N)
This algorithm produces as output a max heap. Initially the heap has one
element. Now elements are inserted into the existing heap such that a new max
heap is formed after insertion. This procedure is repeated until all elements in
the given array form a max heap. —
The general approach , of create heap is as follows :

1. Repeat while there still is another element to be placed in the max heap
upto step 5

2. Take element to be placed at leaf level
3. Find position of parent for this element

Self-Instructional Material
191

Data Structures
Through ‘C

4. Repeat while the element has a parent and the element is greater than its
parent /• //

• Move parent down to position of element

Find position of new parent for the element

5. Insert element into its proper place (position)

The algorithm CREATE HEAP is given below ;

Given an unsorted array A having N elements. This algorithm creates a max
heap. The index variable K denotes the number of insertions which is to be
performed. The integer variable J denotes the index of the parent of element

■ A[l]. Variable VALUE stores the element being inserted into an existing heap.
1. [Build max heap]

Repeat for K = 2, 3,
2. [Initialize]

NOTES

N up to step

I ^ K

yALUE 4- AlKl
3. ^[Find position of parent of new element]

J <— Integral value of (1/2)

[Place the new element in existing max heap]

Repeat while (I > 1 and VALUE > A[J])

4./

{
(Interchange elements]

A[l] <- A[J]

[Find position of next parent]
I 4- J

J Integral value of (1/2)
If (J < 1) Then

J 1

}

[Place the new element into its proper position]5.

A[I1 VALUE
6. End

6.3.12 Algorithm Heap Sort (A, N)
This algorithm takes as input a maxheap stored in array A having N elements.
The element with the largest key is currently in A[l] and it can be written out
directly. This is done by interchanging A[l] and A[N], and then it restructures
a new max heap having only N-i elements. This is done in the same way as in
algorithm CREATE HEAP, i^ain the restructural max heap stores the second
largest element in A[l], This element can now be exchanged (swapped) with

Self-Instructional Material192

element A[N-1I. A new max heap is then restructured for N'2 elements. By
repeated application of these steps, the given array can be sorted. The general
approach for heap sort is as follows :

1. Create the initial max heap.

2. Repeat for N-1 times up to step 5

3. Swap (exchange) first element with, last unsorted element
4. Find position (index) of the_largest child of the new element.

5. Repeat for the urisprted element in the maxheap and while the current
element is greater than the first element

Searching and Sorting

NOTES

{
Interchange elements and find the next left child •
Find position of the next largest-child
Place the element into its proper position

}
The algorithm HEAP SORT is given below :

Given an array A having N elements and the algorithm CREATE HEAP which
has been previously described, this algorithm sorts the array into ascending
order. The variable K denotes the pass number. Variables I and J denote the
array indices, where J is the index of the left child of I. Variable TEMP is used
for swapping and VALUE is used for storing the element being swapped at each
pass.
1. [Create the initial max heap]

CALL CREATE HEAP(A, N)

2. [Sorting]

Repeat for K = N, N - 1,
3. [Exchange elements]

TEMP A[K]
A[K| ^ A[l]'

A[l] <-,TEMP

4. [Initialize the-pass]
I 1
VALUE ^ A[ll ,
J 2

5. (Find position of the largest child of new element]

If (J+1 < K) Then

,2 upto step 6

{
If (AlJ + 1) > AUl) Then

J <- J + 1

}

Self-Instructional Material
193

6. [Now reconstruct the new max heap] .

Eepeat while (J < K-1 and A[J] > VALUE)

Data Structures
Through ‘C

{
A[I) ^ A[J]

(Obtain the next left child]
I J
J e- I X 2

[Obtain the position of next largest child]
If (J+l < K) Then

NOTES

{
If (A[J + 1] > A[J]) Then

J <- J + 1
Else

{
If (J > N) Then .

J ^ N
}

}
[Copy the element in its proper position]

A [I] VALUE
}

7. End.

6.4 SUMMARY OF SORTING METHODS
Some of the sorting methods discussed here are summarized in Table 1 Note
that the entries in the table are approximate. The parameter m denotes the
number of digits in a key. It is used in the radix sort.

Table 1. Comparison of Sorting Methods
; (entries are approximate)

Space UsageWorst CaseAlgorithm Average

n^/4.n^/4 In place
In place

Extra n entries
Extra loggO entries

In place
Extra space for^links

SELECTION
BUBBLE SORT
MERGE SORT
QUICK SORT
HEAP SORT
RADIX-SORT

n^/4 n2/2
0(nlog2n)OCnIogjn)

0(nlog2n)
0(nlog2n)
0(m+n)

n2/2

•OCnloggn)
0(m+n)

It is difficult to assert that a particular sorting technique is 'always superior to
other methods for every key set. Certain properties of a given key set play an
important role in the determination of which sorting technique should be

194 Self-Instructional Material

preferred. Properties such as the number, size, distribution, and orderness of Searching and Sorting
keys often dictate which method should be used. The amount of memory available
in performing the sort may also be an important factor.
In summary, the selection or bubble sorts can be used if the number of records
in the table is small. If n is large and the keys are short, the radix sort can

• perform well. With a large n and long keys, quick, sort, heap sort, or a merge
sort can be used. If the table is, initially, almost sorted, then -quick sort should
be avoided.

NOTES

6.5 SUMMARY
• The searching techniques are Binary Search and Sequential Search.
• A method which traverses data sequentially to locate item is called Linear

or Sequential Search,
• Binary search technique .can be applied only on the sorted data.
• Searching an ordered array is called' Interpolation Search.
• Bubble sort is a sort that exchanges the neighbor elements i and i+1 of a

sequence starting from left going to right.
• Quick sort is the best sorting algorithm when one does not have infinite

memory space Quick sort originally proposed by C.A.R. Hoare, Computer
Journal, April 1962.

• A selection sort is one in which successive elements are selected in order and
placed into their proper sorted positions.

• The most common algorithm used in an external sorting, that is for the
problem in which data is stored in disks or magnetic tapes, merge sort is an
excellent sorting method.

6.6 TEST YOURSELF
Answer the following questions :

1. Explain the algorithm for selection sort and give a suitable example.
' 2. Explain the algorithm for exchange sort with a suitable example.
3. Write an algorithm to sort the N elements of an array in ascending order using

Bubble Sort technique.
4. Write C procedure to implement :

(a) Shell sort
(b) Radix sort
Each phase of the above algorithms for the input data set in the sequence :
F = (42, 23, 74, 11, 66, 57, 94, 36, 99, 87, 70, 81, 61)

5. Which of the sorting algorithm has best performance in terms of storage arid
time complexity ? Justify your answer,

□□□
Self-Instructional Material

195

