
CONTENTS

Chapters Page No.

SECTION-A
1. Information Representation 1-23

SECTION-B
2. Computer Fundamentals 25-73

SECTION-C
74-983. Programming Fundamentals

SECTION-D
99-1684. Fundamentals of C

169-172Appendix

/

V

SYLLABUS

COMPUTER FUNDAMENTAL & PRGRAMMIMG IN C

SECTION A
Number system : decimal, octal, binary & hexadecimal, representation of integer, fixed and
floating points, character representation; ASCII, EBCDIC

SECTION B
Functional units of computer,:I/0 device, primary and secondary memories.

SECTION C
Programming fundamental: Algorithm development, technique of problem solving,
flowcharting, stepwise refinement, alogorithm for searching sorting exchange and insertion
merging of order lists.

SECTION P
Representation of integers, characters, reals, data types, constant and variables, arithmetic
expression, assignment statement logical expression, sequencing,' alteration and iteration,
arrays, string processing, sub program , recursion, files and pointer testing and debugging of
program.

Information
Representation

; 'f
SECTION A

•J

CHAPTER 1 INFORMATION
REPRESENTATION

NOTES

★ LEARNING OBJECTIVES:*

1.1. Introduction
1.2. Number Systems

1.3. Conversion between Two Different Number Systems
1.4. Representation of Information
1.5. Summary

1.6. Test Yourself

1.1 INTRODUCTION

A digital computer is a machine that accepts a stream of s3Tnbols, stores them,
processes them according to precise rules, and produces a stream of symbols as
its output. Computers are used in scientific calculations, commercial and business
data processing, air traffic control, space guidance, the educational field, and
many other areas. The most important property of a digital computer is its
generality. It can follow a sequence of instructions, called a jsro^om, that operates
on given data.

Few basic features which are common to all digital processing of information
are given below :
• AU streams of input symbols to a digital system are encoded with two distinct

s3mibols 0 (zero) and 1 (one), known as binary digits or bits. Bits can be
stored and manipulated reliably and inexpensively with today’s electronic
circuits.

• The instructions for manipulating the symbols are to be pi'operly specified so
that a machine can be built to execute these. The instructions for manipulation
are also encoded using bits.

• A digital computer has a storage unit which stores the symbols to be
manipulated and the encoded instructions for manipulation of the symbols.

• Bit manipulation instructions are realized by electronic circuits.

Self-Instructional Material
1

Computer Fundamental Iq tjiig chapter we will discuss the representation of information in digital
systems. The two main categories of data are; (i) Numbers, and (ii) Characters.'
As mentioned earlier that internally in a digital system all data are represented
by strings of symbols where each symbol, called a bit, is either a 0 or a 1. The
general properties of number systems, methods of their inter-conversions are
also discussed in this chapter.

& Programming in C

NOTES

^.2 NUMBER SYSTEMS
Number systems are veiy important to understand because the design and
organisation of a computer depends on the number systems. The modern
civilization is familiar with Decimal Number System, in which ten digits,
namely 0 to 9 are used to represent any number. Now the decimal number
system is used frequently in the field of Science and Technology. Once the
famous Mathematician Laplace stated, “It is India that gave us the ingenious
method of expressing all numbers by means of ten symbols, each symbol receiving
a value of position as well as an absolute value, a profound and important idea
which appears so simple to us now that we ignore its true merit.”
Thus, the importance of a number system does not lie in the number of sjnnbols
used in it but what is important in it is the concept of face value (absolute value)
and the place value (value of position) of a symbol. However, if instead of
decimal system the binary number system, using two digits namely, 0 and 1,
had been popular everywhere, the understanding of computer working would
have been much easier. The binary number system is the one which is used in
computers and is based on the fundamental concept of decimal number system.
Various other number systems such as Octal System and Hexadecimal System
(popularly known as Hex system) also use the fundamental concept of face value
and place value.
The knowledge of number systems is essential for understanding of computers.
The useful number systems discussed are :
1. Binary Number System.
2. Octal Number System.
3. Decimal Number System.

4. Hexadecimal Number System.

I

' 1.2.1 Binary Number System
The Binary Number System, as the name suggests, consists of two digits
namely, 0 and 1. These binary digits are called BITS. Thus, the word BIT
stands for either of the binary digits, namely 0 or 1. Since this system uses two
digits only, it has the base or radix 2. It may be noted that the base digit
namely 2, is not the fundamental or basic digit of the system. Thus, all
the numbers in binary system are written with the help of these two digits
namely, 0 and 1. The positional value or place value of each digit in a binary

Self-Instructional Material2

number is twice the positional value of the digit on its right. This number
system is identical to decimal number system with the base replaced .by 2. The .
binary numbers are usually written with the base indicated as a subscript on
the Least Significant Digit (LSD). For example,

(101101.1011)2 •
It can be represented as shown in Figure 1 :

Information
Representation

NOTES

Positional .
values ^ 2^ 23 2© 2"^ 2~^ 2“^2

I i I ; I I I ; i
01 1 1 0 1 1 0 1 1

1 t t
MSB Binaiv

point
LSB

(Most Significant,Bit) (Least Significant Bit)

Fig. 1. Binary number shown with positional values.

Here, the places to the left of the binary point are positive powers of 2 and
places to the right are negative powers of 2.

The commonly used terms in coding of data in computer terminology are :

BIT (Binary digiT). A binary digit is logical 0 or 1.

Nibble. A group of four bits (binary digits) is called a Nibble. It is useful in
coding the numeric data to hexadecimal form.

Byte. A group of 8 bits make a byte. A byte is the smallest unit which can
represent a data item or a character.

Computer Word. A computer word, like a byte, is a group of fixed number of
bits which varies from computer to computer but is fixed for each computer. The
number of bits in a computer word is_^known as the word size or word length.

Why is Binary Number System used by Computers ?

(i) The circuits and switches in a computer have only two'states, either on
or off, which are represented by 1 and 0.

Hi) Handling of two digits, that is, .1 and 0 is simpler, cheaper and more
reliable.

HU) Every operation or activity that can be performed by decimal number
system can also be done using binary number system, so it does not

\'\ create any problem.

1.2.2 Octal Number System
This number system has base or radix 8. The basic'digits of this system are
0, 1, 2, 3, 4, 5, 6 and 7. It may be noted that the base 8 is not the basic digit
of the system. It is commonly used as a shorthand way of expressing binary
quantities. Also the numbers represented in octal number system can be used
directly for input and output operations.

\

/'

Self-Instructional Material
3

Computer Fundamental The Octal number system is also a positional value system,- wherein each octal
digit has its own value or weight expressed as a power of 8. For example,

(157246.3174)

It can be represented as shown in Figure 2 :

& Programming in C

8

NOTES
Positiona
values 3”^ 3”® 3-'3^ 8“ -13‘ 3^ 8' 8

I I i I I I ; ; I 4 I

3 1 7 47 2 4 61 5
■I

tt
LSDOctal

point
MSD

(Most Significant Digit)
■i

(Least Significant Digit)

Pig. 2. Octal number shown with positional values.

Here, the places to the left of the octal point are positive powers of 8 and places
to the right are negative powers of 8.

1.2.3 DecHTtiil Number System
The decimal* number system consists of 10 digits namely 0 to 9. A number
written using these digits is called a decimal number. For example, the numbers
12876, -1024, 58.74, +768 are decimal numbers. Apart from these digits, the
decimal point and ± signs may also be used in writing decimal numbers. The
base or radix of the number system is the number of digits used in it. Since
the decimal number system consists of 10 digits, the base of this system is 10,
In a number system the base is not the fundamental digit of the system because
fundamental digits in this system are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. The value of each
digit in a number depends upon the following :

(i) The face value of the digit, that is, the digit itself.
(«') The base of the system.
iiii) The position of the digit in the number.

Thus, the magnitude of a number depends upon the digits of which it is made,
position of the digits and base of the system. For example,

351479.8265
Since no base is mentioned, the base is taken as 10.
It can be represented as shown in Figure 3 :

Positional .
values to* 10^ 10^ 10' 10“ 10-' 10"^ 10^ 10“*

; i , ; I I I i I I I
2 64 7 9 8 53 5 1

I

t-t t
LSDDecimal

point
MSD

(Most Significant Digit'i* (Least Significant Digit)

Fig. 3. Decimal number shown with positional values.

Self-Instructional Material4

Here, the places to the left of the decimal point are positive powers of 10 and
places to the right are negative powers of 10.
In a decimal number as we move from right to left (starting with the digit
before decimal point) the positional or place value of each digit is 10 times the
positional value of the digit to its right and as we move from left to right
(starting with the digit after decimal point) the positional value of each digit
becomes one-tenth of the positional value of the previous digit. The part of the
number before the decimal point is called integral part and the one after the
decimal point is called the fractional part. ’

Information
Representation

NOTES

1.2.4 Hexadecimal Number System
The Hexadecimal Number System, popularly known as Hex System, has sixteen
symbols and therefore has the base or radix as 16 or H. It is very well suited
for big computers. The hexadecimal number system represents an information
in the concise form. The sixteen symbols used in this system are :
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
The equivalence between hex-numbers (hexadecimal numbers) and decimal
numbers is given below :

Decimal 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Hexadecimal 0 1 2 3 4 5 6 7 8 A B C9 D E F

Hexadecimal number system-is also a positional value system, wherein each
hexadecimal digit/letter has its own value or weight expressed as a power of 16.
For example,

(6A9E83.C5BD),^
lb

It can be represented as shown in Figure 4 :

Positional
values 1$* 16^ 16=' 16^ 16' 16® 16-' ir^ 16-® ir^

I ; I I i I 4 I I I
A E6 9 8 3 C 5 B D

t t t
MSO

(Most Significant Digit)
Hexadecimal

point
LSD

(Least Significant Digit)

Fig. 4. Hexadecimal number shown with positional values.

Here, the places to the left of hexadecimal point are positive powers of 16 and
places to the right are negative powers of 16.
Table 1 illustrates the relation between binary, octal, decimal and hexadecimal
number systems ; I,

Self-Instructional Material
5

Computer Fundamental
& Programming in C

Table 1. Numbers with different bases

Octal
(base 8)

Decimal
(base 10)

Hexadecimal
(base 16)

Binary
(base 2)

0 00000 0NOTES
0001 1 1 1

2 20010 2
3 3 ■30011

0100 4 44
0101 5 5 5 .
0110
0111

6 6 6
7 7 7\

1000 10 8 8 \
1001 11 9 9

A1010 ■ 12 10
B1011 13 11)

C1100 14 12
1101 15 13 D
1110 16 ■ 14 E

• Fnil 17 15

1.3 CONVERSION BETWEEN TWO DIFFERENT

NUMBER SYSTEMS
The decimal number system is known as International System of numbers.
This base (base 10) was used initially perhaps for the reason that man has 10
fingers. However, this system is unsuitable for computers because a computer
uses electrical and electronical components which can exist only in two states.
Hence, for computers the binary number system is required. But, the binary
number system at the'moment is indispensable for computers as it suffers from
the defect of expansion. For example, a number in decimal system requiring
only one digit for its representation may require more than one bits in binary
form.

. <
To overcome this problem various other number systems such as Octal (base 8)
and Hexadecimal (base 16 or H) were developed. A base greater than 10 is
preferred because it will require even lesser number of digits. The choices of
bases 8 and 16 are useful because of their being multiple of two.

1.3.1 Conversion from Binary to Decimal
A binary number can be converted to its decimal equivalent by adding the
weights of the various positions in it which have a 1.
Example. Find the decimal equivalent of the following binary numbers :

(i) 10110 (ii) 11011100.

Self-Instructional Material6

Solution : Information
Representation(10110)2 = 1 X 2^* + 0 X 2^.+ 1 X 2^ + 1 X 2^ + 0 X 2°

= 16 + 0 + 4 + 2 + 0

= (22),,.
It must be noted that the binary number 10110 has five digits in all. The most
significant digit (MSD) has the fifth position (starting fi’om rightmost digit) so
it is multiplied by 2^ and each digit on its right wilFBe half of it in its positional
value, so these are multiplied by-2^, 2^, 2^, 2^ respectively and the products so
obtained are added to get the required decimal equivalent.
Hi) (11011100)2 = 1 X 2’ -f 1 X 2® + 0 X 2^ + 1 X 2^+ 1 X 2^ + 1 X 2^

+ 0 X 2^ + 0 X 2®

(0

NOTES

= 128 + 64 + 0 + 16 + 8 + 4 + 0 + 0

= (220),,
= 220.

1.3.2 Conversion from Decimal to Binary
A positive decimal integer can be converted to binary form by successive division
by 2. The procedure is given below :

Divide the given number N by 2 and let the quotient be q, and the remainder
be Rj. Again divide the quotient q, by 2 and let the remainder be R2. Continue
the procedure of division till the quotient becomes 0 and in this case let the
remainder be R .n
Then, the binary representation by N is given as

N = R Rn ^3 ^2 ^n-\ 1’
where each of the R’s is either 0 or 1.

Example. Convert the following decimal integers into their binary equivalents :
(i) 25 (ii) 283.

Solution : (i) Start dividing 25 by 2 and continue the procedure till the quotient
is 0. The procedure is shown below :

2 25
{=Ri)2 12-1
(=R2)2 6-0
(=R3)2 3-0
(=R.)2 1-1
(=1(5)0-1

The required number in the binary number system

= \ \ R3R2R1

= 11001

(25),, = (11001)2Thus,

Self-Instructional Material
7

Computer Fundamental (jj) Start dividing 283 by 2 and continue the procedure till the quotient
& Programming in C becomes 0.

2832
(=Ri)141-12

NOTES (=R2)70-12
(=R3)35-02
(=R4)17-12
(=R5)2 8-1 •
(=R6)4-02
(=R7)2 2-0
(=R8)1-02
(=R9)0-1

The required binary equivalent of 283
Rg ^7 Rg R5 ^4 ^3 ^2 Rl

= (100011011)2
{283)jo = (100011011)2

The decimal digits and their binary equivalents are given in Table 2.

= R9

Thus,

Table 2. Decimal digits and their binary equivalent

Binary EquivalentDecimal Digit \
X(0 X 2«)

(1 X 2«)
(1 X 2' + 0 X 2'’)
(1 X 2‘ + 1 X 2«)
(1 X 2* + 0 X 2' ■+ 0 X 2“)

(1 X 2^* + 0 X 2‘ + 1 X 2'>)
(1 X 2^+ 1 X 2’ + 0 X 2")

(1 X 2^* + 1 X 2' + 1 X 2'>)
(1 X 2^ + 0 X 2^ + 0 X 2‘ + 0 X 2")
(1 X 2= + 0 X 2* + 0 X 2‘ + 1 X 2«)

0 0
11
102

• 113
1004
1015
1106
1117
10008

9 1001

1.3.3 Conversion of Decimal Fractions to Binary Fractions
While converting decimal fractions to binary fractions, instead of dividing by 2,
multiply successively by 2 and instead of noting the remainders as in case of
integers, keep track of the overflow. If overflow digits are f^, f^, f^,then the
equivalent binary fraction is

0-A4/3... -L
while multiplying by 2, it must be noted that every time only fractional part is
to be multiplied and not the integral part. The following examples illustrate the
procedure.

Self-Instructional Material8

Information
Representation

Example 1. Convert the decimal fractional number 0.8125 into its binary
equivalent.
Solution : .

0^125
NOTESx2

1 .6250A
x2

1 .2500 (Multiply only the fraction part)h
x2

4- 0 5000h
x2

1 .0000.. U
Further multiplication gives only zero digits as overflow.
Thus, (0.8125),, = 0. A A A A

= (0.1101)2

Example 2. Convert 0.33 into its binary equivalent.

Solution. 053
x2

0 .66A
(Multiply only the fraction part)-x2

<- 1 .32A
x2

<- 0 .64A
. x2

^ 1 58A
x2 .

0 .56A
x2

and so on.1 12A.
(o.33)„ =o.aaAAAA-:

= (0.010101...)2

Thus,

1.3.4 Conversion of Mixed Numbers (6*om Decimal to Binary)
A mixed number consists of an integral part as well as a fractional part. For
example, 38.625 is a mixed number. A mixed number in decimal system can be
converted to its binary equivalent by converting the integral and fractional
parts separately into their binary equivalent.

Self-Instructional Material
9

Computer Fundamental The following example illustrates this concept :
& Programming in C

Example. Convert the decimal number 38.625 into its binary equivalent.
Solution : The given decimal .number has two parts, namely an integral part
38 and a fractional part 0.625; These are to be converted into their binary
equivalents separately, as given below :NOTES

2 38
(-Ri) '■2 19-0
(=R2)9-12 (
(=R3)2 4-1
(=R4)2-02
(=R5)1-02
(=R6)0-1

Thus, the binary equivalent of (38)jq = Rg Rg R^ R^ R2 R^

= (100110)2
0.625Also

x2
<- 1 .250A

(Multiply only the fraction part)x2
<- 1 500A ,

x2
<- 0 .000I A

Further multiplication gives only zero digits as overflow.
Thus, (0-625),g

= (0.101)2
{38.625)jg = (100110.101)2Hence,

1.3.5 Conversion of Decimal Numbers to Octal Numbers
For converting integer decimal numbers into their equivalent octal numbers,
divide the given number repeatedly by 8 till the quotient obtained is zero. The
following example illustrates this concept :
Example. Convert the following Decimal numbers into their Octal equivalents :
(ij 759 (ii) 1598.

/
Solution : (i) Start dividing 759 by 8 and continue the procedure till the quotient
is 0. The procedure is shown below :

8 759
94-7 LSD8
11-68

\
8 1-3

MSD0-1

- Thus,' (759),g = (1367)8

10 Self-Instructional Material

Information
Representation

8 1598Hi)
LSD8 199-6

8 24-7
8 3-0

NOTESMSD0-3

Thus, (1598)jq = (3076)
For converting decimal fractions into their equivalent octal fractions, multiply
the fractional part repeatedly by 8 and keep track of the overflow. The process
of multiplication continues till the fractional part becomes zero or ui5to required
number of digits.

6

/

1.3.6 Conversion of Octal Numbers to Decimal Numbers
A mixed octal number can be converted to decimal number by the formula given
below :
M = ,8" + 8"-^ + d ,8'‘-2 +n*l + dj8“+ ff_i8-4 d_28-2

+ d + ... + d 8-"
n-ln

-3 -n
M IS the mixed number

is the digit in the (n + l)th position of the integral part
d_j is the digit immediately after the octal point.

The following examples illustrate this concept :

Here,

XExample 1. Convert the following octal numbers into their decimal equivalents :
(i) (47)^ (ii) (564)

Solution, ii)

I

ST
(47)g = 4 X 8^ + 7 X 8®

= 32 + 7 = 39
(47)g = (39)^,

(564)„ = 5x8^+ 6x8^+ 4x8“
= 5x64 + 6x8 + 4x1
= 320 + 48 + 4
= 372 '

(564)g = (372)^3

Example 2. Convert the following octal fractions to their decimal equivalents :
(i) (0.34)^ (ii) (0.542)^

Solution, ii)

Thus,
Hi)

Thus

-1 -2(0.34)g = 3x8
= 3 X 1/8 + 4 X 1/64
= 3 X 0.125 + 4 X 0.015625
= 0.375 + 0.062500
= (0.4375)^g

('0.542)„ = 5 X 8"^ + 4 X 8"^ + 2 X 8““
= 5 X 0.125 + 4 X .015625 + 2 x 0.001953125
= 0.625 + 0.062500 + 0.003906250
= (0.691406250)^^ .

+ 4x8

\

Hi) 8

Self-Instructional Material
11

1.3.7 Conversion from Octal to Binary
liie octal number system is widely used as a shorthand way of expressing
binary values. The octal number system groups three binary bits together into
one digit (0 to 7) as given in Table 3.

Table 3. Octal numbers and their binary equivalent -

Computer Fundamental
& Programming in C

NOTES

Binary EquivalentOctal

000.0
0011
0102
Oil3
1004
1015
1106
1117

To convert an octal number to its binary equivalent, each digit of the octal
number is converted to its 3 bits binary equivalent.
The following examples illustrate this concept ;

Example 1. Convert the following octal numbers into their binary equivalents :

(i) (746), (ii) (5043)8
“1“ (Replace each octal digit by its 3 bits

< 4.0
' binary equivalent)

Solution : (c) (746)8

I = (111100110)2
(746)g .= (111100110)2

101 000 10,6 oil
" 5 0 4 '3
= (101000100011)2

(5043)„ = (101000100011),a z

Example 2. Convert the following octal numbers into their binary equivalents :

(i) (35.216), (ii) (417.25)

Thus,

(5043)Hi) 8

Thus,

S'8
oil 101 010 001 110

Solution : ii) (35.216)8 3 5 2 1 6
= (11101.01000111)2

(Discarding the leftmost and right most zero)
(35.216)g = (11101.01000111)2

100 001 111 010 101
" 7 5
= (100001111.010101)2

(417.25)g = (lOOOOllll.OlOlODg

Thus

(417.25)(ii) 8

IThus,
y
12 Self-Instructional Material

1.3.8 Conversion from Binary to Octal
For converting a binary number into its octal equivalent the following steps are
foUowed ;

(i) Divide the given binary number before the binary point , into groups of
three bits each (from right to left) and after the binary poirit into groups
of three bits each (from left to right) by adding 0 bits for completing the
groups (if needed).

(ii) Replace each group by its octal equivalent.

The following examples illustrate this concept :
Example. Convert the following binary numbers into their octal equivalents : _
(i) (lllOl)^ Hi) (101010011011.10100011)^ '

Information
Representation

NOTES

<-
011 101

^ (Replacing each group by its
octal equivalent, 0 added on
leftmost position for completing
the group)

Solution : (i) (11101)2 =

Thus, (11101)2 = (35)8

101000110
‘5 2 3 3 ■ 5 0 6

(Replacing e^ch group by its octal
equivalent, 0 added on rightmost position
for completing the group).

Hi) (101010011011.10100011)2 =

Thus, (101010011011.10100011)^ = (5233.506),
Z o

1.3.9 Conversion of Decimal Numbers to Hexadecimal Numbersv>
For converting integer decimal numbers into their,equivalent hexadecimal
numbers, divide the given number repeatedly by 16 (if the remainder is greater
than or equal to 10 then write its symbol, that is, A to F, otherwise the digit
0 to 9) till the quotient obtained is zero.
The following example illustrates this concept :

Example^ Convert the following Decimal numbers iriio their Hexadecimal
equivalents ■:
. (i) (28)^^ (ii) (1795)

Solution, (i) Start dividing 28 by 16 and continue the procedure till the quotient
is 0. The procedure is given below : , - .

416 28
1-C16
0-1

Thus, (28)jo = (lC)jg

Self-Instructional Material
13

Computer Fundamental
& Programming'in C

16 1795(«)
112-3 “16

16 7-0
0-7

NOTES Thus, (1795\^ = (703)jg
For converting decimal fractions into their equivalent hexadecimal fractions,
multiply the fractional part repeatedly by 16 and keep track of the overflow. If
the overflow is greater than equal to 10 then write its sjTnbol, that is, A to F,
otherwise the digit 0 to 9. The process of multiplication continues till the fractional
part becomes zero or upto required number of digits.

1.3.10 Conversion of Hexadecimal Numbers to their Decimal
Equivalents

The conversion of hexadecimal numbers to their decimal equivalents is performed
by using the concept of the positional value of each digit in the number, whether
it is an integer, a fraction or a mixed number. The following examples illustrate
this concept :

Example. Convert the following hexadecimal numbers to their decimal
equivalents

(i) '(9D)^g (ii) (517)

Solution : (i) (9D)^g = 9 X 16’ + D X 16°
= 144 + 13 X 1

= 144 + 13 = 157
(9D)^^ =

(517)jg = 5 X 16^ + 1 X 16’ + 7 X 16°
= 5x 256 + 1x 16 + 7x1

=, 1280 + 16 + 7 = 1303
(517)^^ = (1303)^„

1.3.11 Conversion &om Hexadecimal to Binary
For converting a hexadecimal number to its binary equivalent, each digit of the
hexadecimal nximber is converted to its 4-bits binary equivalent. For reading
convenience, usually each nibble (4-bits binary equivalent) is written with a
little space in between. The following examples illustrate this concept :

Example 1. Convert the following hexadecimal number into their binary
equivalent:

(i) (B9F)^^

Solution, (i) (59F),„ =
io

't (••• D = 13)

!
Hence) *.
iii)

Hence,

0101 1001 1111
g g p (Replace each hexadecimal digit by its

4 bits binary equivalent)

= (0101 1001 1111)2

(59F)jg = (0101 1001 1111)2Thus,

14- ' . Self-Instructional Material

V..

Example 2. Convert the following hexadecimal number into their binary
equivalent :

(i) (F3A.CB)j^

Information
Representation

nil 0011 1010 1100 1011
F 3 A C B

(Replace each hexadecimal digit by its 4 bits binary
equivalent)

= (1111 0011 1010 .1100 1011)2

(F3A.CB)jg = (1111 0011 1010 . 1100 1011)2

NOTESSolution : {i) (F3A.CB)^g =

. Thus

1.4 REPRESENTATION OF INFORMATION

We are familiar about different types of number systems. In" order to talk to
computers one has to convert the information, numeric or non-numeric, into
binary form. Therefore, one must know how the information is stored in computer
memory. I

1.4.1 Binary Representation of Integers
The different ways of integer representation in computer memory are :

(i) Sign and Magnitude representation *
(«)-One’s complement representation

{Hi) Two’s complement representation

(i) Sign and Magnitude Representation
It is the conventional form for number representation. Every integer has a sign
(+ or -) and a string of digits representing the magnitude.
For example,

•!
+ 241 or 745 are positive integers (+ sign may be omitted)
- 127, - 82 are negative integers

The sign of a number is represented by the MSB (Most Significant Bit). If it
stores value 0, the sign is +, and if stores 1, the sign is -.
Let us assume that the word size of the computer is 16 bits, then +93 will'be
represented as given below :

0 101 V (93)io = (1011101)20 0 0 0 0 0 0 10 0 1 1

t t
MSB (0 for + sign) • LSB

Fig. 5. Representation, of Integer Number in binary form.

Self-Instructional Material
15

\

■Computer Fundamental Since, bit pattern of 93 consists of 7 bits, it is expanded to 15 bits by addir^ the
required number of zeros to the left as 000000001011101.
-33 will be represented as given below ;

& Programming in C

NOTES
V (33)io = (100001)21 0 0 0 j 0 0 0 0 0 0 1 0 0 0 0 1

1 ■

t t
MSB LSB
(1 for-Sign)

Fig. 6. Number in binary form.

Since bit pattern of 33 consists of 6 binary digits, it is expanded to 15 bits by
adding, the required number of zeros to the left as 000000000100001.

. Integer Range for N Bit Word. The range for integer numbers using sign and
magmtude representation is given by the formula :

N-1\ N-1
-2 2 -1to

as 1 bit is used for sign notation so (N-1) bits represent the magnitude.
For N = 16, the range is

16-1 216-1

2^^-l
-2 -1to

_2l5that is ,'to\
-32768 32767toN or

r 1
iVbte. In this method of representation, we obtain two representations for 0, one for
+ 0 and other for - 0.I

L J'

LThe nhmber + 0 is represented as given below :
\

0 0 0 ' 0 0 0 0 0 0 0 0 0 0 0 0 0

MSB (0 for + sign)

The number - 0 is represented as given below :

V LSB/■

1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MSB (1 for-sign)\
(ii) One's Complement Representation

Using one’s complement positive numbers are represented by their binary
equivalents (also known as true forms) and negative numbers by their I’s
complements (also known as I’s complement forms). For an n-bit number, the
maximum positive number which can be represented in I’s complement form is

; /fiirl
and the minimum negative number '(2-1) •

LSB\

f
^-1
(2-1) ;

16^;) ^Self-Inslr'uctional Material
I

Information
RepresentationI’s complement of a binary number is found by replacing every 0 with 1 and

every 1 with 0.

For example,
I’s complement of binary number 100111 will be 011000,
The number - 45 using a 16-bit word is represented as given below :
V ■ (45)^„ = (lOllOl)^
Now the 16-bit pattern is 0000000000101101
I’s complement of the above pattern is 1111111111010010, which is stored
as :

NOTES

\

\

1 1 1 1 11 1 1 1 1 0 1 0 0 1 0

Note. In this method of represenlalicn, like sign bit magnitude representation, we obtain
two representations of 0, one for +0 and other -0. These representations are:

0 0 0 00 0 0 0 0 0 0 0 0 0 0 0

Hepresentation of +0

t
1 1 1 1 1 1 1 1] 1 1 1 1 1 1 1 11

1’s complement representation of —0

(Hi) Two’s Complement Representation
Using two’s complement positive numbers are represented by their binary
equivalents (also known as true forms) and negative numbers by their 2’s
complement form. For an n-bi(. number, the maximum positive number which

n-1
can be represented in 2’s complement form is (2-1) and the minimum negative

number is -2’’“^.
2’s complement of a number is found by adding 1 to its I’s complement.-

or

For finding the 2’s complement of a number, start from the LSB and write the
bits as it is til! the first 1 appears (do not change the first 1 to 0), then write
the I’s complement of the remaining bits to the left side of it.
For example, 2’s complement of bina^ number 1110001 will be calculated as
given below :
I’s complement of 1110001 0001110

+ 1
2’s complement of 1110001 0001111
r n

Note. Rules for binary addition are :
0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 10

L J

Self-Instructional Material
17

Computer Fundamental number - 45 using a 16-bit word is represented, as given below :
& Programming in C

(45)jq = (101101)2
Now the-16-bit-pattern is 0000000000101101

I’s complement of the bit pattern is 1111111111010010

The 2’s complement is obtained as under ;
i’s complement is 1111111111010010

NOTES

+1
2’s complement is 1111111111010011

The above shown pattern is stored as :

1 1 , 1 1 1 1 1 1 1 1 0 1 0 0 1 1

r n
Note. Unlike sign-bit magnitude and I’s complement representation, both + 0 and
- 0 have the same representation under 2’s complement method.I I

L J

In general, the negative numbers are stored in the computer memory in 2’s
complement form and positive numbers in sign and magnitude form.

Comparison between Vs and 2’s Complements
A comparison between I’s and 2’s complements reveals the advantages and
disadvantages of each.

(i) The I’s complement has the advantage of being easier to implement by
digital components {viz. inverter) since the only thing to be done is to
change the I’s to O’s and vice versa. To implement 2’s complement we can
follow two ways : (1) by finding out the I’s complement of the number and
then adding 1 to the LSB of the I’s complement, and (2) by leaving all
leading O’s in the LSB positions and the first 1 unchanged, and only then
changing all I’s to O’s and vice versa.

(ii) During subtraction of two numbers by complement method, the 2’s
complement is advantageous since only one arithmetic addition is required.
The I’s complement requires two arithmetic'additions when an end-around
carry occurs.

(wi^NChe I’s complement has an additional disadvantage of having two
arithmetic zeros: one with all O’s and one with all I’s. The 2’s complement
has only one arithmetic zero. The^-fact is illustrated below :

We consider the subtraction of two equal binary numbers 1010 - 1010.
Using I’s complement :

--- -- 1010

+ 0101 (I’s complement of 1010)
+ 1111 (negative zero)

We complement again to obtain (-0000) (positive zero), •

18 Self-Instructional Material

Using 2’s complement : Information-
Representation

1010
+ 0110 (2’s complement of 1010)

(Carry oyer)
After dropping the carry over, the result is +0000.

In this 2’s complement method no question of negative or positive zero arises.

1 0000 NOTES

1.4.2 Fixed-point Representation of Numbers
In a fixed-point system of number representation all numbers are represented
as integers or fraction. Signed integer or BCD numbers are known as fixed-
point numbers because they contain no information about the binary point or
decimal point. The binary or decimal point is assumed at the extreme right or
left of the number. If the binaiy or decimal point is at the extreme right or left
of the computer word, all numbers are positive or negative numbers. If the radix
point is assumed to be at the extreme left, all numbers are positive or negative
fraction. Suppose one has to multiply 7.35 x 80.64. This will be represented as
735 X 8064. The result will be 5927040. The decimal point has to be placed by
the programmer to get the correct result, that is 592.7040. Thus in fixed-point
of representation the user has to keep the track of radix point which is a tedious
(very difficult) job.

In scientific applications of computers fractions are frequently used. So a system
of representation which automatically keeps track of the position of the binary
or decimal point is needed. Such a system of representation is known as floating
point representation of numbers. It is discussed in the next section. Many
computers and aU electronic calculators use floating-point arithmetic operations.
The computers which do not have internal circuitry for floating-point operations
can solve the scientific problems involving fractions with the help of floating
point software.

1.4.3 Binary Representation of Real (Floating Point) Numbers
A number having both integer part as well as a fractional part is called real
number or floating point number. It may be either positive or negative. For .
example, 975.88, 0.586, - 0.866 represent real decimal numbers and 1101.001, \
0.0101, - 100.1001 represent binary real numbers.

Real numbers are represented in the memory of the computer by their mantissa
and exponent. In the general form,

N = M X

The mantissa M and the exponent e are actually stored in a register of a computer.
But, the base or radix R and the radix-point (decimal or binary point) are not
present in the register. An assumption is made about these and the electronic
circuitry taking these things into account performs the computation and
manipulation.

Self-Instructional Material
19

Computer Fundamental Let US assume a 16-bit word for a computer having two parts : a 10-bit mantissa
& Programming in c ^ 6-bit exponent. The mantissa is in two’s complement form ; the left most

bit represents a sign bit. The binar> point is assumed to be to the right of the
sign bit.

NOTES
Mantissa
10 bits

Exponent
6 bits♦ *

0 1 1 1 1 1 0 0 0 0 1 0 0 0 1 1

Assumed Binary Point
Sign
bit

Fig. 7. Floating point format.

The 6 bits of the word store the exponent without any sign. The reason for not
having the place for storage of the sign of exponent is that the exponent is
represented in biased form.
Now, let us understand the meaning of biased form of the exponent.
The minimum number represented, by 6 bits is (-2®), that is, -32. While
representing align the floating point numbers, this number 32 is added to the
actual exponent, thus leaving no space for negative exponent. The new exponent
(after adding 32 to the actual exponent) is called Biased Exponent. This code
for floating point representation is called as the base 2 excess 32 code.
Some examples of this system for exponent part are given in Table 4 given
below :

Table 4. Illustration of Biased Exponents

Actual Exponent Binary Representation
(Biased Exponent)

-32 0 0 0 0 0 0

-2 0 11110

0 1 0 0 0 0 0

+5 10 0 10 1
«

+31 1 1 1 1.1 1

Now, using the above definitions, the floating point number in figure 7 is :
Mantissa part is

Exponent part is
Subtracting 100000 from exponent

(••• {100000)2 “ added to it)

+ 0.111110000
100011

20 Self-Instructional Material

The value of the number is Information
RepresentationN = +(0.11111)2 X 2®

= (111.11), ,
• = 7.75

There are many formats of storage of floating point numbers on different
computers. Some use two words for the mantissa and one for the exponent;
others use one and one-half word for the mantissa and one-half word for the
exponent. Few systems even allow to select a format out of many, depending on
the accuracy desired. Some use excess-n notation for the exponent; some use 2’s
complement. Some even use signed magnitude for both the mantissa and the
exponent.

Floating point numbers are used to express very large and very small numbers.
Using above mentioned system of storage for numbers, we can have 9-bit accuracy
(1 bit allowed for sign of mantissa). The exponent bits add nothing to accuracy,
only to magnitude. The accuracy of fixed point 2's complement numbers expressed
in 16 bits is of 15 bits. So, the floating points are less accurate than an equivalent
length fixed point number.

For achieving the full 10 bits of accuracy in the floating point number, the most
significant bit of the mantissa is made non-zero and the number so obtained is
said to be in the normalized (or standard) form. The process of shifting of
mantissa left to make the most significant bit non-zero is called normalization.

(N = M X R^)

NOTES

1.4.4 Alphanumeric Codes •
Many applications of computer require not only of handling numbers, but also
of letters. To represent alphabet .it is necessary to have a binary code for the
alphabet. In addition the same binary code must represent the decimal numbers
and some other special characters. An alphanumeric code is a binary code of a
group of elements consisting of ten decimal digits, the 26 letters of the alphabet
(both in upper-case and lower-case), and a certain number of special symbols
such as #, /, &, %, etc. The total number of elements in an alphanumeric code
is greater than 36. Therefore it must be coded with a minimum number of 6 bits
(2® = 64, but 2® = 32 is insufficient). One possible six bit alphanumeric code is
given in Table 5. It is used in many computers to represent alphanumeric
characters and symbols internally and therefore can be called “internal code”.
Frequently there is a need to represent more than 64 characters including the
lower ca^e letters and special control characters. For this reason the following
two codes are normally used.

ASCII
The full form of ASCII (pronounced “as-kee”) is “American Standard Code for
Information Interchange”, used in most microcomputers. It is actually a seven
bit code, where a character is represented with seven bits. The character is
stored as one byte with one bit remaining unused. But often the extra bit is \ised

Self-Instructional Material
21

Computer Fundamental extend the ASCII to represent an additional 128 characters. Some of the
(fe Programming in C codes are shown in Table 5.

Now let us represent the word CODES in ASCII-7 code :

1000011 1001111 1000100 1000101 1010011NOTES
0c D E S

The same word CODES in ASCII-8 code can be represented as given below, :

10100011 10101111 10100100 10100101 10110011
C O ED S

EBCDIC

It is pronounced as “ebb-see-dick”. It is a 8 bit code and can represent 256
different characters. All of the 256 bit combinations are not meaningful, so the
code can still add new characters if required.

The full form of EBCDIC is “Extended Binary Coded Decimal Interchange
Code”. It is also an alphanumeric code generally used in IBM equipments and
in large computers for communicating alphaniuneric data. For the different
alphanumeric characters the code grouping in this code is different from the
ASCII code. It is actually an eight bit code and a ninth bit is added as the parity
bit. Out of the 8 bits, the first 4 bits are known as zero bits and the remainder
4 bits represent digit values.

Now let us represent the word CODES in EBCDIC Code :

11000011 11010110 11000100 11000101 11100010
c o ED s

Table 5. Partial list of alphanumeric codes

Character 6-bit
Internal Code

7-bit 8-bit
EBCDIC Code

12-bit
Hollerith CodeASCII Code

A 010001 1000001
1000010

11000001
11000010

12,1
B 010010 12,2
c 010011

010100
010101
010110

1000011 llOOQOll 12,3
D 1000100 11000100 12,4
E 1000101 11000101 12,5
F 1000110 11000110 12,6
G . 010111 1000111

1001000
. 11000111 12,7

H 011000
OllOOl
100001
100010
100011

11001000
11001001
11010001

12,8
I 1001001 12,9
J 1001010

, 1001011

1001100

11,1
K 11010010 11.2
L 11010011 11,3

22 Self-Instructional Material

Information
RepresentationM 100100 1001101 11010100 11,4

/
• N.. 100101 1001110 11010101 11,5

iioioiloo 100110 1001111 11,6
NOTESP loom 1010000 11010111 11,7

Q 101000 1010001 11011000 11,8
R lOlQOl 1010010 11011001 11,9
s 110010 1010011 11100010 0,2
T 110011 1010100 11100011 0,3
U 110100 1010101 11100100 0,4
V 110101 1010110 11100101 0,5
w 110110 1010111 11100110 0,6
X 110111 1011000 11100111 0.7
y 111000 1011001 11101000 0,8
z 111001 1011010 11101001 0,9
0 000000 0110000 11110000 0

000001 0110001 111100011 1
2 000010 0110010 11110010 2
3 000011 0110011 11110011 3
4 000100 0110100 11110100 4

0001015 0110101 11110101 5
6 000110 0110110 11110110 • 6
7 000111 0110111 11110111 7

001000 01110008 11111000 8
001001 0111001 111110019 9

Blank 110000 0100000 01000000 No punch
12.3.8
12.5.8
12.6.8
11.4.8
11.3.8
11.5.8

011011 0101110 01001011
111100 0101000(01001101
010000 0101011 01001110+
101100 0101010* 01011100

$ 101011 0100100 01011011
\) 011100 0101001 01011101

/ 110001 0101111 01100001 0,1
moil 0111100 01101011 0,3,8
001011 0111101 01111110 6,8

100000 0101101 01100000 11

Self-Instructional Material
29,

'• -rr- — %

Computer Fundamental
& Programming in C 1.5 SUMMARY

• Numbers are represented by a string of digit symbols.

• The binary number sj^tem has the base or radix 2, the octal 8 .^d hexadecimalNOTES
16.

• Complements are used in digital systems for simplifying the subtraction
operation and for logical manipulations.

• Codes are used to represent information, error detection and error correction.

• Integers can be represented in computer memory using sign and magnitude,
I’s complement and 2’s complement forms.

o In general, the negative numbers are stored in the computer memory in 2’s
complement form and positive numbers in sign and magnitude form.

1.6 TEST YOURSELF

1. Fill in the blanks ;

(i) (94.00625)^g = (...

(ii) (llOll.OlODg = (
(Hi) ASCII stands for

2. What is the advantage of using hexadecimEil numbers ?
3. Find the 1’ and 2’8 complement of the following binary numbers :

(ii) 11110

^2

)8

(i) 11001
4. Write the I's complement of the binary numbers given below :

(ii) IIOI2
(10) IOIOI2
(ri) IIII2

(viii) IOO.OI2
5. Write the 2’s complement of the following binary numbers :

(11) IOIII2
ai)) III.OII2
(vi) III2

(viii) IO.OOI2

(i) IIOO2
(Hi) IOOII2

(0) OOO2
(vii), O.IOI2

(i) IOII2
(Hi) IOI.IOI2
(0) OOO2

(oti) IOI.OI2
6. Write a short note on the following :

(i) ASCII code
7. Why was BCD code extended to EBCDIC ? Write EBCDIC code for the following

words ;

• (ii) EBCDIC code

(ii) LION ■
(iv) PROCESS

(i) EARTH
(Hi) FOX

How many b3hes are needed for each of these representations ?

ODD
24 Self-Instructional Material

Computer Fundamentals

SEGTION B

NOTES
CHAPTER 2 COMPUTER

FUNDAMENTALS

★ LEARNING OBJECTIVES ★;

2.1 Introduction

2.2. Characteristics of Computers
2.3. Functional Units of Computer
2.4. Input Devices

2.5. Output Devices
2.6. PViraary and Secondary Memories

2.7 Summary

2.-8 Test Yourself

2.1 INTRODUCTION
Computer is perhaps the most powerful and versatile tool ever created by
man. Computers have made a serious foray into every nook and corner of our
everyday lives. Their presence can be felt at almost every working place viz.
schools, colleges, homes, offices, industries, hospitals, banks, airways, railways,
research organisations and so on. Computers, large and small, are used nowadays
by all kinds of people for a variety of purposes.
A digital computer is a digital device which processes digital data. Thus
computer (digital) can be defined as a multipurpose, programmable machine
built by logic circuits which accepts binary data as input, processes the data
according to the binary instructions, read from its memory and provides result
in the form of binary or analog as its output.
A digital computer is basically an electronic device that can transmit, store,'
and manipulate information i.e., data. Several different types of data can be
processed by a computer. These include numeric data, character data, (name,
address, etc.), graphics data (charts, drawings, photographs, etc.), and sound
(music, speech pattern, etc.). The two most common data types are numeric

Self-Instructional Material
25

data and character data. Scientific and technical applications are concerned
primarily with numeric data, whereas business applications' usually require
processing of both numeric and character data.

I

Digital computer operate essentially by counting. All quantities are expressed
as discrete digits or numbers. ,

Computer Fundamental
& Programming in C

NOTES

2.2 CHARACTERISTICS OF COMPUTERS
Computers have some remarkable features which have made them so very
popular. These features are basically the reasons for which the computers
were originally built. These features are:
1. Automatic. The computers are automatic machines in the sense that once

started on a job, they carry on, until the job is finished, normally without
any user’s help. But computers cannot start themselves. They have to be
instructed, which (the instructions) specify the way of the job completion.

2. Speed. The computers can work at enormously high speeds. They are
capable of taking logical decisions, performing arithmetic and non-arithmetic
operations on alphabets and copjdng at unbelievable speed. While talking
about the speed of a computer, we do not talk in term of seconds or even
milliseconds (10"^). For a computer the units of speed are microseconds
(10“®), nanoseconds (10"®) and even picoseconds (10"^®). A powerful computer -
can perform 3 to 4 million simple arithmetic operations per second. The
reason for this extremely fast speed of a computer can be attributed to the
fact that a computer is an electronic device that operates on electrical
signals known as electric pulses. These pulses travel at extremely high
speeds and hence the fast speed of computers.

3. Accuracy. The computers produce highly accurate and reliable results. In
majority of cases the accuracy is close to cent per cent. However, errors
can’t be ruled out but these are mainly due to human rather than technological
weaknesses, that is, due to error in logic developed by the programmer or

I

due to inaccurate data i.e.-, garbage-in-garbage-out (GIGO).
4. Versatility. A computer is capable of performing a wide variety of

functions :
(i) It can accept data and produce results.

(ii) It can perform the fundamental arithmetic operations of addition,
, subtraction, multiplication and division.

iiii) It can perform logical operations.
(iu) It can transfer data internally i.e., data can flow from one part to the

other in the machine.
5. Diligence. A computer is capable of performing the same task over and

over again with the same degree of accuracy and reliability as the first ' /

Self-Instructional Material26

one. This is because unlike human beings, a computer is free from monotony, Computer Fundamentals
tiredness, lack of concentration, etc., and hence can work for hours together
without creating any errors.

6. Large and Perfect Memory. As a human being our ability to acquire
and retain knowledge is limited. But this is not the case with computers.
A computer can store and recall any amount of information because of its
secondary storage capability with perfect accuracy. Even after several years,
the information recalled will be as accurate as on the day when it was fed
into the computer. A computer loses information only when it is asked to
do so.

7. No I.Q. A computer is not intelligent on its own. It cannot think on its
own. It can only perform tasks that a human being can. The difference is
that it performs these tasks with unthinkable speed and accuracy. It cannot
take decisions on its own. Only the user can determine what tasks the
computer will perform.

8. No Feelings. Computers being machines have no feelings. A human being
has feelings and can take decisions but the computers take decisions on
the instructions provided to them in the form of programs written by the
user.

NOTES

2.3 FUNCTIONAL UNITS OF COMPUTER
Figure 1 illustrates the organisation of computer system components. In this
figure, the solid lines are used to indicate the flow of instructions and data, and
the dotted lines represent the control exercised by the control unit.

Storage unit '

Program /
and data 7

7 / Output / Results ^Input Secondary
memory

* Junit unit

Primary
memory

/

Control
unit CPU

I (Centra processing unit)

Arithmetic and
Logic unit

Fig. 1. Illustration of basic functional units of a digital computer.

Self-Instructional Material
27

Computer Fundamental The function of each of these units is described below :
& Programming in C

Input Unit
Information is entered into a computer through input devices. An INPUT
DEVICE reads the data and program into the computer. The program contains
instructions about wnat has to be done with the data. It provides a way of
man to machine communication. An input device converts input information
into suitable binary form acceptable to the computer. Some popular input
devices are listed below :
1. Keyboard
2. Mouse
3. Joystick

In short, the INPUT UNIT performs the following functions :
1. It accepts or reads the data and program (set of instructions).
2. It converts these instructions and data in computer acceptable form.
3. It supplies the converted instructions and data to the computer system for

further processing.

Output Unit

The output devices receive results and other information from the computer
and provide them to the users. The computer sends information to an output
device in the binary form. An output device converts it into a suitable form
convenient to users such as printed form, display on a screen, voice output,
etc. Some of the popular output units are :
1. Computer screen called VDU (Visual Display Unit)
2. Printer
3. Plotter
In short, the following functions are performed by an output unit :
1. It accepts the results produced by the computer which are in coded form.
2. It converts these coded results to human acceptable form.
3. It supplies the converted results to the outside world.
Storage Unit. The function of storage unit is to store information. The data
and instructions that are entered into the computer system through input
units have to be stored inside the computer before the actual processing
starts. Similarly, the results produced by computer after processing must be
kept somewhere before they are passed onto the output unit for display.
Moreover, the intermediate results produced by the computer must also be
preserved. The storage unit or the primary/main memory of the computer
provides support for these storage functions. The main memory is a fast
memory. It stores programs along with data. The main memory is directly
accessed by the CPU.

NOTES

4. Floppy and Hard Disk
5. Punched Cards
6. Optical Mark Reader.

28 Self-Instructional Material

The secondary memory, also called the auxiliary memory, is used to store the Computer Fundamentals
information, data and program instructions permanently. These may be used
later on or deleted whenever not required.
To sum up, the storage unit performs following functions :
1. It stores the data and the program (set of instructions).
2. It holds the intermediate results of processing.
3. It stores the final results of processing before they are passed onto the

output unit.

Central Processing Unit
The CPU is the brain of a computer. Its primary function is to execute programs.
Besides executing programs, the CPU also controls the operation of all other

.1 components such as memory, input and output devices. The major sections of
a CPU are :

(i) Arithmetic and Logic Unit (ALU)
Hi) Control Unit (CU).
(i) ALU. The function of an ALU is to perform arithmetic and logic operations

such as addition, subtraction, multiplication and division ; AND, OR,
NOT, EXCLUSIVE OR Operations. It also performs increment, decrement,
left shift and clear operations.

(ii) Control unit. The control unit is the most important part of the C.P.U.
as it controls and co-ordinates the activities of all other units such as
ALU, memory unit, input and output unit. Although, it does not perform
any actual processing on the data, the CU acts as a central nervous
system.

To sum up, it performs the following functions :
1. It can get instructions out of the memory unit. ■
2. It can decode the instructions.
3. It sets up the routing, through the internal wiring, of data to the correct

place at the correct time.
4. It can determine the storage location from where it is to get the next

instruction after the previous instruction has been executed.

NOTES

;

2.4 INPUT DEVICES

Any device that allows information from outside the computer to be communicated
to the computer is considered an input device. Since the Central Processing
Unit (CPU) of a digital computer can understand only discrete binary information,
all computer input devices and circuitry must eventually communicate with
the computer in this form. Many devices are capable of performing this task.
Some common computer input devices are :

Self-Instructional Material
29

Computer Fundamental
& Programming in C

1. Punched cards

2. Card-readers

3. Key-punching machines

4. Keyboard
5. Mouse .
6. Joystick

7. Trackball
8. Magnetic Tablet (DIGITIZER)

9. Voice-recognition

10. Optical-recognition
11. Scanners

These can be mainly divided into two basic categories j

(i) Analog Device

(ii) DigitaT Device
(i) Analog Device. An analog device is a continuous mechanism that

represents information with continuous physical variations. For example,
mercury thermometers and record players are all analog devices.

Hi) Digital Device. A digital device is a discrete mechanism which represents
all values with a specific number system. For example, digital watches
and computers all process discrete information and use the binary number
system. |

• ANALOG INPUT DEVICES! The Joystick, Trackball, Mouse and Paddle
Controls are all transducers that convert a graphics system user’s movement
into changes in voltage. A transducer is a device that converts energy from
one form to another.

• DIGITAL INPUT DEIVICES. Some of the digital input devices are Keyboard,
Lightpen, Digital Cameras and Digitizing Video Images, an Acoustic Tablet,
A Magnetic Pen and Tablet (DiGitiZer).

• GRAPHICAL INPUT TECHNIQUES. The use of graphical input devices
should not be influenced purely by the way the user uses pens and pencils,
The user should instead consider the following three factors when he/she
writes program for these devices :
(а) What is the user trying to do ?
(б) What input information does the application program need ?
i
(c) How can the display and computer help the user ?

Each of ^hese questions has many different answers according to the situation,
and for each set of answers the user programs the input devices in different
ways. The result is that he/she develops certain programming techniques for
the use of input devices in each environment.

NOTES

/
I ■

\

/

•*,' I

Self-Instructional Material30

When we want to design the different characters in a natural and systematic Computer Fundamentals
way, the graphical feedback (such as cursor on screen) can play an important
role in the input process. It helps the user in using an unfamiliar program.
There are many graphical input techniques such as : :

(i) The use of selection points,
Hi) Defining a bounding rectangle,

(iii) Multiple keys for selection,
(iv) Modes,
(o) Multiple selection,

(vi) Menu selection.
The most important fact that should be considered while choosing
any input device is that the CPU of the computer must not be overloaded.

Punched Cards
In the early years of computer evolution, the punched cards were the most
widely used input medium for most computer system. These days they are
not extensively used in computer industry as number of fast input devices are
available, but in order to understand the potential of currently available
input devices, it is necessary to understand the concept behind the working

• of punched cards. There are two types of punched cards—one has eighty
columns and the other has ninety six columns.

NOTES

?

Rows(12, 11 and0to9)
Numeric

characters
Alphabetic
characters

Other
symbols

’ /bl23456789
12 /

ABCOEF3HIJKLMNOPORSTUVWXYZ
lllllllll TwoII

• zone
. rows

11 IIMIIIII ■ >
..............
lirilMllllllllllllllllllllMIIIII'llllllllltMMIIIlllllMIII

llllllllilllill|llll>lll|lill)ll|lIIIlllll<llllll>I)lll>llSlll

lutluiiMiuimtimiiiiliiiuiiiiimmiimuiiiiu im
ntiilintniitiiMliiiiiniliiMiiilMiiinniittniniiiitii
luiuliuiimMiiiliMimiiiiiiuiiMUiiliiitiiiiiiiiiuii
inmi|Mimimm|iiii>mlmiiiiiinmiMmimiMiiii

0 mil

1 1111

2 V111:

3 I m
Ten4

“ digit
rows

5 >m
6 mi
7 nil
8 ■ III
9 ■ III

Fig. 2. A modern Hollerith card can handle a maximum of 80 alphanumeric
characters. As this sample shows, numbers are coded by making a single
punch in the appropriate card column; letters and special characters are coded
by using double or triple punches. Note that the upper left-hand corner is
missing from the card. This helps the machine operators make sure all the
cards are turned the same way and that the deck itself has the proper orientation.

y

f Self-Instructional Material
' •! 31

Computer Fundamental The 80-column card is divided from left to right into 80 vertical columns
numbered from 1 to 80. It is again divided into 12 rows numbered
12,11,0,1,2,3,4,5,6,7,8 and 9 from top to bottom. Each column of this card can
be represented as one character, so a maximum of eighty characters can be
represented on one card. The digit 0 to 9 are represented by punching one
hole in the corresponding row position. The alphabet A to Z are represented
by a combination of two holes in two of the row positions. The top three
rows—12, 11 and 0 are zone punching positions and the rows 0 to 9 are
numeric punching position. A logical combination of zone and numeric punches
is required to represent alphabets.
For example, letter A through I are coded by using a 12 zone punch and
numeric punches 1 through 9; letter J through R are coded by using a 11 zone
punch and numeric punches 1 through 9 and letters S to Z are coded by using
a 0 zone punch and numeric punches 2 through 9 respectively. Special characters
are coded by punching one, two or three column cards. This coding system is
known as Hollerith code after the name of the Herman Hollerith who first
used punched cards.
The 96-column card, which was developed to store 20 percent more data in
a small amount of space, never found widespread use. It is only one-third the-
size of an 80-column card. The 96-columns are separated into three 32 column
sections or tiers. The upper portion of card, which is not used, for punching
holes is used as the print area. These cards have round holes instead of
rectangular holes of 80-column cards. Moreover the standard 6 bit code is
used instead of Hollerith code for recording the data on 96 column card. Each
of the 96-columns has 6 punch positions and remaining four are numeric
positions. The presence of a hole in a punch position indicates 1 bit.
Punched cards are rarely used today. However, you may occasionally encounter
them in large companies such asl public utilities, where they are still used for

I I
billing. When the customer returns the card with payment, the keypunch
operator uses the keypunch machine to record new data on the card, then he
or she runs the card through a card reader to input the data into the computer
(usually a mainframe).

Card Readers \
A card reader is an input device. It transfers data from the punched card
to the computer system. The card reader will read each punch card by
passing light on it. Each card will be passed between a light source and a
set of light detectors. The presence of hole causes the light to produce a
pulse in the director. These pulses are transformed into binary digits by the
card reader and sent to the computer for storage. Card is then submitted in
the output stack. Card readers can read upto 2000 cards per minute.
Figure 3 illustrates a ‘card reader and figure 4 a card verifier.

& Programming in C

NOTES

■Vl '■

I"'32/ Self-Instructional Material

Computer Fundamentals

HOPPER
STACKER

PUNCHED
CARDS

BLANK
CARDS NOTES

READING
STATION

PUNCHING
STATION

KEYBOARD

Fig. 3. Card reader.

HOPPER

\

READ VERIFY
STATION STATION

\
\

UMlgil
0~Dmmmmm

REJECT
STACKER

NORMAL
STACKER

Fig. 4. Card verifier.

Figure 5 shows the illustration of keypunching and verification procedure :

SOURCE
DOCUMENT

KEY PUNCH /.
operator/"

KEYPUNCH
MACHINE >♦ > PUNCHED

DECK

/
VERIFY

OPERATOR
VERIFIER
MACHINE

VERIFIED
DECK

* ♦

Fig. 5. Illustrating keypunching and verification procedure.

Self-Instructional Material
33

Computer Fundamental There are two types of Card readers depending upon the mechanism used for
& Programming in C sensing the punched holes in the cards ;

• Photoelectric card reader. In this type of card reader, light passing
through the punched holes are detected by photoelectric cells. These are

. faster and accurate in comparison of other type of card reader.
• Wire brush card reader. In this type of card reader, a card is passed

between a wire brush and a metal roller. If a punch exists, the brush
makes electric contact with the roller and then sends signals to the computer
to which the card reader is connected.

NOTES

Key-Punching Machines

There is another device to punch data on a punch card—the key punch. It
contains a keyboard which looks like a typewriter keyboard. When characters
are typed in the keyboard, corresponding holes are punched in the blank
card. Then these cards will be sent to card reader to feed the information to
the computer. Commonly used key-punch machines were IBM 026 and IBM
029. These machines have the following components ;
• Keyboard
• Card hopper
• Punching station
• Card stacker
• Column indicator
• Backspace key

• Program control unit
• Program drum
• Reading section

• Switches

• Printing mechanism, etc.

Some of these above mentioned components have been shown in Figure 3 and
Figure 4.

Keyboard

Keyboard is perhaps the most popular and widely used device for entering data
and instructions in a computer system. A keyboard is similar to the keyboard
of a typewriter. It contains alphabets, digits, special characters and some control
keys. A general purpose keyboard normally contains cursor control keys and
function keys. Function keys allow user to enter frequently used operations in
a- single keystroke, and cursor-control keys can be used to select displayed
objects or co-ordinate positions by positioning the cursor on the screen.

\

34 Self-Instructional Material

Computer Fundamentals
Numeric Paa

Function Keys

NOTES

Arrow Keys

Alpha Keys
Fig. 6. A keyboard.

When a key on the keyboard is pressed an electrical signal is produced. This
signal is detected by an electronic circuit called keyboard encoder which is a
special IC or a single-chip microcomputer. The encoder detects which key is
pressed and sends the binary code, corresponding to the pressed key, to the
computer. The encoder contains a lookup table in ROM. The binary code is
obtained from the lookup table.

Some of the special keys on a keyboard are given in Table 1.

Table 1. Special keys and their functions

Type Purpose

To move the cursor in the top, down, left and right
directions in a document.

Arrow Keys

To delete the character on the left of the cursor.Backspace Key

Caps Lock To capitalise letters.

To delete the character from the current position of the
cursor.

Del

To move the cursor to the end of the line.
To start a new paragraph in a document.

End
Enter

To cancel a command.Esc

• To move the cursor to the beginning of the line.Home

To insert characters.Ins

To type the special characters above the numeric keys.
If you press this key along with a number key, the
special character above that number will be typed. For
example : To type you have to press the shift key
and the number key 3.

Shift

Space Bar To enter a space.

To enter multiple spaces between two words in a
document.

Tab
\

/
Self-Instructional Material

35\

Computer Fundamental MOUS0
& Programming in C

A mouse is a pointing device. It is a small hand held box and it is used to
position the cursor on the screen. The amount and the direction of movement
can be detected by the wheels or the rollers on the bottom of the mouse. The
wheels have their axes at right angles. Each wheel is connected to a shaft
encoder and whenever the wheel moves this shaft encoder emits electrical pulses.
The distance moved is determined by the number of pulses emitted by the
mouse.

NOTES

A

Fig. 7. A mouse and standard mouse pointer.

A mouse'can be picked up and put down at any position on the screen without
change in cursor movement. By moving the mouse the user can point to a menu
on the screen. The mouse generally has two or three buttons on its top for
indicating the execution of some operation, such as recording cursor position or
invoking a function. By pressing the button the user indicates his/her choice to
the computer.
The movements of the mouse cursor always match that of the mouse. There are
three kinds of clicks. They are left-click, right-click and double click. The mouse
can be used to drag and drop objects on the screen.

1r
Note It is a good practice to use the mouse pad instead of just any flat surface for
movement of the mouse.

JL

Joystick
A joystick is also a pointing device {See Figure 8). It is used to move the cursor
position on the screen. It consists of a small, vertical lever fitted on a base. This
lever is used to move the cursor on the screen. The screen-cursor movement in
any particular direction is measured by the distance that the stick is shifted or
moved from its center position. The amount of movement is measured by the
potentiometers that are plugged at the base of the joystick. When the stick is
released, a spring brings it back to its center position. The joystick can move
right or left, forward or backward.

Self-Instructional Material36

Trackball

A trackball is also a pointing device (See Figure 9). It consists of a ball which
is fitted on a box. The ball can be rotated with the fingers or palm of the hand
to move the cursor on the screen. The amount and direction of rotation can be
detected by the potentiometers which are attached to the ball. Trackballs
generally fitted on keyboards.

Computer Fundamentals

NOTESare

Fig. 8. A joystick. Fig. 9. A trackball.

While a trackball is a two divisional positioning devices, a spaceball provides six
degrees of freedom. A spaceball does not actually move. The amount and direction
of movement is determined by the strain gauges that measure the amount of
pressure applied to the spaceball as the ball is pushed and pulled in various
directions.
Touch Panels. A touch panel is a very sophisticated and user friendly input
devices. It allows the -displayed objects or screen positions to be selected by the
touch of a finger. There are three methods by which an input to the touch panel
can be recorded namely optical, electrical or acoustical methods.
An optical touch panel has a line of infrared light emitting diodes (LEDs)
along one vertical edge and along one horizontal edge of the frame. Light
detectors are fitted along the opposite vertical and horizontal edges. Now
when the panel is touched these detectors take a note of all
the beams that are disturbed by the touch. The two crossing beams that are
interrupted identify the horizontal and vertical co-ordinates of the screen
position selected.

An electrical touch panel is constructed by placing two transparent plates at a
small distance. One of the plates is coated with a conducting material, and the

Self-Instructional Material
37

Computer Fundamental other with a resistive material. Now when the outer plate is touched, it is forced
<6 Programming in C . t rm i iinto contact with the inner plate. This contact creates a voltage drop across the

resistive plate that is converted to the co-ordinate values of selected screen
position.
The touch panels are generally used for applications where the processing options
are represented with graphical ions.
Light Pen. It is yet another pointing device (See Figure 10). It is used to select
screen positions by detecting the light coming from points on the CRT screen.
It is a penlike device which is photosensitive. When the tip of the pen touches

NOTES

Fig. 10. An activated light pen with a button switch.
the screen then the position on the CRT screen is detected by the pen. An
activated light pen, pointed at a spot on the screen as the electron beam lights
Up that spot, generates an electrical pulse that causes the co-ordinate position
of electron beam to be recorded. The light pen can be used to draw directly on
the CRT screen.

Digitizer
A digitizer is an input device that can also be called a graphics tablet, i.e., a
digitizer and a graphics tablet can be one and the saihe device. There are
several versions of the graphic tablet. The basic type consists of an even surface
containing a series of parallel wires in the X and Y directions. Conceptually it
is very similar to a piece of graph paper. A tablet or digitizer consists essentially
of three interconnected parts ; '

1. A thin flat plate (known as the platen or, confusingly, the tablet) which forms
the work surface or active area.

2. A pointing device which can be moved about the platen.

3. A controller which converts the electrical signals arising from the interaction
of the pointer and the platen into location information relative to some origin.

The interaction comes about generally through electromagnetic induction,
occasionally through differences iii electrical resistance or, more rarely, by means
of acoustic range-finding techniques. Platens come in a number of sizes, varying

38 Self-Instructional Material

from 11 inches (about 280 mm) square to as much as 60 inches (about 1525 mm) Computer Fundamentals
square.

The most usual pointing devices are either a stylus or a puck (multiple button
cursor), The puck is probably better for digitizing drawings whUst the stylus is
better for pointing, picking and choosing.

Digitizing. It is the process of indentifying, locating or selecting a menu item,
entity or point through an input device.

Digitizing is used to input a drawing produced on paper into the graphics system.
This is accomplished by taping the drawing onto the digitizing tablet as per size
and using the input device to locate end points of lines, arcs, etc.

Voice-recognition

A voice-recognition system, using a microphone (or a telephone) as an
input device, converts a person’s speech into digital signals by comparing
the electrical patterns produced by the speaker’s voice with a set of
prerecorded patterns stored in the computer.
Data entry into a computer manually using keyboard is a time-consuming
and laborious task. It will become very easy if we can talk to a computer.
Attempts have been made to develop a computer that can listen to the users
and talk to them. The voice input to the computer i.e., voice-recognition by a
computer is much more difficult than the voice output. It is because of the
fact that the rules for generating voice through a speaker or a telephone
system can easily be defined compared to the rules for interpreting words
spoken by a person. The tones of speech, speed, accent and pronunciation
differ from person to person. These differences in speech makes voice-recognition
a difficult job. In a voice input system the speech is converted into electrical
signals employing a microphone. The signals are sent to a processor for processing.
The signal pattern is compared with the patterns already stored in the memory.
A word is recognised only when a choice match is found, and then the computer
gives a corresponding output. At present a voice-recognition system is costly.
In future it is expected to become cost effective and will be widely used for
direct entry of data. IBM has developed a Talkwriter with 6000 words. It is
capable of detecting words with 95% accuracy. It is meant for business
correspondence. A voice-recognition system can be used in factories at places
where both hands of worker are engaged in the job he is doing and he wants
to input some data into the computer. It can also be used to assist bedridden
and handicapped persons in a number of tasks; to control access to restricted
areas; to identify a customer in a bank etc. Today’s programs reach about
98% accuracy at conversational speeds. Two major voice-recognition systems
are IBM’s Via Voice and L&H’s Naturally Speaking.

Touch Screen
Some computers have touch screen which is sensitive to user’s touch. One can
use finger to point the command displayed on the screen. It is popular on

NOTES

Self-Instructional Material
39

Computer Fundamental laptops. Many techniques have been used to make the screen sensitive to
& Programming in C touch as described below ;

(i) Capacitive screen uses a device which can sense changes in capacitance
when and where the user touches the screen with a stylus or finger.

Hi) Infrared screens have light-emitting diodes and photo detector cells to
cover the screen with invisible light. LEDs emit infrared light and
photo detectors receive it. When the user touches the screen, some
light beams are interrupted and the computer then senses the position
of the finger.

(ill) Pressure-sensitive screens of Mylar, separated by a small space are
used. Each sheet of Mylar contains rows of invisible wires. The sheets
are placed in such a way that the wires run horizontally in one sheet
and vertically in the other. When the user applies pressure on the
screen, the wires at that point make contact and a circuit is closed.
This is sensed and fed to the computer.

Optical Recognition
Optical recognition occurs when a device scans a printed surface and translates
the image the scanner sees into a machine-readable format that is understandable
by the computer. The three types of optical recognition devices are given
below :

ii) Optical Character Recognition (OCR)
(ii) Optical Mark Recognition (OMR)

HU) Optical Bar Recognition (OBR)
(i) Optical Character Recognition (OCR). It uses a device that reads

preprinted characters in a particular font (typeface design) and converts
them to digital code. OCR characters appear on utility bills and price
tags on departmental store items.

Hi) Optical Mark Recognition (OMR). It uses a device that reads pencil
marks and converts them into computer-usable form. The best known
example is the OMR technology used to read the various competitive

' examinations test.
(til) Optical Bar Recognition (OBR). It is slightly more sophisticated

type of optical recognition. The bar codes are the vertical zebra-striped
marks you see on most manufactured retail products—every candy to
cosmetics to comic books. The usual barcode system in use is called
the Universal Product Code (UPC). Bar codes represent data, such as
name of the manufacturers and the t3TDe of product. The code is interpreted
on the basis of the width of the lines rather than the location of the
bar code. The bar code does not have the price of the product. Bar
code readers are photoelectric (optical) scanners that translate the
symbols in the bar code into digital code. In this system, the price of
a particular item is set within the store’s computer. Once the bar code
has been scanned, the corresponding price appears on the sales clerk’s
point-of-sale (POS) terminal and on your receipt.

NOTES

40 Self-Instructional Material

f
I

Computer Fundamentals ■Scanners
They are a kind of Input Device. Scanners are capable of entering information
directly into the computer and it is not required to key the information. This
makes data entry more interactive, faster and accurate. Examples of scanners
are: Optical scanners and Magnetic-ink character readers.
(I) Optical Scanner. Optical scanners use light source and light sensors to
read information recorded on a paper. Commonly used optical scanners include
Optical Character Reader (OCR), Optical Mark Reader (OMR) and Optical Bar
Code Readers (OBCR).

NOTES

Fig. 11. A scanner.

Optical Character Readers (OCR). It is used to recognize alphanumeric
characters printed or typewritten on paper. The scanner detects the light reflected
from the paper. The change in the reflected light is converted to binary data
which is sent to the processor. The paper or text to be scanned is illuminated
by low frequency light source. The dark areas on the paper absorb the light
whereas light is reflected by lighted areas. The reflected light falls on the
photocells which provide binary data corresponding to dark and lighted areas.
OCRs are generally used in large-volume applications such as computer-oriented
bills.
The ANSI (American National Standard Institute) has adopted a standard type
font called OCR-A for use with OCRs shown in Figure 12 :

ABCDEFGHIJKLMNOPQRS
TUVWXYZ01234 5.6 7 8 9 .

. = + /$*rn&

• 1

? X V H :O '

Fig. 12.

Self-Instructional Material
41

Computer Fundamental Optical Mark Readers (OMR). They are commonly used to check special
& Programming in C examination answer sheets or questionnaires. The answer sheets contain special

marks such as a square or a bubble. These squares or bubbles can be filled with
soft pencil or ink. These kind of marked answer sheets are used where one out
of a few number of alternatives is to be selected and marked. The sheets areNOTES
illuminated by a light source. The reflected light is detected by OMR and
corresponding signals are sent to the processor. The change in the reflected
light is used to detect the presence of a mark. Figure 13 shows the simplest
form of optical recording —Optical marks ;

All India Engineering Entrance Examination
5 NAME1

NAME

0 0 0 0 0 O O0 0 0 0 0SIGN.
O 0 0 00 0 0 o o 00 0ADDRESS 0 00 0 0 0 0 0 o0 0 o

o 0 0 0 0 0 00 0 0 o oCENTER
0 0 0 00 0 0 0 o o 0 0

^TEST FORM NO. ® TEST CODE ** ROLL NUMBER 0 00 0 o 0 0 0 oo o 0
o 00 0 o 0 0 00 o 0 0

o o 0 0 0 o o0 o o 0 00 o0 0 0 o o o 0o o 0 0 0o 0 0 0 o o 0 006 BIRTH DATE 0 0 0 0 0 o oo o o 0 00 0 0 0 0 o 0 00 o oMM DD YY
0 0 0 o0 0 o 0 o o o 0 0o 0 0 0 0 0 o o0 000 oo oooo 00oo 0 0 0 0 0 o 0 00 0 o oo 0 00 0 0 0 0 o o oo oo 0 0 0 0 00 0 0 o o o 00 0 0 0 0 0o 0 0 o o oo o o 0 0 00 0 0 0 0 0 0 0o oo o 0 0 00 0 0 0 o o 0o o 0 0 0 0 o o 0 00 o 0oo o 0 0 0 0 0 oo 0 0 0 0 o o 0 0 0 0 o0 0 0 0 0 o 0oo o 0 0 0 0 oo

Fig. 13. Examination answer form for marking (using a no. 2 lead pencil).

OMRs come in a variety of sizes and shapes depending on the sizes of the forms
to be read and the required loading and processing capacity of the reader. OMR
devices are easily available for Apple and IBM Compatible personal computers.
Optical Bar Code Readers. This method uses a number of lines (bars) of
varying thickness and spacing between them to represent the desired information.
Bar codes are used on most grocery items. An OBCR can read such bars and
convert them into electrical pulses to be processed by a computer. The most
commonly used bar code is Universal Product Code (UPC). The UPC code uses
a series of vertical bars of var5ring widths. These bars are detected at ten digits.
The first five digits identify the supplier or manufacturer of the item. The
second five digits identify individual product. The code also contains a check
digit to ensure that the information read is correct or not.

Self-instructional Material42

Computer Fundamentals

NOTES

81-87522-11-9

Fig. 14. A bar-code.
Magnetic Ink Character Readers (MICR). This device was developed in the
late 1950s to assist the banking industry in automation of the process of
accounting the bank cheques. MICR devices speed up the processing of input
cards and paper documents which are w’ritten with a magnetic ink which contains
iron oxide particles in it. The characters have a standard configuration which
makes them recognizable to humans and at the same time provides signals
produced from the read head to electronic circuitry. These signals are analysed
to sense the characters used and then these are transmitted to the memory
unit. MICR is an example of patter recognition technique and has successfully
replaced the time consuming and expensive punched card processing. Human
involvement is required to encode the cheque amount and other descriptions—
thus, some room for error does remain. Figure 15 shows the layout of MICR
encoding on a personal cheque.

OR BEARERPAY

RUPEES
Rs.

TR NO. I NILSA/c. NO.

IBank of Punjab Ltd.
■ 10166-67, Gurdwara Road,

Karol Bagh,
New Delhi • 110 005

DHS - KRB
I

110237003: 10"222287"

Fig. 16. MICR encoding on a cheque.'
Terminals. Terminals are much more limited than the personal computers
although they look like them. Terminals have only a screen and a keyboard and
the'electronics that allow them to communicate with the computer to which
they are connected and are used only to send information to the computer and

'receive information from it. Here we will discuss dumb terminal, intelligent
terminals and Internet terminals.

Self-Instruelional Material
•v 43

Computer Fundamental •
& Programming in C

Dumb terminal. It is also known as Video Display Terminal (VDT), has
a display screen and a keyboard and can input and output but not process
data. Usually the output is text only. For instance, airline reservations
clerks use these terminals to access a mainframe computer having flight
information. Dumb terminals cannot perform functions independent of mainframe
to which they are linked.
Intelligent terminal. It has its own memory and processor, as well as a
display screen and keyboard. Such a terminal can perform some functions
independent of any mainframe to which it is linked. For example, an
automated teller machine {ATM), a self service banking machine that is
connected through a telephone network to a central computer. Another
example is the point-of-sale (POS) terminal, used to record purchase at a
store’s checkout counter.
Internet terminal. It provides access to the Internet. There are several
variants which are given below :
1. The set-top box or web terminal ; It displays web pages on a TV set.
2. The network computer : It is a cheap stripped-down computer that connects

people to networks.
3. The online game player : It not only lets you play games but also connects

to the Internet.
4. The full-blown PCI TV (or TV!PC) ; It merges the personal computer

with the television set.
5. The wireless pocket PC or personal digital assistant {PDA) : It is a hand

held computer with a tiny keyboard that can do two-way wireless messaging.
Figures 16 and 17 show a monitor (or VDU) and Terminal respectively :

NOTES

Fig. 16. Monitor (or VDU). Fig. 17. Terminal.

2.5 OUTPUT DEVICES
An output device is a device which accepts results from the computer and
displays them to the user. The output device also converts the binary code
obtained from the computer into human readable form,

<• ■

44 Self-Instructional Material

The Meaning of Hard Copy and Soft Copy

Hard copy output is a computer output, which is permanent in nature and can
be kept in paper files, or can be looked at a later stage, when the person is not
using the computer. For example, output produced by printers or plotters on
paper.

Soft copy output is a computer output, which is temporary in nature, and
vanishes after its use. For example, output shown on a terminal screen, or
spoken out by a voice response system.
The commonly used output devices are : CRT screen, printers and plotters.

Computer Fundamentals

NOTES

2.5.1 Hard Copy Devices
Hard copy is printed output. For example, printouts, whether text or graphics,
from printers. Film, including microfilm and microfiche is also considered

• hard copy output. The hard copy output devices are printers.

Print Quality

We can have a considerable variety in the quality of hard copy. Some of the
print qualities are given below ;

• Near-typeset quality. This type of print is similar to what is produced
by a typeset machine, such as the print of a magazine.

• Letter-quality. This type of print is the equivalent of good typewriter
print. It is made using solid-line (fully formed) characters rather than
characters made up of dots or lines. This is used mainly in business letters
and in formal correspondence between persons.

• Near-letter quality. All the printers don’t produce the fully formed characters
but print high-quality documents using a near-letter quality print. This is
done by some printers when the print head makes multiple passes over
the same letters, filling in the spaces between the dots or lines being

• printed.

• Standard-quality. This type of print is provided by the printer when
characters composed of dots or lines are formed by a single pass of the
print head. In general, standard-quality suits for most informal applications.

• Draft-quality. The draft-quality print lies at the low end of the quality
scale and sometimes known as compressed print. It is sometimes used for
rough drafts, informal correspondence, or computer program- printouts!
The characters are formed with a minimum number of dots or lines, and
are smaller in size than the standard-quality characters.

Printers
I

A printer is an output device that prints characters, symbols and perhaps graphics
on paper or another hard copy medium. The resolution or quality of sharpness
of the image, is indicated by dpi idots per inch), which is a measure of the (lots

Self-Instructional Material
45

I

Computer Fundamental are printed in a linear inch. For PC printers, the resolution is in the range
Programming in 60-1,500 dpi. They provide information in a permanent readable form. There

I

are a variety of printers available for various types of applications. Depending
upon the speed and approach of printing, printers can be classified as :

(i) Character printers

Hi) Line printers

HU) Page printers

There is yet another classification depending upon the technology used for printing
(whether or not the image produced is formed by physical contact of the print
mechanism with the paper), According to this classification, printers are of two
types :

• Impact printers—do have contact with paper.

• Non-impact printers—do not have contact with paper.

Character Printers. Character printers print only one character at a time.
They are low-speed printers and are' generally used for low volume printing
work. Characters to be printed are sent serially to the printer. Three of the most
commonly used character printers are described below :

Ribbon

NOTES

1

X
Paper

Gha rackets
sm bossed1
on tip of
qrm

Hammer

/

Fig. 18. A daisy wheel printer.
j

Better Quality Printers. Better quality printers are used where good printing
quality is needed. These printers use a print wheel font known as a daisy wheel.
There is a character embossed on each petal of the daisy wheel. The wheel is
rotated at a rapid rate with the help of a motor. In order to print a character,
the wheel is rotated. When the desired character spins to the correct position,
a print hammer strikes it to produce the output. Thus^ daisy wheel printers are
impact printers. Its speed is in the range 10-90 CPS (Characters Per Second).
It has a fixed font type. Normally 2 or 3 fonts are available. It cannot print
graphics.

\-
/

\ii

' 46, Self-Instructional Material
I>'

Dot-matrix Printers (DMPs). A dot-matrix printer prints the characters as Computer Fundamentals
a pattern of dots. The print head contains a vertical array of 7, 9, 14, 18 or even
24 pins. A character is printed in a number of steps. One dot column of the dot-

■ matrix is taken up at a time. The selected dots of a column are printed by the
print head at a time as it moves across a line. The shape of each character i.e.,
the dot pattern is detained from the information held electronically in the printer.

NOTES

flBCDEFGHITKLMN

OPORSTUy

0123‘^5&7S9-
v.**..*n
I t«1

/, V7 V

Fig. 19. A dot-matrix printer and its character pattern.

The dot-matrix printers are faster than daisy wheel printers. This speed lies in
the range of 30-600 cps. But the print quality of a dot-matrix printer is low as
compared to that of a daisy wheel printer. Dot-matrix do not have fixed character
font. So they can print any shape of character. This allows for many special
characters, different sizes of print and the ability to print graphics such as
graphs and charts. These are the only printers that can use multilayered forms
to print “carbon copies”.
Inlget Printers. Inkjet printers are non-impact printers. They employ a different
technology to print characters on the paper. They print characters by spra3ang
small drops of ink onto the paper. Special type of ink with high iron content is
used. Each droplet is charged when it passes through the valve. Then it passes
through a region having horizontal and vertical deflection plates. These plates
deflect the ink drops to the desired spots on , the paper to form the desired
character.

Fig. 20. An inkjet printer.' 'ii!
'' '' '.

Inkjet printers produce high quality printing output. The speed of inkjet printers
lies in the range of 40-300 cps. They allow alf sorts of fonts and styles.

/ f' •,

''V s
■:

Self-Instructional Material .
'47

Computer Fundamental Therefore, the document printed may contain multiple character styles and a
& Programming in C variety of font sizes. Colour printing is also possible by using different coloured

inks.
Line Printers. As the name suggests, a line printer prints one line of the text
at a time. They are impact printers and are used for producing high volume
paper output. They are fast printers and the printing speed lies in the range of
300-3000 lines per minute. Drum printer and chain printer are the most
commonly used line printers.
Drum Printer. A drum' printer consists of a solid, cylindrical drum which
contains complete raised characters set in each band around the cylinder. The
number of bands is equal to the number of printing positions. Each band contains
all the possible characters. The drum rotates at a rapid speed. There is a
magnetically driven hammer for each possible print position. The hammers hit
the paper and the ribbon against the desired character on the drum when it
comes in printing position. The speed of a drum printer is in the range of 200
to 2000 lines per minute.

NOTES

fyumber of bands corresponds to
number of printing positions

VV VVVVVVVVVVV

UU uuuuuuuuuuu
TTTTTTTTTTT.TTJ'*
sssssssssssssi ^
R R R RRR R R R R R R Rill

QOQOQOOQQOOQ oi||
PPPPPPPPPPPPP

igi\
«

l 0000000000000
Unnnnnnnnnnnnn

M M M M M y

Fig. 21. A drum printer.

Chain Printers. Chain printers use a rapidly rotating chain which is called
print chain. The print chain contains characters. Each link of the chain is
character font. There is a magnetically driven; hammer behind the paper for
each print position. The processor sends all the' characters to be printed in one
line to the printer. When the desired character comes in the print position the
hammer strikes the ribbon and paper against the character. A chain may contain
more than one character set, for example, 4 sets. The speed lies in the range of
400-2400 lines per minute. ' .

. \
\.\

\Self-Instructional Material48

Computer Fundamentals
Complete cham
composed of five
4S-character sections

One section of 48 characters

NOTES

132 printing position

Fig. 22. The print chain of a chain printer.

Page Printers. Page printers are non-impact printers. They print one page at
a time at a very high speed of 2,000 lines per minute. They are very costly and
are economical only when printed volume is very high. Page printers are based
on a number of technologies like electronics, xenography and lasers. These
techniques are called Electro-photographic techniques. In these printers, an
image is produced on a photosensitive surface using a laser beam of other light
source. The laser beam is turned off and on imder the control of a computer. The
areas that are exposed to the laser attract toner, which is generally an ink
power. Thereafter, the drum transfer the toner to the paper. Then the toner is
permanently fused on the paper with heat or pressure in a fusing station. After
this drum is discharged, cleaned so that it is ready for next processing. They can
produce 300 pages per minute.

Ribbon

Fig. 23. A laser printer.

The differences between a dot-matrix printer and a laser printer are given in
Table 2.

Self-Instructional Material
49

Computer Fundamental
& Programming in C'

Table 2. Differences between dot-matrix and laser printer

Dot-matrix printer Laser printer
1

A laser printer prints characters
completely.

A dot-matrix printer prints characters
using dots.NOTES

The speed is measured in pages.The speed is measured in characters per
second- ^

It prints approximately 4—20 pages in one
minute.

It prints approximately 200-300
characters in one second. X

It is not very noisy.It is quite noisy.
\

It is expensive.It is cheap.

Thermal Printers

These printers are a variation of the non-impact dot-matrix type in which
selected needles are pressed against heat sensitive paper in a dot-matrix
method for formation of characters. It is not possible to have mass printing
with ordinary dot-matrix or other impact printers. However, there is a very
little noise associated with thermal printers. The advantage of this type of
printer over the dot-matrix t)TJe is that the thermal unit is much quieter.

■ These provide high quality colour output. The disadvantages are that a special
type of paper must be used and it is not possible to produce multiple copies.
These are expensive and slow also.

LED Printers

The Light Emitting Diode (LED) or Liquid Crystal printers use LEDs which
are cheaper alternatives of laser printers. Here, LEDs are used to produce
image on the drum rather than a laser beam. For example, Epson EPL 5200
Printer,

Plotters

A plotter is an output device used to produce hard copies of graphs and
designs. They use ink pen or inkjet to draw graphics and drawings. Pens
could be monochrome or multi-coloured. Plotters are slow devices because a
lot of mechanical movement is required during plotting. The graphics and
designs produced by pen plotters are uniform and precise and are of very
good quality. Pen plotters are basically of two t5q)es : Drum plotters and

• Flatbed plotters (use pens) and Electrostatic plotters (do not use pens).
Drum Plotters. In case of a drum plotter there is a drum that moves back
and forth to produce vertical motion. The paper on which the design has to
be made is placed on this drum. A pen is mounted horizontally across the
drum in a pen carriage. The pen moves horizontally along with the carriage

60 Self-Instructional Material

left to right or right to left on the paper to produce drawings. Coloured Computer Fundamentals
drawing can also be produced by using multi-coloured pens.
Flatbed Plotters : In the case of a flatbed plotter, a paper is spread and
fixed over a rectangular flatbed table. This paper is fixed and does not move.
A pen-holding mechanism is designed to provide all the motion. Multi-coloured
graphs and designs can be produced by using pens with multi-coloured inks.

NOTES

Top view-

LL
j

\3 X
\ (5) Writing panel(2) Pen

carriage ▼ (4) Control panel
(6) Pen pressure lever(3)Y bar(1) Pen station

(Pen 1, pen 2, ...
pen 8; from bottom to top)

‘ (1) Pen station—holds pens ready for use.

(2) Pen carriage—holds the pen used for plotting.

(3) Ybar—moves the pen carriage to left and right.

(4) Control panel—has keys to control the operation of the plotter and lamps which indicate the status
of the plotter.

Fig. 24. A flatbed plotter and its different parts.

Electrostatic Plotters. These use electrostatic charges to create images out
of very small dots on specially treated paper. The paper is run through a
developer to allow the image to appear. These are faster than pen plotters
and can produce images of very high resolution. Figure 24shows a flatbed
plotter. The cost of a plotter can range from about $1000'to more than $100000
depending on the machine’s speed and quality of images. Large plotters, used
with large computer systems, can produce drawings upto 8' x 8', or sometimes
even larger.

2.5.2 Softcopy Devices
Output hardware consists of devices that convert machine-readable information
as the result of processing, into human-readable form. The principal kinds of
output are softcopy and hardcopy. The softcopy devices are CRT display screens,
Flat-panel display screen (for example, liquid-crystal display).

Self-Instructional Material
51

Computer Fundamental
A Programming in C

• Softcopy. Softcopy is data that is shown on a display screen or is in audio
or voice form. This kind of output is not tangible; it cannot be touched.
(Actually, you almost never hear the word “softcopy” used in real life).

The hardcopy and the related output devices have been discussed earlier. Let
us discuss the softcopy devices.
Monitors. These are also known as display screens, CRTs, or simply screens—

.are output devices that show programming instructions and data as they are
being input and information after it is processed. The size of a computer screen
is measured diagonally from comer to comer in inches. For desktop microcomputers,-
the most common sizes are 13, 15, 17, 19 and 21 inches; for laptop computers,
12.1, 13.3 and 14.1 inches. Figure 25 illustrates some sizes of computer '
screen ;

NOTES

Monitor
screen
elze

Viewable
Image
area

15 Inches 14 Inches

17 inches 16 inchesa

21 Inches 20 Inches

Fig. 26. Illustrating sizes of computer screen.

In deciding which display screen to opt, you will require issues of
screen clarity (dot pitch, resolution and refresh rate),
types of monitor (CRT versus flat panel, active-matrix flat panel versus passive-
matrix flat panel), and
color and resolution standards (SVGA and XGA).
• Screen clarity—dot pitch, resolution, and refresh rate. Major factors

affecting screen clarity (often mentioned in ads) are dot pitch, resolution
and refresh rate. These relate to the individual dots known as pixels,
which represent the images on the screen. A pixel, for “picture element”,
is the smallest unit on the screen that can be turned on and off or made
different shades.
Dot pitch (dp) is the amount of space between the centers of adjacent pixels;
the closer the dots, the crisper the image. For a .28dp monitor, for instance,
the dots are 28/lOOths of a millimeter apart. Generally, a dot pitch of
.28dp will provide clear images.
Resolution is the image sharpness of a display screen; the more pixels there
are per square inch, the finer the level of detail attained. Resolution is
expressed in terms of the formula horizontal pixels x vertical pixels. Each
pixel can be assigned a colour or a particular shade of gray. Standard

I

52 .S(*}^/;isJrucf/onal Material

K

resolutions are 640 x 480, 800 x 600, 1024 x 768, 1280 x 1024, 1600 x
1200 and 1920 x 1440 pixels.
Refresh rate is the number of times per second that the pixels are recharged
so that their glow remains bright. In general, displays are refreshed 45-
100 times per second. The higher the refresh rate, the more solid the image
looks on the screen—that is, the less it-flickers. Refresh rate is measured
in hertz; a high-quality monitor has a refresh rate of 75 hertz—the screen
is redrawn 75 times per second.

Type of Monitors
The two types of monitors are CRT and flat-panel.
CRT. A CRT, for cathode-ray type, is a vaccum tube used as a display screen
in a computer or video display terminal. Figure 26 illustrates CRT display.

Computer Fundamenlals

NOTES

/'

Fig. 26. CRT display.
The same kind of technology is found not only in the screens of desktop
computers but also in television sets and flight-information monitors in airports.
The CRTs are considerable cheaper (5-10 times) than flat-panel displays.
Figure 27 illustrates the basic operation of a CRT. A beam of electrons, emitted
by an electron gun, passes through focussing and deflection systems that direct
the beam towards specified positions on the phosphor-coated screen. The phosphor
then emits a small spot of light at each position contacted by the electron beam.
The light emitted by the phosphor fades away rapidly. Therefore, some mechanism
is needed to maintain the screen picture. One way to retain the picture is to
redraw the picture repeatedly by quickly directing the electron beam back over
the same points. This type of display is also called refresh CRT.
A CRT display comes is two varieties. Monochrome (only one colour) and colour
(multicolour). Monochrome displays come in green, blue, orange, yellow, pink,
amber, red and white depending upon the type of phosphor material used.

Self-Jmlruetional Material
63

Computer Fundamental
& Programming in C Magnetic

deflection coils Phosphor
coated
screen

Focusing
systemBase

NOTES

Electron
beamConnector

pins
Electron

gun

[

Fig.'27. Basic design of magnetic deflection CRT.

Coloured displays are developed by using a combination of phosphors that emit
different coloured light. To produce colour display three phosphors ; red, blue

. and green are used. These three phosphor colour dots are put at each pixel
position. One .phosphor dot emits a red light, another emits a green light and
the third emits a blue light. Three separate electron beams are employed to
illustrate the dots of three different phosphors. By varying the intensity of the
three electron beams the intensity of red, blue and green dots is varied. This
gives the appearance of a triangular spot of desired colour.

Electron
guns

B Selection
ofG

shadow mask
R

ooo
o2 Magnified

-phosphor-dot
triangle

?OC Red

Green Blue

Screen

Fig. 28. Operation of three electron gun CRT.

2.5.3 Flat-panel Displays
Compared to CRTs, flat-panel displays are much thinner, weigh less and consume
less power. Thus, they are better for portable computers, although they are
available for desktop computers as well.
Figure 29 illustrates a flat-panel display :
Flat-panel displays are made up of two plates of glass separated by a layer of a
substance in which light is manipulated. One technology used is liquid crystal
display (LCD), in which molecules of liquid crystal line up in a way that alters
their optical properties, creating images on the screen by transmitting or blocking
out light.

64 Self-Instructional Material

I

Computer Fundamentals-

NOTES

Fig. 29. A flat-panel display.

Advantages
• Lower power consumption.
• Cover less space than conventional monitors.
• Reduction in cooling load (as these radiate less heat).
• High performance monitors.
• Flexibility of usage.
• More viewing area.

Types of Flat-panel Displays
• Active-matrix versus passive-matrix flat-panel displays. Flat-panel

screens are either active-matrix or passive-matrix displays, according to
the location ,of their transistors.
In an active-matrix display, also known as TFT (thin-film transistor) display,
each pixel on the screen is controlled by its own transistor. Active-matrix
screens are much brighter and sharper than passive-matrix screens, but
they are more complicated and thus more expensive. They also need more
power, affecting the battery life in laptop computers.
In a passive-matrix display, a transistor controls a whole row or column of
pixels. Passive matrix provides a sharp image for one-colour (monochrome)
screens but is more subdued for colour. The advantage is that passive-
matrix displays are less.expensive and use less power than active-matrix
displays, but they aren’t as clear and bright and can leave “ghosts” when
the display changes quickly. Passive-matrix displays go by the abbreviations
HPA, STN or DSTN.

\

Self-Instructional Material
56

Computer Fundamental Video Standards
& programming in C

PCs have graphics cards (also known,as video cards or video adapters) that
convert signals from the computer into video signals that-can be displayed as
images on a monitor. The monitor then separates the video signal into three
colour : red, green and blue signals. Inside the monitor, these three colours
combine to make up each individual pixel. Video cards have their own memory,
video RAM or VRAM, which stores the information about each pixel.

NOTES

The common colour and resolution standards for monitors are VGA, SVGA, XGA,
SXGA and UXGA. Figure 30 illustrates comparison of video standards :
VGA (Video Graphics Array). It was developed by IBM for PCs. In graphics
mode, the resolution is either 640 x 480 or 320 x 200 with 16 colours and 256
colours respectively. In text mode, VGA systems provide a resolution of 720
X 400 pixels. The total palette of colours is 2,62,144. It uses analog signals
rather than digital signals.

A Single pixel Principal
resolution
In pixels

Video
standardIITlTnTiiTnrnT

S40 X 460VQA

VGA 320 X 200

VGA 720 X 400

SVGA 800 x 600

XGA 1 Ce4 X 768

SXGA 1280x 1024

UXGA 1600x 1200

Fig. 30. Video graphics standards compared for pixels.

SVGA (Super Video Graphics Array). It supports a resolution of 800 x 600
pixels, or variations, producing 16 million possible simultaneous colours, but
the number of colours than can be displayed simultaneously depends upon
the amount of video memory installed in a computer. SVGA is the most
common standard used today with 15-inch monitors.
XGA (Extended Graphics Array). It has a resolution of up to 1024 x 768
pixels, with 65,536 possible colours. It is used mainly with 17-inch and 19-
inch monitors.

SXGA (Super Extended Graphics Array). It has’ a resolution of 1280 x
1024 pixels. It is often used with 19-inch and 21-inch monitors.
UXGA (Ultra Extended Graphics Array). It has a resolution of 1600 x
1200 pixels. It is expected to be<xjme more popular with graphic artists, engineering
designers and other using 21'inch monitors.

66 Self-lnstrueiional Material

Computer Fundamentals
2.6 PRIMARY AND SECONDARY MEMORIES
A computer is capable to storing bulk of data and retrieving or accessing the
stored data as and when required. A personal computer may store a few
thousand of characters whereas a mainframe may store billion of characters.
The bulk of data can’t be stored in the main memory as this memory is costly
and naturally some other cheaper memory devices are required. These cheaper
memory devices, called SECONDARY STORAGE DEVICES can store bulk of
data at very less cost. Data are stored in secondary storage in the same
binary codes as in the main storage and are made available to main storage
as needed. The commonly used secondary storage devices are Magnetic Tape,
Floppy Disk, Hard Disk and CD-ROM.
From the above discussion on memory we conclude that computers use two
types of storage, or memory. Figure 31 illustrates the two types of memories.

NOTES

Memory

Primary or
Internal storage

Secondary or
External storage

Magnetic Tape Floppy diskROM Hard disk CD-ROMRAM

Fig. 31. Illustration of memory in a computer.

The choice of a particular secondary storage device for a given application
mainly depends upon how the stored information needs to be accessed. Basically
there are two methods of accessing information.

(i) Sequential or Serial Access

(ii) Direct or Random Access
A Sequential Access Device is one in which the data can be retrieved in the
same sequence in which it is stored, so that the access time varies according
to the location of storage. Sequential processing is quite suitable for applications
like preparation of monthly payslips, monthly electrically bills etc. In these
applications, each record needs to be processed at scheduled intervals. Magnetic
tape and punched paper media are widely used examples of sequential access
storage devices.

In many applications we need to retrieve s record directly rather than going
through all the records to reach the desired one. For example : In a computerised
bank, we might need to check the account status of a particular customer at
any instant of time. In such applications, it is inefficient to use a sequential
storage device as most of the time is wasted in looking for the particular

Self-Instructional Material
57

V

record. For such online real time processing applications Direct Access Storage
Devices are used. These direct access devices are also called Random-Access
devices because the information is available randomly. Thus, a Direct Access
Storage Device is a device in which the data can be stored randomly and it
can be accessed directly. Magnetic Disk and Magnetic Drum are typical examples
of Direct-Access Storage Devices.

Computer Fundamental
& Programming in C

NOTES

2.6.1 Primary Memories
Let us first discuss the primary memories :

RAM—Random Access Memory

Random Access Memory is also known as primary storage; and it temporarily
store

1. Software instructions and

2. Data before and after it is processed by the CPU.
Because its contents are temporary, RAM is said to be volatile as the contents
are lost when the power goes off or is turned off. This is the reason why you
should frequently—every 5-10 minutes, say—transfer (save) your work on a
secondary-storage device such as your hard disk, in case the electricity goes
off while you are working.

Four, types of RAM chips are used in PCs which are given below ;
• DRAM. Pronounced “dee-ram”, DRAM (dynamic RAM) must be constantly

refreshed by the CPU or it will lose its contents.
• SDRAM. The type of dynamic RAM used in most PCs today is SDRAM

(synchronous dynamic RAM), which is synchronized by the system clock
and is much faster than DRAM. Often in computer advertisements, the
speed of SDRAM is expressed in megahertz.

• SRAM. Pronounced "ess-ram" SRAM (static RAM) is faster than any DRAM
and will retain its contents without having to be refreshed by the CPU.

• RDRAM. Rambus dynamic RAM, or RDRAM, is faster and more expensive
than SDRAM and is the type of memory used with Intel’s P4 chip.

Microcomputers come with different amounts of RAM, which is usually measured
in megabytes. The more RAM you have, the faster the computer operates,
and the better your software performs. Having sufficient RAM is a critical
matter. Microsoft Office 2000, for example, states that a minimum of 16
megabytes of RAM is required.

If you are short bn memory capacity, you can usually add more RAM chips
by plugging them into the motherboard. Chips can be brought single or in so-
called memory modules, circuit boards that can be plugged mto expansion
slots on the motherboard. There are two types of such modules :

68 Self-Instructional Material

SIMMs and -DIMMs Computer Fundamentals ^

Both of these are DRAM chips. A SIMM (single inline memory module) has
RAM chips on only one side. A DIMM (dual inline memory module) has RAM
chips on both sides.

NOTES
ROM—Read Only Memory

Unlike RAM, to which data and instructions are constantly being added and
removed, ROM (Read Only Memory) cannot be written on or erased by the
computer user without special equipment. ROM chips have fixed start-up instructions.
That is, ROM chips are loaded, at the factory, with programs having special
instructions for basic computer operations sometimes called firmware, such
as those that start the computer or put characters on the monitor. These
chips are nonvolatile; their contents are not lost when power to the computer
is switched off.
In computer terminology, read means to transfer data from an input source
into the computer’s memory or CPU. The opposite is write-to transfer data
from the computer’s CPU or memory to an output device. Thus, with a ROM
chip, “read-only” means that the CPU can retrieve programs from the ROM
chip but cannot modify or add to these programs.
The ROM can be further classified as :

PROM. A PROM is a programmable ROM. ROM chips are provided by the
computer manufacturers and it is not possible for the user to change the
contents of a ROM chip. However, in a PROM the contents are decided by
the user. The user can store permanent programs, data or any other kind of
information in a PROM. PROMs are programmed to store information using
a facility known as PROM programmes. However, once the chip has been
programmed the recorded information cannot be changed i.e., PROM becomes
a ROM. So PROM is also a permanent storage.
EPROM. A variation to PROM is EPROM which stands for erasable'PROM.
As the name suggests it is possible to erase the contents of a EPROM chip
unlike a PROM chip. The stored data in EPROMs is erased by exposing it to
high intensity short wave ultraviolet light for about 20 minutes. EPROMs are
used to store programs which are permanent but need updating.
EEPROM. EEPROM is an electrically erasable PROM. The chip can be erased
and reprogrammed on byte by byte basis. Hence selective erasing is possible.,
Its disadvantage is that it requires different voltages for erasing {21 V),
writing (21 V) and reading (5V) the stored information. It also has high cost
and low reliability.
FLASH EPROM. This is the latest type of ROM, which is becoming very
popular. Using a special program, a manufacturer can modify the contents of
the flash EPROM while it remains in the computer.

Self-Instructional Material
59

Computer Fundamental 2.6.2 Secondary Memories
& Programming in C

Now let US discuss the secondary memories.

Floppy Disks

A floppy disk is a very popular direct access secondary storage medium for
micro and mini computers.

A floppy disk, often called a diskette or simply a disk, is a removable
flat piece of mylar plastic packaged in a 3.5-inch plastic case. Data
and programs are stored on the disk’s coating by means of magnetized spots,
following standard on/off patterns of data representation (such as ASCII).
The plastic case protects the mylar disk from being touched by human hands.
Originally, when most disks were larger (5.25 inches), the disks actually
were “floppy”, not rigid; now the plastic disk inside is flexible or floppy.
Floppy disks are inserted into a floppy-disk drive, a device that holds, spins,
reads data from, and writes data to a floppy disk. Read means taking data
from secondary storage (converted to electronic signals) to the computer’s
memory (RAM). Write means copying the electronic information processed by
the computer to secondary storage.
On the diskette, data is recorded in concentric circles called tracks. On a
formatted disk each track is divided into sectors, invisible wedge'Shaped
sections used for storage reference purpose. The read/write head is used
to transfer data between the computer and the disk. Figure 32 illustrates a
3V^ inch floppy disk ;

NOTES

\Sliding
hole cover

s o- ► High capacity holeWrite protect ^
notch

{Allows to prevent
the diskette from
being written to)

s✓ s/• s
N// \

N/ N/ \/ \\ -►Index hole
► Drive hole
-► Disk hub

O

I\ /\ /\ /\ /s /\ \ /s

*1 I I

✓
I ► Sliding coverI

I I j I

Fig. 32. inch floppy disk.

The Floppy Drive is of a moving head variety and therefore the floppy can be
removed and replaced by another. The head actually contacts the surface
during reading/writing, though in other times it is lifted up from the surface.
The hole at the centre is to allow a spindle to lock the floppy so that it can

«:

60 Self-Instructional Material

rotate. The Index hole is used to recognize the starting sector of any track. Computer Fundamentals
The purpose of write permit notch is to protect valuable information recorded
on the floppy from accidental damage. If this notch is covered, writing is not
allowed on the floppy, only reading is possible. If the notch is not covered
reading as well as writing is possible.
A new floppy can’t be used without formatting it. Formatting a disk is to
create a set of magnetic concentric circles called tracks. Tracks are further
divided into sectors. Most high density disks have 80 tracks.
Floppies offer a number of advantages. They are exchangeable. The storage
capacity is high as compared to its size and weight. These are portable.
Floppies are inexpensive also as compared to hard disks. The most common
uses of floppy disks are as follows :

(j) Moving files between computers that are not connected through
communication channel.

Hi) Loading new programs on to a system.
(Hi) Backing up data or programs, the primary copy of which is stored .on

hard disk,

NOTES

r “1

Note ; Do not remove the disk when the access light is on.
J

Let us compare the 3.5 inch floppy disk with some 3.5 inch floppy-disk
cartridges, or higher-capacity removable disks—Zip disks, SuperDisks
and HiFD disks :
• 3.5 inch floppy-disks—1.44 megabytes : The current standard for traditional

. floppy disks is 1,44 megabjdes, the equivalent of 400 type-written pages.
Today’s floppy carries the label 2HD, in which the 2 stands for “double-
sided” (it stores data on both sides) and the HD stands for “highdensity”
(which means it stores more data than the previous standard—DD, for
“double density”).

• Zip disks—100 or 250 megabytes': These are special disks with a capacity
of 100 or 250 megabytes, produced by Iomega Corp. At 100-250 megabytes,
this is at least 70 times the storage capacity of the standard floppy. These
are used to store large spreadsheet files, database files, image files, websites
and multimedia representation files. These require - their own Zip disk
drives, which may come installed on new computers, althbugh external Zip
drives are also available in market.

• Super Disks—120 megabytes : These are disks with a capacity of 120
megabytes, produced by Imation. The Super Disk drive can also read standard
1.44 megabyte floppy disks, which Zip drives cannot do.

1 /
• HiFD Disks—200 megabytes : These are disks with a capacity of 200

megabytes, produced by Sony Corp. The disk drive can also read standard
1.44 megabytes floppies. These have 140 times the capacity of today’s
standard floppy disks.

Self-Instructional Material
61

Computer Fundamental Hard Disk
& Programming in C

Magnetic disk is the most popular direct access storage medium. A magnetic
disk is made of aluminium or other metals or metal alloys instead of plastic.
The disk is coated on both sides with magnetic material (iron oxide). Unlike
a floppy disk, a hard disk cannot be inserted or removed from the hard disk
drive. A disk drive is a device that writes information on recording platters
that resemble gramophone records. Disk drive reads information ivritten on
to the disk. In order to increase the storage capacity a large number of disks
or platters are grouped together and are mounted on a common drive to form
a disk pack. A term cylinder is usually used in case of a disk pack. A disk
pack generally contains 6 platters. One platter has two recording surfaces
one above and the other below it. No data is recorded on the topmost and the
bottommost surfaces.
Hard disks are quite sensitive devices. The read/write head does not actually
touch the disk but rather rides on a cushion of air about 0.000001 inch thick.
The disk is sealed from impurities within a container, and the whole apparatus
is manufactured under sterile conditions. Otherwise, all it would take is a
human hair a finger print smudge, a dust particle, or a smoke particle to
cause what is called head crash. A head crash happens when the surface
of the read/write head or particles on its surface come into contact
with the surface of the hard-disk platter, causing the loss of some or
all the data on the disk. A head crash can also happen when you bump a
computer too hard or drop something heavy on the system cabinet. So, always
take up backup of data.
Each surface has concentric circles dividing the disk into tracks. Disk drives
have read/write heads for writing to and reading from the disks. Some disk
drives have fixed read/write heads. In this case, each track has a read/write
head associated with it and therefore, the only delay in accessing a specific
record is the rotational delay.
Each trackj is divided into a number of fixed length physical blocks called
sectors. These are like blocks on magnetic tape. Sector is the smallest unit
of data for transfer. The sectors are separated by inter record gaps.
Bits of character are recorded serially in each sector. Disks are available in
different sizes and with different speeds. Different type of disks have different
number of tracks and sectors. Number of tracks is generally 800 and number
of sectors, per track is 64.

; Movable head disk drives have single read/write head per recording surface.
The arm having read/write head moves on the recording surface so that it can
be positioned on any track for reading or writing. All the read/write heads

' move together and therefore, all the read/write heads are positioned on the
tracks on surfaces in the same plane. The same number of the track on each
of the surfaces together are said'to form a cylinder. -

NOTES

\

62 j $elf-Instructional Material

\

Computer Fundamentals
One read/write head

per track on every
disk surface

' Central shaft Central shaft
1 ‘ tOne read/write head

per surface
Unused
surface

Unused
surface

-^nnnnnn

«' i

NOTES

WWWD V

nnnnnnri fi
WWWu V

0
wwwo V■t

nnrmnAn n
WWWu XI

nnnnnn.n n
xnwww T V

Movable
access arms\y/YYYY/^YY<YY/CYY/^^

T IFixed access arms Direction of
arm movement

Unused
surface

Unused
surface

Fig. 34. A movable head disk.Fig. 33. A disk drive having fixed head.

Microcomputer hard drives withi capacities measured in tens of gigabytes—
uptb 40 gigabytes, according to current ads—are becoming essential because
today’s programs'are so huge. Microsoft Office alone is 500 megabytes. These
allow faster access to data than floppy disks do, because a hard disk spins

► Track 000

♦ Track 799

► Sector. -/\

\
\

Self-Instructional ■Material
63

..I

\Computer Fundamental many times faster. Computer ads frequently specify speeds in revolutions per
& Programming- in C minute. A floppy disk drive rotates at only 360 rpm; a 7200-rpm hard drive

is going about 300 miles per hour.
Access Time : The access time of a record on a disk consists of 3 factors viz.
Seek Time, Latency Time and Data Transfer Time. ^
Seek Time : It refers to the time taken to position the read/write head at the
desired track on the disk. ’
Latency Time : It refers to the time taken to position the read/write head
at the desired sector of the track. Latency time depends on the speed of
rotation of the disk.
Data Transfer Time : It is'the actual time required to transfer the data.
The data transfer time depends upon density of stored data and rotational
speed of the disk.
Differences between a Floppy Disk and a Hard Disk

The differences between a floppy disk and a hard disk are given below :

NOTES

Floppy disk Hard disk

Floppy disks are also known as floppies
or microdisks. .

Hard disks are also known as fixed disks.

The computer takes more time to read
from a floppy disk.

The computer takes less time to read
from hard disk.

More prone to damage by heat, dust and
improper handling as it is made of a
flexible material.

Less prone to^ damage as it is within
the system unit.

I Can be used'to store 1.44 MB of data. Can be used to store far more data than
floppy disks. They can be used to store
data in the range a few GBs.

It is cheap. It is costly.

2.6.3 For Magnetic Disk Numerical Problems
Storage capacity of one surface = No. of tracks x no. of sectors x b3rtes per
sector

/
Storage capacity of the disk pace = Storage capacity of one surface x no.
of surfaces
Number of cylinders = No. of tracks per surface

Transfer rate = No. of bytes per track x rotational speed

Example. A 6 disk pack has 600 tracks per surface. There are 10 sectors per
track and 512 bytes per sector.

(i) What is the storage capacity of the disk pack ?
(ii) How many cylinders does the disk pack have ?

I '''- iiU) How many tracks are there per cylinder ? •
84 Seifdnstructional Material

Solution :
(i) Storage capacity of one surface

= No. of tracks x No. of sectors x bytes stored per sector

= 600 X 10 X 512 = 3072000 bytes

Computer Fundamentals

NOTES
Storage capacity of the disk pack

= Storage capacity of one surface x no. of surfaces

= (3072000 X 10) bytes
(•.• upper and lower surfaces are not used)

= (30720000) bytes

30720000
Mb1024x1024

= 29.29 Mb ^ 30 Mb
(«) No. of cylinders = No. of tracks on each disk

= 600
(Hi) No. of tracks per cylinder = No. of usable surfaces on the disk = 10.

Compact Disk (Optical Disk)

Everyone who has ever played an audio CD is familiar with optical disks. An
optical disk is a removable disk, usually 4.75 inches in diameter and less than
one-twentieth of aii inch thick, on which data is written and read through the
use of laser beams. An audio CD holds upto 74 minutes of high-fidelity stereo
sound. Some optical disks are used strictly for digital data storage, but many
are used to distribute multimedia programs that combine text, visuals and
sound.
Optical disk storage system consists of a rotating disk which is coated with
a thin metal or other material that is highly reflective. Optical storage techniques
make use of pinpoint precision which is possible with laser beams. A laser
uses a concentrated and narrow beam of light. Hence, a laser beam is used
to write information to or read information from an optical disk.
Optical storage devices focus a laser beam on the recording medium, which
is a spinning disk. Some areas of the disk reflect the laser light into sensor,
whereas others scatter the light. As the disk rotates past the laser and the
sensor, a spot that reflects the laser beam,into the sensor is interpreted as
binary one, and the absence of reflection is interpreted as binary zero.
The storage density of optical disks is enormous, the storage cost is extremely
low and the access time is relatively fast. An optical disk can hold over 4.7
gigabytes of data, the equivalent of 1 million typewritten pages. A typical
shortcoming of optical storage devices is that they are permanent storage
devices. Data once recorded cannot be erased and hence the disk cannot be
reused. Extensive research is being carried out to develop erasable optical
disks. The types of optical disks are :

Self-Instructional Material
65

Computer Fundamental (j) CD-ROM — Compact Disk Read Only Memory
& programming in C ■

Hi) CD-R (Compact Disk Recordable)
(Hi) CD-RW (Compact Disk Rewritable)
(iv) DVD-ROM (Digital Versatile or Digital Video Disk, with Read Only

Memory)
(») CD-ROM. For PC users, the best known type of optical disk is the CD-

• ROM. CD-ROM (Compact Disk Read Only Memory) is an optical-disk
format that is used to hold pre-recorded text, graphics and sound. The
disk’s content is recorded at the time of manufacture and cannot be
written on or erased by the user. CD-ROM uses the same technology
that is used in music CDs. The disk is made of a resin, such as polycarbonate
and is coated with a material that is highly reflective, usually aluminium.
Data is recorded by focussing a laser beam on the surface of the disk.
The laser beam is turned on and off at a varying rate because of which
tiny holes (or pits) are produced on the metal coating. In order to read
the stored data, a less powerful laser beam is focussed on the disk
surface. This beam is strongly reflected by the coated surface and weakly ^
reflected by the pits, thereby producing patterns of on-off reflections ^
that can be converted into electronic signals. ,

NOTES

CD-Rom

Reflected beam

Laser beam Sensor

Laser source

Fig. 36. CD-ROM.

CD-ROMs do not use concentric circles. Rather they use simple spiral
tracks. The .capacity , of CD-ROM is 650 MB, equal to over 300,000
pages of text.

Self-lnetruetional Material66

(ii) CD-R (Compact Disk Recordable). CD-R can be written to only once Computer Fundamentals
but can be read many times. This allows users to make their own CD
disks, though it is a slow process. (Recording a complete disk takes
20-60 minutes). The information recorded once cannot be erased.
CD-R disks are most commonly used for archival applications. Its advantage
is high capacity, better reliability and longer life.

iiii) CD-RW (Compact Disk Rewritable). A CD-RW disk, also known as
an erasable optical disk, allows users to record and erase data, so that
the disk can be used over and over again. Special CD-RW drives and
software are needed. CD-RW disks are useful for archiving and backing
up large amount of data or work in multimedia production or desktop
publishing. CD-RW disks cannot be read by CD-ROM drives.

(iv) DVD-ROM. A DVD-ROM (Digital Versatile Disk or Digital Video
Disk, with Read Only Memory) is a CD-style disk with extremely
high capacity, able to store 4.7-17 gigabytes. The surface of a DVD
contains microscopic pits, which represent the Os and Is of digital code
than can be read by a laser.

The DVD drives can also take standard CD-ROM disks, so a user can watch
DVD movies and play CD-ROMs using these. DVDs have enormous potential
to -replace CDs for archival storage, mass distribution of software and entertainment.
DVDs not only store far more data but are different in quality from CDs. The
variants of DVDs are ;
DVD-R

DVD-RW

DVD-RAM

DVD + RW
All of these three types are reusable, that is these can be recorded on and
erased many times.

Differences between a Hard Disk and a CD-Rom
The differences between a hard disk and a CD-ROM are given below :

i
NOTES

I
!

(DVD-Recordable)—Permits onertime recording by the user.
(DVD-Rewritable)
(DVD-Random Access Memory)
(DVD -I- Rewritable)

\ .

CD-ROMHard disk

Hard disks are also known as fixed disks. CD-ROMs are also known as optical disks.

Data is stored in the form of a single
spiral track.

Data is stored in the form of concentric
circles.

The computer takes more time to read
from CD-ROM. It is in the range of 100
to 300'milliseconds.

The i»mputer takes less time to read
from hard disk. It is in the range of 10

*to 30 milliseconds.

Data can be read or written as and when
required. These can be reused.

It is a permanent storage medium. Data
once recorded, cannot be erased and hence,
the CD-ROMs cannot be reused.

Self-Instructional Material
67

Computer Fundamental
& Programming in C Hard disks are not portable. CD-ROMs are portable.

Hard disks require a less complicated
drive mechanism.

CD-ROMs require a more complicated
drive mechanism.

NOTES
Hard disks have a very large storage
capacity (Disk packs have virtually
unlimited storage capacity).

It has a storage capacity of about 650
Megab)d;es.

I
It is costly. It is cheap.

Not a better storage medium for data
archiving as compared to CD-ROMs.

CD-ROMs have a data storage life in
excess of 30 years. These are a better
storage medium for data archiving as
compared to Hard disks.

Magnetic Tape

Magnetic tape is a secondary storage device which can hold large volumes of
data on it. The tape is a sequential access media and data on it can be
accessed sequentially. Large files are stored on them. It is one of the most
popular storage media because of lower cost.
The Magnetic tape is made up of thin plastic ribbon coated on one side with
ferromagnetic material. It is Vz inch in width and over 2500 ft. long. The
coated side of the tape is usually divided into nine horizontal rows called
tracks. Along the width of the tracks every character is stored with one bit
in each track. The eight bits of EBCDIC or ASCII code of the character
occupy 8 tracks while the ninth track is used as parity bit.
The density of recording on a tape is the number of characters per inch on
the tape. Typical tape densities are 800 bpi (bytes per inch), 1600 bpi and
6250 bpi. Records are written one after the other on the tape. The processing
program reads one record at a time into the primary memory for the data to
be processed. During the time this record is being processed the tape drive
stops. It will be moving the tape under the magnetic read/write head when

Track 1 1

Track 2 1

Track 3 0

Track 4 0

Track 5 1

Track 6 0

Track 7 1

Track 8 0

Track 9 (Parity Bit) 0

Fig. 37. Structure of a nine track tape.

Self-Instructional Material68

the next record is to be read. So between reading two consecutive records the Computer Fundamentals
tape drive stops and starts again. During the time that the drive deaccelerates
to stop and accelerates again to a constant speed at which data from the tape
is read a certain length of tape is empty. This empty portion of tape which
occurs between every two records is called Inter Record Gap (IRG).
The IRGs are a wastage of storage space of the tape and cause slowing down
of the program execution. Hence, a number of records are grouped together
into a block and one block is transferred at a time into the buffer area in the
computers primary memory. The individual records are read one by one by
the program from this buffet memory for processing. The tape drive has to
.stop and start between reading of blocks. Once again gaps called Inter Block
Gaps (IBGs) are generated between blocks of data. Since the IBG occur less
frequently than the IRGs the empty space in the tape is reduced.
The initial and final few ft. of the magnetic tape are used for winding on a
reel and hence can’t be used. The beginning and end of the usable part of the
tape are marked by markers called “Load Point” and “End of Reel” markers.
The first record after load point is known as the Header Control Label. This
record gives information about the contents of the tape. Several sequential
files may be stored in the tape. Each file has its own header and trailer
markers to identify the beginning and end of each file.

End of Trailer control
reel marker label record

NOTES

Header control
label record

4□
Tape

motionRecord Record Record »

¥T Load point
markerTape mark

(end of file)
Interrecord gap

Fig. 38. Magnetic tape markers and labels.

The rate at which data is transferred between the tape and the CPU depends
on the tape drive speed and the density of recording. The actual rate will,
however, be lower than the value due to presence of IBGs and the start/stop
time lost.

On© block

Record Record Record Record Record

T
Interblock gap

Fig. 39, Multiple record block.

Self-Instructional Material
69

Computer Fundamental For Magnetic Tape Numericals :
& Programming in C

Block size
Length of a block = Tape density

Tape length
Block length + IBGMaximum no. of blocks on a tape =NOTES

where IBG means Inter Block Gap.
Number of records on tape = No. of blocks x Blocking factor .

where Blocking factor = No. of records in a block
Transfer rate = Tape density x Tape speed

Transfer rate x length of a block
Effective transfer rate = Length of a block with IBG

Example. Determine the amount of data which can he stored on a nine track
tape, 4800 feet in length, having tape density 800 bytes per inch, IBG 0.5 inch
and block size = 2000 bytes.
Solution : Total length of tape = 4800 x 12 = 57,600 inches (1 ft = 12 inch)

Block size 2000
Length of a block = = 2.5 inch

Tape density 800

Actual length of a block (Block size + IBG) = 2.5 + 0.5 = 3 inch

Tape length
No. of blocks on the tape = Block length + IBG

4800 X 12
= 19,2003

Amount of data on tape = No. of blocks x block size
= 19,200 X 2,000

= 3,84,00,000 bytes

Concepts of Virtual and Cache Memory
Pronounced “cash”, cache temporarility stores instructions and data that the
processor is likely to use frequently. Thus, cache speeds up processing. Cache
memory uses special chips, often SRAM (static RAM) chips. On some systems,
these chips are four times as fast as regular memory. However, the chips cost
six times as much. It’s this cost that keeps them from being used for the
entire system’s memory.
The technique, used to access cache memory is very different from that of
accessing the main memory. When the CPU accesses main memory, it outputs
the data contained at the specified address. On the other hand the cache
memory first compares the incoming address to the address stored in the
cache. If the address matches, it is said that a ‘hit’ has occurred. Then the
corresponding data are read. If the address does not match it is said that a
‘miss’ has occurred. In this case data is read from the main memory. The

70 Self-Instructional Material

data read from main memory is also provided to cache memory so that when Computer Fundamentals
this specific address is accessed next time, a hit may occur.
Caches are sometimes described by their logical and electrical proximity to
the microprocessor’s core logic. The closed physically and electrically to the
microprocessor’s core logic is the primary cache, also called a Level One Cache
or LI. A secondary cache (or Level Two Cache i.e., L2) lies between the primary
cache and the main memory. The secondary cache or L2 is generally larger
than the primary cache or LI but it operates at a lower speed (to make its
larger mass of memory more affordable).
The currently designed microprocessors have both the primary and secondary
caches as part of the microprocessor itself. Earlier designs have the secondary
cache in a separate part of a microprocessor module or in external memory.
LI and L2 caches differ in the way they connect with the core logic of the
microprocessor. Ll invariably operates at the full speed of the microprocessor’s
core logic with the widest possible bit-width connection between the core logic
and the cache. L2 often operate at a rate slower than the chip’s core logic,
although all current chips operate the secondary cache at full core speed.
A major factor that determines how successful the cache will be is how much
information it stores. The larger the cache, the more data that is in it and the
more likely any required byte will be available there when your system needs
it. Obviously, the best cache is one that’s as large as, and duplicates, the
entirety of system memory. Chip-makers try to design caches as large as
possible within the constraints of fabricating microprocessors affordably.
These days primary caches (Ll) are of size 64 or 128 KB. Secondary caches
(L2) range from 128 to 512 KB for chips, for desktop and mobile applications
and.upto 2 MB for server-oriented microprocessors.
In addition, most current computer operating systems allow for the use of
virtual memory—that is, some free hard-disk space is used to extend the capacity
of RAM.
Virtual memory reduces the overall cost of the system because it’s cheaper to
store data on a hard disk drive than it is to add additional memory chips to
the computer.

NOTES

\

Fig. 40. Virtual memory.

Self-Instructional Material
71

Computer Fundamental The processor searches for data or program instructions in the following
order : first LI, then L2, then RAM, then hard disk (or CD-ROM). In this
ord.er, each kind of memory or storage is slower than its predecessor.

Units of Memory

The binary number system has only two digits : 0 and 1. Thus, in the computer,
the 0 can be represented by the electrical current being off and the 1 by the
current being on. All data and program instructions that go into the computer
are stored in terms of these binary numbers.

Memory Capacity is denoted by bits and bytes and multiples thereof :
• Bit (Binary Digit). In the binary number system, each 0 or 1 is called a

bit, which is short for “binary digit.”
• Byte. To represent letters, numbers, or special characters (such as ? or *),

bits are combined into groups. A group of 8 bits is called a byte, and a byte
represents one character, digit, or other value. The capacity of a computer's
memory or of a floppy disk is denoted in numbers of bytes or multiples
such as kilob3^s and megabytes.

• Kilobyte. A kilobyte (K, KB) is about 1000 bytes. (Actually, it's precisely
1024 bytes, but the figure is commonly rounded.) The kilobyte was a common
unit of measure for memory or secondary-stor^e capacity on older computers.
1 KB equals about 1/2 page of text.

• Megabyte. A megabyte (M, MB) is about 1 million bytes (1,048,576 bytes).
Measures of microcomputer primary-storage capacity today are expressed
in megabytes. 1 MB equals about'500 pages of text.

• Gigabyte, ^gigabyte (G, GB) is about 1 billion bytes (1,073,741,824 bytes).
This measure was formerly used mainly with mainframe computers, but
is typical of the secondary storage (hard disk) capacity of today's microcomputers
(PCs), i GB equals about 500,000 pages of text.

• Terabyte. A terabyte (T, TB) represents about 1 trillion bytes (1,009,511,627,776
bytes). 1 TB equals about 500,000,000 pages of text.

• Petabyte. A petabyte (P, PB) represents about 1 quadrillion bytes (1,048,576
gigabytes).

<6 Programming in C

NOTES

I

2.7 SUMMARY
A computer is a fast electronic device that processes the input data and
provides the information as output.
A computer is more accurate, faster, diligent and has much more memory
than human beings.
The Input/Output devices are also known as peripheral devices because
they surround the CPU.

72 Self-Instructional Material

Computer Fundamentals• Keyboard and mouse are the main input devices of computer.
• Monitor and printer are the main output devices of computer.
• Printers are broadly classified into two types—Impact and Non-impact

printers.
• Memory is an integral and an important component of a digital computer.
• RAM (Random Access Memory) is used as read/write memory of computer.

It is volatile in nature.
• ROM (Read Only Memory) is one in which information is permanently

stored, that is it is non-volatile memory.
• A floppy disk, often called a diskette or simply a disk, is a removable flat

piece of mylar plastic packaged in a 3.5 inch plastic case.
• A hard disk can’t be inserted or removed from the hard disk drive.
• An optical disk is a removable disk, usually 4.75 inches in diameter and

less than one-twentieth of an inch thick, on which data is written and read
through the use of laser-beams.

• Magnetic tape is a secondary storage device which can hold large volume
of data on it. It is a sequential acces media. /

• Cache temporarily stores instructions and data.that the processor is likely
to use frequently. Thus, cache speeds up processing.,

NOTES

2.8 TEST YOURSELF
1. Why are Input/output devices necessary for a computer system ?
2. What is an input device ? Name some of the commonly used input devices.
3. Write short notes on the following :

(а) Printers .
(б) Video Standards
(c) LED

4. What is the difference between impact and nonimpact printers ?
6. What are the differences between a hard disk and a CD-ROM ?
6. Briefly explain the features of hard disk with a neat di^am.
7. Write a short note on magnetic tape.

\

Self-Instructional Material
73

Computer Fundamental
& Programming in C SECTION C

NOTES CHAPTER 3 PROGRAMMESfG
FUNDAMENTALS

\ ■

★ LEARNING OBJECTIVES ^

3.1 Introduction «
3.2. Techniques of Problem Solving

3.3. Flowcharting
3.4. Structured Programming Concepts

3.5. Modular Programming *
3.6. Algorithm Designing

3.7. Top-down Programming (Step Wise Refinement)
3.8. Bottom-up Programming

3.9 Summary

3.10 Test Yourself

(

3.1 INTRODUCTION
A program is a sequence of instructions written in a programming language.
There are various programming languages, each having its own advantages for
program development. Generally every program takes an input, manipulates it
and provides an output as shown below :

*
** Program code •OutputInput'- •»
*

Fig. 1. A conceptual view of a program.

John Von Neumann proposed that if a program was stored in memory, program
instructions could be easily changed just by loading a new program. Also as the
program executed, it could easily change the instructions in memory. This is
called the stored program concept.

74 Self-Instructional Material

For better designing of a program, a systematic planning must be done. Planning
makes a program more efficient and more effective. A programmer should use
planning tools before coding a program. By doing so, all the instructions are
properly interrelated in the program code and the logical errors are minimized.
There are various planning tools for mapping the program logic, such as
flowcharts, pseudocode, decision tables and hierarchy charts etc. A
program that does the desired work and achieves the goal is called an effective
program whereas the program that does the work at a faster rate is called an
efficient program.
The software designing* includes mainly two things—program structure and
program representation. The program structure means how a program should
be. The program structure is finalised using top-down approach or any other
popular approach. The program structure is obtained by joining the subprograms.
Each subprogram represents a logical subtask.
The program representation means its presentation style so that it is easily
readable and presentable. A user ftiendly program (which is easy to understand)
can be easily debugged and modified, if need arises. So the programming style
should be easily understood by everyone to minimize the wastage of time, efforts
and cost.
Change is a way of life, so is the case with software. The modification should
be easily possible with minimum efforts to suit the current needs of the
organization. This modification process is known as program maintenance.
Flowcharting technique is quite useful in describing program structure and
explaining it. The other useful techniques for actually designing the programs
are ;

Progra niming
Fundamentals

NOTES

(i) Modular programming

Hi) Top-down design (Stepwise refinement)
(Hi) Structured programming.

3.2 TECHNIQUES OF PROBLEM SOLVING
Computer problem-solving can be summed up in one word—it is demanding !
It is a combination of many small parts put together in a complex way, and
therefore difficult to understand. It requires much thought, careful planning,
logical accuracy, continuous efforts, and attention to detail. Simultaneously it
can be a challenging, exciting, and satisfying experience with a lot of room for
personal creativity and expression. If computer problem-solving is approached
in this spirit then the chances of success are very bright.
For solving a problem on a computer a set of explicit and unambiguous
instructions is written in a programming language. This set of instructions is
called a program. An algorithm (step by step procedure to solve a problem in
unambiguous finite number of steps) written in a programming language is a
program. So, an algorithm corresponds to a solution to a problem which is
independent of any programming language.

Self-Instructional Material
75

Problem solving is a creative process which largely defies systematization and
mechanization. Everyone acquires some problem-solving skills during his/her
student life which he/she may or may not be aware of.
Some steps for .problem solving improve the performance of the problem solver.

. No universal methods are available for it. Different people use different strategies.
In simple words we can say logically that computer problem solving is about
understanding.

Computer Fundamental
& Programming in C i

NOTES

3.2.1 Understanding of the Problem
When lot of efforts are made in understanding the problem we are dealing with,
chances of success are silso bright. We cannot hope to make useful progress in
solving a problem until it is clear, what it is we are trying to solve. The
preliminary investigation may be thought of as the problem definition phase.
The problem definition defines what the problem is without any reference to the
possible solutions. It is a simple statement, may be one to two pages and should
sound like a problem. The problem definition should be in user language and it
should be described from the user’s point of view. It usually should not be
defined in technical computer terms. As the analyst assigns the programs to
different programmers module-wise, the programmers understand the problem
given to them. The programmers define the problem of each program on a .
document and proceed for the next step. In simple words, a lot of care should
be taken in working out precisely what must be done.
The problem solver should obtain information on the following three aspects of
the problem after the analyses :
1. Input specification
2. Output specification
3. Special processing, if any.

1. Input Specifications
The input specifications should give the following information :

(i) Specific data values to be used as input in the program.
(it) Input data format i.e., order, spacing, accuracy and units.

(Hi) The valid range of input data.
iiv) Restrictions, if any, on use of these data values and what to do if an input

data is not accepted by the computer, should it be ignored or modified.
(o) The indication of end of input data (if specified by a special S3Tnbol).

2. Output Specifications
The output is obtained on executing a program. The output specifications must
clearly define the values required and their formats etc. The output specifications
must include the following information :

(i) The output data values required.
{ii) Output data format i.e., precision (number of significant digits), accuracy,

units, the position on the output sheet and suitable headings for making
the output readable.

Self-Instructional Material. 76

iiii) Amount of output required because the program has to be coded according
to the number of output data values required.

3. Special Processing, if any
It means processing of input data xmder some conditions. If conditions are
violated, certainly results are going to be incorrect. The processing under special
condition(s) and the recovery action should be handled carefully. If the special
processing conditions are ignored and left in the problem definition phase, it
may be a costly affair later on.
So, in the problem definition phase, detailed information about input, output
and special processing is gathered. These conditions are-taken intb^onsideration
while solving the problem. The method of solution is not specified in this phase.

Step by Step Solution for the Problem
There are many ways to solve most of the problems and also many solutions to
most of the problems. This situation makes the job of problem-solving a difficult
task. When we have many ways to solve a problem it is usually difficult to
recogni2e quickly which paths are likely to be fruitless and which paths may be
productive.
A block often occurs after the problem definition phase, because people become
concerned with details of the implementation before they have completely
understood or worked out an implementation-independent solution. The problem
solver should not be too concerned about detail. That can be taken into account
when the complexity of the problem as a whole has been brought imder control.
The old computer proverb states, “the sooner you start coding your program
the longer it is going to take”.
An approach that often allows us to make a start on a problem is to take a
specific example of the general problem we wish to solve and try to work out the
mechanism that will allow us to solve this particular problem {e.g:, if you want
to find the top scorer in an examination, choose a particular set of marks and
work out the mechanism for finding the highest marks in this set).
This approach of focusing on. a particular problem can often give us a platform
we need for making a start on the solution to the general problem. It is not
always possible that the solution to a specific problem or a specific class of
problems is also a solution to the general problem. We should specify our
problem very carefully and try to establish whether or not the proposed
algorithm (step by step procedure in a finite number of steps to solve a problem)
can meet those requirements. If there are any similarities between the current
problem and other problems that we have solved or we have seen solved, we
should be aware of it. In trying to get a better solution to a problem} sometimes
too much study of the existing solution or a similar problem forces us down the
same reasoning path (which may not be the best) and to the same dead end.
Therefore, a better and wiser way to get a better solution to a problem is, try
to solve the problem independently.
Any problem we want to solve should be viewed fi’om a variety of angles. When
all aspects of the problem have been seen, one should start solving it. Sometimes,
in some cases it is assumed that we have already solved the problem and then

Programming
Fundamentals

NOTES

\

Self-Instructional Material
77

Computer Fundamental try to work backwards to the starting conditions. The most crucial thing of all
& Programming in C in developing problem-solving skills is practice.

Probably the most widely known and most often used principle for problem
solving is the divide-and-conquer strategy. The given problem is divided into
two or more subproblems which can hopefully be solved more efficiently by the
same technique. If it is possible to continue in this way we will finally reach the
stage where the subproblems are small enough to be solved without further
splitting.
This way of breaking down the solution to a problem has been widely used with
searching, selection and sorting algorithms.

NOTES

3.3 FLOWCHARXmG
The technique of drawing flowcharts is known as flowcharting. A flowchart is
a pictorial representation of the sequence of operations necessary to solve a
problem with a computer. The first formal flowchart is attributed to John Von
Neumann in 1945. The flowcharts are read from left to right and top to bottom.
Program flowcharts show the sequence of instructions in a program or a
subroutine. The symbols used in constructing a flowchart are simple and easy
to learn. These are very important planning and working tools in programmit^.
The purposes of the flowcharts are given below :

(i) Provide Better Communication. These are an excellent means of
communication. The programmers, teachers, students, computer operators
and users can quickly and clearly get ideas and descriptions of algorithms.

Hi) Provide an Overview. A clear overview of the complete problem and
its algorithm is provided by the flowchart-. Main elements and their
relationships can be easily seen without leaving important details.

nil) Help in Algorithm Design. The program flow can be shown easily
with the help of a flowchart. A flowchart can be easily drawn in comparison
to write a program and test it. Different algorithms (for the same
problem) can be easily experimented with flowcharts.

(iu) Check the Program Logic. All the major portions of a program are
' shovm by the flowchart, precisely. So the accuracy in logic flow is maintained,
(u). Help in Coding. A program can be easily coded in a programming

.language with the help of a flowchajt. All the steps are coded without
leaving any part so that no error lies in the code.

(vi) Modification Becomes Easy, A flowchart helps in modification of an
already existing program without disrupting the program flow.

(vii) Better Documentation Provided. A flowchart gives a permanent
storage of program logic, pictqrially. It documents all the steps carried
out in an algorithm. A comprehensive, carefully drawn flowchart is

I . ' / ’

always an indispensable.part for the program’s documentation.
; . ■/ / .

y

78 Self-Instructional Material

■ II

%
' •

' Flowchart Symbols
Flowcharts have only a few symbols of different sizes and shapes for showing
necessary operations. Each ssrmbol has specific meaning and function in a
flowchart. These symbols have been standardized by the American National
Standards Institute (ANSI). The basic rules that a user must keep in mind while
using the symbols are :
1. Use the symbols for their specific purposes.
2. Be consistent in the use of s3Tnbols. '

v\
3. Be clear in drawing the flowchart and the entries in the symbols. •
4. Use the annotation symbol when beginning a .procedure^
5. Enter and exit the S5Tnbols in the same way.
The flowchart symbols alongwith their purposes are given below :

Programming
Fundamentals

NOTES

\
Symbol Name Purpose

Terminal Indicates the beginning and end of a program.

Process For calculation or assigning of a value to a variable.

Input/Output Any statement that causes data to be input to a program
(INPUT, READ) or output from the program, such as printing
on the display screen or printer.

(I/O)

\\Decision Program decisions. Allows alternate courses of action based
on a condition. A decision indicates a question that can be
answered yes or no (or true or false).

Predefined
Process

A group of statements that together accomplish one task.
Used extensively when programs are broken into modules.

Connector Can be used to eliminate lengthy flowlines. Its use Indicates
that one symbol is connected to another.

Used to connect symbols and indicate the sequence of
operations. The flow is assumed to go from top to bottom
and from left to right. Arrowheads are only required w^en
the flow violates the standard direction.

Flowlines
and
Arrdwheads

I\

Annotation Can be used to give explanatory comments.

I / 'I

Fig. 2. Explanation of: flowchart symbols.
I,!

Self-Instructional 'Material
79

Computer Fundamental 3^.1 ContZ*Ol StrUCtlireS
A control structure, or logic structure, is a structure that controls the
logical sequence in which computer program instructions are executed.
In structured-program design, three control structures are used to form
the logic of a pro^am : sequence, selection and iteration (or loop).
These are also used for drawing flowcharts.

& Programming in C

NOTES

Statement l

Statement 2

1
Statement N

/

Fig. 3. Sequence control structure.
I'

Let us consider the three control structures :
1. In the sequence control structure, one program statement follows

imother in logical order. There are no decisions to make, no choices between
“yes" or “no”. The bones logically follow one another in sequential order. For
example, figure 3 illustrates a sequence of N statements ;

2. The selection control structure, also known as an IF-THEN-ELSE
structure~represents a choice. It offers two paths to follow when a
decision must be made by a program. An example of a selection structure
is as follows :/

IF a student’s marks in a subject is > 60 THEN
Student has secured first division

ELSE
Student has not secured first division

/

80 Self-Instructional Material
J"

I.

Figure 4 illustrates the selection control structure. Programming
Fundamentals

NOTESYES
(test condition)

THEN
(statement)

ELSE
(statement)

*
\

I /
1Fig. 4. Selection contivl structure (JF-THEN-ELSE).

A variation on the usual selection control structure is the case control structure.
This offers more than a single yes-or-no decision. The case structure allows
several alternatives, or “cases”, to be presented. “IF Case 1 occurs, THEN do
thus-and-so. IF Case 2 occurs, THEN follow an alternative course....” And so
on). The case control structure saves the programmer the trouble of having
to indicate a lot of separate IF-THEN-ELSE conditions. Figure 5 illustrates
this : r

Case

Condition

Case 1 Case 2 Case 3 Case 4
e

ProcessProcess Process Process

I
Fig. 6. Variation on selection : the case control structure.

3. In the iteration, or loop, control structure, a process may be repeated
as long as a certain condition remains true. There are two types of
iteration structures—i?jEP£Ar-C/N7YL and WHILE-DO. Of these, REPEAT-
UNTIL is more often encountered.
An example of a REPEAT-UNTIL structure is as follows :
REPEAT read in student records UNTIL there are no more student records.

Self-Instructional Material
81

' Computer Fundamental
& Programming in C

An example of a WHILE-DO structure is as follows :
WHILE read in student records DO—that is, as long as—there continue to be
student records.
The difference between the two iteration structures is : If several statements
are to be repeated, we must decide when to stop repeating them. WHILE-DO
structure can be used to stop them at the beginning of the loop. Or we can
decide to stop them at the end of the loop using REPEAT-UNTIL structure.
REPEAT-UNTIL iteration means that the loop statements will be executed
at least once, because the condition is tested in the end of loop.
One thing that all three control structures have in common is one entry and
one exit. The control structure is entered at a single point and excited at
another single point.' This helps simplify the logic so that it is easier for
others following in a programmer’s footsteps to make sense of the program.

REPEAT UNTIL

NOTES

WHILE DO
■*

4-

Loop statement(s) Is False (No)test
condition

?

Is True (Yes)False (No)test •»condition
? Loop statement(s)

True (Yes)

Fig. 6. Iteration control structures (Loops).

3.3.2 Types of Flowcharts
The systems designer and programmer use the following types of flowcharts in
developing algorithms :
1. System flowcharts
2. Modular program flowcharts
3. Detail program flowcharts or application flowcharts

1. System Flowcharts
It plays a vital role in the system analysis. A system is a group of interrelated
components tied together according to a plan to achieve a predefined objective.
The elements and characteristics of a system are graphically shown and its
structure and relationship are also represented by flowchart symlwls. The system
analysts use the system flowcharts for analysing or designing various systems.
The different stages of a system are :

82 Self'Instructional Material

•ft*

. Programming
Fundamentals

(i) Problem recognition

(») Feasibility

iiii) System analysis

iiv) System design

(u) Implementation

(ui) Evaluation
All the above stages use the system flowchart for convenience. Any alternative
solution for the existing system or the entirely new system can be systematically
represented. The working system is well documented by a precisely drawn system
flowchart.

NOTES

2. Modular Program Flowcharts
A system flowchart indicates the hardware, identifies the various files and
represents the general data flow. A modular program flowchart on the other
hand defines the logical steps for the input, output and processing of the
information of a specific program. In structured or modular programs, the
independent modules or units are written for different procedures. This module
is useful in performing the specified operation in other programs too. The exact
operation in detail is not performed but only the relationship and order in which
processes are to be performed are included.
It is also called as block diagram. Its main advantage lies in the fact that the
programmer can concentrate more on flow of logic and temporarily computer
level details are ignored. Alternate algorithms without much time consumption
or effort can also be tried using it. These help a lot in communicating the main
logic of the program.

3. Detail Program Flowcharts
These are the most comprehensive and elemental charts in developing the
programs. The symbols represented by it are quite useful for coding the program
in any computer lan^age. Each computer language has its own syntax, so there
may be some difference in performing the operations to be followed for coding
a program. A detail program flowchart represents each minute operation in its
proper sequence, reduced to its simplest parts.

/

/'

3.3.3 Rules for Drawing Flowcharts
The following rules and guidelines are recommended by ANSI for flow
charting :
1. First consider the main logic, then incorporate the details.
2. Maintain a consistent level of detail for a flowchart.

3. Do not include all details in a flowchart.

4. Use meaningful descriptions in the flowchart symbols. These should be easy
to undei^tand.

Self-Instructional Material
83

Computer Fundamental
& Programming in C

5. Be consistent in using variables and names in the flowchart.

6. The flow of the flowchart should be from top to bottom and from left to right.

7. For a complex flowchart, use connectors to reduce the number of flow lines.
The crossing of lines should be avoided as far as possible.

8. If a flowchart is not drawn on a single page, it is recommended to break it
at an input or output point and properly labelled connectors should be used
for linking the portions of the flowchart on separate pages.

9. Avoid duplication so faf as possible.

Levels of Flowcharts
There are two levels of flowcharts :

(i) Macro flowchart

(ii) Micro flowchart

(i) Macro Flowchart. It shows the main segment of a program and shows
lesser details.

(ii) Micro Flowchart. It shows more details of any part of the flowchart.

NOTES

r “I

Note : A flowchart is independent of all computer languages.
L J

/
/3.3.4 Limitations of Flowcharting

Flowcharts have some limitations also. These are given below :

(i) Time Consuming. These take a lot of time and are laborious to draw
with proper symbols and spacing, especially for large complex programs.

{ii) Difftcult to Modify. Any change or modification in the logic of the
program generally requires a completely new flowchart for it. Redrawing
a flowchart is tedious and many organizations either do not modify it
or draw the flowchart using a computer program.'

iiU) No Standard Available. There are no standards provided all over the
world for the details to be included in drawing a flowchart. So different
people draw flowchart with different views.

3.4 STRUCTURED PROGRAMMING CONCEPTS
The main objectives of structured programming are :
• Readability
• Clarity of programs
• Easy modification
• Reduced testing problems.

84 Self-Instructional Material

The goto statement should be avoided so far as possible. The three basic building
blocks for writing structured programs are given below :
1. Sequence Structure

2. Loop or Iteration
3. Binary Decision Structure

1. Sequence Structure :

Programming
Fundamentals

NOTES

i

I
I
i

I
Fig. 7. Sequence structure.

It consists of a single statement or a sequence of statements with a single entry
and single exit as show above.

2. Loop or Iteration :

*

*

Fig. 8. Loop or iteration.

It consists of a condition (simple or compound) and a sequence structure which
is executed condition based as shown above.

\

Self-Instructional Material
85

Computer Fundamental $. Binary Decision Structiire :
& Programming in C

NOTES

I

1

Fig. 9. Binary decision structure.

It consists of a condition (simple or compound) and two branches out of which
one is to be followed depending on the condition being true or false as shown
above.

3.5 MODULAR PROGRAMMING
Breaking down of a problem into smaller independent pieces (modules) helps
us to focus on a particular module of the problem more easily without worrying
about the entire problem. No processing outside the module should affect the

Main Module
Main Module

a.
Perform A ♦

Perform B
Perform C
Perform D

Module D

Independent modules
are activated by the

main module.
Each modulo returns
the control bade to
the main module

Module B

Module A

Module C

Fig. 10.

Self-Instructional Material86

Programming
Fundamentals

processing inside the module. It should have only one entry point and one exit
point. We can easily modify a module without affecting the other modules.
Using this approach the writing, debugging and testing of programs becomes
easier than a monolithic program. A modular program is readable and easily
modifiable. Once we have checked that all the modules are working properly,
these are linked together by writing the main module. The main module activates
the various modules in a predetermined order. For example, Figure 10 illustrates
this concept :
It must be noted that each module can be further broken into other submodules.

NOTES

3.5.1 Characteristics of Module Approach
(i) The problem to be solved is broken down into major components, each of

which is again broken down if required. So the process involves working
from the most general, down to the most specific.

Hi) There is one entry and one exit point for each module.
Aiii) In general each module should not be more than half a page long. If not

so, it should be split into two or more submodules.
{iv) Two-way decision statement are based on IF..THEN, IF..THEN..ELSE,

aiid nested IF structures.

iv) The loops are based on the consistent use of WHILE..DO and
REPEAT..UNTIL loop structures.

3.5.2 Advantages of Modular Approach
(i) Some modules can be used in many different problems.

(ii) Modules being small \mits can be easily tested and debused.

(Hi) Program maintenance is easy as the malfiinctionir^ module can be quickly
identified and corrected.

t

(iu) The large project can be easily finished by dividing the modules to different
programmers.

(u) The complex modules can be handled by experienced programmers and
the simple modules by junior ones.

(ui) Each module can be tested independently.
(vii) The unfinished work of a programmer (due to some unavoidable

circumstances) can be easily taken over by someone else.
(viii) A lai^e problem can be easily monitored and controlled.

(ix) This approach is more reliable.
(x) Modules are quite helpful in clarification of the interfaces between major

parts of the problem.

Self-Instructional Material
87

Computer Fundamental
& Programming in c 3.6 ALGORITHM DESIGNING

Computers are basically used to solve complex problems in a systematic and
easy manner. In order to solve a problem systematically, the solution should be
written as a set of sequential steps. Each of these steps specify some simple
actions that need to be performed. Thus an algorithm may be defined as a finite
and ordered sequence of steps which when performed lead to the solution of the
problem in a definite time. Ordered sequence implies that the execution takes
place in the same manner or order in which the statements are written i.e., each
step of the algorithm is written in such a way that the next instruction follows
automatically. The ordering is provided by assigning positive integers to the
steps. The words BEGIN and END normally refer to the begirming and end of
the algorithm. An algorithm must possess following characteristics :
1. Finiteness. Finiteness implies that the algorithm must have finite number

of steps. Also the time taken to execute all the steps of the algorithm should
be finite and within a reasonable limit.

2. Definiteness. By definiteness it is implied that each step of the algorithm
must specify a definite action i.e., the steps should not be vague. Moreover,
tbe steps should be such that it is possible to execute these manually in a
finite length of time.
Input. The term input means supplying initial data for an algorithm. This
data must be present before any operations can be performed on it. Sometimes
no data is needed because initial data may be generated within the algorithm.
Thus the algorithm may have no or more inputs. Generally, the initial data,
is supphed by a READ instruction or a variable can be given initial value
using SET instruction.
Output. The term output refers to the results obtained when all the steps
of the algorithm have been executed. An algorithm must have at least one
output.

Effectiveness. Effectiveness implies that all the operations involved in an
algorithm must be sufficiently basic in nature so that they esiTi be carried out
manually in finite interval of time.

NOTES

3.

\
4.

5.

3.6.1 Expressing Algorithms
The procedure for expressing algorithm is quite simple. The language used to
write algorithms is similar to oxir day-to-day life lat^age. In addition, some
special symbols are also used which are described below :

(i) Assignment Symbol {<—). The assignment symbol (<—) is used to assign
values to various variables. For example, let A be any variable and B be
another variable or constant or an expression. Then the statement

A B

88 Self-Instructional Material

Programming
Fundamentals

is called assignment statement. The statement implies that A is assigned
the value stored in B. If A contains any previous value then that value .
is destroyed and the new value is assigned.

(«) Relational Symbols. The commonly used relational symbols for
algorithms are : NOTES

Exampleilfeonin^Symbol

A < B
A <= B
A = B
A ?= B
A > B
A >= B

Less than
Less than or equal to
Equal to
Not equal to '
Greater than
Greater than or equal to

<
<=

*
>

>=

(Hi) Brackets ({}). The pair of braces is used to write comments for the
purpose of documentation. For example,

(i) BEGIN {Start of the algorithm}
Hi) Set N <— N + 1 {Increase the value of N by 1)

{Hi) END {End of the algorithm).

Basic Control Structures

The basic control structures needed for writing good and efficient algorithms
are :

(i) Selection

(ii) Branching

{Hi) Looping.

(i) Selection. The selection structure is used when we have to perform' a
given set of instructions if the given condition is TRUE and an alternative
set of instructions if the condition is FALSE. The basic statement available
for selection is IF-THEN-ELSE.

The syntax is

1

f'r-

IF (condition is true) THEN
• Begin

!

Si

S2

/
sn

End

Self-Instructional Material
89

Computer Fundamental
& Programming in C

ELSE
Begin

fl
f2

NOTES

fn
End

For example, consider the following algorithm which finds greater amor^
2 numbers.

BEGIN
Read NUMl, NUM2
If NUMl > NUM2
Then
Write (NUMl, ” is greater”)

STEP 1
STEP 2
STEP 3

STEP 4 Else
Write (NUM2, " is greater”)
END

Hi) Branching. The branching statement is required when we want to transfer
the control of execution from one part or step of the algorithm to another
part or step. The statement available for branching is GOTO and its
s}mtax is

GOTO n

where n is a positive integer and specifies the step number where the
control of execution is to be transferred.

(Hi) Looping. The looping structure is used when a statement or a set of •
statements is to be executed a number of times. The following two loop
control structures are commonly used in algorithms:
(а) WHILE-DO
(б) REPEAT-UNTIL

(a) WHILE-DO
STEP 1
STEP 2
STEP 3

The syntax is

WHILE (Condition) DO
SI
S2

Self-Instructional Material90

Programming
Fundamentals

STEP N+1 SN

STEP N+2 END-WHILE (End of While-Do loopi
V

This control loop structure implies that as long as the condition
remains true, all the steps listed between WHILE-DO and END-
WHILE are executed again and ^ain. As soon as the condition
becomes false, the execution of the loop stops and control is transferred
to next statement following END-WHILE.
For example, consider the following algorithm

BEGIN
Set N 1
WHILE (N <= 10) DO
Write N
Set N N + 1
END-WHILE

END ,

NOTES

STEP 1
STEP 2 ■
STEP 3
STEP 4
STEP 5

This algorithm initially sets the value of N to 1. The while statement
then checks if the value of N <= 10. If the condition is true it executes
steps 3 and 4. When the value of N exceeds 10 the condition becomes
false and the control goes to the statement following END-WHILE
which is END statement marking the END of algorithm.

(6) REPEIAT-UNTIL. This is similar to WHILE-DO except the fact that
the loop is executed till the condition remains false or condition
becomes true. The syntax is :

REPEATSTEP 1
STEP 2 SI

, S2STEP 3

STEP N+1 SN
STEP N + 2 UNTIL (Condition)

This control loop structure imphes that as loi^ as the condition remains
false, all the steps listed between REPEAT and UNTIL are executed
^ain and again. As soon as the condition becomes true, the execution
of the loop stops and control is transferred to next statement following
UNTIL (condition). For example, consider the following algorithm :

BEGIN
Set N 1
REPEAT
Write N

STEP 1
STEP 2
STEP 3

Self-Instructional Material
91

...

Computer Fundamental
& Programming in C

STEP 4
STEP 5

Set N «- N + 1 {Increment N by 1)
UNTIL (N > 10)
END

Initially, the value of N is set to 1. The loop executes till the value of
N exceeds 10. After this, the control goes to the next statement
following UNTIL (N > 10).

NOTES

3.6.2 Advantages of Algorithms
(i) It is simple to imderstand step by step solution of the problem. ^

Hi) It is easy to debug i.e., errors can be easily pointed out.
(Hi) It is independent of programming languages.
(iv) It is compatible to computers in the sense that each step of an algorithm

can be easily coded into its equivalent in high level language

3.6.3 Algorithm : Linear Search
Given an array A of N elements. This algorithm searches for an element DATA
in the array. I denotes the array index. This algorithm gives the first location
where. DATA is found.
1. I <- 1
2. While (1 < N) Do upto step 3
3. IF (A[I1 = DATA) THEN

Begin
t

Write “Successful search”
Write DATA, “ found at position ”, I
goto step 5

End
ELSE
Begin

I ^ I + 1
End

4. Write “Unsuccessful search”
5. END

3.6.4 Algorithm : Binary Search (Always Applicable on Sorted
Data)

Given an array A of N elements in ascending order. This algorithm searches for
an element DATA. LOW, HIGH, MID denote the lowest, highest and middle
position of a search interyal respectively.
1. LOW <- 1 -

HIGH N

92 Self-Instructional Material

Progra mming
Fundamentals

2. While (LOW < HIGH) Do upto step 4

3. MID Integra] part of ((LOW + HIGH)/2)

4. IF (DATA = A[MID]) THEN

Begin NOTES
Write “Successful search”

Write DATA, “ found at position ”, MID

goto step 6

End V-

ELSE

Begin

IF (DATA > A[MID]) THEN

LOW MID + 1 ,

ELSE

HIGH ^ MID - 1

End

5; Write “ Unsuccessful search ”

6. END

3.6.5 Algorithm : Organize Numbers in Ascending Order

(Sorting)
\

Given an array A of N elements. This algorithm arranges the elements in
ascending order. I and J denote array indices. Variable' TEMP is used for
swapping. ,

1. Repeat for I = 1, 2,

Begin

., N-1

Repeat for J = I + 1, I + 2,

Begin

N

IF (A[J] < A[I]) THEN

Begin

TEMP ^ Am

A[I] <- A[J] .

AIJ] «- TEMP
iEnd

End 'x

. End
;

. 2. End
!■

I

Self-Insthuctional Material
93

(

• !
Computer Fundamental

. & Programming in C
3.6.6 Algorithm : Insertion in a Sorted Array
Given an array A of M elements (M < N) in ascending order. This algorithm
inserts an element DATA. The array remains sorted after insertion. I and POS
denot array indices. There are M + 1 elements after insertion of DATA.NOTES
1. IF (DATA,S A[M]) THEN

Begin

A[M + 1] <- DATA

goto step 6

End

2. I <-.l

3. Repeat While (DATA £ AfR)

I I + 1

4. Repeat for POS = M, M - 1......I

Regain

A(POS + 1] ^ AlPOS]

\ 1 End
i I
5. ' AIR DATA

6. M M + 1

7, End

d.0.7 Algorithm : Merging of Ordered Lists
Give two array A and B of size M and N respectively having elements in
ascending order. We want to merge these two arrays into array C of size M+N,
also ih ascending order. I, J and K denote array indices. Assuming the array
indices begin at 1.

1. I = 1

J a 1

K = 1

• 2. Repeat While {(I < M) AND (J £ N))

, Begin
IF (AH]'.i< B[J]) THEN

Begin
■1

. /. ; CIK] = A[I]

1 = 1+1
■ \

End

\

’Seif-Instruction'di Material \ \

>

Programming
Fundamentals

ELSE
Begin

CIK] = B[J]
J = J + 1 NOTES

End
K = K +.1

End
3. IF (I > M) THEN

Begin
Repeat while (J < N)

Begin
C(K) = B[J]
K = K + 1
J = J + 1

End
End

ELSE
Begin

Repeat While (I < M)

Begin /

C[K1 = A[I]
K = K+ 1
1 = 1 + 1

End

End > *

4. End

3,7 TOP-DOWN PROGRAMMING (STEP WISE

REFINEMENT) \

Program development includes desiring, coding, testing and verification of
a program in any computer language. For writing a good program, the top-
down design approach can be used. It is also called systematic programming
or hierarchical program design or stepwise refinement. A complex problem
is broken into smaller subproblems, further each subproblem is broken into
a number of smaller subproblems and so on till the subproblems at the lowest

\
\
\ ..

. r
/

"■ VSelf-Instructional Matenal/,I

95

Computer Fundamental level are easy to solve. Similarly a large program is broken into a number of
& Programming in c gubpif^ams and in tum each subprogram is further decomposed into subpn^ams

ans so on. Suppose we want to solve a problem S, which can be decomposed
-into subproblems SI, S2 and S3 and so on. Let the program for S, SI, S2, S3
be denoted by P, PI, P2, P3 respectively. Further suppose that S2 is solved
by decomposing it into subprobiems S21 and S22 and program P21 and P22
are written for these. This operation of coding a subprogram in terms of
lower level subprograms is known as the process of stepwise refinement.
The following figure shows the hierarchical decomposition of P into its subprograms
and sub-subprograms.

NOTES

P

P3P2PI

P22P21

4
Fig. 11.

The advantages of the top-down design approach are :

1. A large problem is divided into a number of smaller problems using this
approach. The decomposition is continued till the subproblems at the
lowest level become easy to solve. So the overall problem solving becomes
easy.

2. If we use the top-down approach for a problem then top-down programming
method can be used for coding modules at various stages. So, the top level
modules can be coded without coding the lower level modules earlier. This
approach, is better than the bottom-up approach where programming starts
first ht the lowest level modules.

3. It helps in top-down testing and debu^ng of programs.

4. The programs become user fnendly (that is easy to read and understand) and
easy to maintain and modify.

' ' . \
5. Different programmers can write the modules'for different levels.

/
\

1'
l\

• V

96 [Self'lnstructionai Afatenai \

• Programming
Fundamentals3.8 BOTTOM-UP PROGRAMMING

The bottom-up programming approach is the reverse of the top-down program
ming. The process starts with identification of a set of modules which are either
available or to be constructed. An attempt is made to combine the lower level
modules to form modules of a high level. This process of combining modules is
continued until the program is realised. The main drawback of the hottom-up
programming approach is the assumption that the lowest level modules can be
completely specified beforehand, which in reality is seldom possible. Thus, in
the bottom-up approach, quite often it is foxmd that the final program obtained
by combining the predetermined lowest level modules does hot meet all the
requirements of the desired program.
Here no attempt is made to compare the advantages and disadvantages of
the top-down and bottom-up progi'amming. However, program development
through top-down approach is widely accepted to be better than the bottom-
up approach.

NOTES

3.9 SUMMARY
e A program is a sequence of instructions written in a programming language.
e John vohn Neumann proposed that the programs be stored in memory.

This is called the stored program concept.
• Computers work because they are fed a series of step-by-step instructions

called programs.
• A flowchart is a graphical way of illustrating the steps in a process. It

uses symbols connected by flowlines to represent processes and the direction
of flow within the program. A flowchart is independent of any programming
language.

• Some useful techniques of problem solving other than flowcharting are
modular programming, top-down design and structured programming.

• Modular programming is breaking down of a problem into smaller independent
pieces (modules).

• An algorithm is a step-by-step procedure to solve a problem in unambiguous
finite number of steps. An algorithm is independent of any programming
language.

• Probably the most widely known and most often used principle for problem
solving is the divide-and-conquer strategy. It is widely used with searching,
selection and sorting algoritluns.

• Complex decision logic associated with a problem represented in a tabular
form is known as a decision table.

Self-Instructional Material
97

/

%

•' The main objectives of structured programming are readability, clarity of
programs, easy modification and reduced testing problems.

• Top-down programming is also known as the process of stepwise refinement.
• Bottom-up programming approach is the reverse of the top-down prc^amming.

Computer Fundamental
& Programming in C

NOTES

3.10 TEST YOURSELF
1. Write a short note on the following :

(a) Structured programming concepts
(b) Modular programming

2. What is an algorithm ? Explain its need.
3. Draw a flowchart and write an algorithm for merging two sorted arrays given

in descending order into ascending order.
4. Draw a flowchart for searching an element from a sorted array (ascendii^ order)

havii^ N elements using binary search method.
6. Explain the concept of top-down and bottom-up programming.

□□□

98 Self‘Instructional Material

Fundamentals of C

SECTION D
i ■

cy.

CHAPTER 4 FUNDAMENTALS
OF C

NOTES

:★ LEARNING OBJECTIVES ★-f .

4.1 Introduction
4.2 C Character Set

4.3 Constants

4.4 Variables

4.5 Data Types in C
4.6 User-Defined Type Declaration

4.7 Enumerated Data Types
4.8 Assignment Operator

4.9 Operators and Expressions

4.10 Arithmetic Operators
4.11 Relational Operators

4.12 Logical Operators

^.13 Unary Operators
4.14 Assignment Operators

4.15 Functions
4.16 Defining and Using Functions

4.17 Category of Functions
4.18 Recursion

4.19 Arrays
4.20 One Dimensional Arrays
4.21 Two Dimensional Arrays
4.22 Limitations of Arrays

4.23 String Processing
4.24 String Variable
4.25 Standard String-Handling Functions

\

\

Self-Instructional Material
99

Computer Fundamental
<6 Programming in C 4.26 Data Files

4.27 File Handling in C
4.28 Opening and Closing a Data File

4.29 Trouble in. File Opening
4.30 Pointers

4.31 Declaring and Initializing a Pointer

4.32 Accessing a Variable Using Pointer
4.33 VOID Pointers

4.34 Pointer Expressions

4.35 Pointers and Functions

4.36 Pointers and One Dimensional Arrays
4.37 Array of Pointers

4.38 Pointers and Strings
4.39 Problems with Pointers
4.40 Summary

4.41 Test Yourself

NOTES

,4-
4.1 INTRODUCTION
“C” is the language’s entire name, and it does not “stand” for anything. Developed
at Bell Laboratories in the year 1972 by Dennis Ritchie, C is a general-purpose,
compiled language that works weU for microcomputers and is portable
among many computers. -It was originally developed for writing system
software. (Most of the Unix operating system was written using C.) Today it is
widely used for writing applications, including word processing, spreadsheets,
games, robotics, and graphics programs. It is now considered a necessary language
for programmers to know.
Here are the advantages and disadvantages of C :

Advantages ..—r--
1. C is flexible, high-level, structured programming language.
2. C includes many low-level features that are normally available only in

assembly or machine language.
3. C programs are very concise, due to the large number of operators within

the language.
4. C is a weakly typed language and the programs written in it compile into

small object programs that run or execute efficiently.

100 Self-Instructional Material

5. C works well'with microcomputers.
6. C has a high degree of portability—it can be run without change or little

change on a variety of computers.
The advantages written above are also the important characteristics of C
language.

Disadvantages
1. C is considered difficult to learn.
2. Because of its conciseness, the code can be difficult to follow.
3. It is not suited to applications that require a lot of report formatting and

data file manipulation.
For learning how to write programs in C, we must first know what alphabets,
numbers and symbols are used, then how using them constants, variables and
keywords are formed, and finally how are these combined to form an instruction.
A program is written using a group of instructions. Figure 1 illustrates this :

■ Fundamentals of C

NOTES

Constants
Variables
Keywords
(Reserved words)

Alphabets
Digits
Special symbols

Programs♦ Instructions *

Fig. 1. Systematic way of learning C language.

4.2. C CHARACTER SET

A programming language processes some kind of data and provides some
meaningful result known as information. The data and information are
represented by the character set of the language. A sequence of finite instructions
is written following the syntax rules (or grammar) called the program, for getting
the desired result. Every program instruction must be coded precisely and user
fiiendly way to help the programmer and others. C language has its own character
set for coding compact and efficient programs.

A character represents any alphabet, digit or special character used to' fonn~
words, numbers and expressions. The C character set can be divided into the
following groups:
Alphabets

Digits
Special Characters

— A...Z and a ... z

- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
------!#%''&.*()-+= 1

{)•,-.,/ S ?>< . @ _ (blank)
White Space Characters — Space, Tab, Carriage return, form feed and

newline.

Self-Instructional Material
101

1,

Gomputer Fundamental 'pjjg white Space characters are ignored by the C compiler in cases where
<fe Programming in c ^ string Constant. We can use white spaces for

separation of words but these are not allowed between the characters of
reserved words (keywords) and identifiers (name of some program element).

NOTES

4.3. CONSTANTS
In C, all the data processed by a program is stored either as a variable or a
constant. Constants are the data items that never change their value durit^ the
program execution. C constants can be divided into two major categories :

1. Primary constants

2. Secondary constants.

These constants are further categorised as shown in Figure 2.

C constants

I 1I
Secondary constantsPrimary constants

II
Integer constants
Floating-point (Real)
constants
Character constants

Array
Pointer
Structure
Union
Enumerated etc.

Fig. 2. Categories of C constants.

Let us discuss some C constants which are easy to follow at this stage ;

• Integer constants

• Floating-point constants

• Character constants

• Back slash constants

• String constants

4.3.1 Integer Constants
These are whole numbers without any fractional part. The following rules are
followed for constructing int^er constants :

(а) It must have at least one digit.

(б) It must not contain a decimal point.

102 Self-Instructional Material

(c) It may either have + or - sign.

id) When no sign is present it is assumed to be positive.

(e) Commas and blanks are not permitted in it.

In C, there can be three types of integer constants :

Decimal (base or radix 10) -

Octal (base or radix 8)

Hexadecimal (base or radix 16).

Decimal Integer Constants. These consist of a sequence of digits, 0 through

Fundamentals of C

NOTES

9.

The following are valid integer constants :

1024 3313 275 -12 32767 -5000

The following are invalid integer constants :

.135 (Decimal point not permitted)

2,450 (Comma not permitted)

51237 (Value larger than permitted range)

Range of Integer Constants. The computer memory consists of a number of
cells called words. The number of bits in a word is called wordlength. Generally
the PC’s have wordlength of 16 bits (some may have 32 or more). Let us take

n as the wordlength. Then the integer range is given by - 2

If n = 16, the integer range is - 2^® " ^ to 2^® ~ ^ - 1.

i.e., - 32768 to 32767.

If an integer less than - 32768 is given, an underflow error will occur and if the
integer is more than 32767 an overflow error will occur.

Table 1 illustrates the types of integers with their range and format for 16-bit
wordlength :

n - I
to 2 - 1.

Table 1. Types of integers with their range

Type No. of bytes Allowed range Format

From To

int/short - 32,7682 32,767 %d

unsigned int/short 2 0 65,535 %u

long int 2,147, 483, 6474 -2,147, 483, 648 %ld

unsigned long int 4 0 %lu4,294, 967, 295

Self-Instructional Material
103

Computer Fundamental Octal Integer Constants. These are preceded by 0 (digit zero) and consist of
<6 Programming in C sequence of digits 0 through 7. For example, decimal integer 14 will be written

as 016 as octal integer (as 14jq = 16g). The following are some valid octal integer
constants ;

NOTES 0235
047

0

Hexadecimal Integer Constants. These are preceded by Ox or OX and consist
of digits 0 through 9 and may also include alphabets. A through F or a through
f. The letters A through F denote the numbers 10 through 15. For example,
decimal integer 14 will be written as OXE as hexadecimal integer (as 14jo
=
The following are some valid hexadecimal integer constants :

0X7
0x5F

OXae/
r n

Note : Octal and hexadecimal numbers are rarely used in programming.
L J

The suffix I OT L, u OT U and ul or UL allow any constant to be represented as
long, unsigned or unsigned long respectively.

4.3.2 Floating-point Constants (Real Constants)
These have fractional parts to represent quantities like average, height, area
etc. which cannot be represented by integer numbers precisely.
These may be written in either fractional form or exponent form.
A real constant could be written in the following form :

[sign] [integer] • [fraction] [exponent]
where the integer part or the fractional part may be omitted but not both.

The following rules are followed for constructing real constants in fractional
form :

(а) A floating-point constant in fractional form must have at least one digit
before and after the decimal point.

(б) It may either have + or — sign.

(c) When no sign is present it is assumed to be positive.
id) Commas and blanks are not permitted in it.

The following are valid real constants in fractional form :

12.5 - 15.8 - 0.0055 336.0

104 Selfdnstructional Material

The following are invalid real constants in fractional form :

{Decimal point missing)

(Comma not allowed)

The exponent form consists of two parts : mantissa and exponent. These are
usually used when the constant is either too small or too big. But there is no
restriction for us to use exponential form for other floating constants.

In exponent form the part before ‘e’ is called mantissa and the part after ‘e’ is
called exponent. We can write e or E for separating the mantissa and exponent.
Since the decimal point can “float” due to use of exponent, the number represented
in this form gives the floating-point representation. The following rules are
followed for constructing real constants in exponent form :

(а) The mantissa and exponent are separated by e. '

(б) The mantissa must be either an integer or a proper real constant.

(c) The mantissa may have either + or - sign. !

id) When no sign is present it is assumed to be positive.

(e) The exponent must be at least one digit integer (either positive or negative).
Default sign is -i-.

The following are valid real constants in exponent form :

-I- 15.8E5

The following are invalid real constants in exponent form ;

(No digit specified for exponent)

15.7 E 2.5 (Exponent cannot be fraction)

Range of Floating Constants

The range of floating constants in exponent form on a 16-bit PC is - 3.4e38 to
3.4e38. It occupies 4 bytes of memory. This range is for single precision real
numbers. The precision of this data type is seven decimal .digits. Whereas the
double precision value occupies 8 bytes of memory, range is from - 1.7e308 to
1.7e308 and the precision is fourteen decimal digits.

Fundamentals of C

125

5,415.6

NOTES

v..05E - 3

-125.8 E

4.3.3 Character Constants
These consist of a single character enclosed by a pair of single quotation marks,
A character value occupies l-b3^e of memory. A character constant cannot be of
length more than 1. For example,

'A' '9' 1.1

Here the last constant represents a blank space. The character constant '9' is
different from the number 9. Each character constant has an ASCII value

Self-Instructional Material
lOS

Computer Fundamental associated with it. For example, the following statements will print 65 and A
& Programming in C

respectively :

printfi:”%d", 'A');

printfi:"%c", ’65’).

Arithmetic operations on characters are possible due to the fact that each
character constant associates an integer value with it.

NOTES

4.3.4 Back Slash Constants or Escape Sequences
These character constants represent one character, althoi^h they consist of two
characters. These are also known as escape sequences. These are interpreted at
execution time. The values of these characters are implementation-defined.

C uses some characters such as line feed, form feed, tab, newline etc. throu^
execution characters i.e., which cannot be printed or displayed directly. Table 2
shows some of the escape sequence characters or back slash character
constants :

Table 2. Escape sequence characters

Execution time resultEscape sequence Meaning

\0’ End of string

End of line

NULL

Takes the control to next line

Takes the control to next paragraph

Takes the control to next logical page

Takes the control to next horizontal
tabulation position

Takes the control to next vertical
tabulation position

Takes the control to the previous
position in the current line

Presents with a back slash \

Provides an audible alert

Presents with a double quote

’\n’

\r' Carriage return

Form feed

Horizontal tab

\f

\t'

\v' Vertical tab

\b’ Back space

W Back slash

\a' Alert

\" Double quote

4.3.5 String Constants
These consist of a sequence of characters enclosed in double quotes. The
characters enclosed in double quotes can be alphabets, digits, blank space and
special characters. For example,

"Hello ! World"
"Year 2010"

106 Self-Instructional Material

Fundamentals of C"Sum"
"A"

Remember that a character constant (e.g., 'A') is not equivalent to the single
character string constant (e.g., "A") in C langue^e. As mentioned earlier the
equivalent integer value for 'A' is 65 but "A" does not have any such value. We
use strings in C programs for providing suitable messages in output statements.
Character strings are quite useful in certain situations and are discussed later

NOTES

on.

4.4 VARIABLES
In C, a variable is an entity that may be used to store a data value and has a
name. Variable names are names given to different memory locations that store
different kind of data. All C variables must be declared in the program before
their use. The value associated with a variable may vary during program
execution. For example,
Let 2 be stored in a memory location and a name sum is given to it. • On
assigning a new value 7 to the same memory location sum, its earlier contents
are overwritten, since a memory location can store only one value at a time.
Figure 3 illustrates this :

Memory Memory

2 7sumsum

sum = 7sum = 2

Fig. 3. Illustrating change in value of a variable.

Variable names should be user friendly. For example,
sum
num
count
average
principal
rate
time

/
I

Self-Instructional Material
107

I .

Computer Fundamental jf waht to calculate the sum of two numbers, the variable can be named
as ‘sum’ rather than ‘tangura’ or some other cryptic (difficult to understand)
name.

4.4.1 Rules for Defining Variables
As seen earher, the rules for constructing different types of constants are diflFerent
but for constructing variable names in C the rules are same for all types. The
following rules must be followed while naming variables :

(d) A variable name consists of alphabets, digits and the underscore (-) character.
The length of variable should be kept upto 8 characters though your system
may allow upto 40 characters.

(6) They must begin with an alphabet. Some systems also recognize an
underscore as the first character;

(c) white space and commas are not allowed.

id) Any reserved word (keyword) cannot be used as a variable name.

For example,

simple_interest, avg^marks, total_salary are vahd but these should be written
as si_int, av_marks, tot_sal for sure recognization by the compiler.

NOTES

4.4.2 Declaration of Variables
As stated earlier, all variables *in a C program must be declared before their .
use. The type of the variables must be specified at the beginning of the program.
The declaration of a variable in C informs about :

1. The name of the variable

2. The t3T)e of data to be stored by the variable.

Following are the examples of type declaration statements :

int i, j;

float X, y;

char choice;

A meaningful name given to a variable always helps in better imderstanding of
the program. A variable can be used to store a value of any valid data type. The
general syntax for declaration of a variable is given below :

t5Tje varl, var2,, varn;

Here, type specifies the data type such as int, float, char etc. and varl, var2, ...,
vam are variable names separated by commas. Note that the declaration
statement must end with a semicolon (as shown in all the three declaration
statements above).

108 Self-Instructional Material

/n
I

Fundamentals of C
4.5 DATA TYPES IN C
A data type is a finite set of values along with a set of rules for allowed operations.

C supports several different types of data, each of which is stored differently in
the computer’s memory. Data types in C are shown with the help of Figure 4.

NOTES

Data Type

j

Fundamental User defined Derived void

Int typedefined Arrays

float Functions

char enumerated Structures

double Unions

Pointers
I

Fig. 4. Various data types in C.
The fundamental and user defined data types have been discussed below. The
remaining data types wiU\be'discussed in the due course.

4.5.1 The Four Fundamental Data Types
Fundamental data types include the data t5TJes at the lowest level i.e., those
which are used for actual data representation in the memory of the computer.
All other data types are based on the fundamental data types.

The fundamental data t5rpes in C are :
char — for characters and strings
int —• for integers
float — for numbers with decimals

double — for double-precision floating numbers.

Since, the-above data types are fundamental i.e., at the machine level, the
storage requirement is hardware dependent. Table 3 shows the storage
requirement of the above data types on a 16-bit machine :

Table 3. Storage requirements of fundamental data ^ypes in C

V

Data type Size (bits) Range of values

char 8 (1 byte)'
16 (2 bytes)

32 (4 bytes)

64 (8 bytes) '

- 128 to 127
int - 32768 to 32767

float - 3'4e38 to 3-4e38
double - l-7e308 to l-7e308

\V f Self-Instructional Material
109

Computer Fundamental Table 4 represents the various data types in C-basic data types and qualifier. ^
&' Programming in C A qualifier changes the characteristics of the data' type, such as its size or sign.

Table 4. Various data types in C-basic data types and qualifier

Representation of data typeNOTES Keyword

a single character
an integer

a single precision floating point number

a double precision floating point number

an unsigned single character

a signed single character

a signed integer

an unsigned integer
a long integer

a short integer
t

an extended precision floating point number

a signed short integer

an unsigned short integer

a signed long integer

an unsigned long integer

char

int
float

double
unsigned char

signed char

signed int
unsigned int

long int
V

short int

long double

signed short int

unsigned short int

signed long int
unsigned long int

I

For altering the size we use — short and long

For altering the sign we use —- signed and unsigned
Genei^ally size qualifiers cannot be used with data t3q)6S float and char, and
sign qualifiers ^e not applicable with float, double and long double. Also
note that the precision means the number .of significant digits aJfier the decimal
point.
Here signed means that the variable can take both + and - values and unsigned
means only + values are allowed. The keywords short means the variable takes
lesser number of bits and long means greater number of bits.
Remember that char or signed char mean the same, int or short or short int
or signed short int mean the same, long or long int or signed long int mean
the same. If we use short, long or unsigned without a basic data type specifier,
tlie data type is taken as an int type by the C compilers.
The following program segment illustrates the declaration of different types of
variables:

\

/

main ()
{

int i, j ;
y

llO ^ /Sdf^netrhc.tional Material

Fundamentals of Cfloat a, b;
char grade;
short int n;
long int population;
double value ;

NOTES/* executable statements */
}

r
I Note. All floating arithmetic computations in C are carried out in double mode.

Whenever, a float appears in an expression, it is changed to double mode. When aI Idouble has to be converted to float, double is rounded before truncation to float
I length. I
L J

4.6 USER-DEFINED TYPE DECLARATION
In C, we can define an identifier for representing an existing data type. It is
known as “type definition” and can be used for declaration of variables. The
syntax for t}T)e definition is given below:

typedef t3T3e identifier;
Here, t3T)e represents an existing data type and identifier represents the new
name in place of t}T)e. Remember that typedef is not capable of creating any
new data type but provides only an alternative name to an existing data type.
For example.

y

typedef int number;
typedef float amount;

The above statements teU the compiler to recognize number as an alternative
. to int and amount to float.

Now, the variables can be created using number and amount as given
below :

number numl, num2;
amount fund, loan, instalment;

The significance of typedef is that we can provide suitable names to existing
data types and make the code easier to read and understand.
Using typedef does not replace the existing standard C data type name with
the new name, rather we can now use both for creating variables. .

4.7 ENUMERATED DATA TYPES
C provides another user-defined data type known as “enumerated data type”.
It attaches names to numbers, thereby increases the readability of the program. I ■ /

Self-Instructional MaterialI
111

• •
Computer Fundamental jt ig generally used when we know in advance the finite set of values that a data
& Programming in C Syntax for enumerated data type is given below :

eniim identifier (vail, val2, vain};
Here, identifier represents the user defined enumerated data type and vail,
val2, vain are called members or enumerators.
Now, we can declare variables using the above declared type ;

enum identifier varl, vaT2, ..., vam;
The variables varl, var2, ..., vam can take only one value out of vail, val2, ...,
vain.
For example,

NOTES

enum months {Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct,
Nov, Dec};

eniun months monthl, month2; /* variables declared of type months */
Enumerated means that all values are listed. The enumerators are automatically
assigned values starting from 0 to n-1. Thus the first value Jan will have 0, the
second value Feb will have value 1, and so on, lastly the value Dec will have
value 11.
The assignment, arithmetic and comparison operati(Jns are allowed on
enumerated type variables. For example, ' ^

monthl = Jan;
month2 = Jul;
printf ("%d’, month2'monthl);

The above output statement will print 6 as Jul has value 6 and Jan a 0 with

/

it.
The following statement will v/ork as well,

• if (monthl < month2)

else

\
We can change the default value assignment by assigning the integer values to
the enumerators. For example,

enum months {Jan = 1, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct,
Nov, Dec);

Now the enumerators will have values from 1 to 12 respectively.
The default ordinal values can be changed for more than one enumerator also.
We can combine the definition and declaration of enumerated variables.
For example,

enum months jJan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct,,Nov, Dec)
monthl, month2;

I"'A ('***' *
^Self-Instructional Material

/

The values assigned to the enumerators need not be distinct, increasing or Fundamentals of c ,
positive. For example,

enum values (mid = 16383, low = 0, high = 32767};

NOTES

4.8 ASSIGNMENT OPERATOR
An operator is a symbol that operates on a certain data type.
In C, the *=’ symbol is known as the assignment operator. It sets the value of
the variable on the left hand side of it to that of the right hand side of it.

4.8.1 Assignment Expressions and Assignment Statements
In C, an expression is a combination of variables, constants and operators
written according to the S3Titax. An expression always results in some value of
a certain t5rpe that can be assigned to a variable using = operator.
For example,

interest = (prin * rate * tiraeVlOO.O;
Here, the variables prin, rate, time used in the expression on the right hand
side of = must be declared with data tj-pes and assigned values before the
execution of the above statement. The above statement is an example of an
assignment statement.
C supports a variety of assignment statements. These are given below :
(а) Simple assignment statement
(б) Multiple assignment statement
(c) Arithmetic assignment statement.

(a) Simple Assignment Statement
The syntax of simple assignment statement is

var_name = expression;
C treats = operator like other operators. For example,

int i, j, s;
i = 20;
j = 30;
printf ("\nValue of s = %d\n'‘, s = i + j);

The above statement is valid and prints the result as :
Value of s = 50

First the values of i and j are added, assigned to s and then the value of s is
printed.
Remember that the type of var_name and expression must be compatible.

/
Self-Instructional Material

ns

Computer Fundamental Let US Consider the following variable declarations :
& Programming in C

int i,-j,
float X, y, avg;

Now the following assignment statements are valid :
i = 55;
j * 250;
X = 14,0;
y = 30.0;
avg = (x + y)/2.0;

The following are invalid assignment statements :
X + y = avg; /* x + y is not a valid variable name */
avg = 'A'; /* avg is not a character variable */

\
NOTES

In C, a variable can be initialized when declared. The syntax of this is :
var_name = constant;type /

For example.
int sum = 0;
float avg = 0.0;

, char ans = 'y';

(h) Multiple Assignment Statement
In C, the same value can be assigned to more than one variables of same type
using multiple assignment statement. The syntax of a multiple assignment
statement is given below :

var_namel = var_name2 = var_name3 = constant;
Here var_namel, var_name2, var_name3 are variable names and constant is
the value to be assigned. It can be extended for more than three vsiriables also.
The value is assigned from right to left.
For example.

inti, j, k, n;
i = j = k = n = 0;

(c) Arithmetic Assignment Statement (Self Replacement Statements)

When the variable itself takes part in the assignment statement and stores the
result in itself, the arithmetic assignment statement comes into picture. For
example,

int numl, num2;

numl = 100;

num2 = 250;
numl = numl/20; /* arithmetic assignment statement */

num2 = num2 * 4; /* arithmetic assignment statement */

114 Self-Instructional Material

Fundamentals, of C
4.9 OPERATORS AND EXPRESSIONS

Operators are the verbs of a language that help the user perform computations
on Values. C language supports a rich set of operators. Different types of operators '
discussed in this UNIT are :

1. Arithmetic operators

2. Unary operators

3. Relational operators

4. Logical operators
5. Assignment operators
6. The conditional operator
7. Bitwise operators
An expression is a formula consisting of one or more operands and zero or more
operators connected together to compute the result. An operand in C may be a
variable, a.constant or a function reference. For example, in the following
expression,

NOTES

\

X - y
minus character is an operator and x, y are operands.

4.10 ARITHMETIC OPERATORS
These are used to perform arithmetic operations. All of these can be used as
binary operators. These are :

add+
subtract

multiply

divide (the divisor must be non zero)
% modulo (^ves remainder after division on integers)

The parenthesise) are used to clarify complex operations. The operators +
and - can be used as unary plus and unary minus arithmetic operators also.
The unary - negates the sign of its operand.

/

r “I

Note : C language has no operator for exponentiation.
L J

The function pow (x, y) which exists in math.h returns x^.
Following are some examples of arithmetic operators :

X + y, X - y, X * y, x/y, x % y, - x * y

Here x and y are operands. The % operator cannot be used on floating point
data type.

. Self-Instructional Material
115

Computer Fundamental 4.10.1 Arithmetic Espressioiis
& Programming in C

An expression consisting of numerical values (either any number, variable or
even some function call) joined together by arithmetic operators is known as
an arithmetic expression. For example, consider the following expression :

(x ^ y) ^ (x + y)/5
Here x, y and 5 are operands and the s5Tnbol8 *, +, / are operators. The
precedence of operators for the expression evaluation has been given by using
parenthesis which will over rule the operators precedence. If x = 25 and y =
15, then the value of this expression will be 80.
Consider the following arithmetic expression :

3 * M5 + (j - 2)/{k + 3))}'
where i, j and k are integer variables. If i, j and k have values 9, 14 and 6
respectively, then the above expression would be evaluated as

3 =*= ((9%4) * (5 + (14 - 2)/(6 + 3)))
= 3 Ml * (5 + (12/9)))
= 3M1M5 + 1))'
= 3 * (1 * 6)
= 3*6

= 18

NOTES

. I

4.11 RELATIONAL OPERATORS
These are used to compare two variables or constants. C has the following
relational operators :

Operator

//
Meaning
Equals

Not equals

Less than

Greater than

• Less than or equals

Greater than or equals

1

<

>

<

>

4.12 LOGICAL OPERATORS
In C, we can have simple^conditions (single) or compound conditions (two or
more). The logical operators are used to combine conditions. The notations for
these operators is given below :

116 Self-Instructional Material

Operator
NOT
AND

Notation in C Fundamentals of C

&&

OR I I
I I NOTES

r n
Note : The notation for the operator OR is given by two broken lines. These follow
the same precedence as in other languages ■ NOT (!) is evaluated before AND (&&)
which is evaluated before OR (\ \). Parentheses!) can be used to change this order.

I

L. J

4.12.1 Relational and Logfical Expressions
An expression involving a relational operator is known as a relational expression.
The resulting expression will be of integer type, since in C, true is represented
by 1 and false by 0.
For example,

int a = 2, b = 3, c = 4;
Relational expression

a < b

. c < = a
b = = c

c > = b

a ! = c

a > 1
When a relational operation is carried out, different types of operands (if
present) will be converted appropriately.

Value
1 (true)

0 (false)
0 (false)
1 (true)

1 (true)
1 (true)

r 1.
Note : Don’t use = for testing equality. The operator for testing equality is = = (two
= signs/together). I

JL

In C, the-arithmetic operators have higher priority over relational operators.
Relational operators are used with if, while, do while statements to form
relational expressions which help in making useful decisions. These statements
are discussed later on.
An expression formed with two or more relational expressions is known as a
logical expression or compound relational expression.
For example,

int day;
day > =\1 && day < * 31

The logical expression given above is true, when both the relational expressions
are true. If either of these or both are false, it evaluates as false.

f-'

Self-Instructional Material
117

Computer Fundamental
& Programming in C 4.13 UNARY OPERATORS

C has a class of operators that act upon a single operand to give a new value.
These t3T>e of operators are known as unary operators. Unaiiy operators generally
precede their single operands, though some unary operands are written after
their operands.

NOTES

4.13.1 Unary Minus
Perhaps the most common unary operation is unary minus, where a minus
sign precedes a numerical constant, a variable or an expression. (Some programming
languages permit a minus sign to be included as a part of a numeric constant).
In C, however, all numeric constants are positive. Thus, a negative number
is actually an expression, having the unary minus operator, followed by a
positive numeric constant. Note that the unary minus operation is totally
different from the arithmetic operator which means subtraction (-). The subtraction
operator requires two separate operands.

For example,

- (a + b)
- 3E - 7

4.13.2 Increment and Decrement Operators
Two other commonly used unary operators are the increment operator,
+ +, and the decrement operator, —, that operate on integer data only.
The increment (++) operator increments the operand by 1, while the decrement
operator (—) decrements the operand by 1. For example,

int i, j;
i = 10;'

j = i + +:
printf ('’%8d%8d", i, j);

Here, the output would be 11 10. First i is assigned to j and then i is
incremented by 1 i.e., post-increment takes place.

If we have

int i, j;
i = 20;

j = + ■+ i;

printf ("%8d%8d'', i, j);

The output would be 21 21. First i is incremented by 1 and then assignment
takes place i.e., pre-increment of i.

llfi Self-Instructional Material

Fundamentals of CAll the three statements given below are identical :

i = i + 1;

i ++;

++ i;

All of these increment the value of i by 1..
Now, consider the example for (----) operator :

int i, j
i = 10;
j = i -
printf ("%8d%8d", i, j);

Here the output would be 9 10. First i is assigned to-j'and then i is
decremented by 1 i.e., post-decrement takes-place.
If we have

NOTES

t

inti, j;
• i = 20; ,
j = - - i:
printf (''%8d%8d", i, j);

The output would be 19 19. First i is decremented by 1 and then assignment
takes place i.e., pre-decrement of i.

“Ir
Note : On some compilers a space is required on both sides of ++ i or i + +, i
-or — i. I

JL-

4.13.3 The sizeof Operator
It is an unary operator which provides the size, in bytes, of the given operand.
The syntax of sizeof operator is :

sizeofCoperand) >
Here the operand is a built in or user defined data type or variable.'
The sizeof operator always precedes its operand.
For example,

sizeof (float)
returns the value 4.
This information is quite useful when we execute our program on a different
computer or a new version of C is used. The sizeof operator helps in case of
dynamic memory allocation for calculating the number of b}des used by some
user defined data type.

Self-Instructional Material
119

Computer Fundamental A Cast is also considered to be a unary operator. It has been discussed
& Programming in C earlier. In general terms, a reference to the cast operator is written as given

below :
(type)

Thus, the unary operators we have discussed so far in this book are + +,
—, sizeof and (type).
Unary operators have a higher precedence than arithmetic operators. Hence,
if a unary minus operator acts upon an arithmetic expression that contains
one or more arithmetic operators, the unary minus operation will be carried
out first (if parentheses do not enclose the arithmetic expression). Also the
associativity of the unary operators is right-to-left, though consecutive unary
operators rarely appear in simple programs. For example,

int X, y;

X = 5;
y = 25;

The value of the expression - x + y will be - 5 + 25 = 20. Here the unary
minus is carried out before the addition operation. If the expression is
- (x -h y), then it becomes - (5 + 25). The value of this expression is - (5 +
25) = - 30. In this case, the addition is performed first and then the unary
minus operation. C has several other unary operators. These will be discussed,
as the need arises.

NOTES

4.14 ASSIGNMENT OPERATORS
There are several different assignment operators in C. All of these are used
to form assignment expressions, which assign the value of an expression to an
identifier.
The most commonly used assignment operator is = . Assignment expressions
which use this operator are of the following form :

identifier = expression
where identifier generally represents a variable and expression represents a
constant, a variable or a more complex expression.
For example,

int i = 10;
float a = 5.0;

The lvalue is an-entity that appears on the left side of an assignment
statement, whereas the value of something that appears on the right side
is balled an rvalue. The lvalue must have storage space associated with it,
that is, has memory address. If the storage space is not assigned to the
entity appearing on the left, the assignment statement will not be compiled.

120 -Self-Instructional Material

The following are not lvalues and hence cannot appear on the left side of
an assignment statement :

Fundamentals of C

type names
constants—(numeric, character and literal)

function, array names

enumerated data types
The function names have memory addresses but are protected by the C compiler.

NOTES

C has the following five additional assignment operators :
/= and % =* _

+ -1
These are known as shorthand assignment operators or arithmetic
assignment operators. •

4.15 FUNCTIONS

A function groups a number of program statements into a single unit and gives
it a name. Every C program is a collection of functions. The function mainO is
executed first and it calls the other functions directly or indirectly. It is necessary
that every C program must have the function main(). We may have user defined
function(s) which can be called (invoked) from other parts of the program.
Functions are the building blocks of C programs where all the program activity
occurs.

Monolithic program (a large single list of instructions) becomes difficult to
understand, debug, test and maintain. For this reason functions are used. A
function has a clearly-defined objective (purpose) and a clearly-defined
interface with other functions in the program. A function is also called a
subprogram and it is easy to understand, debug and test. Reduction in
program size is the another reason for using functions. Any sequence of
statements that is repeated in a program can be combined together to form
a function. The function code is stored in only one place in memory, even
though it may be executed as many times as a user , needs thus saving both
time and space.' '

■ We can use a function (already tested) in many programs and thus only the
additional coding is required.

4.15.1 Advantages of Using Functions in C
Some advantages of using functions in C are listed below :

(i) A complex program can be divided into small subtasks and function sub
programs can be written for each.

(«) These are easy to write, understand and debug.

Self-Instructional Material
121

Computer Fundamental
& Programming in C (Hi) A function can be utilised in many programs by separately compiling it

and loading them together.

(iv) C has the facility of defining a function in terms of itself i.e., recursion.
Recursion suits to some processes but not all.

(o) Many^unctions such as scanfO, printfO, sqrtO etc. are kept in C library
and the compiler of C is written for calling any such function.

/

NOTES

4.16 DEFINING AND USING FUNCTIONS

In C, functions return an int value by default i.e., when no type has been
specified before the function name it will always return an int value.

4.16.1 Function Prototype
Like any variable in a C program it is necessary to prototype or declare a
function before its use, if it returns a value other than an int. It informs the
compiler that the function would be referenced at a later stage in the program.
The general form of function prototype is :

type function_name(argument list);

When we place the function prototype above all tbe functions (including mainO),
it is known as a global prototype. A prototype declared in global environment
is available for all the. functions in the program.

When we place the function prototype inside the definition of another function
(i.e., in the local declaration section), the prototype is known as a local
prototype. Such declarations are primarily used by the functions containing
them.

It is a good programming style to have global prototypes for adding flexibility
and enhance documentation. Fimction prototypes are not mandatory (compulsory)
in C. These are desirable, however, because these help in error checking between
the calls to a function and the corresponding function definition.
r n

Note : The function prototype is always terminated with a semicolon.
L J

4.16.2 Function Definition
In C, a function must be defined prior to its use in the program. The function
definition contains the code for the function.

122 Self-Instructional Material

Fundamentals of C4.16.3 Eliminating the Prototyping
If the called function definition appears before the calling function’s definition,
then the called function’s prototype may be avoided.

NOTES4.16.4 Calling or Invoking or Accessing Functions
A function can be called {i.e., invoked) by specifying its name, followed by a list
of arguments enclosed in parentheses and separated by commas. If no arguments,
an empty pair of parentheses must follow the function’s name. The function call • , <
may appear by itself, or it may be one of the operands within an expression (in
case it returns a value). The arguments or parameters appearing in the function
call are known as actual arguments, in contrast to the formal arguments that
appear in the first line of the function definition. In a normal function call, there
will be one actual ailment for each formal argument. The actual ailments
may be expressed as constants, single variables or more complex expressions.
However, actual arguments must match in number, type and order with their
corresponding formal arguments.

Calling Convention

It specifies the order in which arguments (parameters) are passed to a function
when a function is called. There are two possibilities :

(i) Parameters might be passed from left to right.
(«) Parameters might be passed from right to left.

C language obeys the second order.

For example, consider the following function call :
max(a, b, c);

In this call it doesn’t matter whether the parameters are passed from left to
right or &t)m right to left. However, in some cases the order of passing parameters
becomes an important thing. For example, j

int X = 10; I

printft"%d%d%d", x, —x, x—); ^

It looks that this printfO would output 10 9 8./
This however is not, the case. Actually, it outputs 8 8 10.

This is because C’s calling convention is from right to left. That is, firstly 10 is
passed through the expression x— and then x is decremented to 9. Then result

, of - -X is passed. That is, x is decremented to 8 and then passed. Finally latest
value of X, i.e., 8, is passed. Thus in right to left order 10, 8, 8 get passed. Once
printfO collects them it prints them in the order in which we have asked it to
get them printed (and not the order of passing). Thus, 8 8 10 gets printed as
the result.

\

Self-Instructional Material
123

rComputer Fundamental
& Programming in C I Note : We must include the appropriate header files when the standard library

I functions are used. For example, <8tdio.h> for all inputloutput functions and
I <math.h> for all mathematical functions. A successfully compiled C program
I might have a mismatch in the format specifiers and the variables in the list, in
I suck cases either garbage values get printed or no values are printed by printfO
I function.

NOTES

L J

In C programs, functions that have parameters are called in one of the two
ways :

• Call by value

• Call by reference

Call by Value

The following program illustrates the concept of call by value method ;

/* find largest of three numbers using fimction */

#include<stdio.h>
main 0
{

void max(int x, int y, int z); /* function prototype'*/
int a,b,c;
clrscrO;
printf ("Enter the three numbers\n")
scanf ("%d%d%d", &a, Stb, &c) ;
/* echo the data */
printf("\na=%8d b=%8d c=%8d”,a,b,c);
/* function call'-call by value method */
max(a,b,c); /* a,b,c are actual parameters or arguments */
getchO; /* freeze the monitor */

}
/* function definition max(),*/
void max(int x, int y, int z) /* x,y,z are formal parameters */
{

int big; /* local variable declaration */
printf["\n\nx=%8d y=%8d z=%8d\n",x,y,z);
big=x;
if(y>big)

big=y;
if (z>big)

big=z;
printf("\n\nLargest of three numbers is %d\n",big);

}

124 Self-Instructional Material

Fundamentals of CPROGRAM 1

The output of Program 1 will be :
Enter the three numbers

NOTES60 75 40
60 b=
60 y=

Largest of three numbers is 75.

In the above program, values entered for the variables a, b and c in the mainO
function are passed to the function maxO- These values get copied into the
memory locations of the arguments x, y and z respectively of the function maxO
when it is called. This is shown in Figure 5.

Contents of

75 c= 40a=
Ax75 z= 40x= \ \

Actual argumentsa b c *
t

60 75 • 40

60 75 40

Formal argumentsX z 4-y

FTg. 5. Example of call by value.

r n
[Note : If any function is called with different actual argument(s) more than once in |
I a program, the same set of statements within the function are executed. Without using

function, the same set of statements would have to be coded the required number of
I times in the function mainO.

I
I

L J

The scope of local variables is local to the function in which these are defined
and not outside it. The most important point to remember while using arguments
is that the actual and formal arguments! should match im number, type and
order. The actual and formal parameters use different memory locations and
any change in formal arguments is not reflected back in the calling function
using call by value method.

Call by Reference
We know that variables are stored somewhere in memory. In case we are able
to pass the location number (also known as address) of the variable to a function,
we obtain the call by reference method. So, we must be familiar with the
knowledge^ of how to make a ‘call by reference’. For this purpose

we require'at,least an elementary knowledge of a concept called ‘pointers’. So
let us know about the basics of pointer, which will help a lot in understanding
call by reference method of calling C functions. ,

/ /

)

Self-Instructional Material
125

Computer Fundamental
& Programming in c-' AAi CATEGORY OF FUNCTIONS

In C, the functions can be divided into the following categories ;

(i) Functions with no arguments and no return values.

(ii) Functions having arguments but no return values.

iiii) Functions having arguments and return values also.

NOTES

(r) Functions with.no Arguments and no Return Values
When a function is without arguments (parameters), it does not receive any
data from the calling function nor does the calling function get any data fhsm
the called function. So, we can say that no data exchange takes place in any
direction. Such type of'function cannot be used in any expression and it is
always coded as a standalone statement. For example, the declaration

void display (void);
implies that the function display!) takes no arguments or returns no value.

Now the function definition is

void display (void)
{-

printf("Always enjoy your life\n");

For calling this function, we use

display!);

(li) Functions having Arguments but no Return Values
There are situations when the calling function sends the data to the called
function after validating it (if necessary). Program 1 falls under this category.

iiii) Functions having Arguments and Ret^n Values also
Sometimes we may require that the result from the called function is needed by
the calling function for further use. Such type of function assures a high degree
of portability between programs as it provides a two way communication
between the calling and the called functions.

There is no restriction on the number of return statements in a function. Also,
note that the return statement need not always be present at the end of the. •
called function in a C program. ^
So far in the programs having functions with arguments, different variable
names have been used for acfua/'and formal arguments. Make it clear that the
‘actual argument(s)’ and ‘formal argumeht(s)’ can have the same name but the

126 •, ,Self-Instructional Material

Fundamentals of Ccompiler would treat them as different due to their presence in different
function. /

In all the programs having formal parameters or arguments, the arguments
have been used taking into accoimt the ANSI method which is more common
these days. There is another method also known as Kernighan and Ritchie {or
just K and R) method, which can be used for declaration of formal arguments.
For example,

NOTES

/* function definition f() */
float f(x)
float X; /* formal argument declaration */

{
.if(x < -3)

return('3);
if(x>=-3 &&,x<=3) .

return(x);

i

else

returnO);

}

4.18 RECURSION
In C, a function can call itself, this is called recursion. A function is said to be
recursive if there exists a statement in its body for the function call itself.
Recursion is sometimes called ‘circular definition’.
The main advantage of recursion is that it is useful in writing clear, short and
simple programs.
Recursion is implemented using C language, by deRning a function in terms
of itself, i.e., function invokes itself.
A commonly used example of a recursive procedure is finding the factorial of a
number. The factorial of a number n (denoted as n!) is defined as :

' n! = n X (n - 1) X (n - 2) X

which can be expressed as :
n! = n X (n - 1) !

This is an example of a recursive definition wherein the factorial of a number
is defined in terms of itself, i.e., the factorial n! is defined in terms of the
factorial (n - 1) !.

X 1

/

•/

Self‘Instructional Material
127

Computer Fundamental Obviously, this recursive definition should have a stopping condition, otherwise
an infinite loop will result. In this case it is given below ;

0! = 1

& Programming in C

Thus, the complete definition of the factorial function is :
0! = 1

NOTES
n! = n X (n - 1)!

Before writing a recursive function for finding factorial, let us code it non-
recursively :

with

/* find factorial of a number using a non-recursive function */

#include<stdio.h>
main ()
{

I int n;

long int factorial(int n); /*'function prototype */
clrscr(); ' .
printf("Enter the number for finding factorial :
scanf("%d",&n);
if(n<0) .

printf("\nFactorial of %d not defined\n",n);
else

printf ("\nFactorial of %d = %ld" ,n, factorial.{n)) ; /*
factorial call */

}
J /* function definition factorial() */

long int factorial(int n)
/ { I

int i; /*.local variable declaration */
long int prod=l;
for(i=l;i<=n;i++)

prod=prbd*i;
return(prod);

V,

}
IB».X

PROGRAM 2
The output of Program 2 will be :
Enter the number for finding factorial : 10
Factorial of 10 = 3628800
Enter the number for finding factorial: - 7 '
Factorial of - 7 not defined

i

128 . Self-Instructional Material

Fundamentals of C'
4.19 ARRAYS

Many applications require the processing of multiple data items that share
common properties {e.g., a set of numerical data, represented by a,, a^.
The individual data items can be characters, integers, floating-point numbers,
and so on.
EarlierVe have used C basic data t5T)es. C provides the derived data types also,
which are built from the basic integer and floating data types. An array is a C
derived type that can store several values of one type. An array is a collection
of homogeneous (same type) elements that are referred by a common name. It is
also called a subscripted variable as the array elements are used by the name
of an array and an index or subscript. Arrays are of two types :

(i) One dimensional array

Hi) Multi dimensional array (2 or more).

Here we will study one dimensional and two dimensional arrays.

a„)- NOTES

4.20 ONE DIMENSIONAL ARRAYS
The syntax of declaring a one dimensional array in C is as given below :

type array_name[size];

Here type declares the base type of the array, which is the type of each element
of the array. The array_name specifies the array name by which the array will
be referenced and size defines the number of elements the array will store; For
example,

j
!

int a [5] ; _

In C the array index always begins with 0. So, a [2] would refer to the third
element in the array a where 2 is the array index or subscript. The entire array
having elements 55, 90, 17, 88 and 36 can be shown as in Figure 6 :

Memory

^ a [0]
f-a[1]
^ a [21
^ a [3]
^ a [4]

0
1Name of array a

Array index from 0 to 4 2\
\

3\
4

\ Fig. 6. Schematic representation of an array a[5].\

\
\ Self-Instructional Material

129

Computer Fundamental Since each element in a is an integer, it occupies two b3^s. Notice that the first
& Programming in C element has the index 0. Thus, since there are five elements, the last one is

number 4.
Name of an array, without subscripts, also refers to the address of the first
element. Thus, a or a[0] imply same address. Or, in other words, name of the
array is pointer to the first element of the array. The & operator may be used
to obtain the address of an array element. Thus, &aI0] is address of the element
a[0I. Array may be declared either static or auto.
We can initialize array (i.e., give value to each array element) when the array
is first defined.
The general syntax of initialization of arrays is given below :

type array_name = Hist of values comma separated);

Initialization at the time of declaration is known as Compile Time
Initialization.

I

For example,

NOTES

int a[5]={55,90,17,88,36};

The values to which a is initialized are enclosed in braces and separated by
commas. They are connected to the array expression by = sign. The array cannot
be initialized with only selected elements.
In case we provide all the array elements during initialization the specification
of array size is not essential. The compiler will automatically count the number
of elements for reserving the space in memory for the array. Thus we can write

inC a[]=(5S, 90,17,88,36};

In case we use an explicit array size, but it is not having the number of elements
equal to size of array, the missing elements will be set to 0. If the number of
elements is greater than the specified size, an error message will be displayed.
Consider few more examples of array initialization :

float marks[] = {80.5,90.6,78.3,59.7,100.0,62.0};
long int salary[4] = {50000,18000,25000};

Note that the element salary[3] will be initialized to 0 in the last example.

« ,

4.20.1 Inputting Array Elements
For reading the array elements (input operation) we must declare the array
first along with the index to be used on the array. Then the array elements can
be inputted as given ahead':

int a[5],i;
for(i=0;i<5;i++)

scant , &a [i]) ;

Such an explicit initialization at run time is known as Run Time Initialization.

X30 Self-Instructional Material

Fundamentals of CIt is the duty of the programmer or user to check that the number of elements
entered must not exceed the size of the array.
No shortcut method is available for initialization of an array having a large
number of elements.

NOTES
4.20.2 Accessing Array Elements
By accessing array elements we are either inputting these or outputting or
performing some other operation on these. The-artay elements have been accessed.^
above by using the statement

scanf("%d",&a[1]);

Here, the expression for array element is

a[i]

Since i is the loop variable in the for loop, it starts at 0 and is incremented until
it reaches 4, thereby accessing each element of array a.
For writing the elements (output operation) from the array, use the following
method : •r.

for(i=0;i<5;i++)
printf("%d",a[i]);

The following program illustrates the input, output operations on an array and
finds the sum and average of n numbers.

/* find sum and average of n numbers */

#include<stdio.h>
#define S 10
main()
{

float a[S],avg,total=0.0;
int i,n;
clrscr()!
printf ("Enter the number of elements' in the array <=%d\n",S).;
scanf ("%d", Sen) ;
printf("\nEnter %d elements\n\n",n);
for(i=0;i<n;i++)
scanf("%f",&a [i]);
/* echo the data */
printf("\nGiven array is\n\n");
\'for(i=0;i<n;i++)
\printf("%8,2f"
/* find the sum */

,a[i]) ;

Self-Instructional Material
131.

S«p -

i

\Computer FuridameniaJ
& Programming in C

for (i=^Oi; i<n;i++)
total+=a[i] ;

avg=total/n;
printf (’'\n\nSum= % ;'2f\n", total) ;
printf ("\nAvera^e = % .2f \n'', avg) ;

\ ^getchO ; /» freeze the monitor */ . •
NOTES

}

PROGRAM 3
The output of Program 3 will be ;
Enter the number of elements in the array <=10 ■ /

8

Enter 8 elements
10 24 30 22 50 • 42 66 71
Given array is

10.00 24.00 30.00 22.00 50.00 • 42.00 • 66.00 71.00
Sum = 315.00
Average = 39.38

4.20.3 Passing Array Elements to Function
In C, array elements can be passed to a function in two ways. These are :

ti) Calling the function by value
(h) Calling the function by reference

(i) Calling the Function by Value

In this method we pass values of array elements to the function. The following
program illustrates this concept :

/* passing array elements to a function - call by value method */

iiinclude<stdio.h?
#define SIZE 10
main()■
{

void show(int); /* function prototype */
int a[SIZE],i,n;
clrscr();
printf ("Enter number of elements in the array <= %d\n\n",SIZE);
scanf ("%d", &,n) ;
printf (" \nEnter %d eleTneiits\ii\n'’,n);
for(i=0;i<n;i++)

132 Self-Instructional Material

scanf("%d",&a[i]);
pxintf("XnEncered elements of array are\n\n");
for(i=0;i<n;i++)

show (a [i]).; /* function call */
getchO; /* freeze the monitor */

■ Fundamentals of C

NOTES
)

/* function definition show ()*/

void show(int value)
{

printf("led",value);
}

PROGRAM 4

The output of Program 4 will be :
Enter number of elements in the array <= 10
5
Enter 5 elements
18 27 15 38 91
Entered elements of array are

18 27 15 38 91
In the above program, we are passing an individual array element at a time to
the function showf) and getting it printed in the function show(). Note that
since at a time only one array element is being passed, this element is assigned
to formal parameter value, in the function show() and printed there.

(ii) Calling the Function by Reference
In this method, we pass addresses of individual array elements to the function.
The following program illustrates this'-concept :

/• passing array elements to a function-call by reference method */

#include<stdio.h>
#define SIZE 10
main()
-{

void showdnt *); /,* function prototype */
int a [SIZE],i,n;
clrscr();

Self-Instructional Material
133

Computer Fundamental
& Programming in C

printf("Enter number of elements in the array <= %d\n\n",SIZE) ;
scanf("%d",&n);
printf (''\nEnter %d elements\n\n", n) ;
for(i=0;i<n;i++)

scanf("%d",&a[i]);
printf("\nEntered elements of array are\n\n");
for(i=01i<n;i++)

show{&a[i]); /* function call */
getchO; /* freeze the monitor */

NOTES t

}

/* function definition show() ’/
void show(int *value)
{

printf("%8d",*value);
}

PROGRAM 5
The output of Program 5 will be :
Enter number of elements in the array <= 10

\

5
Enter 5 elements
18 27 15 38 91
Entered elements of array are

27'18 15 38 91

In the above program, since at a time the address of one array element is being
passed, this address is assigned to formal parameter value in the function
show(). For printing, the array element in show() we have used ‘value at
address’ operator (*).

4.21 TWO DIMENSIONAL ARRAYS

So far we have manipulated arrays with only one dimension. In C we can
have arrays of two or more dimensions. The two dimensional array is also
known as a matrix.

A two dimensional array is a grid having rows and columns in which each
element is specified by two subscripts. It is the simplest of multidimensional
arrays. For example, \

134 . Self-Instructional Material

An array aim] In] is an m by n table having m rows and n columns containing
m X n elements. The size of the array (total number of elements) is obtained
by calculating m x n.

Here, a(i] |j] denotes the element in the ith row and jth column. Size of the array
is m X n.

The s3Titax of declaring a two dimensional array in C is as follows :
type variable_name [number of rows][number of columns];

Fundamentals of C

NOTES

For example, int a [5] [5] ;

Here ‘a’ is the name of the array of type int of size 5 by 6.
The array elements are al0][0], a[0][l], , a(4][4].

« n columns *

0 1 2 n-2 n-1

0

1

0 <= i <= m - 1
0 <= j <= n - 1a[ilU]m rows

R

m-2

m-1

Fig. 7. Illustration of logical concept of a two dimensional array.

In C the size of each dimension is closed in a separate bracket.
We can initialize a two dimensional array when the array is first defined. For
example,

\

float amount [] [4] = (

{2155.40, 159.65, 937.37, 10918.66},
{617.00, 17936.35, 5009.39, 88.75),

{7500.60, 7039.55, 4005.25, 837.00}

};
1

Self-Instructional Material
1S5

Computer Fundamental
& Programming in C

As mentioned earlier such an initialization is known as Compile Time
Initialization.
Remember that a two dimensional array is really an array of arrays. The format
for initializing such an array is based on this fact. The initializing values for
each sub-array are enclosed''in braces and separated by commas :

{2155.40, 159.65, 937-.37, 10918.66}

and similarly others are enclosed by braces and comma separated.
The second dimension size must be specified lUhen, we initialise the two-
dimensional arrays in unsized manner but the first dimension size is optional.
Figure 8 shows how the array amoimt [J[4] declared above looks :

NOTES I

r

I

Memory

amount [0][0]2155.40

159.65 amount 10][1]
amount[0] •

937.37 amount [0][2I
Columns amount [0][3j— • 10918.66

0 12 3
517.00 amount [1][0]

0
17936.35 amount [1][1]

amount[1]Rows 1
5009.39 amount [1][2]

2
88.75{ amount [1)[3] I

Two dimensional array
amount

)
------ 7500.60 amount [2](0]

------ 7039.55 amount [2)[1]
amount[2] .

4085.25 amount [2][2]

837.00 amount [2][3]

Fig. 8. Illustration of storage of array amount [][4].

If the number of rows in the above array amount[] [4] are increased or decreased
in the initialization, the array will also grow or shrink accordingly.
Now consider the declaration when partial values are given as :

int num[2] [3] = I {!}. {2, 3));
This is equivalent to

int num[2] [3] = I (1,0,0} , {2,3,0});
We should note that the braces mark the end of initialization for a "cluster"
of elements within an array.

\

136 Self-Instructional Material

Fundamentals of CWhen’ all the elements are to be initialized to zero, the following short-cut
method may be used.

int arr[3] [5] = I 101, |01, [0| |;
The following statement will also achieve the same result :

int arr[3]'i5] = |0, 0);
NOTES

4.21.1 Inputting Array Elements
For reading the two dimensional array elements (input operation) we .must
declare the array first alqngwith the indices to be used on the array. Then
the array elements can be inputted as given below :

#define S = 5
int a[S][S],i,j,m,n;
printf{"Enter the size of two dimensional array <= %d* %d\n",S,S);

scant("%d%d",&m,&n);

printf("\nEnter the array of size %d * %d\n",m,n);

for(i=0;i<m;i++)

{
for(j=0;j<n;j++)

scant("%d",&a[i][j]);

}

As mentioned earlier such an explicit initialization is known as Run Time
Initialization.

\\

4.21.2 Accessing Array Elements
By accessing array elements we are either inputting these or outputti;ig or
performing some other operation on these. The array elements have been
accessed above by using the statements

scanf("%d",&a[i]|j]);
Here, the expression for array element is

ali] Ul
Since i and j are the loop variables, i is set to 0 and j is incr^ented until
it reaches n, then i is incremented to 1 and j agaim varies from 0 to n-1, i.e.,
the inner for loop is again executed n times.
This process continues until i reaches m and the loop terminates. It means
the array elements have been accessed. •

•X
V

\

1Ks

Self-Instructional Material
137v

Computer Fundamental poT writing the elements (output operation) from the array, use the following
& Programming in C I

method :

NOTES for(i=0; i<m; i++)

{
for(j=0; j<n; j+4)

printf ("%d'’,a[i] [j]);
printf;

The Statement printfC'Xn"); after displaying the elements of a particular
row, brings the control to the next line so that the elements can be displayed
in matrix fosrm.
The following program illustrates the concept of two dimensional array for finding
the transpose of a square matrix and stores the result in the matrix itself.

/* transpose of a square matrix
transpose is stored in the original matrix */

#include<stdlo.h>
ftdefine SIZE 5
main ()
{

int a [SIZE] [SIZE],i,j,order,temp;
do

clrscrO ;
• printf("Enter the order of square matrix <= %d\n",SIZE);

scanf("td",&order);
}
while-(order<=0 {{ order>SIZE) ; /* get ranged value only */
printf C'XnEnter the matrix of order %d * %d\n".order,order);
/* row wise reading */
for(i=0;i<order;i++)
{

for(j=0;j<order;j++)
scanf{"%d",aa[i][j]);

}
I

/* echo the data */
printf{"\nGiven matrix is\n\n");
for(i=0;i<order;i++)
{

for{j=0;j<order;j++)
, ■(

138 Self-Instructional Material

Fundamentals of Cprintfj'’%6d",a[i] [j]);
printf("\n"); ■ /

)
/* transpose */
for(i=0;i<order-l; i++) NOTES
{

for(j=i+l;j<order;j++)

{
temp=a [i] [j] ;
a[i] [j]=a[j] [i] ;
a [j] [i]=temp;

}
printf ("\nTranspose of matrix\n\n'');
for(i=0;i<order;i+4)

{
for(j=0;j<order;j++)

printf("%6d",a[i] [j]) ;
printf("\n");

}
getchO; /* freeze the screen until some key is pressed */

}

PROGRAM^

The output of Program 6 will be :
Enter the order of square matrix <= 5

3
Enter the matrix of order 3*3

12 3
4 5 6
7 8 9 V*

Given matrix is
1 2 3
4 5

\7 • 8

6
9

Transpose of matrix
1 4 7
2 5 8
3 6 9

Self-Iristructional Material
139

J ;

Computer Fundamental
& Programming in C 4.22 LIMITATIONS OF ARRAYS

The limitations or problems of arrays are given below :
1. Size of an array is fixed. If we do not know the size requirement, maximum

size array is declared which may result in wastage of space. If we need
more space at run time, it is not possible to extend array.

2. The elements must be homogeneous {i.e., all elements are of same type).
3. The insertion and deletion operations in an array require shifting of elements

which takes time.

NOTES

4.23 STRING PROCESSING
A string is a collection of characters enclosed within quotes. This type of data
is very important and almost all programming languages have provision to
handle it. In C, a string is defined as a character array being terminated by a
NULL character i.e., '\0'. Each element of string is stored as one element in the
array housing it. So the character arrays must be declared one character longer
than the size of the string we wish to store. The last byte stores the string
terminator '\0'.

4.24 STRING VARIABLE
It is actually any valid C variable name and is declared as an array of characters.
For example, if an array name is used to store a 20 character string, the
declaration must be :

char name[21];
The individual characters of the string are accessed using a subscript. The end
of the string can be checked by comparing the character by NULL character.
The NULL character is not a part of the string, it is merely used to mark the
end of the string. In fact, a string not terminated by NULL character is not
really a string, but merely a collection of characters. The general syntax of
string declaration is :

char name_of_string[sizeJ;

where size gives number of characters.

4.24.1 Declaring and Initializing String Variables
A string can be declared as given above. In C, a strii^ can be initialized while
declaring it by specifying value of some or all of its elements. This is possible
in two ways :

■■'■1

140 Self-Instructional Material

= {'A', 'p', 'o', 'o',!'r'.. ’v', 'a',,'\0'l;

= "Apoorva":

When individual array elements are moved then the terminator must be explicitly
specified. But in case of string assignment, the terminator is automatically
attached.

The size of the array is optional when we initialize it and in such cases it is
calculated auto-matically.
The following program illustrates this concept ;

Fundamerttalg of Cchar name [8]
char name[8]or

NOTES

/* count number of 'characters in a string and print it' */
#include<stdio.h> ,
main{)

{

char bobk_name[)="MASTERING C PROGRAMS";

int i=0;

clrscr();

while(book_name[i] != '\0')

{
printf("%c",book_name[i]);

1++;

} I
\printf("\n\nNuniber of characters in the string are %d\n",i);

getchO;/* freeze the monitor */•
I} \

I

PROGRAM 7
The output of Program 7 will be :
MASTERING C PROGRAMS
Number of characters in the string are 20,

The while loop in the above program, is terminated when a '\0' character is
encountered in the-array book_name.

4.24.2 Reading and Writing Strings
In C, there are two ways to read and write string data. These are :

(i) Using character I/O functions
I

Hi) Using string I/O functions
/

Self-Instructional Material
141

Computer Fundamental
& Programming in C

(i) Using Character I/O Functions
The Input/Output functions for char type data are :
getchO, getcheO, getcharO, putchO, putcharO, scanfO and printfO.
All of these above mentioned functions have been discussed earlier.

(u) Using String I/O Functions

The Input/Output functions for string t3^e data are :

getsO, putsO, scanfO and printfO

All of these above mentioned functions have been discussed earlier. Let us use
some of these functions through programming :

The following program reverses the entered string and prints it.

NOTES

/

/* reverse a given string */

#include<stdio.h>

• #define SIZE 80

main()

{ ' I ,

char■string[SIZE],ch;

int i,mid,len=0;

clrscr();

printf("Enter ai string of length <= %d\n\n",SIZE-1);

ch=getchar();

while(ch!='\n')

{
string[len]=ch;
len++; ’

ch=getchar();

}
/* store string terminator */string [len]

mid=len/2;

/* reversal of string */

for(i=0;i<mid;i++)

\0’ ;_ I

{
ch=string[len-l-i] ;

string [len-l-i] =string [i]

142 Self-Instructional Material
1

string [i] =ch,- Fundamentals of C

}

printf("XnReversed string is : %s\n",string);

getchO; /* freeze the monitor */ NOTES
}

PROGRAM 8

The output of Program 8 will be ;
Enter a string of length <= 79

RAMA 0 RAMA
Reversed string is : AMAR O AMAR

4.25 STANDARD STRING-HANDLING FUNCTIONS
Every C compiler provides a large number of useful string functions. These
functions are used for string manipulation. Some of the most useful functions
are : 1

strcatO — Concatenates two strings

strcmpO — Compares two strings
I

strcpyO — Copies one string over the other
1

strlenO — Finds length of a string
strrevO — ReWrses the string r'

4.25.1 String Concatenation
The process of joining two strings together is called concatenation. In C, the
function for concatenation of two strings is strcatO. It takes two arguments, the
first one is a string variable and the second can be a string variable or a string
constant. The character(s) of the second string are appended at the end of the
first one. The first variable must have enough space for accommodating the
second string, otherwise an overflow occurs. The syntax of strcatO function is

I-

strcat(strl, str2);
Here strl and str2 are character arrays (str2 can be a string constant also). The
NULL character is removed from the end of strl and str2 is stored from this

. position.

/ Self-Instructional Material
143

i

Computer Fundamental The following program illustrates the use of strcatO function :
& Programming in C

/* Concatenation of strings using library function */
#include<stdio.h>
#include<string.h> /* for strcatO function */
#define S 40
#define T 80
main()

NOTES

4

'char stringl [T] , string2 [S] ;
clrscr{);
printf("Enter the first string\n\n");
gets (stringl);
printf("\nEnter the second string\n\n"};
gets (string2)
/* concatenation using string function */
strcat(stringl,string2);
printf{"\nUsing string function\n\n");
printf("\nResultant string is : %s\n\n",stringl);
getchO; /* freeze the monitor */

}

PROGRAM 9
The output of Pro^am 9 will be :

Enter the first string

Programming in C

Enter the second string

is a,fun

Using string function'

Resultant string is : Programming in C is a fun/

4.25.2 String Comparison
, In C, the comparison of two strings is not allowed directly. For example,

the following statement is not valid

\ /\\

j

if(strl==str2)
:trintf ("Str'ings equal\n") ;are

144 Self-Instructional Material

Fundamentals of Celse
printf("Strings are not egual\n");

The comparison can be done either using the standard library ftinction strcmpO
or the strings can be compared character by character. The comparison terminates
on mismatch of characters or termination of any one of the strings, whichever
occurs first. The S3nntax of strcmpO function is :

strcmp(strl,str2);
Here strl and str2 are string variables or string constants. It returns a 0 when
strings are identical and returns the numeric difference between the ASCII
values of the first mismatch characters otherwise.
For example,

NOTES

char strl(]="Vansh Dixit";
strcmp('strl,''Vansh Dixit");
strcmpistrl/'Baby");
strcmp("Enjoy",strl);

The values returned by the above three strcmpO functions are 0,
4 respectively.
When the value returned is negative strl comes before str2 in dictionary-order.
The following program illustrates the use of strcmpO function :

1 and

/* compare strings using library function strcmpO */
#inclucle<stdio .h> *
#include<string.h> /* for strcmpO function */
ttdefine S 41
main()

/
char stringl[S],string2[S] ;
int diff;
clrscr 0
printf("Enter the first string of length <=%d\n\n",s-1);
gets(stringl); -----
printf("\nEnter the second string of length <=%d\n\n'',S-l);
gets(strings);
diff=strcmp(stringl,string2);
if(diff==0)

printf ("\nStrings are identical\n") ,-
else if(diff<0)

printf("\nStringl comes before string2 in dictionary order\n");

Self-Instructional Material
145

Computer Fundamental
& Programrtiing in C

else

printf("\nStringl comes after string2 in dictionary order\n");
getchO; /’ freeze the monitor */

}
NOTES

PROGRAM 10

The output of Program 10 will be
Enter the first string of length <= 40
Vansh Dixit
Enter the second string of length <= 40
Vansh Dbdt
Strings are identical
Enter the first string of length <= 40
Vansh Dixit
Enter the second string of length <= 40
Baby
Stringl comes after string2 in dictionary order
Enter the first string of length <= 40
Baby
Enter the second string of length <= 40
Vansh Dixit
Stringl comes before string2 in dictionary order

4.25.3 String Copying
The process of copying one string into the other is called string copying. In C,
the function for copying of one string over the other is strcpy(). The s5Titax of
strcpyO function is :

strepy (str2 ,str 1);

Here str2 is the target string which stores the contents of the source string
strl. The string strl may be a character array variable or a string constant.
The string str2 must have a size greater than or equal to that of string strl.
So it is the responsibility of the programmer to check out for the size of-the
target string. The string strl is copied into string str2 character by character
and the process terminates on getting '\0' (NULL character) in the source string.
Note that the contents of target string will be lost and source string remains
unchanged.

I

I146 Self-Instructional Material

\

Fundamentals of CThe following program illustrates the use of strcpyO function :

/’ copy a string using library function strcpyO */
#include<stdio.h>
#include<string.h>

#define S 41
t

main()

NOTES
/* for StrcpyO function */

■ {

char stringl[S],string![S];
clrscrO;
printf ("Enter the string of length <=l:d\n\n", S-1) ;
gets(stringl);
/* copy the string stringl to string! */
strcpy (string!, stringl)
printf("\nEntered string is ; %s\n\n",stringl);
printf("\nCopied string is : %s\n\n",string!);

■ getchO;/* freeze the monitor */

}

PROGRAM 11

The output of Program 11 will be :
Enter the string of length <= 40
Enjoy your life with nature
Entered string is ; Enjoy your life with nature
Copied string is •. Enjoy your life with nature

4.25.4 Reversing the String
The process of exchanging the characters in the string i.e., the first character
exchanged with last one, second character exchanged with second last and so
on, till we reach the mid position is called reversing the string. In C, the function
for reversing the string is strrevO. The syntax of the function strrevO is ;

strrevCstring);
A string is said to be a palindrome, if it reads same from both ends. For example,
MADAM, ARORA, NAYAN, MALAYALAM, NITIN etc,
The following program checks a string for palindrome using standard library
functions.

Self-Instructional Material
147

I
Computer Fundamental
& Programming in C

/* check a string for palindrome using library functions */

#include<stdio. hi>
#include<string.h>
#define SIZE 80
main()

NOTES

{
char string[SIZE],stringdup[SIZE];
int diff;
clrscr 0;
printf("Enter a string of length <
gets(string);
strcpy(stringdup,string); /* copy string in duplicate string »/
strrev(stringdup);
diff=strcmp(string,stringdup);

/* if strings are identical */

%d\n\n",SIZE-1);

/* reverse the duplicate string */
/* compare'.'the two strings */

if(diff==0)
printf("\nString is a palindrome\n");

else
printf("\nString is not a palindrome\n"); '

getchO ;
}

PROGRAM 12

The output of Program 12 will be :
Enter a string of length <= 79
malayalam
String is a palindrome
Enter a string of length '<= 79

jaggu
String is not a palindrome

4.26 DATA Fn.ES

A’ file is a bunch of b3^es stored on some storage device like magnetic disk
or tape etc. Most of the application programs process large volume of data
which is permanently stored in files. We can write programs that can read
data from file(s) and write data to file(s). Compilers read source code files
and provide executable files. Database programs and word processors also
work with files.

148 Self-Instructional Material

Fundamentals of CData transfer is generally one or both of the two types given below :

(j) Transfer between console unit and the program.

Hi) Transfer between the program'and a file on disk or tape.
Secondary Memory NOTES

Data h)e(s}

Data transfer
between file
and program

Accept Store
datadata

Program and data
Main

memory

Monitor ♦Data transfer
between console

and program

Console
(Keyboard

and
monitor)

Keyboard

Fig. 9. Data communication between various units.

So far we have used the technique of data communication between the console
unit and the program. Now we are going to describe the storage and retrieval
of data from the files which overcomes the handling of large volume of data
from the keyboard at run time. Some of the problems which may occur when
data is entered from the keyboard are ;

(i) A lot of time is taken for data entry.
{ii) Entire data would be re-entered if a mistake is made in data.

{Hi) If the same data is to be processed later on, it would be entered afresh
i.e., for every run, we require the same data entry.

So for fast data processing, enter the data in computer’s main memory, correct
it (if required) and store it in a disk file. Now the data from the file can be
read directly at a very high speed.
In some situations the output of a program may become the input of another
program(s). So in such cases it is better to store the output of the program
in a disk file which can be read by other programis) later on.

Self-Instructional Material
149

Computer Fundamental
& Programming in C 4.27 FILE HANDLING IN C

The treatment of files in C is very simple, unlike that of other programming
languages which have special built-in and often rigid file structures and file
handling routines. C treats file input-output in almost the same way as input-
output ftom/to the console, and provides file input-output functions, very
similar to those for input-output from/to the console.

Unlike other programming languages C does not distinguish between sequential
and random access (direct access) data files.

The Turbo C provides two different ways of file processing. These are

ii) Standard Input/Output (stream I/O or high-level I/O)

Hi) System-oriented Input/Output (low-level I/O).

We can perform most of the tasks by either of these, still there are many
important differences between these two. The major differences are given
below :

The Standard I/O is very simple and most commonly used way of performing
file I/O in C language. It provides a vide variety of commands. The I/O operations,
such as buffering, data conversions etc. take place automatically. It will be
the only system for I/O if the C version has only one system for
I/O.

The data is written as individual characters or as strings or as formatted
data. Library functions are available for transfer of information. Unformatted
data files, organize data into blocks having contiguous bytes of information
for more complex data structures such as structures and arrays. Library
functions are available that can transfer entire structures or arrays to or
from data files.

The System-oriented I/O reads and writes the data to/from files the same
way as MS-DOS. The data cannot be written as individual characters, or
as strings, or as formatted data. Using this approach the data can be
written as a buffer full of bytes. The programmer must set up the buffer for
the data, place the appropriate data into it before writing, and take it out
from the buffer after reading. It is harder to program than standard I/O but
efficient both in terms of operation and the amount of memory used by the
program.

NOTES

4.28 OPENING AND CLOSING A DATA FILE
When working with a standard data file (stream oriented data file), first of
all a buffer area (the portion of main memory which can be directly accessed

150 Self-Instructional Material I
<

Fundamentals of Cby the I/O devices) is established, where the information is kept temporarily
during transfer between the computer’s memory and the data file. The buffer
area helps in fast read/write operation from/to the data file. The buffer area
is associated by writing.

FILE *fptr;

Here, FILE (use uppercase letters only) is a special structure type defined
within a system include file, namely stdio.h in DOS. It is not a good practice
to use the members of the FILE structure shown below :

NOTES

typedef struct {
short
unsigned
char

/* till/empty level of buffer */
/* File status flags */
/* File descriptor (handle) */
/* Ungetc char if no buffer ’/
/* Buffer size */

♦buffer, *curp; /* Data transfer buffer,
Currentactive pointer */

/* Temporary file indicator */
/* Used for validity checking */

level ;
flags;
fd;

unsigned char hold;
bsize;short

unsigned char

unsigned istemp;
token;

} FILE; /• FILE Object */
short

^tr is a pointer variable that indicates the bepnning of the buffer area. It
is also known as a stream pointer or stream.
A data file must be opened before it can be created or processed. The filename
is associated with the buffer area or the stream. The mode of file utilization
i.e., read only, write only or read/write both is also specified while opening
the data file.

The syntax of library function fopen() used to open a file is given below :

fptr = fopen ("filename", "mode");
•r

Here, filename represents the name of the data file and mode specifies the
purpose of opening the file.

The filename must be in accordance with the rules for naming files, as per
the operating system in use. The valid modes are given in Table 5.

-r Self-Instructional Material
151

Computer Fundamental
& programming in C

Table 5. File opening modes and their purpose

Mode Purpose

Open for reading only. The file must already exist
Open for writing only. If the file already exists, its contents will
be destroyed. If it does not exist, it will be created
Open for appending (i.e., for adding data to the end of the existing
file). If it does not exist, it will be created
Open for both reading and writing, The file must already exist
Open for both reading and writing. If the file exists, its contents
are overwritten
Open for both reading and appending. If the file does not exist,
it will be created

r
NOTES w

a

r+
w+ I

a+

The fopen() function returns a pointer to the beginning of the buffer area
associated with the file (if possible); otherwise a NULL value is returned
which is defined in stdio.h. The pointer to the structure type FILE is assigned
to fptr. While opening the file in text mode we can use either "r" or "rt", but
since text mode is the default mode we generally drop the 't' from it.

F

r
Note ; For opening o file in binary mode each of the above shown modes can be
suffixed with letter ‘b’.I

L J

When the processing is over (reading/writing) in a file, it must be closed. The
library function fclosef) performs this task. The syntax of fclosef) function
is given below :

fclose(fptr);
Here fptr is the file pointer associated with the file to be closed.
If we do not close file(s) explicitly using the fclosef) function, most of C
compilers will automatically close the data file(s) at the end of program execution.
Closing a file explicitly performs the following operations :

(i) Data from buffer is transferred to the file. It may be noted that the
buffer used in the standard I/O is invisible to the programmer.

(ii) The area occupied by the file (area consisting of FILE structure and
the buffer itself) is made free so that it may be used by other files.

4.29 TROUBLE IN FILE OPENING

The fopenf) function for opening file for read/write operations may fail due
to anyone of the following reasons :

(i) A file for reading may not be present on the disk.

(ii) Insufficient disk space for opening a file for writing.

1S2 Self-Instructional Material

»

(Hi) Write protected disk does not allow storage of data on it.
(io) Dealing with a corrupt file.

The following program statements will provide you a clear idea for checking
the successful opening when we open a file for reading.

Fundamentals of C

NOTES

#include<stdlo.h>
main()
{

FILE *fptr;
fptr = fopenC'TEXT.DAT", "r") ; /* open file for reading*/
ifdfptr)
{

printf ("\nCan't open file for reading\n") ,-
exitO ;

}

4.30 POINTERS
Pointers are very useful and important feature of C language. A beginner
may find it a little confusing to start with. But once the concept of pointers
is clear the user can write complex code with great ease, using this powerful
tool, making C an excellent language.
A pointer is a variable which holds a memory address which is the location
of some other variable in memory. As a pointer is a variable, its value is also
stored in another memory location. Any variable declared in a C program has
two components : ...

(i) Address of the variable

(n) Value stored in the variable.
For example,

int X = 547;
The above declaration tells the C compiler for :
(а) Reservation of space in memory for storing the value.
(б) Associating the name x with this memory location.
(c) Storing the value 547 at this location.

Self-Instructional Material
153

Computer Fundamental
& Programming in C

It can be represented with Figure 10 :

location name X

value at location -♦ 547

NOTES location number 4000

Fig. 10. Representation of a variable.

Here, the address 4000 is assumed one, it may be some other address also.
Remember that the address of a variable is the address of the first byte occupied
by that variable in memory. Also the values are stored in binary form inside
the memory.
Let the address of x be assigned to a variable ptr having address 4036. Since
the value of ptr is the address of the variable x, the value of x can be
accessed using the value of ptr or in other words we can say that the variable
ptr ‘points to’ the variable x so it is called a ‘pointer’. The above concept can
be represented as given shown in Figure 11 :

Variable
name

Contents Location

547 4000X

ptr" 4000 4036

Fig. 11. Rlustration of a pointer as a variable.

Pointers are frequently used in C language, as they ,offer a number of benefits
to the users. They include :

Pointers are more efficient in handling arrays and data tables.

2. Pointers can be used to return multiple values from a function via function
parameters.

Pointers permit references to functions and thereby allowing passing of
functions as parameters to other functions.

4. For saving the storage space by using the pointer arrays for character
strings.

5. Pointers allow C to support dynamic memory management {i.e., allocation/
deallocation of memory at run time).

6. Dynamic data structures such as structures, linked lists, stacks, queues
and trees can be easily manipulated using pointers.'

7. For reducing the size and complexity of programs.
For fast execution of programs.

1.

3.

8.

154 . Self-Instructional Material

Fundamentals of C
4.31 DECLARING AND INITIALIZING A POINTER
For storing the address of a variable, we must declare the appropriate pointer
variable for it. The syntax for a pointer declaration is given below :

type *ptr_name;
Here, type specifies the type of the variable that is to be pointed to by the
pointer ptr_naine.
* represents the variable ptr_name as a pointer variable and it needs a
memory location too.

For example,

NOTES

/* declaration of an integer pointer */int *ptr;
int X = 547;

/* ptr stores the address of x */ptr &x;

The actual address of a variable in memory is not known to us. So the &
(address operator) is needed for returning the address of the variable following
it i.e., a variable name is followed after &. Similarly, the following statements

float *fptr, fvalue;
char ‘cptr, ch;
fvalue = 40.5;
ch = 'A' ;
fptr = &fvalue;
cptr = S:Ch;

show the pointer initialization, by first declaring the pointer variables and
then making the pointer variables to point to their respective data type variables.
A pointer variable contains garbage until it is initialized. We should not use
a pointer before initializing it.

Remember that the definition for a pointer variable allocates memory only for the
pointer variable, not for the variable to which it is pointing.

r n
I Note : The data type of the pointer must be same as the data type of the variable
^ to which it points.

J

In C, the assignment of an absolute address is not allowed to a pointer
variable. For example.

?■
Self-Instructional Material ‘

155

I

Computer Fundamental
& Programming in C

int *lptr;
iptr = 258; /* invalid assignment ’/

NOTES
We can initialize a pointer variable while declaring it, as given below :

int num = 85;
int *iptr = # /* initialization while declaration */

Note that variable num is first declared and then its address stored in pointer
variable iptr.
The following program prints the different types of variables and their addresses.
As the memory addresses are unsigned integers so we can use %u or %lu
format for printing the address values in integer form or %x format for printing
the address values in hexadecimal form.

/* illustration of address-of (&) operator for getting address */

#include<stdio.h>
main()
{

char ch;
int X;
float y;
x=336;
y=12.5;
ch=’J';
clrscr();
printfC’-The^ddresses are shown in decimal form\n\n");
printf("You may get some other addresses on your system\n\n");
printf {'’\nValue of ch = %c",ch);
printf{"\nAddress of ch is %u", &ch);
printf ("\n\nValue of x = %d’',x);
printf ("\nAddress of x is, %u",&x)
printf("\n\nValue of y = %.2f",y)
printf("\nAddress of y is %u",&y)
getchO;/* freeze the monitor */

/* ASCII value of 'J' gets stored in ch */

}

PROGRAM 13
The output of Program 13 will be ;
The addresses are shown in decimal form

166 Self-Instructional Material

J

You may get some other addresses on your system
Value of ch = J '
Address of ch is 65489
Value of X = 336 • .
Address of x is 65490
Value of y = 12,50
Address of y is 65492

Fundamtntais of C

NOTES

4.32 ACCESSING A VARIABLE USING POINTER
In C, the value of a variable (once its address^has been assigned to a pointer
variable) can be accessed using the unary operator * (asterisk) known as the
indirection operator.
The operator * is followed by an address and it can be kept in mind as ‘value
at address’. For example,

int value, num, *iptr;
value = 2007;
iptr = Scvalue;
num = *iptr;

after the execution of the above statements num and value both have 2007.
In C, the pointers and addresses are utilized by means of symbolic names. A
statement like *336 will not work at all. The following program prints the
value of variables using-the indirection operator ‘ * ’ alongwith the addresses.

/* illustration of indirection operator (*) for printing values */

#include<stdio.h>
main ()

/

{
char ch, *cptr;
int X, *iptr;
float y, *fptr;
x=336;
y=12.5 ;
Ch='J';
cptr=S[Ch;
iptr=&x;

/* ASCII value of J' gets stored in ch */

fpcr=&y;
clrscr(); .
print'fC'The addresses are shown in Hexadecimal form\n\n'') ;
printf("You may get some other addresses on your system\n\n");
printf("\nValue of ch

1

%C",*cptr);■
r. 1printf ("\nAddress of ch is %x’',cptr);'

printf("\n\nValue of xJ %d",*iptr) ;

Self-Instructional Material
157

Computer Fundamental
& Programming in C

priiitf ("\nAddress of x is %x",iptr);
printf("\n\nValue of y = %.2f",*fptr);
printf{"\nAddresB of y Is %x",fptr);
getchO; /* freeze the monitor */

}NOTES
PROGRAM 14

The output of Program 14 will be :
The addresses are shown in Hexadecimal form
You may get some other addresses on your system
Value of ch = J
Address of ch is ffcb
Value of X = 336
Address of ch is ffcc
Value of y = 12.50
Address of y is ffce

The operation of writing the value or manipulating it by using * as a prefix
with a pointer variable or pointer expression is called dereferencing pointers.
In C, a pointer stores the address of another variable which in turn can store
address of another variable and so on. /

4.33 void POINTERS
We know that pointers are used for pointing to different data types. A float
pointer points to float variables, int type pointer points to integer variables,
a ^har type pointer points to character variables. In C, there is a general

I I

purpose pointer that can point to any data type and is known as void pointer.
The void pointer is a generic pointer that can represent any pointer type.
The syntax of its declaration is given below :

pointer to void */void *vptr;
In C, pointers to void cannot be directly dereferenced like other pointer
variables by using *, the indirection operator. A suitable typecast is must
prior to dereferencing a pointer to void as given below :

dereferencing operatori
((type-)vptr)

t type cast
Here, type refers to any valid C data type.

4.34 POINTER EXPRESSIONS
In C, the pointer variables can be used in expression like ordinary variables.
Never use /* together in an expression as it is treated as the beginning of a

168' _ Self-Instructional' Material
A''

r

Fundamentals of CC comment. We can add, subtract integers from pointers, subtract one pointer
from another. For example,

int *ptrl,*ptr2,x,y;
X = ptrl + 5;
y = pt;r2 - 3 ;

NOTES

The above statements are valid in C. Also the statements given below will
work :

--ptrl;
. ptr2++;

X = *ptr2 / *ptrl; .
y += *ptrl;

We can compare pointers using the relational operators of same types. For
example, the statements given below are valid.

if(ptrl < ptr2)
statement;

if(ptrl == ptr2)
statement;

if(ptrl != ptr2)
statement;

Above type of comparisons are quite useful while dealing with arrays and
strings.
But, remember that a comparison of pointers . that belong to separate and
unrelated variables is meaningless.
r n

Note: Pointers cannot be used in addition, multiplication or division individually.
L J

4.35 POINTERS AND FUNCTIONS
As stated earlier, a function groups a number of program statements into a
single unit and this unit can be called from other parts of the program. We
know that a function can be called in one of the following ways :

(i) Call by value.
(it) Call by reference. i

\I-

Self-Instructional (Material(
159

These methods have been, discussed in Chapter 8 on Functions. Concept of
pointers is used in the call by reference method :
In call by reference method, the addresses of the actual arguments in the
calling function are copied into the formal arguments of the called function.
So the called function refers to the original values by the address it accepts.
Using pointers we can return more than one value to the calling function,
which is hot possible ordinarily by using a return statement. A return statement
can return only a single value.
For example, the following program finds the area and perimeter of a circle
using pointers :

Computer Fundamental
& Programming in C

NOTES

■\

using pointers *//* area and perimeter of circle

#include<stdio.h>
#define PI 3.14159
main()
{

void areaperi(float,float *,float *); ,/* function prototype */ .
float radius,area,perimeter;
clrscr{);
printf ("Enter radius of circle\n\n") ;
scanf ("%f", aradius) ;•
/* eoho the data */

%.2f\n",radius);
areaperi (radius,&area, Scperimeter) ,- /* function call •/
printf("\nArea = %.2f square unitsXn",area);

%.2f units\n'',perimeter) ;

printf("\nRadius

printf("\nPerimeter

}

/* function definition areaperi() */■

void areaperi(float r,float *a,float ’p)
{

*a=PI*r*r;
*p=2*Pl*r;\

/
\

/
PROGRAM 15

The output of Program 15 will be :
Enter radius of circle ‘

5
Radius = 5.00
Area = 78.54 square units

Perimeter = 31.42 units

,160 , Self-Instructional Material

Fundamcntois of C
4.36 POINTERS AND ONE DIMENSIONAL ARRAYS

We know that the name of the array holds the address of the first element
(index 0) in that array in.C. For example,

char name[21];
Here, name holds the address of name[0] and it is a constant pointer to the
first element. So we can make the conclusion that the name of an array is
actually a pointer.

The following program illustrates the manipulation of an array using a
pointer :

i
NOTES

/» manipulation of an array using a pointer */
/

#include<stdio.h>
main ()

(
char arr [] = ''Welcome to the world of C programming" ;
char *cptr;
clrscr() ;
printf("XnMessage for all is %s\n",arr);

/* cptr and arr point to same location */
printf ("\nMessage for all is : %s\n'', cptr) ;
getchO ;

i

cptr=arr;

/* freeze the monitor */

}

PROGRAMiel

The output of Program 16 will be :
Message for all is : Welcome to the world of C programming
Message for all is : Welcome to the world of C programming
Here, arr as a pointer is constant, that is, it points to the first element of the
array of characters and we cannot change its value but we can make cptr'
point to any location in memory as it is dynamic.
The following program illustrates the traversing of an array using a
pointer :

/* traversing an array using a pointer */

#include<stdio.h>
main {)

Self-Instructional Material
161

Computer Fundamental .
& Programming in C

{
char arr[]="Welcome to the world of C programming";
char *cptr;
clrscr 0;
cptr=arr;
printf ("\nMessage for all is\n\n’')
for(;*cptr!» '\0':cptr++)

printf("%c",*cptr);
getchO; /* freeze the monitor */

/' cptr initialized with array address */NOTES

}
I

PROGRAM 17

The output of Program 17 will be :
Message for all is
Welcome to the world of C programming

4.37 ARRAY OF POINTERS
In C, we may have an array of pointers also. For declaring an array storing
3 integer pointers, we may declare :

int *num[31;
This can be represented as given below :

/* array of 3 integer pointers *1

0 1 2

Array num

Fig. 12. Array of pointers.

The following program illustrates this concept :

/* print array elements being pointed to by an array of pointers */

#include<stdio.h>
main()

{
int *num[3];/* array of 3 integer pointers */
int l,a=50,b=60,c=70;
clrscr();
/* array initialization */
num[0]=&a;
num [1] =£[b;

--V

!

162 Self-instructional Material

Fundamentals of. Cnum[2]=&c;
/* echo the data */
for(i=0;i<3;i++)

printf ("\nThe pointer num[%d] points to the value %d\n", i, »num[i])
printf (''\n\nAddresses printed below are in Hexadecimal form\n")
printf("\nYou may have different addresses on your system\n")
/* addresses are in Hexadecimal form */
printf ("\n\nBase address of array of pointers \"num\" is %x\n", num)
/* name of an array denotes its base address */
for(i=0;i<3;i++)

printf (''\nThe address contained in num [%d] is %x", i ,num [i]) ;
getchO; /* freeze the monitor */

NOTES

}.

PROGRAM 18

The output of Program 18 will be :
The pointer num[0] points to value 50
The pointer numfl] points'to value 60
The pointer num[2] points to value 70
Addresses printed below are in Hexadecimal form
You may have different addresses on your system
Base address of array of pointers "num" is ffcc
The address contained in numlO] is ffd2
The address contained in num[l] is ffd4
The address contained in num[2) is ffd6

4.38 POINTERS AND STRINGS
As mentioned earlier, a string is an array of characters terminated by a
NULL ('\0'). An array of char pointers is generally better than two dimensional
array of characters due to the following reasons. :

(i) Better utilization of memory (less number of bytes taken by ah array
of pointers).

(ii) Manipulation of strings is easy using an array of pointers.

One important use of pointers is in handling of a table of strings. Generally the
individual strings are of varying lengths. Therefore, instead of making each row
a fixed number of characters, we can make it a pointer to a string of varying
length. For example,

/

char *name[3] = {"Sri Lanka", "Pakistan”, "India"!;

Self-Instructional Material
163 .

Computer Fundamental ■ declares name to be an array of three pointers to characters, each pointer
& Programmin.g in C pointing to a particular name as shown below :

namelO] ------^ Sri Lanka
namell] ——* Pakistan
name[2] ------^ India

This declaration allocates only 25 bytes, sufficient to hold all the three strings
as shown in Figure 13 :

NOTES

s L k \0r a anI

P k \0a ts a n

I d VDn a

Fig. 13. Array of pointers to strings.

These strings can be printed as

for(i=0;i<3;i++)

printf{"%s\n",name[i]);

The character arrays with the rows of varying length are called ‘ragged arrays’ «
and are better handled by pointers.
You can easily manipulate strings using an array of pointers.

i
V
'1

4.39 PROBLEMS WITH POINTERS

Common bugs related to pointers and memory management are given
below :

(i) Problem of dangling pointers. Such a problem occurs when the
programmer fails to initialize a pointer with a valid address. Such an
un-initialized pointer, is known as dangling pointer. Such a pointer can
cause programs to crash unceremoniously. Therefore, care must be taken
to initialize pointers with valid address.

Hi) Problem of null pointer assignment. It may happen that the pointer
points to address 0, which is called NULL. For example, if the pointer
is a global variable or local static variable. In such situations if the

. pointer is not assigned some valid address then the computer system
will display a message "Null pointer assignment" on termination of
program.

164 Self-Instructional Material

Fundamentals of C(iii) ■ Problem of memory, leaks. Aiiother common problem with pointers
is that of memory leak. Memory leak is a situation where the programmer
forgets to release (deallocate) the memory allocated at execution (run)
time in a module. A pointer allocated memory at some stage when goes
out of scope and there is no way to reach that memory block. Even use
of goto statement might cause unconditional jump and we may forget
to deallocate the memory allocated earlier. Therefore, care must be
taken to release (deallocate) the allocated memory so that it may be
reused.

(iu) Problem of allocation failures. We may face problem of allocation
failures using pointers. An allocation failure is a situation when the
program through mallocf), calloc(), or realloc() function request for
a block of memory, and the operating system could not fulfill the
request of desired memory which may not be available in the free

'storage pool. So, .proper measures should be applied in such cases by
the programmer,

NOTES

<•

4.40 SUMMARY

• C is a general-purpose, structured programming language.

• C language is case sensitive i.e., uppercase and lowercase characters are
not equivalent.

• C is a free form language.

• Identifiers are names given to various program elements, such as variables,
functions and arrays.

• C supports several different t5T)es of data, each of which may be represented
differently within the computer’s memory. The basic data types are int,
char, float and double.

• C has four basic types of constants,- these are integer constants, floating
point constants, character constants and string constants.

• An escape sequence always begins with a backward slash (\) and is followed
by one or more special characters. For example, \ii (newline).

• Operators are used to form expressions.
• The data items that operators act upon are called operands.
• There are five arithmetic operators in C (-I-, -, *, / and %).
• The operators that act upon a single operand to produce a new value are

known as unary operators. Commonly used unary operators are - {unary
minus), ++ {increment operator), — {decrement operator) and sizeof

Self-Instructional Material
166

Computer Fundamental ^
& Programming in C

The sizeof operator returns the size of its operand in bytes and always
precedes its operand..

A cast is considered to be a unary operator and a reference to the cast
operator is written as (type). It is also called a type cast.
,A function is a self-contained program segment that performs some specific,
well-defined task.

Every C program has one or more functions, one of these must be called
main() in which the program execution begins. Additional functions (if
any) are subordinate to main(), and perhaps to. one another.

Function declaration specifies what is the return type of the function and
the types of arguments it accepts.

Function definition defines the body of the function.

Pointers can be used to make a function return more than one value
simultaneously.

Recursion is a process by which a function calls itself repeatedly, until
some specified condition has been satisfied.

The use of recursion is not necessarily the best way to solve a problem,
even though the problem definition may be recursive in nature. A non
recursive implementation may be more efficient in terms of memory utilization
and execution speed.

An array is like an ordinary variable except that it can store multiple
elements of same type. '

While declaring an array, we need to specify three things, namely, name,
type and size.

Always remember that array subscripts begin at 0 (not 1) and end'at size

INOTES

-1.

• Array elements can be passed to a function either by value or by reference.

• An array is' always passed by reference to a function.

• C permits arrays of three or more dimensions.

• During initialization of multidimensional arrays, it is an error to omit the
array size of any dimension other than first.

• A string is nothing but an array of characters terminated by null character
C/O’).

• Being an array, all the characters of a string are stored in contiguous
memory locations.

• Some of the useful standard library functions for string manipulation are,
strlen(), strcpyf), strcat(), strcmp() and strrevl).

• The comparison of two strings is not allowed; directly.

166 Self-Instructional Material

• When using string functions for copying and concatenating strings be sure
that the target string is capable of storing the resulting string. Otherwise
memory overwriting may occur.

• A pointer is a variable that represents the location (rather than the value)
of a data item, such as a variable or an array element.

• Do not store the address of a variable of one type into a pointer variable
of another type.

• The value of a variable cannot be assigned to a pointer variable.

• Before initialization a pointer variable contains garbage. Therefore, we
must not use a pointer variable before it is assigned, the address of a
variable.

• Pointers are closely associated with arrays and therefore provide an alternative
way to access individual array elements.

• An array name is actually a pointer to the array, i.e., the array name
represents the address of the first element in the array.

• Ordinary variables cannot be assigned arbitrary addresses {i.e., an expression
such as &num cannot appear on the leflhand side of an assignment statement).

Funrfamentais of C

NOTES

4.41 TEST YOURSELF
1. When was ‘C’ developed ?
2. Who has developed ‘C’ language ?
3. What does the ‘C’ character set consists of ?
4. What is data type ? Describe the fundamental data types in ‘C’ language.
5. Write a short note on the following :

(i) User defined type declaration
\

Hi) Enumerated data type
6. What is an operator ? Describe various types of operators available in C language.

Also summarize the precedence of the arithmetic operators.
7. Explain various unary operators in C.
8. Explain various assignment operators in C.
9. What are the different categories of functions in C ? Give examples.

10. Clearly differentiate between function prototype, function definition and function
call in C.

11. What is recursion ? While writing any recursive function what thing(s) must be
taken care of ?

12. What conditions must be satisfied by the entire elements of any given array ?
13. What are subscripts ? How are they written ? What restrictions apply to the

values that can be assigned to subscripts ?

Self-Instructional Material
167

• Computer Fundamental
& Programming in C

14. How are two dimensional arrays defined ? Compare with the manner in which
one dimensional arrays are defined. Also write about how initial values can be
specified for each type of array.

15. Write a C program to find transpose of a matrix of. order m x n.
16. Write a C program to print a matrix alongwith row and column sum.
17. Write a C program to compute the sum of elements on both diagonals of a

square matrix. For example.

1

NOTES

5 7 3
will result into sum asl8(5 + 4- 2 + 3 + 8 = 18). Take
care that in case of a square matrix of odd order the

9 4 1
8 0-2

common diagonal element must be added once only.
18. What are the limitations of arrays ?
19. How is string is stored in C ?
20. Explain the following string handling functions :

(i) strcatO Hi) strcpyO (Hi) strcmpO (io) strlenO (v) strrevO.
21. What are pointers ? Why are they, needed ? Explain with an example.
22. What are the benefits of using pointers ?
23. Write in brief about void pointers.
24. Write a C program to reverse an array using pointers.
25. Write a C program to implement binary search recursively on a sorted array

given in ascending order using pointers.
26. Give an example of array of pointers and pointers to pointers.

i-

□□□

168 Self-Instructional Material

Appendix

APPENDIX

NOTESTESTING AND DEBUGGING OF PROGRAM
There are various stages"of software development and the methods that can
be applied at each stage, once there is awareness of the problem. It is the
approach to increasing programmer productivity and ensurii^ that the programmers
are as correct as possible at the end of program development cycle. Coding is
mostly confused with software development. Coding is writing programs in a
language that is comprehensible to a computer. In fact, coding is usually a
small part of software development.

Software development can be divided into several stages. There are :
1. Problem definition
2. Program design
3. Coding
4. Debugging
5. Testing
6. Documentation
7. Maintenance
8. Extension and redesign.
The programmer works on several stages at the same time—coding, debugging,
testing and documentation are often concurrent activities. Let us discuss
debugging and testing in detail.

Debugging
This stage is the discovery and correction of programming errors. Few programs
run correctly the first time, so debugging is an important and time-consuming
stage of software development. Programming theorists often refer to program
debugging and testing as verification and validation, respectively. Verification
ensures that the program does what the programmer intends to do. Validation
ensures that the program produces the correct results for a set of test data.
There is no clear demarcation line between these stages. The debugging of
microprocessor programs is generally quite difficult because of the inability
to observe register contents directly, the primitive debugging aids, the close
interaction between hardware and software, the frequent dependence of programs
on precise timing, aiid the difficulty of obtaining adequate data for real-time
applications. The tools that can be used to debug programs with brief descriptions
are given below ;

Self-Instructional Material
169

Computer Fundamental
& Programming in C

1. Simulators. A simulator is a computer program that simulates the execution
of programs on another computer..

2. Logic analysers. A logic analyser is a test instrument that is the digital
bus-oriented version of the oscilloscope. It detects the states of digital
signals during each clock cycle and stores them in the memory. It then
displays the information on a CRT, much as an oscilloscope does.

3. Breakpoints. A breakpoint is a place in a program at which execution
can be halted, in order to examine the current contents of registers,
memory locations and I/O ports.

• 4. Trace routines. A trace is a program that prints information concerning
. the status of the processor at specified intervals. Most simulator programs

and some microcomputer development systems have trace facilities.
5. Memory dumps. A memory dump is a listing of the current contents of

a section of the memory. Most simulator programs, microcomputer development
systems and monitors can produce memory dumps.

6. Software interrupts. The software interrupt or trap instruction is frequently
used for debugging purposes. The instruction usually saves the current
value of the program counter and then branches to a specified memory
location. That memory location can be the starting point of a debugging
program that lists or displays status information—breakpoints may be
inserted with trap instructions.

Each program has its own unique errors. Nevertheless, some errors are' sufficiently
common to deserve mention. They include :

1. Failure to initialise variables, particularly counters and pointers. Registers,
flags and memory locations should not be assumed to contain zero at the
start of the program.

2. Failure to handle trivial cases, such as an array or table with no elements
or only one element.

3. Inverting conditions, such as jumping on zero instead of on not zero.

4. Reversing the order of operands, such as moving A to B when A to B was
meant.

5. Jumping on conditions that have been changed, since they were set to
the desired values.

6. Failure to handle fall-through conditions, such as an entry that is never
found in a table or a condition that is never met. Such a failure can
cause an endless loop.

7. Confusing addresses and values. Memory location 1000 does not necessarily
contain the number 1000.

8. Confusing numbers and characters. ASCII zero or EBCDIC zero is not
the same as number zero.

I

NOTES

I

170 Self-Instructional Material

Appendix9. Ignoring the direction of noncumulative operations.
10. Ignoring overflow when doing signed arithmetic.

Testing
This stage is the validation of the program. Testing ensures that the program
performs correctly the required tasks. Program testing and program debugging
are closely related. Testing is essentially a later stage of debugging in which

' the program is validated by trying it on a suitable set of test cases. Some of
the test cases will certainly be the ones used in debugging—the all-zeros
case, the various special cases and other obvious cases that must be checked.
Program testing is, however, more than a simple matter of exercising the
program a few times. Exhaustive testing of all possible cases is the best
alternative, but this process is usually impractical. Formal validation methods
exist, but are only applicable to very simple programs. Thus, pro^am testing
requires a choice of test cases. The situation is further complicated by the
fact that many microcomputer programs depend on realtime inputs that are
difficult to control or simulate; the microprocessor must interact in a precise
manner with a large and complex system. How can the necessary data be
generated and presented to the microcomputer ? Several tools are available
to help with this task. Clearly, the debugging tools mentioned earlier will be
useful.
Among the rules that can aid in program testing are the following :

1. Make the test plan part of the program design. Testing should be
one of the factors in the problem definition, program design and coding
stages.

2. Check all trivial and special cases. Often the simplest can lead to the
most annoying and mysterious errors.

3. Select test data on a random basis. Doing so will eliminate any
inadvertent bias caused by the programmer selecting test data. Random
number tables are widely available and most computers have random
number generators.

4. Plan and document software testing just like hardware testing.
Obviously, testing can never prove that no errors exist; so good software
design, like good hardware design, is an essential part of the testing
process.

5. Use the maximum and minimum values of all variables as test
data. Extreme values are often the source of special errors.

6. Use statistical methods in planning and evaluating complex tasks.
Methods are available for selecting data and evaluating the significance
of results. Optimisation of techniques may suggest good choices for system
parameters and efficient sets of test data.

There are two goals in preparing a test plan. First, a properly detailed test
plan demonstrates that the program specifications are understood completely.

NOTES

/

1 Self-Instructional Material
171

Computer Fundamental Second, the test plan is used during program testing to prove the correctness
& Programming in C of the program. During this step, a general approach to the testing of the

program is prepared and documented, indicating the number of tests needed
and the purpose of each test. In addition, all input test data is defined in
detail, and all expected results, including reportii^, are determined and documented.NOTES
Program testing includes physically running the tests specified in the test
plan as well as correcting errors found in the code during the testing. This
step is complete when the test results have been reviewed and approved by
the project leader.
To build a more consistent history of the time expended to complete each
step, the life of the coding step can be defined. The time used in making
coding changes needed to correct errors that were detected during the test
step, is recorded as test time. This eliminates the question of where to record
those hours and facilitates consistent recording of time throughout the programming
staff. Similarly, it is not allowed to record time in any step that has been
previously completed. However, if a flow is detected, that forces redesign of
all or part of a program, this time can be reported in the earlier.phases.
In order to test a program properly, test plan development has to be undertaken
at some point in the program development process. It has been experienced
that performing this step before any logic is’constructed ensures that a usable
and exhaustive plan for proving the correctness of a program is available
when the coding of the program has been completed. This will most likely
provide a more sensible approach to testing all facets of a program with as
few test runs as possible. If the development of a test plan is postponed until
after the program is coded, it will tend to test only those parts of the program
which the programmer has become more concerned with or interested in.

□□□

X72 • Self-Instructional Material

